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Resumen

El detector Hyper-Kamiokande (HK) está diseñado para estudiar los fenómenos relacionados con los
neutrinos y la desintegración de protones. Para detectar estos sucesos, se utilizan fotomultiplicadores
(PMT) que permiten capturar los fenómenos de Luz de Cherenkov. En el marco de este proyecto, la
Universidad Politécnica de Valencia es la encargada de diseñar el DPB o Bloque de Procesado de Datos
que funcionará de interfaz para transmitir los datos desde el front-end, donde se alojan los PMT, al
exterior.
EsteTrabajodeFindelMásterUniversitario en IngenieríadeTelecomunicación trata sobre el desarrollo
de un prototipo para el DPB sobre una tarjeta SystemOnModule(SOM) de Xilinx que dará soporte a las
funciones que deberá realizar el DPB entre las que se encuentran comunicación mediante protocolo
Aurora, sistema de arranque fiable y temporización y sincronización.

Resum

El detector Hyper-Kamiokande (HK) està dissenyat per a estudiar els fenòmens relacionats amb els
neutrins i la desintegració de protons. Per a detectar estos successos, s’utilitzen fotomultiplicadors
(PMT) que permeten capturar els fenòmens de Llum de Cherenkov. En el marc d’este projecte, la
Universitat Politècnica de València és l’encarregada de dissenyar el DPB o Bloc de Processament de
Dades que funcionarà d’interfície per a transmetre les dades des del front-end, on s’allotgen els PMT,
a l’exterior.
Este Treball de Fi del Màster Universitari en Enginyeria de Telecomunicació tracta sobre el
desenvolupament d’un prototip per al DPB sobre una targeta System On Module(SOM) de Xilinx que
donarà suport a les funcions que haurà de realitzar el DPB entre les quals es troben comunicació
mitjançant protocol Aurora, sistema d’arrancada fiable i temporització i sincronització.

Abstract

The Hyper-Kamiokande (HK) detector is designed to study phenomena related to neutrinos and
proton decay. To detect these events, photomultipliers (PMT) are used to capture Cherenkov light
phenomena. In the framework of this project, the Polytechnic University of Valencia oversees the
designing of the DPB or Data Processing Block that will act as an interface to transmit the data from
the front-end, where the PMTs are housed, to the outside.
This Final Project of the master’s degree in Telecommunication Engineering deals with the
development of a prototype for the DPB on a Xilinx System On Module (SOM) card that will support
the functions to be performed by the DPB, among which are communication via Aurora protocol,
reliable boot system and timing and synchronization.
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Introduction: TheHKK Project



Chapter 1

Motivation

Electronics is one of the fundamental pillarswhere development ofmodern technologies stand,
allowing also for unparalleled advances in several areas of knowledge providing new and more
accurate ways to measure phenomena to assess the hypothesis that these areas of knowledge
make.

One of those fields, often seen as a very theoretical one is Physics. Nothing further from
the truth, this field needs a lot of experiments to prove their hypothesis true and the further we
dive into the mysteries in our universe, the more difficult it becomes to measure the required
magnitudes to perform the hypothesis validations.

Thus, this Final Master Thesis (TFM) of the Master in Telecommunications Engineering is a
contribution in the development of a system that is able to help in this field, specifically in the
High Energy Physics field. Taking advantage of what has been learnt in the master, the design
of a Printed Circuit Board called the Data Processing Block (DPB) will be explained, focusing
mainly on the special aspects that a physics experiment like this will need.

Please, take note that this TFM is a continuation of the same line of work than my previous
TFM in theMaster inElectronic SystemsEngineering (MUISE) [1], so a comparisonwill bemade
in the following chapters with respect to the advances made from that time, which not only
include software, even though a lot of focus is put in there, but also a change in the hardware,
making it more similar in terms of form factor, power consumption, I/O ports, etc... to the final
design used in the physics experiment

Hence, this TFM will be divided in the following parts:

• Introduction: including an explanation of the experiment, named Hyper-Kamiokande
(HKK) and the current status in the development of the Data Processing Block (DPB)
together with the objectives developed on this TFM to further advance to the final design
of this board.

• DPBArchitecture: In the previous TFM, an explanation of theDPBarchitecture hadbeen
given, in a single chapter. Here, more details, specially the ones that are useful to know
for this project, will be given. Also, as we enter in the prototype and test phase, a budget
must also be introduced accounting for the cost of developing such a device, where not
only the manufacturing cost is considered but also other variables, like, as we will see,
subcontracting a company to perform part of the job.

• DPB in the electronics front-end: the DPB must be able to communicate with several
other boards to perform its functions, as it is like a hub, concentrating and routing the
data from the whole electronics front-end to an external datacenter. This means that an
explanationof the different protocols used to communicatewith the boards ismandatory.

• Methodology and Tasks: this part focuses on the work done for this TFM. It can be
summarised in a series of chapters where different procedures and results from the
development are stated. It contains all the work done from January 2023 to June 2023,
before receiving the next prototype, which is also explained in the last chapter of this
part.
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CHAPTER 1. MOTIVATION FINAL MASTER THESIS

• Conclusions and future work: this project will be in the works until 2027, so there is a lot of
time for improvements towards an ideal software design that fulfills all the requirements. This
part states the conclusions drawn from this work and the future lines of work which involve the
manufacturing of even more prototypes and finally, the mass manufacturing of the definitive
design.

Concerning the project’s organization, to be developed later in this document, this Master’s thesis
serves as a step towards designing a SOM based system. The SOM is a pivotal component within the
electronics module developed by UPV for Hyper-Kamiokande (HKK). My role in the Institute for
Molecular Imaging Technologies, where I am employed, involves collaboration with international
research groups from Italy, such as the National Institute of Nuclear Physics, as well as institutions in
Great Britain (Warwick University) and Japan (University of Tokyo). Additionally, collaborative efforts
extend to private companies like Enclustra, responsible for designing the PCB for the final
configuration of the DPB. Public institutions like the Universidad Autónoma de Madrid (UAM)
provide essential technical support. Their expertise has been of great help for enabling me to
understand the hardware and software architecture of the system to be developed and the tools used
for that purpose within this year.

As a brief preview of this Master’s thesis, it’s worth noting that all the outlined objectives have
been achieved, with detailed explanations to follow in subsequent chapters. These objectives are
challenging, requiring a comprehensive understanding of the system from both hardware and
software perspectives, essentially starting from scratch. Consequently, a thorough explanation for
each phase of the development process is presented in English, as this thesis forms part of the official
project documentation.

Figure 1.1.1: Electronic board where the DPB software has been designed
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Chapter 2

Objectives

Theoutlinedwork in the chapter 4 corresponds to the secondhalf of 2022. However, in this TFM,
wewill look further in time. Considering the time schedule of figure 1.2.1, the development had
just started. Now we are looking to 2023 development, where the hardware must be designed
an finalised, at least in some form of prototypes.

Figure 1.2.1: Time schedule for the design of the vessel, together with the front-end
electronics and the PMT

This objectives chapter lists the goals to be achieved by this specific Final Master Thesis
inside the HKK project, described in chapter 3. This project is immense, with participation
from over 300 researchers across 75 institutes in 15 countries as of 2018. The numbers have
since increased with the start of the HKK development. Such a vast collaboration presents
coordination challenges. This means that management is crucial for this project to succeed
and be ready in time. The responsibilities of UPV are integral to the experiment’s electronics,
attributed to the specialized module being crafted by the UPV. Specifically, the design is done
by the Institute for Molecular Imaging Technologies (i3M), and the Memorandum of
Understanding (MoU) signed by the Ministerio de Ciencia e Innovación reflects this
dedication. This TFM serves as a foundational blueprint for the hardware and software
development of the DPB board, leveraging contemporary tools.
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As such, the objectives, seen as a continuation of the work already done over the ZCU102 part [1],
can be summarised in the following way:

• Learn and use the SOM form factor: Jumping from an Evaluation Board, the System On
Module (SOM) form factor will be the one used in the final DPB design. As such, some time
must be invested into understanding which differences there are in this PCB with respect to a
full fat Evaluation Board. These aspects will be discussed in Part II.

• Understanding communicationprotocolswith the rest of the electronics front-end: theDPB
has the main function of being the bridge that communicates the vessel with the outer world. As
such, it must understand the language that every board in the vessel speaks. This language in
computers is translated as some communication protocols with a specific data-frame format. In
Part II, the protocols used by the timing, DAQ, HV, LV and the digitizer will be explained, to give
a proposal of which kind of hardware or software must be integrated into the system to perform
a correct communication.

• Adding redundancy for the data links: The first link where redundancy will be investigated is
the data link, that is the link between the DPB and the DAQ. This link is a standard TCP/IP link
so Linux should have mechanisms that allow to group interfaces and make redundancy easy to
program and configure.

• Debugging the operative system: Making some code work in the context of an embedded OS
is not trivial, as errors or unexpected behaviour can arise. To counter this, debugging exists, as
a way to execute step by step the code of your software to spot possible bugs. Some debugging
techniques in this context will be looked into to discuss in which cases it is better to use one or
another.

• Study the boot flow: having several redundancy mechanisms that increase the reliability of the
platform is desirable. However, if all of thismechanisms rely onhaving anembeddedOS running,
then a newweak point is created: what if the embeddedOS cannot boot up due to the corruption
of amemory zonewhere theOS image is stored? In this TFM theboot flowused to boot PetaLinux
will also be investigated and some changes will be proposed to make the boot up more reliable.

• Discuss improvements for incomingprototypes: in the process of developing the SOMspecific
software, some issues will arise. These issues will be noted down to see if they can be fixed in an
easier or cleaner way with the next hardware revisions of the DPB.

These objectives will be divided into the three remaining parts of the TFM:

• Part II - DPB architecture: where the Zynq Ultrascale+ architecture, SOM form factor and the
communication protocols with the rest of the electronics front end.

• Part III - Tasks and Methodology: where debugging, redundant data links and the boot flow
discussion will be included.

• Part IV - Conclusions and future work: as previously stated, discussion about future
prototypes is required to establish a future line of work. This part will serve to that purpose,
stating the potential issues that have happened or could happen in a future and take preventive
measures against them.
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Chapter 3

Thenext generation of Cherenkov Light
Detectors: Hyper-Kamiokande (HKK)

3.1 The predecessor

The equipment utilized in physics to examine neutrinos is called a neutrino detector. It is
designed to remain untouched by external factors such as cosmic rays or ambient radiation
[2].
These detectors are massive entities and their operation is based on various neutrino detection
methods available. Examples include scintillators (as seen in the Cowan-Reines neutrino
study), radiochemical approaches, radio detectors, and Cherenkov light detectors.
The focus of this chapter is on the Cherenkov light detection method. These detectors are
essentially vast tanks filled with water, supplemented with deuterium and gadolinium. This
setting is optimal for neutrino interactions. When a neutrino interacts with water’s electrons
or nuclei, it can produce a charged particle that moves faster than light does in water. This
results in a specific type of light emission known as Cherenkov light. This phenomenon is
equivalent to the sonic boom in sound waves.

Surrounding the water tank are light-sensitive instruments called Phototubes. These can
either be gas-filled or vacuum tubes that react to light. Among them, the Photomultiplier tube
(PMT) stands out for its superior sensitivity. This PMT is tasked with detecting the Cherenkov
light stemming from the neutrino interaction.

By analyzing the light pattern, various neutrino properties can be determined, including its
direction, energy, and on occasion, its specific type. See figure 1.3.1 for reference.

Figure 1.3.1: Cherenkov light phenomenon detected by a PMT [3]

Neutrino interactions with matter are exceptionally infrequent due to their low probability.
Therefore, the larger thewater tank and the greater thenumber of PMT, thehigher the likelihood
of detecting interactions within a given timeframe.
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The currently operational largest neutrino detector is the Super-Kamiokande (SKK). The name
”Kamiokande” is the result of joining the following words: KAMIOKA Neutrino Detection Experiment.
Situated beneath Mount Ikeno near Hida city in Gifu Prefecture, Japan, it’s managed by the facility
known as Kamioka [4]. Over time, this detector has seen four major revisions due to various factors,
such as cascade failures or the swapping of the 6000 PMT and electronic upgrades in its most recent
version, Super-Kamiokande IV. The progression of this neutrino detector from its inception in 1996 to
the present is documented in Table 3.1.

Phase SK-I SK-II SK-III SK-IV
Period Start 1996 Apr 2002 Oct 2006 Jul 2008 Sep

End 2001 Jul 2005 Oct 2008 Sep 2018 Jun
Number of PMTs ID 11146 (40%) 5182 (19%) 11129 (40%) 11129 (40%)

OD 1885
Anti-implosion container 7 ✓ ✓ ✓

OD Segmentation 7 7 ✓ ✓
Front-end electronics ATM (ID) and QTC (OD) QBEE

Table 3.1: Main characteristics of the Super-Kamiokande iterations from 1996. The values in
parentheses below the number of PMTs in the ID show percent photo-coverage of the surface [5]

In these versions, there has not been any alteration in the count of PMT or in the coverage
percentage. Instead, modifications were primarily directed towards bolstering protective measures as
mentioned earlier, and transitioning the front-end electronics. The technology shifted from using
Analog Timing Modules (ATM) for Inner Detector (ID) and Charge to Time Converter (QTC) for Outer
Detector (OD), to adopting a refined, unified QTC Based Electronics over Ethernet (QBEE) approach.

3.2 HKK structure

In May 2020, an extensive renovation of the SKK received approval. This would involve constructing a
brand-new observatory from scratch, aiming to have a fiducialmass 10 times greater than the previous
version, thereby becoming the world’s largest underground water tank. When juxtaposing the specs of
HKK with those of the SKK versions in table 3.1, the HKK boasts 40,000 PMT, equating to 40% photo-
cathode coverage—identical to the SKK. A larger quantity of PMT is required due to the increased tank
size. The primary ambition of this detector is to facilitate pristine proton decay searches through 𝑝 −→
𝑒++𝜋0 and 𝑝 −→𝜈+𝐾+, along with monitoring anti-neutrinos emanating from supernovas.

Figure 1.3.2: Hyper-Kamiokande water tank concept sketch. Amegaton water tank used for
gathering in 10 years data that SKK would take 100 years [3]
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The design of the detector features a cylindrical tank with external dimensions of 60m in height
and 74m in diameter. It is filled with 260,000 metric tons of ultrapure water, serving as a water
Cherenkov detector. Encircling this tank are state-of-the-art photodetectors with 50% greater
efficiency than those of SKK, offering enhanced accuracy in light intensity and detection timing.
These PMT (Hamatsu R12860) will magnify events, particularly from neutrino interactions [6]. This
design facilitates physicians in more precisely gauging the direction and velocity of neutrinos
traversing the detector. An in-depth cross-sectional view of the primary tank is presented in figure
1.3.3.

Figure 1.3.3: Hyper-Kamiokande Cross section for the first tank [6]

The detector is equipped with front-end electronics and is interconnected with a computer cluster
dedicated to data processing. Its advanced data acquisition capabilities enable event detection within
anaverage time frameof 2𝜇𝑠. The structureof theOD is largely consistentwith that of SKK,maintaining
a layer thickness of 1 to 2m to limit external interference.

Figure 1.3.4: Ultrasensitive PMT that will be installed inside the HKK [6]
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3.3 HKK goals

The substantial expansion in detector size facilitates the study of the tiniest constituents of matter in
the Universe. These constituents comprise elementary particles, specifically quarks and leptons. For
instance, a proton, which is constructed from three quarks, combined with an electron—a type of
lepton—makes up a hydrogen atom. Neutrinos are a subset of leptons that carry no electric charge
and exist in three varieties: electron neutrino, mu neutrino, and tau neutrino. Intriguingly, these
three neutrino types can intermingle and transition between each other, a process termed ”Neutrino
oscillation.” This phenomenon was first uncovered by Super-Kamiokande in 1998. In-depth
examination of neutrino oscillation can shed light on the inherent properties of neutrinos.

While the discovery of the Higgs bosom particle seemed to complete the Standard Model—a
framework describing the system of elementary particles—the data about the neutrino’s mass and its
mixing rates derived from past studies diverges considerably from that of quarks. This discrepancy
suggests that a more foundational framework, surpassing the Standard Model, might be necessary.
Neutrino oscillation experiments hold promise as pivotal tools in discerning the core structure of
elementary particles [3].

Figure 1.3.5: The existence of three flavors of neutrino and themix of them cause the neutrino
oscillations that make them change their type. [3]

Additionally, the detector does not solely rely on neutrinos originating from outer space, as
depicted in figure 1.3.6. It also works in conjunction with neutrinos emitted from the J-PARC
accelerator located in Tokai, Ibaraki. These neutrinos journey across Japan, from one end to the
opposite where HKK is situated, facilitating the study of CP violation. A substantial number of
neutrino detections is essential for examining CP violation. While SKK took a considerable duration
to accumulate this volume, the HKK is projected to amplify the count of detected neutrinos by a
factor of 30, thus expediting the research process. Concurrently, enhancements to the J-PARC
neutrino beam are planned for HKK.

Figure 1.3.6: Travel of a neutrino from the JPARC accelerator to HKK[3]
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The primary objective of this project is to delve deeper into the study of neutrino oscillations. Key
phenomena targeted for investigation in theHKK, alongwith its descriptions, are shown in figure 1.3.7.

HKK: Uncovering
themystery
of neutrino
oscillation

CP ViolationMeasurement
Research into the disparity

between anti-matter and matter
in the universe suggests that it
could arise due to CP violation,
particularly within neutrinos.

Cosmic Neutrino Observation
By harnessing cosmic neutrinos,

like those emitted from the Sun or
a supernova blast, we can probe
stellar entities to shed light on

the universe’s historical narrative.

Determining the ordering
of the neutrinomasses

Through neutrino oscillations, disparities
in the masses of the three neutrino flavors

are evident. Ascertain the hierarchy of
these masses will enhance the accuracy

in gauging CP violation, clarifying
whether a neutrino can be differentiated

from its antiparticle equivalent.

Proton Decay Searches
A prevailing query in the realm
of elementary particle physics
revolves around the proton’s

enduring stability. According to
the Grand Unified Theory, it is

posited to decay into less massive
particles. Given the heightened
sensitivity of HKK, it serves as

an apt instrument to investigate
the veracity of this hypothesis.

Figure 1.3.7: Hyper-Kamiokande neutrino oscillation investigation fields [3]

The goals set out are at the forefront of elementary particle physics, primarily because the HKK
has the potential to validate these four theories. Stepping away from theory, one must also recognize
the future technological implications of these investigations. While they might currently seem like
theoretical constructs aimed merely at a better understanding of our universe, history shows us the
practical significance of foundational discoveries. Much like the exploration of electron behavior led
to the birth of electronics, a staple in modern devices, and the study of photons paved the way for the
development of fiber optics and photonics ensuring rapid communications, probing into neutrinos
could usher in a novel realm of technology, tentatively termed neutronics. Such technology might be
revolutionary for space communication, given neutrinos’ unique property of minimal interaction and
attenuation, ensuring low attenuation in long-distance communications.
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Chapter 4

Status of the DPB development

Before getting into the matter, this chapter will cover the current status of the electronics front-
end, so that the point of departure in this TFM is clear. The UPV is in charge of designing both
hardware and software of the Data Processing Block (DPB), an electronics module in charge of
concentrating and routing all the data that comes fromother parts of the frontend to an external
datacenter, known as DAQ. A simplified block diagram of the electronics front-end can be seen
in figure 1.4.1.

Figure 1.4.1: Block diagram of the electronics front-end. The digitizers are connected
to the PMT, which send the data to the DPB.The DPB also controls the High Voltage
Module (HV) and Low Voltage Module (LV) power supplies and receives information from
a Timingmodule that must be sent to the digitizer

This electronics front-endhas a special requirement regarding reliability and durability: one
of the most important changes in HKK with respect to SKK is the fact that the PMT are much
more sensible and accurate. Thismust be accompanied by the use of the shortest possible wires
to avoid attenuation and signal degradation. This poses a challenge because it means that the
digitizer board must be inside the vessel together with the PMT. So, the electronics front-end is
underwater in the same vessel as the PMT. This makes impossible for the boards to be replaced
or repaired in the case of a failure or broken module because it would imply to send a diver or
empty the detector which is very expensive and time-consuming.

As for the tasks it must perform, they are typical to any data acquisition system: it must
have links with the digitizer boards that will pass the information in digital format to the DPB,
fiber optics link with standard TCP/IP stack to communicate with the DAQ and several serial
interfaces to communicate with the power supply units (labelled as High Voltage and Low
voltage in figure 1.4.1). There is also a timing link, which uses a custom protocol to ensure a
clean clock regeneration for the digitizer and accurate timestamping for the events captured
by the PMT.
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So, the development beganwith the agreement uponusing an architecture that fulfills the following
requirements:

• Data Integration: The Data Processing Block (DPB) encompasses several functional units
within the ID&OD front-end electronics box, notably “Systems control and data transmission”,
“Optical I/F” connected to the DAQ, and “Data organization and buffering”. In essence, the
DPB serves as a central hub that receives varied data formats and consolidates them into a
uniform frame format, facilitating straightforward decoding by a server. Consequently, an
application must run on the DPB to execute these operations. An efficient approach involves
deploying an embedded Operative System (OS) on a System on Chip (SoC). The chosen SoC
should meet the criteria of adequate computational power for the TCP/IP stack management,
sufficient transceivers to accommodate all optical fiber link connections, and ample memory to
buffer incoming data from the digitizers.

• Dependability: In our foundational design, the front-end electronic modules are submerged in
water, obviating the need for extended analog cables running from the PMT to exterior
electronics. This arrangement significantly reduces cable numbers within the tank and
simplifies the PMT support framework and overall detector assembly. Notably, cable sheathing
is a known Rn source. By minimizing cable lengths, we anticipate a reduction in Rn
concentration. Once filled, the tank’s electronics become inaccessible, making component
repairs unfeasible. As a result, we aim for an underwater system failure rate of less than
1%/year. Naturally, this approach brings forth technical hurdles, including ensuring watertight
integrity and system durability. Moreover, any upgrades to the electronics would necessitate
draining the tank, an event not projected to occur for approximately a decade post-initiation of
operations.

It was decided to use an architecture that combines power and flexibility: Zynq Ultrascale+
MPSoC. This architecture made by Xilinx Inc. is divided into two blocks, explained later that include a
powerful ARM CPU that can run Linux and FPGA fabric, where hardware can be instantiated through
HDL coding by loading a bitstream into the chip. This allows to have a species of mini-computer into
each vessel, reliable and powerful enough to leave all the monitoring and data transferring to a
trustworthy chip. Then, the users of the detector will just need to connect from the outside to each of
the vessel in case they want to change any parameter to the OS. The access to these boards would be a
very well known standard: a Linux terminal, which allows for customizing any aspect of the module.

Figure 1.4.2: ZCU102 Evaluation Board used to begin the DPB design and development
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As therewasnofixedhardwaredecided, besides the architecturebeingused, itwasdecided tobegin
the software development in a Xilinx standard Evaluation Board (EvB) called the ZCU102. This board
is dedicated to develop applications of almost any kind that can take advantage of a Zynq Ultrascale+
chip. As we can see in figure 1.4.2, the ZCU102 has a lot of I/O ports. However, only some of them were
used, for example, PCI Express won’t be present in the final design.
The ZCU102 development part was covered in my other TFM, here is the summary of the conclusions
and what was learnt through the time spent with the ZCU102.

• PetaLinux as the Chosen OS: Xilinx offers a comprehensive SDK, facilitating the development
process especially when bootstrapping an OS. While an OS differs from conventional
applications, the Linux kernel has evolved over time to enhance its capabilities and support
diverse CPU architectures. Xilinx’s specialized Linux distribution for their specific hardware
merges the familiarity of the standard Linux development environment with the benefits of
on-board application building and sophisticated debugging tools.

• Startup Procedures: The Zynq Ultrascale+ integrates multiple hard microcontrollers in the PS
designated for various memory types. Beyond the principal DDR4 memory, there are
controllers for QSPI, eMMC, and SD flash. Upon initialization via the FSBL, these memory
controllers become accessible, allowing the system to boot from their respective domains. This
versatility boosts system reliability by enabling memory redundancy across multiple chips.
Should one memory source fail, an alternative can take over. Expanding on this, PetaLinux even
supports PXE boot [7], drawing the kernel image from a remote TFTP server.

• Custom OS thanks to Yocto: A standout feature of PetaLinux is its adaptability, aligning well
with the Zynq Ultrascale+ architecture. Users can modify the PetaLinux image to include or
exclude specific software components, optimizing the OS for the intended purpose. Yocto
provides the environment for such precise customization. Grasping Yocto’s concepts, including
recipes, layers, and its toolchain, is paramount for efficient image construction, a critical step
for creating the software stack for DPB functions like data linking and slow control.

• Startup Scripts: Ensuring maximum system autonomy, initial configurations post-OS boot
must be automated. Linux inherently caters to this requirement, vital across platforms from
PCs to embedded devices. In this TFM, both systemv and systemd were explored. Though the
latter has seen its share of controversy within the Linux community, its structured approach to
service initiation using .service files offers a more streamlined configuration method, making it
the preferred choice for the DPB firmware.

• Managing Slow Control Data: Typically, sensors utilize serial protocols for configurations and
data retrieval. In this TFM, the hard SPI controller was interfaced with a magnetometer sensor,
and a register read test was conducted. This test validates the Zynq Ultrascale+’s ability, under
Linux, to handle read/write operations with the various sensors set for the DPB. Regardless of
the sensor’s protocol—be it SPI or otherwise—the Zynq platform is versatile. With I2C hard
controllers in the CPU and customizable cores in the FPGA like UART and RS232, diverse serial
communications are supported, ensuring comprehensive slow control capabilities.

• Incorporating Additional Network Interfaces: Optical links are earmarked for data and timing
link implementation, eachusingdistinct protocols. For thedata link, the standardTCP/IP stack is
employed. Within this TFM, the steps to integrate additional network interfaces that are TCP/IP
compatible have been detailed. Introducing more links via SFP modules connected to the FPGA
fabric is straightforward as it simply requires an IPCore. Apre-existing Linuxdriver fully supports
the required functionalities for link establishment. However, configurationwithin the device tree
demands careful attention to ensure that the IPCore’s configuration is donecorrectly by theLinux
driver.
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DPB Architecture



Chapter 1

Zynq Ultrascale+

In this chapter, the architecture used for the design of theDPBwill be explained focusing on the
parts that are relevant to the DPB requirements.

1.1 Core architecture to the DPB

The Data Processing Block (DPB) is a system that can be classified in the embedded
applications category as it is a special combination of both hardware and software to perform
a very specific function. If it had to be summarised into one phrase it would be Being the
intermediary with everything inside the vessel, as seen in figure 1.4.1, where it is clearly
connected with every module contained in the vessel and also to two modules (timing and
DAQ) connected outside the vessel.

For running the custom protocols at optimal levels of performance, an FPGA, where
hardware can be instantiated to perform specific tasks, besides having a general purpose CPU
is ideal, so, as stated in my MUISE TFM, the ZCU102 by Xilinx had been chosen.

Looking into the offerings of Xilinx for the development of Embedded Applications
platforms, the Zynq UltraScale+ Multi Processing System on Chip (MPSoC) architecture seems
to be the most attractive. This formidable chip offers 64-bit processor scalability, seamlessly
integrating real-time control with both soft and hard IPs dedicated to graphics, video,
waveform, and packet processing. Constructed on a unified platform featuring a real-time
processor and programmable logic, it manifests in three different variants: dual application
processor (CG) devices, quad application processor and GPU (EG) devices, and video (EV)
devices. This diversity opens up endless possibilities for various embedded applications [8].

Figure 2.1.1: Zynq UltraScale+𝑇𝑀 Block Diagram [8]
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This poses the fundamental advantage of having a powerful, fully customizable system that allows
for fine tuning to suit the needs of any application, even the one in this project, where redundancy
constraints imply the need of much more hardware than other embedded application. Figure 2.1.1
shows a block diagram with the parts that form the Zynq Ultrascale+ MPSoC architecture.

This block diagramcanbe divided into twoparts: the light blue backgroundwhich is the Processing
System (PS) and the yellow one corresponding to the Programmable Logic (PL).

1.2 Programmable logic (PL): flexibility

FPGAhave always consisted of a series of blocks in amicrochip that canbeprogrammed tobecomeany
hardware that can be coded in Hardware Description Language (HDL), opening the doors to a world
of high flexibility when creating custom hardware without relying on long time custom ASIC designs.
Xilinx divides the PL into the following components:

• Data Storage and Processing: Integrated memory within the FPGA facilitates the generation of
memory hardware blocks for data retention. For instance, Xilinx labels their inbuilt FPGA
memories as BlockRAM, and its advanced high-density version is known as UltraRAM [9].
Additionally, DSP blocks exist, boasting unique architectures which permit the development of
units like Multiply and Accumulate, optimizing filtering processes.

• Fundamental Logic Cells: These serve as the foundational units to establish logical operations.
Constituted by a 6-input Look Up Table (LUT), a multiplexer, and a pair of flip flops, especially in
the UltraScale+ Architecture context. Figure 2.1.2 illustrates a basic Logic Cell schematic.

Figure 2.1.2: Zynq UltraScale+𝑇𝑀 Logic Cell [10]

• Universal I/O: These are the FPGA’s input/output pins, segmented into two categories: High
Performance (HP), designed for swift operations, and High Density (HD), which though slower,
offers greater density, thereby enabling a plethora of low-speed communication channels.

• Advanced Speed Connectivity: This category houses the fastest buses, ranging from Multi
Gigabit Transceivers (MGT) types like Gigabit Transceivers Type H (GTH) and Gigabit
Transceivers Type Y (GTY), all the way to the 100G Ethernet Media Access Controller (EMAC)
and Peripheral Component Interconnect Express (PCIe). These are capable of managing
transfer rates in the vicinity of tens of Gigabits Per Second. Figure 2.1.3 shows a block diagram
of an MGT where there are two clearly defined parts: transmission and reception where there is
an interface that communicates with the corresponding block that configures communication
protocol and it goes through a series of blocks to a differential buffer. This allows to have higher
speeds than what would be achieved with a standard LVDS connection.
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Figure 2.1.3: Multi Gigabit Transceivers (MGT) block diagram in a Xilinx FPGA

1.3 Processing system (PS): raw compute power

Historically, FPGA primarily comprised of CLB. However, as they frequently collaborated with a
dedicated CPU for task acceleration, the notion of PS emerged. This concept devoted silicon space to
distinct functional units, essentially integrating ASIC adjacent to the FPGA and bridging the two via a
rapid interconnect fabric. The components of the UltraScale+ MPSoC architecture in this segment
include:

• Application Processing Unit (APU): These represent the core units of the PS and are responsible
for running the preferred embedded OS. The chip used in HKK for the DPB sports a dual core
system that enables the much needed high performance.

• Real Time Processing Unit (RPU): A pair of auxiliary cores explicitly tailored for Real Time
application execution. These applications demand deterministic time execution. These cores
are not used yet, they are left in low power state but if any issue regarding computational power
arises, they can be used, running a separate program from the APU.

• Memory: Acts as the primary memory for the CPU, mirroring the role of main memory, usually
called just RAM on PCs.

• PlatformManagementUnit (PMU): Entrustedwith overseeing the entire system’s scheduling and
power distribution.

• Voltage and Temperature Oversight: Vital for HKK, as these parameters must be closely
monitored to guarantee that the DPB remains within ideal operational conditions, thus
enhancing its longevity.

• Connectivity spans from standard options like USB, Controller Area Network (CAN), and
Ethernet to high-speed counterparts such as Display Ports, USB 3.0, Serial Advanced
Technology Attachment (SATA), and HDMI.
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1.4 Embedded operative system: PetaLinux

Such a complex system would not be complete without a piece of software up to the task of managing
this hardware. This is where the embedded Operative System (OS) comes in. Having an OS poses
several advantages in managing hardware as it provides a standardised API for the software to use the
hardware as efficiently as possible.

For this matter, Linux has been chosen as it is an open source solution, meaning that anything can
be customised with enough expertise and it has all the required libraries by the rest of the teams at the
front end electronics.

However, Linux is just the kernel, the core that interacts with the hardware and provides the
abstraction layer for the software running over Linux to use. It is not a complete OS. When combined
with certain software packets it is converted in what is known as a Linux distribution (or distro for
short). Xilinx has a custom Linux distribution called PetaLinux, which has been chosen due to the
following reasons:

• Customizability: Linux can be used in a big variety of device ranging from Raspberry Pi to 64
cores dual CPU servers. Depending on the use case, the operative system must include certain
software packages. PetaLinux uses the Yocto project that, thanks to the recipe’s system, allows to
add and remove software packages very easily, tailoring the image to the user’s needs.

• Size: This advantage is linked to the previous one: being able to remove any unneeded software
package or kernel component like for example, PCIe drivers or USB drivers, will make the
resulting OS image smaller. This allows the image to fit into smaller flash memories, have a
smaller memory footprint regarding RAM usage and, in our case, allows to have more copies of
the same OS, which means increased redundancy as there are more independent files in
different memory zones that can be read to boot the system.

• Easy updates: the bootup process is relatively simple: it is formed by just three files as it will be
seen in Part III, all of them written in an internal flash memory. This makes the update process
trivial as it is just overwriting those files with new ones. Of course, onemust be very careful when
doing this because, if the new system does not boot up due to an error while making the update,
the DPB will be unusable. For this reason, it is recommended to have a Golden Image where the
system can fallback to ensure that it can always boot up, even after a failed update.
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Chapter 2

Hardware design

In this chapter, the hardware used for the DPB prototype and final version will be discussed
together with the reasons that made our team opting for the solution explained here.

2.1 The SOM form factor

The DPB development team had already decided which architecture was going to be used for
developing an embedded system that will perform high speed data routing and monitoring
tasks, with a certain degree of reliability due to the special constraints of the project. Now, this
team is in the prototyping phase, where the team has already worked with that architecture
and has developed some software on a standard board. This board is too big and expensive to
directly being used as the prototype as it is too far from the final hardware that your budget
and time constraints allow.

Also, as this is an university team, we do not count with enough expertise or manpower to
dedicate several weeks or even months to design a board, route correctly a chip that has 900
pins! and with special requirements regarding PCB layers and signal integrity.

After thorough investigation, itwasdecided thathavinga complete in-housedesignedboard
was not possible and that is when the System On Module (SOM) solution was discovered.

SOM provides the core components of an embedded system, that is the FPGA chip of the
desired architecture which has all the blocks explained in the previous chapter in a single
production ready PCB. Figure 2.2.1 is an example of how a SOM looks.

Figure 2.2.1: Picture of a SOM as a general overview

SOM has the following components:

• Embedded processing system: which in this case is a Zynq Ultrascale+ MPSoC chip just
as in the ZCU102 but tailored to the needs of the experiment. For example, the ZCU102
chip had much more CLB than the final SOM decision as this experiment does not need
that much custom hardware to work.
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• Mainmemory: required for the embedded application to run in. They are usually DDRmemory,
with several chip soldered depending on the memory capacity ranging from 2 GB to up to 8GB
of memory with the possibility of adding Error Correction Code (ECC) for increased reliability.

• Flash memory: non volatile memory to store the OS image, configuration files or data needed
for the correct operation of the system. There are usually QSPI NOR flash or eMMC memories
which use the same technology as standard SD cards but are soldered into the board.

• Clocking: the ZynqUltrascale+ needs external clock sources to work so SOMalso has some fixed
clock sources on the PCB that are directly routed for the cleanest possible clocks to the pins of
the FPGA.

2.2 SOM + Baseboard as a decoupled solution for I/O

Looking at figure 2.2.1, the reader may have thought Where are the inputs and outputs of the system? It
seems incomplete to me. And it would be correct, because the SOM itself does not include any form of
standard inputs and outputs like USB, ethernet ports, SATA, etc... However, if we turn around the PCB,
we can see something of the likes of figure 2.2.2.

Figure 2.2.2: Picture of a SOM from the back, showing the three standard A B Cmodule
connector

SOM has standard connectors that can be inserted into a baseboard that provides the
corresponding I/O for the application being developed. This is a huge advantage because it isolates
the complexity of a computing system from the I/O requirements. SOM designers take care of all the
complicated routing and placing of CPU, memories, clocks, etc... and route all the I/O pins of the chip
to the module connectors. At the other side the baseboard engineers design another PCB where only
I/O is involved so it is easier to design something from scratch in this project as the special
requierements on the DPB involve having redundant ports which means lots of fiber optics SFPs and
MiniSAS connectors, a combination which is hard to find in an all in one board.
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Figure shows an example of a SOM base board. In the center, the three A B C connectors where the
SOM is inserted can be seen.

Figure 2.2.3: Picture of a SOM baseboard. This board includes for example FMC slot, USB and a
SFP cages together with a PCIe interface to insert on a computer for versatility.

This combination proved to be very useful for the DPB design as it allowed us to decouple the SOM
design (complex part) and the baseboard design (relatively simple part), which was crucial as it made
us be in time for the deadlines that were imposed during this part of the project development.

2.3 Redundancy and reliability considerations

Having a SOM doesn’t make reaching reliability conditions automatic, now it is easier thanks to the
SOM + baseboard combination as the requirements can be assigned to one of the two parts and work
on them independently. To summarize, the reliability mechanisms in hardware, which are completely
based on redundancy are as follows:

• Redundant links: In figure 1.4.1, there are four different blocks connected to the DPB.
Redundancy in each one of the links communicating the DPB with each block has been
implemented as follows:

– Digitizer: there are two digitizer connected to each DPB. Each digitizer is connected
through a MiniSAS connector, which is a type of port used on Network Access Storage
(NAS) with high speed and very good reliability. MiniSAS has 36 pins, equivalent to having
4 SATA connectors in parallel. There are enough pins for implementing all the
communications protocols needed and even add redundancy to some of them. Figure
2.2.4 shows a schematic of the MiniSAS port with labels of each of the connections.

Figure 2.2.4: MiniSAS port schematic from the DPB2 schematic generated by Altium PCB
Designer
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Table 2.1 shows the different links to the digitizer through the MiniSAS connector and
whether they have a redundant link or not, depending on how important they are for the
experiment correct operation.

Link Description Redundant? Justification for using redundancy
DIG0_DATA Digitizer data link. Using this link the

data from the PMT and events
are transferred to the DPB using Aurora
protocol (explained in the next chapter)

✓ Data link is crucial, the experiment would not
work without having the data of the PMT being
sent to the DAQ. Thus it is a priority to ensure
that this link always work even after 10 years

DIG0_JTAG JTAG programming. The digitizer use
Kintex 7 FPGAs which need to be
programmed with a bitstream

× JTAG has too many pins to add
redundancy without compromising the
redundancy of other links

DIG0_TIMING Timing link to the digitizer, used to
provide timing information for accurate
timestamping

× Timing is very important but these
links are not as stressed as the data links specially
when receiving a supernova event where the
data link is expected to work very close to its full
capacity

DIG0_SLOWC Slow control sensor monitoring from
the digitizer

× Slow control are just sensors for
monitoring with a very low frequency so wearout
will be much less than with the data link. Also,
data link can be used to send slow control data
by defining a special dataframe

DIG0_CLK Low jitter phase alligned clock for
accurate timestamping on the digitizer

✓ The phase alligned and low jitter clock is crucial
for accurate timestamping and for the circuits
on the digitizer to work correctly in detecting
the events in the detector, thus two differential
clocks are sent to each digitizer

Table 2.1: Digitizer links table listing which links have redundancy in hardware and the reasons.

– DAQ: Fiber optic links will be used. The DAQ is just an external server to the vessel which
is communicated to all the DPB on the detector through an optical switching network. It
uses the standard TCP/IP protocol stack where the physical layer would be 1000BaseX,
that is fiber optics at 1Gbps speed. For each DPB, two fiber optics links are dedicated to
communication with DAQ, often referred as data links. There will be one main interface,
corresponding to a SFP port which the DPB uses under normal operating conditions. If
that link fails it will automatically switch to the other data link.

– Timing: it uses the samephysical layer as the data link. This linkwill be referred to as timing
link. However, it is not a standard TCP/IP stack in the upper layer as with the data link, it
is a completely custom timing protocol which requires an FPGA core instantiated in the PL
to work. As with the data links, there will be two timing links: main and backup. Two FPGA
cores will be instantiated. Each one of them will be routed to a MGT where a SFP module is
routed from the baseboard so that two independent parallel timing links are available.

Figure 2.2.5: Avago SFPmodule used for both the timing link and the data link
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– High Voltage Module (HV) and Low Voltage Module (LV): These boards are power
supply units that are configured through RS485 protocol from the DPB. Figure 2.2.6 shows
the schematic of the connector that goes to these boards. The redundancy here is applied
in two different ways: first there is an independent RS485 link for each of the boards and
the boards themselves have a main and a backup CPU that can be turned on using the
signals labelled with EN_CPU_(HV/LV)_(0/1) in the connector on the same figure.

Figure 2.2.6: HV and LV port from the DPB2 schematic generated by Altium PCBDesigner
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Chapter 3

SOM-based commercial solutions

This chapter shows the available SOMcommercial solutions and the logic followed for choosing
to outsource the manufacturing of the DPB prototypes to an external company.

3.1 Xilinx commercial solutions

Xilinx, as the introducer of this form factor, has several commercial solutions available to the
general public. Xilinx SOMs, as stated in the official announcement [11], are solutions for
faster time to deployment in smart vision applications which enable software developers in
their familiar design environment. SOM already includes the hardware needed on a credit
card size PCB so that designers only need to focus on the board level design instead of chip
level making the SOM directly pluggable into the end product for application deployment.
This is a big advantage in our case because it allowed us to focus on the baseboard design with
our specific requirements and then just plug in the SOM and boot it up.

Xilinx gives the following SOM portfolio in the Kria® line:

• Kria K26 SOM: for vision AI in smart cities and smart factories, using Zynq Ultrascale+ to
bring a quad core Arm subsystem with 256K system logic cells and 4k60Hz video codec
for smart cameras. It also has 240 dual pin connector with support for 15 cameras, 40G
ethernet and USB.

• Cost optimized SOM: yet to be released to the public, will be oriented to electric drivers
and other size and cost-constrained applications.

• Highest AI compute SOM: another yet to be released family of SOMs that deliver the
highest performance/watt for edge AI applications.

3.2 Enclustra SOMs and base boards

Looking at Xilinx offerings it is clear that they are oriented to AI applications. HKK experiment
requires the DPB to perform data gathering, routing and slow control monitoring, acting as a
minicomputer inside each of the vessel in order to have total control over what is happening on
itwithoutneeding toopen the vessel physically (something impossible aspreviouslydiscussed).

Enclustra Inc is oneof theXilinx partners regarding SOMdesign andmanufacturing. In their
web, there is a portfolio of their products where in the section System-On-Modules, there are 18
models of SOM that range from the architecture of the chip or FPGA used to the compute and
memory capabilities. For our case, the Mercury XU8+ SOM was chosen as it sports the Zynq
Ultrascale+ MPSoC with enough FPGA blocks for the DPB application.
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Figure 2.3.1 shows the front viewof theMercury XU8+ SOM, this SOMhasn’t exactly fixed specs, but
there are several tiers inside the same products depending on the memory or the FPGA size as shown
in figure 2.3.2.

Figure 2.3.1: Mercury XU8+ SOM by Enclustra Gmbh

Specifications for this SOM vary from 2GB DDR4 ECC memory to up to 4GB. This is enough for
prototype development but for final design, memory would need to be upgraded to 8GB.

Figure 2.3.2: Mercury XU8+ SOM variants

Regarding the baseboard, all Part III has been done over a commercial Enclustra baseboard called
the Mercury ST1+, shown in figure 2.3.3.

Figure 2.3.3: Mercury ST1+ baseboard by Enclustra Gmbh used for the first steps of software
development in a SystemOnModule
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3.3 DPB prototype as a SOM compatible base board

When assigned with the task of designing and manufacturing the Data Processing Block by the HKK
Directive Board, several challenges arise. In this section, themanufacturing will be treated. As with the
production of any electronic product, then category to which the DPB belongs to, several options are
presented:

• Complete in-house solution: this implies having the board designed both in hardware and
software perspective, together with the generation of the required PCB files like Gerber files,
drilling, etc... produced within the UPV. Then the UPV would also be in charge of procuring the
components, the PCB materials and do the bringup tests to ensure that the board powers up
correctly and receives correct supply from the electrical line.

• Partial outsourcing: the PCB design and the component procurement management would still
be done within the UPV but the manufacturing and bringup tests would be outsourced to an
external company.

• Complete outsourcing: hiring an external company to do the whole process from design,
manufacturing to bringup tests and deliver us the finalized board with support over time.

First, complete in-house solution is completely discarded as theUPV does not have themanufacturing
capacity tomake such complex boards, neither the 12first prototypes nor thefinal 1000boards thatwill
go into the vessels of HKK. Partial outsourcing seems manageable, however, due to time constraints
and having enough budget to allow for a complete outsourcing, the latter was the path chosen. The
structure within the investigation team at i3M makes the other two options unfeasible because of time
and manpower, there are not enough resources. All the manpower is already busy looking into the
most complicated and uncommon design requirements and firmware programming (the task I am
developing). We simply do not have the structure of a decently-sized company to buy or to procure
components.

That was when we decided to contact Enclustra with a proposition: completely outsource the
design, manufacturing and bringup tests of a SOM baseboard that, complemented with an already
available Marcury XU8+ SOM will be the first DPB prototype with hardware close enough to the final
design to develop all the software functions.

The tasks assigned to Enclustra have been divided into three Work Packages (WP), each one with
their corresponding sub-items:

• WP1: Hardware Design: DPB2 design in Altium, both in schematic and layout entry forms:

– Detailed design and review of such design.
– Library components entry and review.
– Schematics entry and review.
– Layout placement and review
– Layout routing and review
– Project Management

• WP2: Board Production: DPB2 production of 12 prototypes using the Altium layout and
schematic (among others) files generated in the previous working package:

– Production data generation and review (Gerber files, etc...)
– Production support
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– Production logistics
– PCB manufacturing specification document
– PCB assembly specification document
– Documentation review
– Project management

• WP3: Board Bring-Up: basic prototypes bring-up such as power, clock signals and JTAG
programming.

– Basic bring-up (power, clock, JTAG, 12 pcs).
– Simple reference design (for JTAG test).
– Bring-up report document.
– Documentation review.
– Handover and initial support.
– Project management.

These are engineering costs, we need to also consider the external cost of board production. The
summary of total cost from Enclustra outsourcing is shown in table 3.1.

Summary Total Estimated Cost
Position [EUR]
Development Cost 50.000,00 €
External Cost 10.000,00 €
Total Cost without VAT 60.000,00 €

Table 3.1: Summary of costs associated to Enclustra outsourcing

The costs per unit are very high but this is normal when manufacturing a prototype as all the
engineering costs are included and few boards are manufactured. This cost will be much lower when
manufacturing the 1000 final design boards as no engineering costs will be present or if they are, they
will be much lower.

€/𝑢𝑛𝑖𝑡 = 60.000€
12 = 5.000€

Furthermore, from the UPV there were also personnel involved, which has dedicated several hours
for these boards to be produced in meetings with Enclustra defining the requirements and ensuring
that the process went smoothly. Table shows the additional UPV personnel costs that should also be
considering when speaking about the DPB manufacturing costs. The working hours stated here were
done from January 2023 to June 2023.

Person’s name Time inverted Cost per hour Total Estimated Cost
[Hours] [EUR/h] [Eur]

Francisco José Mora 100 60 6.000,00 €
José Francisco Toledo 100 60 6.000,00 €
Francisco José Ballester 100 60 6.000,00 €
Vicente Herrero Bosch 70 60 4.200,00 €
Raúl Esteve Bosch 30 60 1.800,00 €
Alejandro Gómez 800 40 32.000,00 €
Total Cost for the UPV 56.000,00 €

Table 3.2: UPV personnel costs
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3.4 TRL levels across the DPB development

As with any new technology development, it is crucial to enumerate the Technology Readiness Level
(TRL) it undergoes through its development and associate them with the different stages in the
development. As indicated by the official note from Spain Ministerio de Industria y Comercio [12],
TRL is an accepted form of measuring the maturity of a technology from its proof of concept (TRL 1)
to a completely tested system in a real environment (TRL 9).

Within these TRL not all technology fields are evaluated in the same way. There are some fields
named the Key Enablement Technologies (KET), which the European Comission has decided that
Europe would loose its competitiveness if these six technologies are not developed successfully:

• Micro and nano electronics

• Advancedmaterials

• Industry biotechnology

• Photonics

• Nanotechnology

• Advancedmanufacturing systems

Table 3.3 shows an explanation of which condition should the technology fulfill to enter on that TRL
and how each development stage of the DPB reach every TRL.

TRL Level Technology Status DPB status

1 Basic idea Tasks of a data acquisition board
2 Concept and technology formulated Which elements should a data acquisition board have.
3 Proof of Concept Block diagram with all the I/O like in figure 1.4.1
4 Validated components in the laboratory ZCU102 development
5 Validated components in relevant environment DPB2 prototype manufacturing
6 Validated technology in relevant environment DPB2 test inside a vessel at CERN
7 Validated technology in real environment DPB2 test inside the vessel in the detector
8 Certified technology in real environment Certification by experts commitee
9 Available technology in real environment Hyper Kamiokande starts taking data successfully

Table 3.3: TRL levels table with respect to the DPB development

As can be seen in table 3.3, the DPB departs from a TRL3 because the concept is already invented
andmatured. It is fromTRL5up to9where the special requirements aredefined, specially the reliability
specifications, whichmust be thoroughly tested throughout all thematurity process of theDPB. In this
TFM, the TRL 5 will be developed, using the Mercury XU8+ SOM and ST1+ Baseboard provided by
Enclustra to develop a firmware for the future DPB2 prototype.
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Chapter 4

Communication protocols with other
boards in the vessel

The DPB is in the center of the vessel when it comes to communications: it must talk to
everything in the vessel and each one of these modules has a different protocol. This chapter
defines the protocols used for the DPB to communicate with each board.

4.1 Digitizer: the Aurora protocol

Starting with the digitizer, it is a boardwhich has a very small buffer. This is due to the usage of a
Kintex 7 FPGAwithout any kind of DDRmemory, leaving only the internal BlockRAMs available
as memory for the firmware running on it. This means that a high speed protocol is needed. So
Aurora was chosen. Aurora is a link layer communications protocol for use on point-to-point
serial links, developed by Xilinx. It is available in two variants: Aurora 8B/10B [13] and Aurora
64B/66B [14]. The only difference between them is the frame size, which in the first we find 8
bits of data and in the latter 64 bits of data both accompanied with 2 bits to allow enough states
for reasonable clock recovery and alignment of the data stream at the receiver.

There is much less overhead on the Aurora 64B/66B so this was the one decided to be used.
Aurora is a parallel protocol, meaning that several lines can be used for doubling or tripling
bandwidth, but here, as redundancy is the main focus only one data line will be used at the
same time even though there are two data lines coming from each digitizer to the DPB.

Figure 2.4.1: Aurora 64B/66B IP Symbol on Vivado [14]
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Figure 2.4.1 shows an Aurora 64B/66B block with all of its port labelled. The most important ports
are listed below:

• USER_DATA_S_AXIS_TX: Aurora uses AXI stream as the internal protocol to get or send the data
it receives from another Aurora core to the rest of FPGA cores or to the PS. This interface is the
transmission (TX) part, whichmeans that through this input, all the data thatwewant the Aurora
core to send arrives.

• USER_DATA_M_AXIS_RX: It is the reception (RX) part of the Aurora core, through this
differential output, all the data that Aurora core receives is gathered and can be routed, same as
with the TX, to a FPGA core or directly to the PS.

• CORE_CONTROL: contains all the control signals for theAurora core such as resets or init signals
for different parts of the core.

• CORE_STATUS: contains all the status signal for the Aurora core. This allows the user to monitor
the link status, transceiver health and if there has been any error detected by the CRC and if it
was corrected or not.

• REFCLK_IN: any FPGA core that uses transceivers requires a reference clock directly routed to
the FPGA pins corresponding to that transceiver. For the FPGA cores case, GTH transceivers are
used. These transceivers are divided into Quads, groups of four transceivers which also receive
two differential clock inputs for the user to choose which one to use. Figure 2.4.2 shows a
schematic of a GTH on the Mercury XU8+ SOM.

Figure 2.4.2: GTH Transceiver block on Zynq Ultrascale+ [15]

4.2 HV and LV: RS485 serial port

The High Voltage Module and Low Voltage Module use a standard RS485 protocol to encode ASCII
characters that are sent and received to communicate with the electronics within these modules. The
DPB has RS485 drivers to perform the encoding and decoding tasks of this protocol.

As they use RS485 [16], a Xilinx UARTLite Core [17] is enough to process the data that come from
both ST3485 RS485 drivers: U1600 for HV and U1601 for LV in Enclustra schematic. This UART core
uses an AXI4-Lite interface for register access and data transfers between the PS and the UART core for
sending commands to theHV and LVmodules and for reading the results stored in the registers. Figure
2.4.3 shows the schematic of both RS485 drivers.
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Figure 2.4.3: RS485 drivers for the HV and LV [16]. Each one of them is independently connected
to an output pin of the connector in figure 2.2.6

4.3 DAQ: standard TCP/IP link

The communication with the DAQ, which is just a computer server is done with a standard network
link. This link will use the standard TCP/IP protocol stack. A simplified view of the stack used in the
communication between the DPB and the DAQ is shown in figure 2.4.4.

Figure 2.4.4: TCP/IP stack with ZeroMQ [18]. Note that the app can stackmessages sending
them one by one using successive calls to ZeroMQ layer. Then ZeroMQwill send them all at the
same time

The libraries used to provide to the different applications thenetwork stack is called ZeroMQ,which
is a messaging system, or message-oriented middleware. When an application wants to communicate
anevent toother applicationorapplications it just assembles thedataand sends it as amessage through
the network.
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Figure 2.4.5: ZeroMQ architecture, divided into several worker threads for ultrafast parallel task
processing [18]

The architecture of ZeroMQ uses sockets, very similar to the TCP ones. To this socket several
worker threads are connected which can process different tasks like reading data in the network,
queue messages, accept connections, etc...

Figure 2.4.6: Different types of messages being sent from the DPB to the DAQwith data flows
marked in green
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For HKK DAQ, the messages shown in figure 2.4.6 have been defined. They include all the data that
the DPB should deliver to the DAQ.

• Service Discovery: Used to connect to the DAQ nodes when the application to readout data
starts.

• Logger: Any warning, error or information log of what is happening in the DPB, like doing printf
to get information about the execution flow of a program.

• Monitor: these messages send periodic slow control messages, that is, the data sampled from
the different sensors in the DPB or in any of the boards connected to them.

• Slow Control: These messages are only for slow control commands and configuration variables,
for example RS485 commands for the HV or LV modules or I2C commands for the DPB sensors.

• Data Manager: this message holds all the data that comes from the PMTs like adc charge, the
PMT identification and the timing information to give each event a timestamp.

4.4 Timing link: custom timing protocol

HKK is formed by several PMTs which allow to measure Cherenkov rings for studying neutrinos’
behaviour. However, with just measuring the PMTs’ charge it is not enough. To reconstruct the event,
we need to know the arrival time of light emitted by neutrinos to the PMTs. The time synchronization
is related to the accuracy of this event’s reconstruction, so we need a very accurate system that keeps
all the boards synchronized to a local time and synchronize that local time with the Universal
Coordinated Time (UTC), so that the results of HKK can be compared to other neutrino experiments
[19].

Figure 2.4.7 shows a block with the timing synchronization scheme, divided into three stages: A
clock generated using GPS signals and a local time source in the form of an atomic clock and time
quality measure to ensure that the generated clock is clean enough. Then a Time distribution board to
send the information to all the vessels in the detector and finally the receptor in each vessel, what is
called in figure 2.4.7 the Time Distribution Endpoint.

Figure 2.4.7: The block scheme that describes the 3main time distribution sub-systems. [19]
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The Time distribution endpoint in this case is the DPB itself. It is in charge of performing the
following timing related tasks:

• Clock Recovery and copying: the DPB will get the clock from the time distribution system and
generate twocopieswithminimal jitter andzerodelay, onecopy for eachdigitizer so that accurate
timestamping can happen.

• Synchronous commands: the timestamping is computed through the use of two counters: a
coarse and a fine counter. These counters are not infinite, they must be reset at some time. This
is done through a synchronous reset that must be provided by the time distribution system.

• Slow control transport: data of slow control related to timing must also be sent to the DAQ.

These three taskswill be performed by a FPGA corewhichwill be instantiated in the PL of theDPBZynq
Ultrascale+ MPSoC chip. This core is currently under development and will be a solution that will take
advantage of two SFPs, completely dedicated to timing link, where timing information will be sent.
Then, this core will recover the clock and all the synchronous commands like the TDC reset.

Figure 2.4.8 shows a proposal for the clock and data recovery FPGA core, using 8b10
coder/decoder, where data from the time distribution system is used to recover the clock and the data
through a serializer-deserializer couple used in both sides of the link.

Figure 2.4.8: Simplified schematic view of the serializer-deserializer implementation for the
DPB timing core [19]. This implementation is relatively simple, has low power consumption and
small footprint on FPGA occupation.
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Methodology and Tasks



Chapter 1

Methodology. Tools and platform

This part includes the explanation of all the tasks performed in the laboratory with the Zynq
Ultrascale+ architecture. As it was commented in Part I, Chapter 4, this TFM is a continuation
of other TFM written for the Master in Electronic Systems Engineering (MUISE) [1]. The
MUISE TFM consisted on a first steps document where I began working not only on the Zynq
Ultrascale+ architecture itself, but also all the Xilinx tools: Vivado, Vitis, PetaLinux Tools, etc...

This TFM will focus more specifically on a hardware form factor that will be very similar if
not equal to the one introduced in the vessels in HKK. So the methodology applied to the
previous TFM can also be applied to this one with the difference that now we can focus on
hardware specific issues and not only on the chip itself. With the ZCU102 (figure 1.4.2) this was
not possible as it had a completely different set of hardware, memory and I/O ports that didn’t
have any role on a DPB prototype.

The methodology followed to write each of this chapters is as follows:

1. Requirements statement: each chapter of Part III is written as the documentation for
fulfilling a specific requirement of the DPB, so the first step is to state what we are trying
to accomplish and how it will help to the DPB development.

2. Modifications required: through a step by step guide, the procedure for implementing
the required changes in the DPB to fulfill the requirement is explained.

3. Results and issues: for future use, issues are also documented here. This TFM covers the
electronics design part of a High Energy Physics Experiment. The architecture used in
the DPB is not only applicable to processing and routing data, it can be tailored to many
more kinds of applications and having a list of known issues together with a patch or
other solution is ideal so that the developers don’t stumble again with this problem in
this project or in the future.

Regarding the tools used they have not changed neither:

• Vivado ML Enterprise Edition 2022.2: used for hardware generation, debugging and
bitstream programming to the FPGA

• Vitis 2022.2: Integrated Development Environment (IDE) used to code applications for
the Linux platform created in the SOM

• PetaLinux Tools 2022.2: Source Development Kit (SDK) that contains all the required
tools to configure, customize and build a customizable Linux image. It covers all the steps
regarding OS creation and has as a final output several files ready to load into the board
to boot Linux.
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1.1 The ST1 Base board +Mercury XU8 SOM

This part is mainly written as a documentation for the work done over a top-to-bottom SOM
commercial solution by Enclustra Gmbh. That is, the SOM and the baseboard are available to the
general public to purchase. This was the first step while in talks to manufacture the first DPB
prototype to get used to the SOM form factor and start learning about the advantages and possible
issues that can arise when using this kind of hardware instead of the ZCU102. The latter is an
Evaluation Board (EvB). support from Xilinx and much more examples that made the learning curve
much more approachable for a beginner.

The combination of hardware used is basically a Mercury XU8+ SOM (figure 2.3.1) with a ST1+
baseboard (figure 2.3.3). The SOM variant is the last one in figure 2.3.2: the ME-XU8-7EV-2I-D12E,
with 4GB RAM available. Together with the used FMC card for extended functionality and the
heatsink and fan for cooling, the hardware has the aspect seen in figure 1.1.1.
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Chapter 2

PetaLinux project adaptation for
Enclustra base board

The next chapters of part III provide all the aspects to consider when creating a PetaLinux
embedded system in the System On Module (SOM) that will be used for the prototypes of the
Hyper-Kamiokande vessels. Here, the steps for building the image are not listed as it has
already been explained in ZCU102 but only the modifications needed to make the software
work on the SOM.

As stated in the previous chapter the system used has the following parts:

• SOMmodel: Enclustra Mercury XU8+ (XU8-7EV-2I-D12E)

• FPGAmodel: XCZU7EV-2FBVB900I

• Base boardmodel: Enclustra Mercury ST1+

• PetaLinux version: 2022.2

2.1 BSP provided. Adaption to 2022.2

The Board Support Package (BSP) for Enclustra boards can be downloaded from their GITHUB
repositories. BSP provide a base project adapted to the platform to be used. Modifications need
to be made to adapt it to the needs of each project.

There is also documentation for PetaLinux BSP and Boot management from different
devices. However, these BSPs are adapted for version 2022.1, not 2022.2 so a careful procedure
must be follow to compile a compatible version from this BSPs:

• Upgrading the project: Once unzipped by petalinux-create, the petalinux SDK
supports upgrading project versions between minor versions, that is, versions that were
released in the same year (2022.x for example). Just by doing petalinux-build or
petalinux-config the user will get prompted to upgrade the Yocto project to the
petalinux SDK version.

• Adapting Enclustra patches: Enclustra patches for u-boot and the kernel are included
inside the BSP. This patches were made for a previous version of the kernel and the code
has changed since then so there is some adaptations that need to be performed.

• Detecting any bug: changing version of PetaLinux implies changes not only in the base
kernel version but also in the drivers included in the kernel. They get updates
independently and then they get merged in a branch that is the one getting pulled for
compilation of the PetaLinux image.

37



CHAPTER 2. PETALINUX PROJECT ADAPTATION FOR ENCLUSTRA BASE BOARD FINAL MASTER THESIS

2.2 Preparations for boot process

Before being able to boot the system, there needs to be some previous configuration in the registers of
the FTDI.

FTDI is a USB 2.0 Device Controller that allows FPGA serial configuration and SPI flash
programming over USB without needing any additional hardware.

This FTDI is programmed through Enclustra Module Configuration Tool (MCT) to choose which of
two ports A or B is multiplexed to the USB port:

• A: Xilinx JTAG implementation for programming FPGA

• B: Access to I2C and UART pins. Depending on FTDI_MODE1, FTDI_MODE0 and
BOOT_MODE0, port B is configured as the table in figure 3.2.1.

Figure 3.2.1: FTDI supported boot modes

The FTDI can easily be configured through the Enclustra MCT User Interface by plugging in the
module to the PC. This tool is only available in Windows, so the module had to be configured in a PC
different from the Ubuntu development PC.

The steps are as follows:

1. Download Enclustra MCT from the official webpage (downloads.enclustra-.com)

2. Connect the XU8 module to the ST1 motherboard and the micro USB port to the PC.

3. Make sure no other FTDI devices are connected to the computer, it can be done through a FTDI
programmingutility or just by checking that no other devices that have a FTDI chip are physically
connected to any port which should be case if no other boards are connected to it.

4. Open the MCT and locate the Settings tab in the menu bar

5. Select Enable configuring any FTDI. (Note that when another FTDI device is attached,
proceeding may brick it’s pre-programmed functionality, that is why step 3 must be done).
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Figure 3.2.2: Enabling any FTDI configuration

6. After that click the Enumerate button

Figure 3.2.3: Enumerated board

7. In the Action pane, navigate to the FTDI Configuration section.

8. For the Device mode, select Xilinx JTAG

9. Press the Set device mode button and wait the process to complete, with the following message
showingup in the software. Themessageof figure 3.2.4 appears indicating a correct configuration
in JTAG mode. This will allow to program the board with a bitstream like the ZCU102.

Figure 3.2.4: Success message for configuring themodule in JTAGmode
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2.3 Boot from SD Card

Now that the FPGA has been correctly configured, a PetaLinux image needs to be loaded into it. Like in
the ZCU102, there are several boot modes. In this section, the SD card method is the one used because
the ST1+ baseboard has a microSD card slot that makes the process of swapping the kernel image very
easy as only three files need to be copied.

The prerequisites for this boot mode are having the XU8 module attached to its ST1 base board and
correctly configured as explained before.

The image to bemounted has been compiled in the Enclustra example project for this combination
of SOM+Baseboard, available in itsGithub repository andhasdifferent configuration fromtheZCU102
reference design reflected in the following files:

• Vivado xsa: two different platforms have completely different xsa files because everything in
the hardware is different, from the FPGA Model to the peripherals attached to it. The Mercury+
XU8 and ST1 base board combination has much less ports than the ZCU102 and a different ping
arrangement.

• Device tree: obviously, two different .xsa lead to two different device trees because the nodes in
this file also change, going from the memory to the peripherals such as SFP, ethernet ports, SD
card port, etc… may be configured in different ways.

• File System: the reference design has its rootfs (Root Filesystem) set to ext4 by default which
means that the file system is stored in a external memory device such as a SD card. The ZCU102
rootfs type was initrd, which is stored in the main memory of the system, in this case the RAM
connected to the PL.

For more information about what these files contain and their functions, refer to the MUISE TFM [1].
The steps to generate the image after configuring it with petalinux-config and building it with

petalinux-build are depicted in the SD Boot Mode adjustments section in the PetaLinux
Documentation of Enclustra repository based on the PetaLinux tools reference guide UG1144 from
Xilinx:

• Files needed for SD boot: (files are in PETALINUX_PROJECT_FOLDER -> images -> linux)

– BOOT.BIN
– boot.scr
– system.dtb
– Image
– rootfs.tar.gz

• Create two partitions on the SD Card. The first partition is FAT32 formatted, the second EXT4.
UG1144 [20] describes how to create these partitions.

• Copy the files BOOT.BIN, boot.scr, system.dtb and Image to the first (FAT32) partition.

• Extract the file rootfs.tar.gz to the second partition: sudo 'tar -xvf rootfs.tar.gz -C
/path/to/second/partition'

• Unmount all partitions and remove the SD card.
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• Prepare the module and baseboard for SD boot mode by setting accordingly the DIP switches in
the ST1 board. These two images represent the behaviour of the XU8 module related to the DIP
switches in the ST1 base board. The DIP switches are connected to BOOT_MODE0 and
BOOT_MODE1 pins in the module, which select the different boot modes available.

Figure 3.2.5: DIP switches behaviour in the ST1 base board

Figure 3.2.6: Mercury+ XU8 BOOT_MODE pins behaviour

• Insert the SD card.

• Plug in the USB cable and connect a serial terminal.

• Plug in the power jack.

• Open the serial terminal and configure it to listen to the correct USB. In this case it is ttyUSB1,
but it can vary depending on the devices connected to the PC. Figures 3.2.7 and 3.2.8 show the
log of the booting U-Boot and Linux respectively. The default login for a PetaLinux project is:

– Username: root
– Password: root
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Figure 3.2.7: FSBL loading with the correct parameters. Notice the boardmodel.

Figure 3.2.8: Login screen. Fails in the initialization of the service are due to the board not being
connected to the Internet and thus not having DNS, DHCP, NTP and other services.

Notice that in PetaLinux 2022.2 the recommended log in is the usernamepetalinux with apassword
to be established in the first boot. However, in this image, root is enabled by default which is useful for
testing but should be disabled in the final build for security reasons. For a project of these features it
must be evaluated whether it is worth to leave root enabled or not as this board can only be accessed
through a local network built in the DAQ side.
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2.4 Patching up the kernel. Bugfixing

The first problem arisen from updating from PetaLinux 2022.1 to 2022.2 is located in the Cadence
Network Drivers, also known as macb. The problem was in an update from 2022.1 (the latest BSP
version Enculstra has available in Github) to 2022.2. The ST1+ baseboard has two Ethernet interfaces,
each one of it connected to a PHY chip which is in charge of performing the auto-negotiation and
establishing the physical link with the other side of the Ethernet link. At the same time, these PHY
chips are connected to the Gigabit Ethernet MAC (GEM) inside the PS, which are the controllers that
provide ethernet functionality to Linux. The Gigabit Ethernet PHY chips used in the Mercury+ XU8
share the same MIO interface (76…77) for their MDIOs and is distributed to both PHYs through a
level shifter. This poses a problem because, the MDIO is associated to one of the GEM and thus it is
only up when that interface is up, so the order in which the interfaces go up is very important.

The code had to be modified by removing that conditional and generating a patch for this change
to take effect during compilation:

From 1f35d45498fda8169daedbecb810b79fb354cf92 Mon Sep 17 00:00:00 2001
From: Alejandro Gomez <algogam@teleco.upv.es>
Date: Tue, 7 Feb 2023 21:39:39 +0100
Subject: [PATCH] arm:zynqmp:macb:mdio_probe

Change for the Enclustra SOM in 2022.2

Signed-off-by: Alejandro Gomez <algogam@teleco.upv.es>
---
drivers/net/ethernet/cadence/macb_main.c | 8 +-------
1 file changed, 1 insertion(+), 7 deletions(-)

diff --git a/drivers/net/ethernet/cadence/macb_main.c
b/drivers/net/ethernet/cadence/macb_main.c↪

index 34bfcb991109..63ea96e13731 100644
--- a/drivers/net/ethernet/cadence/macb_main.c
+++ b/drivers/net/ethernet/cadence/macb_main.c
@@ -952,13 +952,7 @@ static int macb_mdiobus_register(struct macb bp)

of_node_put(dev_np);

- / Check if the MDIO producer device is probed */
- if (mdio_pdev && !dev_get_drvdata(&mdio_pdev->dev)) {
- platform_device_put(mdio_pdev);
- netdev_info(bp->dev, "Defer probe as mdio producer %s is not probed\n",
- dev_name(&mdio_pdev->dev));
- return -EPROBE_DEFER;
- }
+
platform_device_put(mdio_pdev);
return mdiobus_register(bp->mii_bus);
--
2.25.1
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The reason for this error happening is as follows: In the Cadence Ethernet driver, called macb and
located in drivers/net/cadence/macb_main.c within the kernel source three a new conditional if
check was added in 2022.2. This conditional checked that, given an ethernet interface, the
corresponding MDIO associated was already probed. This is the case of shared MDIO because if
another ethernet interface sharing the same MDIO had been probed before, then its corresponding
MDIO should have been probed. This poses a problem because, if that is the case, the driver is coded
to report an error and not initialize that ethernet interface. The error printed in the console as follows:
macb ff0e0000.ethernet eth1: Defer probe as mdio producer axi is not probed

and then returns from the function macb_mdiobus_register with an error instead of returning the
device to initialise eth1. I removed this if with a self-made patch reverting the change. If you go to the
linux-xlnx repository and compare 2022.1 branchwith 2022.2 branch youwill see that the if conditional
is not present in the previous version.

The Linux kernel updates are pushed to the official kernel source tree through email request which
contains patches with the new features and bug fixes. This helps keeping track of when, how and who
made these changes in a very detailed way. The lines of code that caused this error were added in the
following patch:

https://lore.kernel.org/lkml/YsSVqknDQxdWqfds@lunn.ch/t/

For more information about how a MDIO bus works, refer to Part III, chapter 6.
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Chapter 3

FMC expansion card for additional SFP
slots

The ST1 base board only has one SFP. For this project there is a requirement of having
redundant links through Fiber Optics so there is the need for more. The ST1 base board has a
FMC expansion slot for a FMC card (standard pin out) so there is the possibility to introduce
more ports of the desired type depending on the application.

For this project, there is a lack of SFP slots in the base board so a FMC card with SFP slots
is ideal. Searching through the Xilinx Catalogue, the best FMC is one manufactured by Hi-Tech
Global called theHTG-FMC-X4SFP+ that includes 4 SFPs slots andall the circuitry for generating
the clocks. This chapter will explain how it was plugged in and configured to another two extra
ethernet interfaces through SFP

For making this FMC work with the SOM in PetaLinux there are several aspects to consider:

• Routing of the pinouts: Having the correct IC and ports in the FMC is just the beginning
of the design of a FMC card. This interface has standard pinouts so that devices from
different manufacturers can communicate. This means that there is the need to follow
some rules in the routing of your extra peripherals located in the FMC board to the FMC
slot. The standard defines several columnswith letters fromA to Kwhere there are groups
of pins that make up for differential pairs of data and differential pairs of clocks besides
the Vcc supply, the power good LEDs and other indicators of FMC correct operations.

• Speed required for the SFPs: SFP have 1Gbps speed and SFP+ 10Gbps. From the signal
integrity point of view, this might require special mechanisms in the FPGA in the form
of MGT (Transceivers) for supporting these speeds. This decision must be made by the
designer of the FPGA side because in the FMC standard there is no word about MGT or
standard LVDS because these are FPGA-related concepts. FMC can be used in PCBs that
don’t have FPGA.

• Configuration of the SFPs: The FMC card is routed in some way to the FPGA. Depending
whether the pins are routed to the PLor to the PS is crucial to knowhowour system should
be programmed in Vivado. If it is possible to add IP Cores because it is PL connected or
just use the PS GEM, which would need a manual configuration.
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3.1 Resources of the FPGA for SFP connection

SFP is an adapter for connecting network cables to the board. Network interfaces are very high speed,
being right now 1Gbps the defacto standard but arriving up to 20 Gbps even 40Gbps in the latest beta-
state technology. These speeds require special devices in theFPGA tohandle suchahigh speedchannel.
For Xilinx, those are MGT (MultiGigabit Transceivers), which receive both different pairs for reception
and transmission and a clock. MGTs includemechanisms to equalize the channel bymeasuring delays
and recovering the clock so that a high speed communication can be performed.

Mercury XU8+ FPGA, the ZCU7ev, includes 4 MGT banks with 4 MGT each in the PL and another
MGTbankwith another 4MGT for the PS, so 20 Transceivers in total. This project requires a lot of these
transceivers because there is going to be 6 SFPs in the final prototype and 2 MiniSAS connectors with
two channels each, accounting for 10 high speed interfaces.

3.2 Pinout of all the implied boards

The FMC card is shown in figure 3.3.1.

Figure 3.3.1: HTG-FMC-x4SFP+Mezzanine card. This card has a standard connector to provide
the FPGA with extra functionality

This design is formed by three different boards put together so a lot of care must be put into
configuring the correct I/O pins in Vivado and ensure that the required inputs and outputs are
correctly routed from a hardware perspective. Else, even if software is correct, the FO connection will
not work because physical connections are not made the way they should be.

Fortunately, FPGA Mezzanine Card (FMC) is a standard connector with 400 pins in which each pin
has a given function, ranging from high speed serial interfaces, clocks to slow control I2c or SPI buses.
There is also room for user defined signals in case some special functionality is wanted to be leveraged
with FMC of the same manufacturer as the main board. This means that all manufacturers are aware
of in which pins they should expect high speed interfaces or clocks so that they route their own chips
to those pins to be compatible.

Considering this and just by looking at the schematics of the three boards (HTG-FMC-x4SFP+, ST1+
base board and Mercury XU8+) the traceability from the SFP port to the FPGA is very clear. There are
two interfaces that need to go from the FMC to the FPGA for SFPs to work and both are related to
MGT (MultiGigabit Transceivers), because these are the modules within the FPGA that receive the SFP
signals:
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• Gigabit Transceiver Transmission and Reception differential pairs: Taking SFP3 as an example.
Looking at the three schematics, the following path is routed:
SFP3 -> DP0_M2C (FMC) -> Module Connector B in ST1+ -> MGT_BD_0 (Mercury
XU8+)
So, there is a direct connection between the SFP3 to aMGT in the FPGA, specifically inMGTBank
D. If the same procedure is followed for the other SFPs, all of them arrive to the same MGT bank,
occupying all the 4 slots available in the bank, which is to be expected.

• Gigabit Transceiver Clock: MGTs need a clock to work. These clocks must be fed to the
corresponding input of the corresponding MGT bank that the SFP are connected to. In any
MGT there are two differential pairs for clock input. If the routing is done from the FMC
Reference clock 0, the following path is obtained:
FMC_REF_CLK0 -> GBTCLK0_M2C (FMC) -> Module connector B(FMC_GCLK0_M2C) ->
MGT_BD_REFCLK0
This means that the FMC outputs a reference clock to input CLK0 from Bank D of MGT.

The schematics made by the manufacturers of the FMC card, the ST1+ baseboard and the Mercury
XU8+ SOM depict the trace followed below to connect the SFP slots to the MGTs and the clock. These
schematics are included as additional deliverables in this TFM submission.

3.3 PS or PL configuration?

SFPs can be routed to MGT located in the PS or in the PL and, depending on that, the configuration of
PetaLinux is different:

• If routed directly to the Processing System (PS): this would imply that the MGT has a direct
connection through its TX and RX differential pairs to one of the GEM in the PS. As this is a
direct connection with no FPGA in between, no new hardware acting as a bridge can be
instantiated to act as interface. Then it is crucial that the physical layer sported in the SFP is
supported by the GEM. This is the case: reading through the Zynq Ultrascale+ Technical
Reference Manual, it is listed that the 1000 Base-X standard is supported. Some additional
configuration like establishing a fixed 1Gbps link needs to be done on the device tree. Further
comments will be made when working on the DPB2 prototype.

• If routed to the Programmable Logic (PL): if MGT Bank belongs to the PL, then an ethernet
core can be instantiated to act as an interface between GEM in RGMII mode and the 1000Base-X
SFP, allowing for autonegotiation thanks to the core acting as a PHY chip. The core used for this
case is 1G/2.5G Ethernet PCS/PMA or SGMII v16.2 LogiCORE IP, the same used for the ZCU102,
because it provides a monolithic linux driver for ease of use with one of the GEM in the PS.

The PL case is the one treated here as MGT Bank D is a MGT bank connected to the PL. The
procedure for configuring both Vivado (hardware) and PetaLinux (Software) is described in the
following sections.
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3.4 Vivado configuration

Departing from the Enclustra Reference Design, the 1G/2.5G Ethernet PCS/PMA or SGMII v16.2
LogiCORE IP has been instantiated and configured as follows:

• EthernetMAC:ZynqPSGigabit Ethernet Controller, for using itwith the PS thanks to a PetaLinux
driver.

• Standard: 1000BASEX. Used for fiber optics. The SFP used is a Cisco GLC-X compliant with this
standard.

• Core Functionality:

– Physical Interface: Device Specific Transceiver, to use the MGT that the FPGA has.
– Reference Clock Frequency: 156.25 MHz, the same as in the ZCU102 project.
– Transceiver Location: This is a very sneaky option because it is not easy to find in the

documentation. Xilinx FPGAs are divided into tiles given a X and Y position and
depending on the part number and packaging these numbers change. This data can be
extracted from UG1075, page 52, figure 1-19 which corresponds to the XCZU7 in FBVB900
packaging, which is the chip included in the Mercury XU8+.

– DRP Clock Frequency: 50 MHz, extracted from a PS PLL.

Figure 3.3.2: XCZU7 and XAZU7 Banks in FBVB900 Package and XQZU7 Banks in FFRB900
Package

• Shared Logic: Include Shared Logic in Core. The rest of the options are left in its default state.
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The IP ports (figure 3.3.3) can be divided into three big groups:

Figure 3.3.3: 1G/2.5G Ethernet PCS/PMA Core using Device Transceivers and including Shared
Logic

• Transceiver I/O: they are connected directly to the MGTs. Thus, they have very strict placing
and routing constraints to ensure the promised performance. Thanks to Transceiver location
option in the configuration, these interfaces are automatically assigned to the corresponding
pins of the MGT. In this case, as transceiver X0Y16 was chosen the pins assigned where the ones
corresponding to MGT 0 from Bank D:

• Zynq PS I/O: The communication with the GEM1, configured to EMIO mode:

– mdio_pcs_pma: MDIO interface, connected to the equivalent MDIO_ENET1
– gmii_gem_pcs_pma: GMII interface for data transfer, conneceted to its equivalent interface

GMII_ENET1 in the ZynqMP PS.
– independent_clock_bufg: conneceted to one of the Lowpower clocks of the ZynqMPPS that

is outputed to the PL. In this case PL1 clock has been configured to output 50 MHz. The
name of the output is pl_clk1

• Configuration I/O: this core is configured through several inputs: -

– phyaddr[4:0] : corresponding to the address that this core, behaving as a PHY chipwill have.
It is very important to indicate the same address to the PetaLinux driver, so that it can be
detected.

– configuration vector[4:0] : 5 bits for configuring many things shown in the table in figure
3.3.4.

Figure 3.3.4: Configuration Vector of the 1G/2.5G PCS/PMA IP Core
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– configuration_valid signal to indicate that the configuration given to the device is valid and
can be read.

– an_adv_config_vector[15:0] : another configuration vector with aspects about auto
negotiation. The meaning of each bit is show in table in figure 3.3.5.

Figure 3.3.5: Auto Negotiation vector of the 1G/2.5G PCS/PMA IP Core

– an_adv_config_val: equivalent to configuration_valid but for the an_adv_config_vector.
– reset : the typical reset signal at system startup (low level).
– signal_detect : tied to 1 as explained in the constants table.
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Regarding the configuration signals, they can be fixed to some values, considering how the core
is configured. This is done in the same block diagram through the constant block, depicted in figure
3.3.6.

Figure 3.3.6: Constants Cores instantiated for each of the configuration inputs of the PCS/PMA
Ehternet Core

Constants are configured as shown in table 3.2.

Configuration
input Value Description of the functionality
phy_addr[4:0] 9 The PHY address. This address is used to identify a chip in the MDIO bus. As this

core resembles a PHY chip, it needs to have a phy address
config_valid 0 With a rising edge of this signal, the configuration inside the core is overwritten

However, this signal is not used so it will be left at 0
config_vector[4:0] 0 When the 5 bits are set to zero it means that the core is under Normal operation,

no loopback mode powered up, not isolated and no autonegotiation.
Autonegotiation has been disabled because we already know that the link speed
will be 1 Gbps.

an_adv_config_vector 55297 This value is irrelevant because Autonegotiation is disabled. This is the default
value that the Product Guide of the core recommends

signal_detect 1 This signal should be connected to the signal_detect of the SFP. However, it isn’t
available in any pin of the FPGA so, it is tied to 1 to indicate that light is always
being detected as recommended by the Product Guide

Table 3.2: Constants configuration and description for the Ethernet FPGA core

The rest of the signals are optional and just serve for debug purposes or for chaining several cores
that share the same MGT bank thanks to the gtrefclk_out port that would be connected to the next
gtrefclk_in to, for example, connecting the 4 SFPs that with this routing go to MGT bank D.
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-- Module declaration
FMC_DP0_M2C_P : in std_logic;
FMC_DP0_M2C_N : in std_logic;
FMC_DP0_C2M_P : out std_logic;
FMC_DP0_C2M_N : out std_logic;
FMC_GCLK0_M2C_N : in std_logic;
FMC_GCLK0_M2C_P : in std_logic;

-- Block diagram instantiation
sfp_rxn : in STD_LOGIC;
sfp_rxp : in STD_LOGIC;
sfp_txn : out STD_LOGIC;
sfp_txp : out STD_LOGIC;
gtrefclk_in_clk_n : in STD_LOGIC;
gtrefclk_in_clk_p : in STD_LOGIC;

-- Pin assignment

sfp_rxn => FMC_DP0_M2C_N,
sfp_rxp => FMC_DP0_M2C_P,
sfp_txn => FMC_DP0_C2M_N,
sfp_txp => FMC_DP0_C2M_P,
gtrefclk_in_clk_n => FMC_GCLK0_M2C_N,
gtrefclk_in_clk_p => FMC_GCLK0_M2C_P,

Else, Vivado will not be able to assign the properties for constraining the location of the pins
because, they do not match the direction of the MGT ports, giving the following critical warning that
will result in an error during the placement stage.

[Vivado 12-2285] Cannot set LOC property of instance
'Mercury_XU8_i/gig_ethernet_pcs_pma_0/U0/pcs_pma_block_i/transceiver_inst/↪

Mercury_XU8_gig_ethernet_pcs_pma_0_0_gt_i/inst/gen_gtwizard_gthe4_top.
Mercury_XU8_gig_ethernet_pcs_pma_0_0_gt_gtwizard_gthe4_inst/
gen_gtwizard_gthe4.gen_channel_container[4].gen_enabled_channel.gthe4_channel_wrapper_inst/
channel_inst/gthe4_channel_gen.gen_gthe4_channel_inst[0].GTHE4_CHANNEL_PRIM_INST'...
The pin direction of site GTHE4_CHANNEL_X0Y16 with package pin D2 does not match

the given terminal FMC_DP0_M2C_P↪

This is the XDC script that is autogenerated when the core is instantiated and does the placement
and routing automatically without user intervention.

# Channel primitive location constraint
set_property LOC GTHE4_CHANNEL_X0Y16 [get_cells -hierarchical -filter {NAME =~

*gen_channel_container[4].*gen_gthe4_channel_inst[0].GTHE4_CHANNEL_PRIM_INST}]↪

# Channel primitive serial data pin location constraints
# (Provided as comments for your reference. The channel primitive location

constraint is sufficient.)↪

#set_property package_pin D1 [get_ports gthrxn_in[0]]
#set_property package_pin D2 [get_ports gthrxp_in[0]]
#set_property package_pin D5 [get_ports gthtxn_out[0]]
#set_property package_pin D6 [get_ports gthtxp_out[0]]
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The final design resources usage is depicted in figures 3.3.7a and 3.3.7b. These numbers come from
the Vivado report after placing and routing the design:

(a) Resources usage table (b) Occupation percentage of the FPGA resources

Finally, the bitstream was generated and the hardware was exported as .xsa file to be read by
PetaLinux.

3.5 PetaLinux configuration

The configuration in PetaLinux is rather simple, as there is no change from the ZCU102:

1. petalinux-config --get-hw-description hardware/SFP_1. This command changes the
platform of the project to the one of the .xsa contained in SFP_1 folder.

2. Check inside the configuration if psu_ethernet_1 is detected.

Figure 3.3.8: Selecting GEM1 Ethernet in petalinux-config menu
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3. Modify the device tree to include gem1. An example device tree is included in the annex. as a
node for configuring the driver to enable the network interface.

4. Execute petalinux-build and petalinux-package to create the bootable image.

3.6 Results and issues

When booting PetaLinux, however, the results were far from the expected. In the U-Boot screen, there
was an errormessage saying Could not get PHY for eth3: addr 9, whichmeans that the phywas
not detected. In U-boot there are other commands such as mii info or mdio that give information
about the devices connected that make use of these interfaces. No MDIO was detected neither for
address 9, so it was assumed that a failure in the hardware bootup occured. By using the debug signal
resetdone and gtpowergood in two of the board’s LEDs, it was discovered that while the latter lit up
indicating that the MGT were working, the resetdone didn’t, which meant that either the reset signal
was failing to be asserted or there was no clock at all in the device, disabling it to perform any change
in the resetdone signal. The reset was checked and the GPIOs were delivering the reset signal as the set
up for thosewas the same as in the ZCU102, so the problemwas that the clockwas not being generated.

The clock generation was done directly in the FMC through a Si570, a low jitter clock generator IC
designed by Skyworks Inc. This IC is also included in the ZCU102 and configured through I2C by the
driver included in the Linux Kernel. This means that there is a reference design that can be departed
off.

To perform the Si570 configuration through the I2C bus, the following steps were done:

1. Routing of the FMC: looking in the ST1 usermanual, there is a block diagram that shows that the
I2C1 controller included in the PS is connected to several I2C slaves through the PL, as indicated
in figure 3.3.9.

Figure 3.3.9: I2C devices connnected to the SOM and the FTDImodule
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One of the devices that have I2C slave connection is the FMC card, with addresses 0x54 to 0x57
reserved for any I2C slaves that can be plugged through FMC. So the first step would be to check
in Vivado that the I2C1 is connected through EMIO to the corresponding pins of the FPGA for
SCL and SDA and connecting them in the vhdl top file to the corresponding inout ports, that use
pins K14 for I2C_SDA_FPGA and K15 for I2C_SCL_FPGA.

-- I2C ports declaration
I2C_SCL_FPGA : inout std_logic;
I2C_SDA_FPGA : inout std_logic;

-- I2C from the block diagram instantiation
IIC_FPGA_sda_i : in std_logic;
IIC_FPGA_sda_o : out std_logic;
IIC_FPGA_sda_t : out std_logic;
IIC_FPGA_scl_i : in std_logic;
IIC_FPGA_scl_o : out std_logic;
IIC_FPGA_scl_t : out std_logic;

-- Buffering of the IIC pins to create the inout of the ports
component IOBUF is
port (
I : in STD_LOGIC;
O : out STD_LOGIC;
T : in STD_LOGIC;
IO : inout STD_LOGIC

);
end component IOBUF;

This changes must be included in Vivado and do the workflow again to obtain another .xsa file.

2. PetaLinux driver: now that the hardware has been exported, PetaLinux needs to know which
device is being connected. This is specified in the device tree. In
project-spec/meta-user/recipes-bsp/device-tree/files/system-user.dtsi, the
following node was added:

&i2c1 {
status = "okay";
clock-frequency = <400000>;
si570: clock-generator@55 {

#clock-cells = <0>;
compatible = "silabs,si570";
reg = <0x55>;
temperature-stability = <20>;
factory-fout = <156250000>;
clock-frequency = <156250000>;

};
};

The meaning of this node is that, now, i2c1 master controller is enabled with a clock frequency for
communicating with the slaves of 400 kbps. Its only child node, that is, the only i2c1 device we want
PetaLinux to see is the si570, a clock-generator with its properties detailed. The documentation for
filling this properties is located in the Linux source code in

Documentation/devicetree/bindings/clock/silabs,si570.txt

55



CHAPTER 3. FMC EXPANSION CARD FOR ADDITIONAL SFP SLOTS FINAL MASTER THESIS

Where the following information about the nodes is presented:

• compatible: Shall be one of “silabs,si570”, “silabs,si571”, “silabs,si598”, “silabs,si599”

• reg: I2C device address.

• #clock-cells: From common clock bindings: Shall be 0.

• factory-fout: Factory set default frequency. This frequency is part specific. The correct frequency
for the part used has to be provided in order to generate the correct output frequencies. Formore
details, please refer to the data sheet. - temperature-stability: Temperature stability of the device
in PPM. Should be one of: 7, 20, 50 or 100.

• clock-frequency: Output frequency to generate. This defines the output frequency set during
boot. It can be reprogrammed during runtime through the common clock framework.

Here, we can find three specifications that are factory set: factory-fout, which is the reference startup
frequency when the oscillator powers up, reg, as the 7 bit I2C address of the device and the
temperature-stability. For knowing these three specs, Skyworks provides a webpage in which, given
the exact part number of your chip, you get the specs. In this case, the chip had the following
designation: 570ABC000118DG which provided the table seen in figure 3.3.10.

Figure 3.3.10: Si570 specs included in the HiTech Global FMC

So, the I2C address is 0x55, the temperature stability is 20 and the factory frequency is 156.25 MHz.
A more detailed meaning of each of the digits in the part number is depicted in the Si570 datasheet,
shown in figure 5.1.1 in the annex.

When loading the new OS version, the same error happened. The Si570 wasn’t outputing any clock
even though it was being configured to do so. The reason for this was in the FMC card Schematic:

• Routing of the FMC: The pins assigned to the I2C interface for the FMC were not connected to
the Si570, but to a EEPROM Memory in the FMC. This wasn’t very apparent because, as shown
in this figure, the Si570 had two SCL and two SDA buses called OSC_SCL, OSC_SDA and SCL and
SDA (the ones used for I2C configuration and sharedwith the EEPROMmemory). Inspecting the
schematic closer, the SCL and SDA pins, which were the ones being used for I2C configuration
had a NS label in its nets. This means No stuff, that is, the connection wasn’t made in the PCB
so SCL and SDA, the pins used for I2C configuration from the SOM weren’t the same as the ones
used in the FMC for configuring the Si570.
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Figure 3.3.11: Si570 No Stuff connection of SCL and SDA

Figure 3.3.12: Notice that EEPROMhas the SCL and SDA pins that were though to be “shared”
with Si570

• Voltage problems: Having tracked down the issue, the solution was simple: just use the other
pins named OSC_SCL and OSC_SDA to perform the I2C configuration. This wasn’t possible
because the pins in the FMC routed to these ports were LA_05_P and LA_05_N, which were
routed through the ST1+ Base board to the Mercury XU8+ ZynqMP chip and connected to the
FPGA Bank HP 66, which is a bank that has a max voltage of 1.8V. The Si570 in the FMC needs at
least 0.75 x Vdd in SCL or SDA to consider them a high level (denoted in the datasheet as ViH) so
this approach is not valid either.

• Use alternative clock: not being able to use that MGT clock input because there is no way to
configure the oscillator in the FMC side leaves us with only one option: use the other clock input
of MGT Bank D: MGT_BD_REFCLK1. This input is connected to another clock generator inside
the ST1+ Base board: the SI5338B-B-GMR, depicted in figure 3.4.1.

This is a feasible solution because the clock is no longer generated inside the FMC. However, this
specific chip does not have driver support in the Linux kernel, so a new driver that programs the
registers inside the chip through I2C to output the desired frequency is needed. Coding a driver is not
trivial, thus the first option was to search for a driver in the kernel.
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Chapter 4

Adding a non-standard driver to
mainline kernel

This chapter is a continuation in solving the problem laid out in chapter 3 towards getting a
redundant optical fiber link working thanks to the extra SFP provided by the FMC in chapter 5.
In this chapter, the problem of having a clock routed to the correct MGT is tackled: instead of
using the Si570 of the FMCwhose i2c lines are not routed to the FPGA, a PLL already included in
the ST1+ baseboard will be used. (schematic in figure 3.4.1). However a suitable driver for this
PLL is not included by default in the Linux kernel.

Figure 3.4.1: Si5338 Clock Generator Schematic. CLK_REF0 is routed to the MGT Bank D

Xilinx mantains their own kernel version of linux in their Github repository called
linux-xlnx , where the kernel is pulled for PetaLinux compilation. Of course there are a lot of
versions of PetaLinux and each one is associated to a specific version of the linux kernel. To
know which version (or state of the kernel in the repository) is PetaLinux 2022.2 using one can
go to the PetaLinux 2022.2 - Product Update Release Notes and Known Issues and search for
the associated Git Tag of the component called linux-xlnx. In the PetaLinux 2022.2, the kernel
being used is marked with tag xlnx_rebase_v5.15_LTS_2022.2.

Looking in the /drivers/clkwhich is the folder where the drivers for clock generators are,
there was no driver for the Si5338 as there was not any source file with this name and no other
driver for other Skyworks clock generators was compatible with this specific ASIC. One could
think that the search is over, as there is no driver and thus no configuration that can be done to
set an output frequency from Linux itself. However, the Xilinx Linux kernel isn’t the only place
where a driver can be looked for, as it might be available in other branches that did not make it
to the Git Tag that PetaLinux is using for the Linux Kernel.
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This was confirmed when looking in Enclustra Github repository, specifically in an
I2C application note, which includes instructions for controlling several I2C devices that Enclustra
usually includes in their devices. Here, a Si5338 reference was found, so, the driver existed, it was
coded at some point of time and then removed for unknown reasons as far as I know from the
mainline kernel before 5.15_LTS was released.

The files needed to build the drivers were found in a linux kernel commit in their own repositories
that Enclustra uses for their own Development Environment tool.

The driver is formed by the following files:

• clk-si5338.c: the source file of the driver containing all the functions to probe the chip, configure
it, enable the corresponding clock outputs and for debugging and reporting functionalities to the
linux kernel.

• clk-si5338.h: the header file that accompanies every .c file when coding in C language. It has the
same name as the .c file and contains multiple define that associate easy-to-remember names
for different configuration parameters of the driver.

• si5338.h: anydriver in the linux kernel needs to contain aheader file in theplatform_data folder
that contains the struct variables for the device tree configuration.

• KConfig: this file is located inside each folder that contains source code to enable different
options in the linux kernel. This files in each directory are then used to generate the
Configuration GUI shown to the user when typing petalinux-config -c kernel. So, some
lines need to be added here to say to the configuration in the PetaLinux SDK that a new driver
must be configured.

• Makefile: if we are talking about a compilation inC language, theMakefile is alwayspresent as the
list of source code that must be compiled and which output it produces. To compile the driver,
the .c file needs to be added to the MakeFile present in the drivers/clk folder.

Once the driver was found, as it wasn’t pulled from the Github branch by the SDK automatically, it
needs to be added as a patch. Patches have already been discussed to fix some bugs present in other
drivers, but they can also be used to add complete files to the kernel source code, the git format-patch
command doesn’t make any distinctions, if it needs to create the file because it doesn’t exist, it will do
so. So, following the git flow [1], the driver for Si5338 was added:

1. Download the drivers from the 2020 linux branch in Enclustra repositories.

2. Copy the new files and add the corresponding lines in the KConfig and MakeFile.

3. Do git add -A and git commit --signoff

4. A text editor will open for the user to type the description of the patch.

5. Do git format-patch < branch base >. A file with the patch will be generated.

6. Copy the file into the PetaLinux project in the following directory: project-spec/meta-user/recipes-
kernel/linux.

7. Add the corresponding lines to the linux.bbappend file to include the patch into the compilation
flow when performing petalinux-build‘

8. Add the corresponding device tree node to system-user.dtsi, which calls this driver and
configures the clock outputs. An example of this device tree node is present in Annex 2.
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The configuration parameters in this driver are very detailed because this chip offers a lot
possibilities. The generator has 6 clock inputs, where In1/In2 and In5/In6 behave as differential clock
inputs and IN3 and IN6 are single ended. The figure below shows an ASCII drawing of how the
different clock inputs arrive to each of the outputs.

IN1/IN2 IN3 IN4 IN5/IN6
| | | |

------| | | |
| | | | |
| \ / \ /
| \ / \ /
| \ / \ /

XTAL REFCLK FBCLK
| | \ / |
| | \ / |
| | DIVREFCLK DIVFBCLK |
| | \ / |
| | \ / |
| | \ / |
| | PLL |
| | / | | \ |
| | / / \ \ |
| | / / \ \ |
| | / | | \ |
| | | | | | |
| | MS0 MS1 MS2 MS3 |
| | | | | | |

O0 O1 O2 O3

Then, this clock generates internal clocks that lead to a PLL where a frequency is generated and
afterwards, using MultiSynth, a proprietary frequency generator in each of the four differential
outputs of the chip, a different frequency can be generated.

To configure all of this, there are a lot of options to adjust:

• General clock generator options: They are used to configure the chip itself:

– #clock-cells: indicates whether the generator has one or several outputs. It must be set to 1
when the generator has multiple outputs which is the case being studied.

– #address-cells: must be set to 1.
– #size-cells: must be set to 0.
– compatible: indicates the model of the chip being used. This is used to assign the correct

driver to the device when petalinux probes it. In this case, this value must be set to
silabs,si5338.

– reg: i2c device address. It depends on the address assigned to it in the factory. For ST1 base
board, the address is 0x70.

– clocks: list of parent clocks in the order of < xtal > , < in1/2 >, < in3 >, < in4 >, < in5/6 >. In this
vector, a node representing a clockmust be given. For the ST1 a 100MHz single ended clock
is generated and routed through IN3. Note, xtal and in1/2 are mutually exclusive. Only one
can be set.

– clock-names: just the name of the clocks described previously in that same order.
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• clkoutx nodes, where each differential clock output is configured separately:

– reg: the number of output, for clkoutx node where x ranges from 0 to 3, the reg must have
the value x.

– silabs, drive-config: the voltage of the generated clock. Here both the magnitude and the
standard can be set. All the options are listed below together with their corresponding
configuration codes:

– clock-source: it refers to where the clock is coming from:

#define SI5338_OUT_MUX_FBCLK 0
#define SI5338_OUT_MUX_REFCLK 1
#define SI5338_OUT_MUX_DIVFBCLK 2
#define SI5338_OUT_MUX_DIVREFCLK 3
#define SI5338_OUT_MUX_XOCLK 4
#define SI5338_OUT_MUX_MS0 5
#define SI5338_OUT_MUX_MSN 6 /* MS0/1/2/3 */
#define SI5338_OUT_MUX_NOCLK 7
It usually refers to the MultiSynth chip connected at each output so the usual configuration
would be SI5338_OUT_MUX_MSN where N is the number of multiplexer as shown in the
ASCII drawing.

– disable-state: this chip is able to generate a clock onlywhen requested to do so, so the driver
must have a setting to indicate which logical state is considered to be disabled. Normally, it
would be SI5338_OUT_DIS_HIZ* (High Impedance), but it will be seen later that it needed
to be changed to other setting.

#define SI5338_OUT_DIS_HIZ 0
#define SI5338_OUT_DIS_LOW 1
#define SI5338_OUT_DIS_HI 2
#define SI5338_OUT_DIS_ALWAYS_ON 3

– clock-frequency: as in any clock generator, the frequency in HZ is indicated in this node.
For this case, clkout0 was configured to have a 5MHz output for testing that an output was
actually beingproduced and clkout1, the clock output that goes toMGTBankD156.25MHz.

4.1 Debugging the generated clock frequency

After adding the driver and compiling Linux, the system did not work. Using the Integrated Logic
Analyzer in the clkout0 testing output, there was no clock generated. Why? After looking in the
documentation, it seems that there is flag called enabled in each of the clkout that is needed to say to
the driver that we want to enable that output. After doing this to clkout0 and clkout1 the clock was
generated! as shown below:
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Figure 3.4.2: clkout0 signal being generated as a 5MHz clock

The frequency of the clock being shown is very easy to deduce. The Sample depth used for sampling
the signal was 1024, the clock input for the ILA core was 100 MHz and the signal (the generated clock
in the SI5338) was 5MHz. So, the samples taken per Si5338 clock cycle is 100

5 = 20. If 1024 is divided by
20, it gives a result of 51.2, meaning that in that time, 51 cycles of the SI5338 clock should be sampled.
Counting thenumber of cycles itwas checked that therewere 51 cycles so the clock is 5MHz, the correct
frequency set up in the driver.

4.2 Testing the Ethernet link

Returning to our EthernetCore, even though the clockwas being generated, the SFP linkwouldn’twork.
This has a simple explanation that could be deduced by outputting the signal reset_done to a LED in the
ST1 base board. Thanks to this it was discovered that the reset was not performed when turning on the
board which was pretty normal before because a clock was not being generated but, what about now?
The clock was not available until the Linux system had booted, meaning that the reset was performed
before the clock got generated so, nothingworks. The solution foundwas rebooting the systemwithout
turning off the boardbut using the reboot commandor the PowerOnReset button. This does not erase
the clock generator data but reboots the system so that itmust initialize everything again. Asserting the
reset again this timewith a valid clock input yielded the expected results: macb detected a new link and
configured it properly to 1Gbps/Full duplex as it can be seen in the following terminal messages:

UBOOT CONSOLE

ZYNQ GEM: ff0c0000, mdio bus ff0c0000, phyaddr 9, interface gmii

Warning: ethernet@ff0c0000 (eth4) using random MAC address - ca:32:17:cf:08:00

ZYNQ GEM: ff0d0000, mdio bus ff0d0000, phyaddr 11, interface gmii

PETALINUX CONSOLE

[ 12.822833] macb ff0b0000.ethernet eth2: Link is Up - 1Gbps/Full - flow control off
[ 12.830520] IPv6: ADDRCONF(NETDEV_CHANGE): eth2: link becomes ready
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DAQNetwork Interface card analysis.
The Intel XL710

Now that one side of the communication has been solved, the other side, that is the PC with a
PCIe network cardmust be correctly configured. For testing the SOMwith several SFPmodules,
the best way was to use a Network Expansion card that could allocate more than one SFP. For
the initial stages of the project, while working with the ZCU102, a PEX1000SFP from Startech
was used. This card included one SFP Gigabit port, making it ideal for testing one fiber optics
link. As the network controller chip, it had a RTL8168B from Realtek that made possible the SFP
connection to the computer.

Figure 3.5.1: Startech PEX1000SFP with the RTL8168B chip

However, now that more than one SFP port is necessary, an upgrade in the card is a must.
Startech also offers another network card called the PEX10GSFP4I, that offers 4 SFP+ ports,
meaning a total bandwidth of 40 Gbps. This bandwidth was supported thanks to the inclusion
of the Intel XL710. As this chip is different from the one used in the previous NIC, the
behaviour may vary and that was exactly the case.

Figure 3.5.2: Startech PEX10GSFP4I with Intel XL710 chip
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After ensuring that the SOM side of the communication worked connecting it to the Realtek NIC
(known to be already working with other links), the Intel NIC was tested. At first there was no link
established with the PC side not even detecting a SFP module in the corresponding cage.

Looking through the internet, a solution was found: it seems that this network cards are so
complex that they have a firmware running on them that is updated to fix bugs and add support for
other standards. This firmware is stored in a Non Volatile Memory (NVM) so that it can be easily
accessed and updated through the use of the Intel NVM Update Utility. The reason for the
communication not being established was due to the NIC having a very old firmware version that
didn’t have support for 1000BaseLX/SX SFP. This was checked by looking at the Intel XL710 Feature
Support Matrix[21]. In this document there are two tables that helped to reach this conclusion: Each
NVM version, that is, each firmware version, requires a minimum driver version as shown in both
figures 3.5.3 and 3.5.4.

Figure 3.5.3: NVM version compatibility with the drivers of Intel XL710 (i40e)

Figure 3.5.4: NVM version compatibility with the drivers of Intel XL710 (i40e) Contd.

Using the ethtool -i enp2s0f3, it was checked that the version of NVM installed was 5.04,
meaning that the card required at a minimum the 20.7.1 driver. The driver version wasn’t an issue as it
was already updated to the latest version 28.0 even though the card wasn’t able to operate at its full
potential with all of the capabilities of this driver due to the firmware being obsolete. It was checked
that in NVM 5.04 the 1000BaseLX/SX wasn’t supported by inspecting another table shown in figure
3.5.5.
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Figure 3.5.5: Standard compatibility with each firmware version in the Intel XL710 (i40e)

The relevant entry here for us is the SFP SX/LX optical modules (single speed), which is the case of
the Avago and Cisco modules being used here (they only support a single speed, 1Gbps). This feature
was not supported until 22.6 driver meaning that the firmware update that started to support these
modules was, looking at the previous figures, 6.01, so an update is necessary.

This process was very simple, as Intel has a NVM Update Utility that just requires to be unzipped
and run the script to update it. The script used is called nvmupdate64e and is used as follows:

nvmupdate64e -u -l -o results.xml -b -c nvmupdate.cfg

This command checks the file nvmupdate.cfg which contains a list of compatible devices and their
current firmware versions together with to which version they can be updated to. If there is a match
with a device connected to the PC then it will perform an update and save the results into an xml.

After performing this step, the results.xml file was generated. An extract of this file is shown below:

<Instance vendor="8086" device="1572" subdevice="0000" subvendor="8086" bus="2"
dev="0" func="0" PBA="003400-000" port_id="Port 1 of 4"
display="Intel(R) Ethernet Converged Network Adapter X710">

<Module type="NVM" version="8000D8BC" previous_version="800024DA">
<Status result="Success" id="0">All operations completed successfully.</Status>

</Module>
<VPD>

<VPDField type="String">Example VPD</VPDField>
<VPDField type="Readable" key="V0"></VPDField>
<VPDField type="Checksum" key="RV">D7</VPDField>

</VPD>
<MACAddresses>
<MAC address="E8EA6A27CE51">
</MAC>
<SAN address="000000000200">
</SAN>
</MACAddresses>

</Instance>

In this XML file there is a label called module with several attributes. This Module represents the
NVM memory and is indicating that the firmware has been updated from previous_version to version,
so from 800024DA corresponding to 5.04 to 8000D8BC corresponding to 9.20. Now by running the
same ethtool -i enp2s0f3 command the output showed the new version of the NVM:
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hyperk1@hyperk1:/$ ethtool -i enp2s0f3
driver: i40e
version: 2.22.18
firmware-version: 9.20 0x8000d8bc 0.0.0
expansion-rom-version:
bus-info: 0000:02:00.3
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: yes

After that update, the SFP was recognised and the link was established so the FMC card in the SOM
was checked to be working and the NIC card which is a crucial part of the testbench that will be used
for the DPB2 prototype has also been tested. Also, the speed tests were successful. By using iperf3,
the performance was measured, giving very good results, close to 1Gbps. Using Jumbo frames this
throughput could be increased until topping the whole 1Gbps bandwidth.

root@ST1ME-XU8-4CG-1E-D11E:~# iperf3 -c 10.0.0.1 -t 25
Connecting to host 10.0.0.1, port 5201
[ 5] local 10.0.0.2 port 54852 connected to 10.0.0.1 port 5201
[ ID] Interval Transfer Bitrate Retr Cwnd
[ 5] 0.00-1.00 sec 114 MBytes 953 Mbits/sec 0 267 KBytes
[ 5] 1.00-2.00 sec 112 MBytes 938 Mbits/sec 0 267 KBytes
[ 5] 2.00-3.00 sec 113 MBytes 947 Mbits/sec 0 279 KBytes
[ 5] 3.00-4.00 sec 112 MBytes 939 Mbits/sec 0 279 KBytes
[ 5] 4.00-5.00 sec 112 MBytes 944 Mbits/sec 0 279 KBytes
[ 5] 5.00-6.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
[ 5] 6.00-7.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
[ 5] 7.00-8.00 sec 112 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 8.00-9.00 sec 112 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 9.00-10.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
[ 5] 10.00-11.00 sec 112 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 11.00-12.00 sec 112 MBytes 943 Mbits/sec 0 291 KBytes
[ 5] 12.00-13.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
[ 5] 13.00-14.00 sec 112 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 14.00-15.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
[ 5] 15.00-16.00 sec 113 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 16.00-17.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
[ 5] 17.00-18.00 sec 112 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 18.00-19.00 sec 112 MBytes 944 Mbits/sec 0 291 KBytes
[ 5] 19.00-20.00 sec 112 MBytes 938 Mbits/sec 0 291 KBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-20.00 sec 2.24 GBytes 942 Mbits/sec 0 sender
[ 5] 0.00-20.05 sec 2.24 GBytes 940 Mbits/sec receiver

iperf Done.
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Redundant data link creation

6.1 Adding an extra Ethernet Core

TheDPB2prototypewill not have just one SFP for data link, itwill have at least 2, for redundancy.
In this section, the procedure to instantiate another network interface with another SFP of the
same features as in the previous section will be described.

The steps, departing from the same reference project are as follows: first, Open Vivado and
instantiate twoGigabit Ethernet PCS/PMAcores, then, Configure oneof themwith SharedLogic
and the same parameters as in Part III, chapter 3. The other one must be configured with the
same parameters as the first one but instead of including the Shared Logic in the core, select
Shared Logic in the Example Design. This will create an IP Core without the shared logic. This
shared logic is a part of the IP Core required for it to work but, as it is logic that is common to
all the IP Cores of the same type, it is enough to instantiate this shared logic in one of the cores
and then connect the rest of the cores to this core with the shared logic. If the user changes the
Shared Logic option, the core preview will change a lot as shown in figure 3.6.1.

Figure 3.6.1: 1G/2.5G Ethernet PCS/PMA Core without Shared Logic

If comparing both blocks, one can instantly notice that the non-shared logic core has a lot of
inputs that correspond to theoutputs thatwere left unconnected in the shared logic core. All this
outputsmust be connectedbyname to its corresponding inputs. So, connect the corresponding
inputs to the corresponding outputs of the Core with Shared Logic as stated in table 6.2.
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From Instance
Using Shared Logic
in Core

To Instance Using
Shared Logic in
Example Design Description of the functionality

gtrefclk_out gtrefclk Transceiver clock. It is converted inside the Shared logic
core from a differential pair to a single ended clock and that
connection is passed to Non Shared Logic Core

userclk_out userclk 62.5 MHz clock at 1Gb/s
userclk2_out userclk2 125 MHz clock at 1Gb/s
rxuserclk_out rxuserclk 62.5 MHz clock at 1Gb/s
rxuserclk2_out rxuserclk2 125 MHz clock at 1Gb/s
pma_reset_out pma_reset Physical Medium Attachement reset
mmcm_locked_out mmcm_locked Flag to indicate that the mmcm (a clock generator block) is

producing a stable and reliable clock

Table 6.2: Port list in the Ethernet core used

1. Create another constants block with the same aspect as in the first core but changing the phy
address to other value that no other phy chip has. In this case the ST1 base board has two PHY
chips for the RJ45 ports that have addresses 3 and 7 assigned. Also, the Ethernet Corewith Shared
Logic has phy address 9. So, it was decided to use address 11 for this device.

2. Open the ZynqMP IP configuration and enable one GEM together with its MDIO interface and
set them up as EMIO.

3. Create the corresponding inputs andoutputs port of this newblock thatwill go outside the FPGA.
In this case it would be only the SFP interface because the other ones are connected to other
blocks in the FPGA.

Figure 3.6.2: SFP output interface, by right click Create Interface Port

4. Do the Synthesis, Implementation and Bitstream Generation in Vivado

5. Export the hardware to a .xsa including the Bitstream.
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6. Enable the driver through the configuration command:

hyperk1@hyperk1:/$ petalinux-config -c kernel

7. Add to the device tree the new node for the GEM.

&gem1 { &gem2 {
status = "okay"; status = "okay";
phy-handle = <&phy9>; phy-handle = <&phyb>;
phy9: phy@9 { phyb: phy@b {

reg = <0x9>; reg = <0xb>;
xlnx,phy-type = <0x5>; xlnx,phy-type = <0x5>;
reset-gpios = <&gpio 78 0>; reset-gpios = <&gpio 79 0>;

}; };
}; };

8. Build the image and package it:

hyperk1@hyperk1:/$ petalinux-build

hyperk1@hyperk1:/$ petalinux-package --boot --force --fsbl --fpga --u-boot

9. Test in the board. As it can be seen from the logs both from Uboot (Second Stage Boot loader)
and PetaLinux, GEM1 and GEM2 get detected and correctly configured.

U-BOOT CONSOLE:

ZYNQ GEM: ff0c0000, mdio bus ff0c0000, phyaddr 9, interface gmii
Warning: ethernet@ff0c0000 (eth4) using random MAC address - ca:32:17:cf:08:00
, eth4: ethernet@ff0c0000FEC: can't find phy-handle

ZYNQ GEM: ff0d0000, mdio bus ff0d0000, phyaddr 11, interface gmii
, eth2: ethernet@ff0d0000FEC: can't find phy-handle

PETALINUX CONSOLE:

[6.334967] macb ff0d0000.ethernet eth2: Cadence GEM rev 0x50070106 at 0xff0d0000 irq 39
(00:0a:35:00:09:89)

[6.233972] macb ff0c0000.ethernet eth1: Cadence GEM rev 0x50070106 at 0xff0c0000 irq 38
(96:ee:35:90:7a:03)

[12.822833] macb ff0b0000.ethernet eth2: Link is Up - 1Gbps/Full - flow control off
[12.830520] IPv6: ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready
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6.2 TheMDIO bus

Management Data Input Output (MDIO) is a standardized interface for accessing the configuration
and status registers of Ethernet PHY devices in IEEE 802.3. It is commonly used to configure PHYsical
layer chips likeUSB, PCIe or Ethernet. OneMDIObus canhave onemaster andup to 32 slaves. It works
as a tristate bus. An example of this system is shown in figure 3.6.3.

Figure 3.6.3: A typical MDIO-managed System

1. One of the cores needs to be adapted because MDIO is a tristate bus, meaning that it has a third
input labelled as mdio_t which puts the bus in High impedance (Z). Sharing this bus would
require to instantiate IOBUFs blocks. However, these buffers can only be used when driving I/O
signals that are connected directly to I/O ports not to internal connections as modern FPGAs
don’t have internal tristates. These cores have a special option called MDIO for external PHY
management that produces an output to the core of type MDIO master. This output is normally
used to output the MDIO bus to the outside of the FPGA to drive a PHY ASIC chip but it can also
be used for connection with internal cores.

2. Once the optionhas been selected, twonewportswill appear: theMDIOout interface thatwill be
connected to the MDIO port of the other core, and the mdio_t signal which is connected directly
to the corresponding mdio_t signal of the MDIO master in the GEM (ZynqMP IP Core).

Figure 3.6.4: Connection of themdio_t signal to themdio_t input (green wire) and connection
of the MDIO output (red wire) of the core enabled through Enable MDIO for External PHY
Management option
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3. Do the whole Vivado flow and export the .xsa

4. In the device tree, now both phy nodes should be inside the same gem node as they are now
connectedboth to the sameMDIObus. In this case, both coreswhere connected toGEM1MDIO,
so the phy nodes shall be written under &gem1 node.

&gem1 {
status = "okay";
phy-handle = <&phy9>;
phy9: phy@9 {

reg = <0x9>;
xlnx,phy-type = <0x5>;
reset-gpios = <&gpio 78 0>;

};
phyb: phy@b {

reg = <0xb>;
xlnx,phy-type = <0x5>;
reset-gpios = <&gpio 79 0>;

};
};

&gem2 {
status = "okay";
phy-handle = <&phyb>;

};

5. Build and package the Linux image.

hyperk1@hyperk1:/$ petalinux-build

hyperk1@hyperk1:/$ petalinux-package --boot --force --fsbl --fpga --u-boot

6. Test that MDIO bus are probed.

For this approach to work, the phy cores must be connected to an MDIO bus such that they are
probed before turning on the GEM corresponding to that PHY core. Probing means registering the
MDIO device in the MDIO bus. This is a crucial step before turning on the Ethernet interface.

The order in which the Macb probes the phychip is by the gem number, so: first gem0, then gem1,
gem2 and finally gem3. In this case, as it can be seen in the device tree, both phy nodes are in GEM1:
the phy corresponding to GEM2 is phyb and as it is probed in the GEM1 node it will be probed when
GEM2 interface is turned on afterwards. Then, in each MDIO bus, devices are recognised through its
Phy address. Phy addresses can also be changed. They can go from 0x01 to 0x1f. 0x00 is excluded
because that address acts as a broadcast for all the devices in the bus. The change of phy address of a
specific ethernet core must be done in two places and it is crucial that the same number is introduced
in each:

• In the core itself: by using the phy_addr input. A constant must be connected there indicating
the address value

• The reg variable in the device tree: each phy node has a property called reg which is a number
representing the phy address of that phy node.
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6.3 Bonding driver in PetaLinux

Once the SFP interfaces are connected and usable from Linux, a controlled way to decide which
interface will be active at a given time and how to perform the switching when that interface fails
must be developed.

Linux offers a very easy way to do it where the OS handles the switching called bonding which
consists on creating a virtual interface called bond-master that aggregates several physical interfaces
as their bond-slaves. This bond-master interface is given an IP address and communicates with the
outside world as a normal interface. The packages that are delivered to that address are received
through the physical interface/s depending on the configuration of the bonding. So, the other devices
are just given one destination address in their routing tables, which is the bond-master one but they
have configured that this interface is a bonding interface so there are more than one physical
interface through which they can send the data to arrive to its destination.

There are several configuration modes in bonding, created depending on the advantage that
benefits your application:

• Round Robin policy: Packets are transmitted in sequential order from the first slave to the last.
Provides both load balancing and fault tolerance because any interface that is down is eliminated
from the round robin.

• Active Backup: Only one slave active. A different slave becomes active if the currently activated
fails. Only the virtual bondMACaddress is visible from the outside to avoid confusing the switch.

• Balance XOR policy: Transmit to a certain slave based on a selectable hashing algorithm.
Provides load balancing and fault tolerance

• Broadcast: transmits everything on all slaves at the same time. Provides fault tolerance without
losing packets for switching from one interface to another but also uses a lot of energy.

• IEEE 802.3ad: It is an IEEE standard for dynamic link aggregation, with slaves that share the
same speed and duplex settings. If this mode is the preferred one, the switches connected to the
device must support the standard.

• Adaptive transmit load balancing: The outgoing traffic is distributed depending on the current
load. The incoming traffic is received by the active slave at that time.

• Adaptive load balancing: It distributes both the outgoing and ingoing traffic depending on the
current load. The receive load balancing is achieved by ARP negotiation. The bonding driver
intercepts the ARP Replies sent by the local system on their way out and overwrites the source
hardware address with the unique hardware address of one of the slaves in the bond such that
different peers use different hardware addresses for the server.

The ideal mode to use in this project would be the Active Backup one as fault tolerance is needed
but not all the SFPs will be turned on at the same time so, when the slave is switched by the bonding
driver, the new SFP should be turned on.

Thebondingdriver canbe interactedwith and configured in twodifferentways. These twomethods
are explained below and they differ in which files must be modified to enable and configure bonding.
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• Using ifenslave: A softwarepackage that allows to create bonding interfaces by configuring them
in the /etc/network/interfaces. This file is a standard Linux file that includes the configuration of
the network interfaces. This file is read when the command ifup is executed and applies the
configuration that to each interface when they are brought up (or down with ifdown.
To include the interfaces file in PetaLinux, the workflow is just the typical Yocto recipe creation.
Refer to [1] for more details about how Yocto works.
Below, there is an example of the interfaces file. This file must be placed in /etc/network/
directory. As we can see we configure 4 interfaces: the loopback, the bond itself and the two
physical interfaces that will join the bonding. These interfaces are linked through the
bond-slaves and bond-master property which define which is the virtual bonding interface. The
bond-mode is configured as active-backup. It is very important to note that neither eth1 nor
eth2 have IP addresses assigned because the visible interface from the outside will be the bond0
interface that will make use of eth1 and eth2 the hood.

auto lo
iface lo inet loopback

auto bond0
iface bond0 inet static

address 20.0.0.2
netmask 255.255.255.0
gateway 20.0.0.1
bond-mode active-backup
bond-miimon 100
bond-slaves eth1 eth2
bond-primary eth1 eth2

auto eth1
iface eth1 inet manual

bond-master bond0

auto eth2
iface eth2 inet manual

bond-master bond0

When booting the us. We perform the ifup -a command that enables all the interfaces present
in the etc/network/interfaces file.
Now, when disconnecting any of the interface the following message appears:

[46.997] macb ff0c0000.ethernet eth1: Link is Down
[47.021] bond0: (slave eth1): link status definitely down, disabling slave
[47.028] bond0: (slave eth2): making interface the new active one

Thismessage indicates that the systemworks correctly, as the eth1was the primary slave (the first
position in the bond-primary list) and when it was brought down by disconnecting the optical
link, the eth2 interface was activated, so that the connection is not lost.
The interfaces file should be edited in both ends of the communication if a direct connection to
another PC is done as the PC that will receive the data also must have the information that two
of its physical interfaces will be grouped in a bonding interface. If the other side is a switch, no
extra steps are needed.
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• Using networkd-service Another way is to use one of the systemD services included in the
PetaLinux image. This is just another way to configure the interfaces with some initial
parameters. In this case, the files that need to be created correspond to the networkd service.
The steps to configure bonding through this method are as follows:

1. Ensure that PetaLinux has the networkd service running in the background:

root@ST1ME-XU8-7EV-2I-D12E:~$ systemctl status systemd-networkd
* systemd-networkd.service - Network Configuration

Loaded: loaded (8;;file://ST1ME-XU8-7EV-2I-D12E/lib/systemd/
system/systemd-networkd.service/lib/systemd/system/
systemd-networkd.service8;;; enabled; vendor preset: enabled)
Active: active (running) since Fri 2021-11-19 17:19:30 UTC;

TriggeredBy: * systemd-networkd.socket
Docs: 8;;man:systemd-networkd.service(8)man:
systemd-networkd.service(8)8;;

Main PID: 339 (systemd-network)
Status: "Processing requests..."
Tasks: 1 (limit: 4377)
Memory: 972.0K
CGroup: /system.slice/systemd-networkd.service

`-339 /lib/systemd/systemd-networkd

2. Create a new application in PetaLinux:

hyperk1@hyperk1:/$ petalinux-create -t apps -n networkd-bond

3. Go to the folder created by the SDK:

hyperk1@hyperk1:/$ cd project-spec/meta-user/recipes-apps/networkd-bond

4. Paste inside the .bb file the following recipe:

SUMMARY = "Networkd bonding system"
SECTION = "PETALINUX/apps"
LICENSE = "MIT"

SRC_URI = "file://myapp-init.service file://10-nd-bond.network \
file://20-eth1.network file://20-nd-bond.netdev \
file://30-eth2.network file://99-dhcp.network"

do_install() {
install -d ${D}/etc/systemd/network/
install -m 0644 ${WORKDIR}/myapp-init.service ${D}${systemd_system_unitdir}
install -m 0644 ${WORKDIR}/10-nd-bond.network ${D}/etc/systemd/network/
install -m 0644 ${WORKDIR}/20-eth1.network ${D}/etc/systemd/network/
install -m 0644 ${WORKDIR}/20-nd-bond.netdev ${D}/etc/systemd/network/
install -m 0644 ${WORKDIR}/30-eth2.network ${D}/etc/systemd/network/
install -m 0644 ${WORKDIR}/99-dhcp.network ${D}/etc/systemd/network/

}
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5. The recipe described in the previous step copies several files to the /etc/systemd/network
which are read by the networkd service to configure the different interfaces. The files to be
created must be included in the files folder inside the
project-spec/meta-user/recipes-apps/networkd-bond:

– 10-nd-bond.network: creates the bonding virtual interface called nd-bond and assigns
the network parameters.

[Match]
Name=nd-bond
[Network]
Address=20.0.0.2/24
Gateway=20.0.0.1

– 20-eth1.network: creates the eth1 interface and associates it as a primary slave to the
bonding nd-bond

[Match]
Name=eth1
[Network]
Bond=nd-bond
PrimarySlave=true

– 20-nd-bond.netdev: Configures the bonding interface as active-backup with a polling
period of 1 second. PrimaryReselectPolicy option is set as always so that at any time,
if the primary slave is available, it should be the active slave. This means that if eth1
is down, eth2 will be the active slave, but, in the instant that eth1 comes up again, the
active slave will be changed to eth1 even though eth2 is fine.

[NetDev]
Name=nd-bond
Kind=bond
[Bond]
Mode=active-backup
PrimaryReselectPolicy=always
MIIMonitorSec=1s

– 30-eth2.network: creates the eth2 interface and associates it with nd-bond
[Match]
Name=eth2
[Network]
Bond=nd-bond

– 99-dhcp.network: For the rest of ethernet interfaces that are not specified in other files,
enable DHCP. eth* is a wildcard that means “any interface that starts with eth”.

[Match]
Name=eth*
[Network]
DHCP=yes

The number prefix in these files mean the execution order, so the first file to be read will be
10-nd-bond.network and so on until the file 99-dhcp.network. This order is crucial as the
bonding interface needs to be created before assigning the physical interfaces to it.
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6. Go to the user-rootfsconfig in project-spec/meta-user/conf to add the line
CONFIG_networkd-bond.

7. Enable the corresponding user package in the rootfs menu:

hyperk1@hyperk1:/$ petalinux-config -c rootfs

8. Do petalinux-build and petalinux-package and load the image in the SOM.
9. When booting the board, the interfaces should be displayed when issuing ifconfig. If

eth1 is disconnected, it should happen the same as with ifenslave and the same messages
should be displayed. This time there is no need to issue any command because petalinux
configures the interfaces by using networkd-service by default. This service does not use
the aforementioned interfaces file, so a command was needed to read it.
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Chapter 7

Debugging PetaLinux

Making some device work in Linux implies the development of both hardware up to the task
and a compatible driver that is able to communicate with the device, configure it and send or
receive the relevant information from it. For example, the SFP module is driven by the
PCS/PMA or SGMII Gigabit Ethernet Core. This core acts as a PHY chip, configured through a
MDIO interface and thus it needs to be initialised appropriately. These initialisation and
management are usually done through a driver, a piece of code that provides several functions
to the OS to leverage the capabilities of the hardware that the driver is developed for.

However, issues with how the driver interacts with the device can arise, provoking a
malfunction. This was the case with the macb driver, made by Cadence and compatible with
the GEM present in many ARM SoC like the ZynqMP Ultrascale+. At first there were some
issues with configuring the second ethernet interface but the hardware seemed to be working
perfectly as the clock was being generated and the reset signal was asserted.

In this section, three methods to debug the kernel code will be explained. The first method
was the one used to find the bug and thus will be explained together with the solution to the
bug. The other two are alternatives that I find very interesting to debug other failures.

7.1 Using kernel messages

The easiest way from a coding perspective is adding messages to be printed in the middle of the
code execution flow. This is the least flexible method as it needs to recompile the kernel source
code each time a new message wants to be added either to indicate that a part of the code has
been executed or to display a new variable.

In Linux, the function used to display messages in the terminal is not printf(), it is printk().
All printk messages are printed to the kernel log buffer, which can be displayed by using the
dmesg command.

printk has the main difference with printf that it can specify a log level which is specifies
the importance of a message. The kernel decides whether to show the message immediately
(printing it to the current console) depending on its priority level (Priority column in the below
table) and the current loglevel (a kernel variable). If the message priority value in the below
table is lower than the loglevel the message will be printed to the console. The loglevel variable
is specified when booting in the bootargs string. This string can be modified by going to:

petalinux-config -> DTG settings -> Add extra bootargs
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The different log levels that exist in the linux kernel are defined in the include/linux/kern_levels.h
file in the source code and are described in the following table:

Name Priority Alias function
KERN_EMERG “0” pr_emerg()
KERN_ALERT “1” pr_alert()
KERN_CRIT “2” pr_crit()
KERN_ERR “3” pr_error()
KERN_WARNING “4” pr_warn()
KERN_NOTICE “5” pr_notice()
KERN_INFO “6” pr_info()
KERN_DEBUG “7” pr_debug() and pr_devel() if DEBUG is defined
KERN_DEFAULT ””
KERN_CONT “c” pr_cont()

Alias functions are defined in the /include/linux/printk.h and perform the same function as printk()
but including the log level implicitly in the name of the function. For example, the function used for
debugging in this case: pr_warn() will implicitly send a KERN_WARNING through the terminal. The
alias is described as a macro as follows:

/**
* pr_warn - Print a warning-level message
* @fmt: format string
* @...: arguments for the format string
*
* This macro expands to a printk with KERN_WARNING loglevel. It uses pr_fmt()
* to generate the format string.
*/

#define pr_warn(fmt, ...) \
printk(KERN_WARNING pr_fmt(fmt), ##__VA_ARGS__)

It is just a simple printk starting with a KERN_WARNING.
This function was included in several parts of the macb driver to check what was going on with the

interface initialization on boot. The inclusion of these pr_warn() sentences was done by patching the
linux kernel with the procedure explained in my other TFM.

When the system was booted and the turn to configure the second SFP came, the macb driver gave
the following messages:
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[6.248004] macb: Beginning probe!
[6.248031] macb: Success macb_config!
[6.251498] macb: Success clk_init!
[6.258751] macb ff0d0000.ethernet: Not enabling partial store and forward
[6.269881] macb: Success irq!
[6.269888] macb: Success get_mac_address!
[6.273349] macb: Success of register_netdev!
[6.277439] macb: Success macb_writel!
[6.281787] macb: It is NOT MDIO!
[6.285528] macb: It is not fixed_link!
[6.288832] macb: There is MDIO node!
[6.292857] libphy: Success device_register!
[6.296522] libphy: Success reset_GPIO 1!
[6.300786] libphy: Success reset_GPIO 2!
[6.304788] libphy: Success of MDIO probed!
[6.308789] of_MDIO_register Success!
[6.312964] of_MDIO_register: address: 11 !
[6.322909] of_mdiobus_register_phy 0
[6.332964] of_MDIO_register: address: 11 !
[6.342909] of_mdiobus_register_phy -16
[6.352909] of_mdiobus_register final error: -16
[6.352909] macb: probe of ff0d0000.ethernet failed with error -16

This means that the procedure of initialising the interface there was an error when executing the
mdiobus_register_phy function. This function registers the phy chip that has the address given as an
input to the function. Using pr_warn the address being passed to the function was printed and then
the result of the function was printed.

In Linux, if a function returns a 0 it means that it completed its tasks successfully and if it returns
any other number it is taken as an error code. Linux has standardized error codes that the functions of
the drivers coded in the kernel must follow. In this case, the returned error is -16, which by looking at
a table that shows the correspondence of the error codes with their meanings shows that a -16 means
EEBUSY which means that the device was busy when tried to be probed.

The reason is very simple if proper attention is paid to the printed messages in the terminal: the
function of_mdiobus_register is called TWO times for address 11 and the first one the function executes
successfully returning a 0 but the second one it returns EEBUSY error which is expected because the
device was already probed.

To find the error, one must know how probing a device works: 1. A struct representing a device
driver must be passed to the kernel. In this struct, one of the sections is the device_probe which
includes the name of the function to probe the device associated to the driver. In the case of macb
this function is called macb_probe and is called one time per activated GEM in the device tree 2. In
the execution flow of macb_probe it must register the PHY chip or chips in the MDIO bus it belongs
to. Per each GEM node in the device node there can be one, several or none phy nodes and the
of_mdiobus_register is executed as many times as phy child nodes the GEM node has. 3. Looking at
the generated device tree that was transferred to the board was the next step. This can be done by
using the device tree converter command on the system.dtb (device tree blob) located in
<project-folder>/images/linux* to convert it to dtsi that can be human read:

hyperk1@hyperk1:/$ dtc -O dts -o SOMtree.dts system.dtb
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When looking at the GEM1 node the following was found:

ethernet@ff0d0000 {
compatible = "xlnx,zynqmp-gem\0cdns,zynqmp-gem\0cdns,gem";
status = "okay";
interrupt-parent = <0x04>;
interrupts = <0x00 0x3d 0x04 0x00 0x3d 0x04>;
reg = <0x00 0xff0d0000 0x00 0x1000>;
clock-names = "pclk\0hclk\0tx_clk\0rx_clk\0tsu_clk";
#address-cells = <0x01>;
#size-cells = <0x00>;
iommus = <0x0d 0x876>;
power-domains = <0x0c 0x1f>;
resets = <0x0e 0x1f>;
clocks = <0x03 0x1f 0x03 0x6a 0x03 0x2f 0x03 0x33 0x03 0x2c>;
phy-handle = <0x12>;
phy-mode = "gmii";
xlnx,ptp-enet-clock = <0x00>;
local-mac-address = [00 0a 35 00 3b 27];
phandle = <0x56>;

phy@b {
reg = <0x0b>;
xlnx,phy-type = <0x05>;
phandle = <0x57>;

};

phy@B {
reg = <0x0b>;
xlnx,phy-type = <0x05>;
reset-gpios = <0x11 0x4e 0x00>;
phandle = <0x12>;

};
};

This means that there are two phy nodes that share the same phy address (reg variable) but with
different names: one is phy@b and the other one is phy@B so there are two phy nodes when there
should be one as it was defined in the system_user.dtsi.

The reason for this was that, while doing tests, the compiler didn’t remove the other node from
previous test from the device tree compilation so, it ended up with two phy nodes.

Cleaning the project build folder by doing petalinux-build -x mrproper solved the problem,
showing just one message for registering the phy in address 11. However, now the other SFP was giving
an error of EEBUSY. This was easier to solve: it was due to the reset-gpios property. This property is
used for the driver to know which GPIO it must assert to reset the core. Both cores had a shared reset
line meaning that, when the first was probed everything went fine but when the second one (address
11) was probed the same reset line is asserted meaning that the first core (address 9) got reset when it
was ready. This means that when the kernel tried to create the ethernet interface it couldn’t attach to
that PHY because its configuration was wiped by the second reset.

The solution is using different reset lines for all cores that represent peripherals directly connected
to the PS because the drivers in Linux use GPIOs as reset lines individually to initialise the devices.
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7.2 Using Vitis

Anotherway todebug the linux kernel is Vitis. Thanks toVitis debug capabilities, the linux kernel canbe
debuggedand introducebreakpoints in the code. Thisprocedurehasbeengathered fromtheblog entry
from Xilinx support webpage PetaLinux Image Debug Series: Debugging the Linux Kernel in Vitis:

1. Configuring the Linux Image:

• Enable some features in the kernel to allow debugging:

hyperk1@hyperk1:/$ petalinux-config -c kernel
-> kernel Hacking
-> kernel debug -> Compile time checks and
compiler options -> [*] Compile the kernel with debugging info

CPU Power Management -> CPU Idle -> [] CPU idle PM support

• Build the image

hyperk1@hyperk1:/$ petalinux-build

• Package the image into BOOT.BIN

hyperk1@hyperk1:/$ petalinux-package --boot --force --fsbl --fpga --u-boot

2. Debugging in Vitis: Load the boot image onto your SD/QSPI and debug on the running target.

3. Launch Vitis, and close the welcome screen.

4. Create a new Debug Configuration.

5. Double Click on Single Application Debug:

6. Select Apply and Debug. This will open the debug perspective. You should see the Cortex A53
running (our boot image).

7. Expand the Xilinx Software Command Tool (XSCT) window. Here, we want to pass the symbol
files to the Cortex A53 #0 for the Linux kernel. This is the vmlinux file in the images/linux folder
in the petalinux project directory.

8. We set the symbol files by using the memmap command in XSCT:

9. You can add a breakpoint by any of the following options:

• bpadd function_name
• bpadd -file “name_of_the_kernel_source_file” -line number_of_line To find which functions

names are valid, the following command can be used:

aarch64-linux-gnu-objdump -t vmlinux | grep function_name

It this line returns any result it means that the dump of the memory map of the kernel includes
that name as a function_name and a breakpoint will be set when called from Vitis.
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10. Once the breakpoints have been set, power cycle the board. The user can then use the debug
functionality to step through the code.
Figure 3.7.1 shows an example in the kernel_start function.

Figure 3.7.1: Debugging the kernel start function. This is the first function executed when Linux
kernel boots [22]

7.3 Using debugfs

debugfs is another way for acquiring debug information. This is a file system that makes information
about a process available to user space. It contains a family of function which are used to create a
directory, a file, write on it,etc… like a normal file but in a special directory that is only meant to be
modified by these functions, not by the user itself. This directory is usually /sys/kernel/debug.

In the XU8 + ST1 reference PetaLinux image, if we go to that directory we can find several folders:

root@ST1ME-XU8-7EV-2I-D12E: ~$ /sys/kernel/debug# ls
asoc dma_buf iio pmbus
bdi dma_pools memblock pwm
block dmaengine mmc0 ramdisk_pages
bluetooth dri mmc1 ras
clear_warn_once dynamic_debug mtd regmap
clk extfrag opp regulator
debug_enabled fault_around_bytes output_status remoteproc
device_component gpio pinctrl sleep_time
devices_deferred hid pm_genpd split_huge_pages

For example, there is one folder named mmc1. This folder corresponds to the debug information
of themmc1 driver, which controls theMicro SDCard in the ST1 base board. Entering in this folder, we
can find several text files. One of them is called clock, and shows the frequency of the clock that is used
in the mmc1 controller which in this case, reads 50000000 which is equivalent to 50 MHz. Thanks to
this file system, there is an ordered way to gather information about which parameters the driver has
used to initialise the device.
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GPIO lines for peripherals control

The PS in the Zynq Ultrascale+ MPSoC includes General Purpose Input/Output pins that can
be directly accessed from PetaLinux to trigger signals on FPGA IP Cores or to gather data from
them.

The GPIO in this architecture is divided into several banks, as the Ultrascale+ Reference
Manual states:

• Bank 0: 26-bit bank connected to MIO pins [0:25]

• Bank 1: 26-bit bank connected to MIO pins [26:51]

• Bank 2: 26-bit bank connected to MIO pins [52:77]

• Bank 3: 32-bit bank connected to EMIO signal sets [0:31]

• Bank 4: 32-bit bank connected to EMIO signal sets [32:63]

• Bank 5: 32-bit bank connected to EMIO signal sets [64:95]

Figure 3.8.1: GPIO Block Diagram in Zynq UltraScale+[23]
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These banks are grouped into two sets: the ones that control MIO pins and the ones that control
EMIO signals. In the PS Core configuration, the user can select which GPIO banks are enabled. For
the GPIO MIO banks, they are labelled with the number of the bank and put in a different row in the
GUI while the GPIO EMIO there is a dropdown list in which a number ranging from 1 to 96 must be
selected. This number is the width in bits that will be shown in the PS Core in IP integrator. If the
maximum number in the GPIO EMIO list is not 96 but a smaller number it means that some of these
lines are being used as PL Fabric Reset, which can also be configured. Every PL Fabric Reset line added
takes one GPIO EMIO line, starting from the highest bit.

Figure 3.8.2: PS Configuration screen for GPIO selection[23]

After activating the GPIO and creating the XSA in Vivado that describes the system where the
GPIOs are connected to, for example the reset lines, they can be firmware-controlled. As we already
know, there are two environments that are aware of the hardware instantiated in the FPGA. Those are
U-boot, as the booting environment can make good use of them to, for example, initialise some
modules needed for next boot stages and PetaLinux itself.

8.1 FromUboot

GPIOs can be used freely in U-boot thanks to the command environment that it provides. The
command of interest for controlling GPIOs is GPIO. This command has the utility to query and
control GPIO pins with the following options followed by the desired pin to be controlled.

• input/output: sets theGPIOdirectionwhether it is a pinwhere some signal is expected to be read
or to be written from the CPU perspective.

• set: set to high level

• clear: set to low level

• toggle: change the state to the complementary one (high -> low) (low -> high).

The pin number can be easily deduced by typing gpio status -a. This command will return the state of
all the GPIO pins detected by U-boot. Each line has the following structure:

gpio@ff0a0000173: output: 0 [ ]
^ ^ ^ ^
| | | |

gpio node pin I/O state
reference number type
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The pin number is listed in each line and they follow a numbering convention that matches with
what is being described in the Ultrascale+ Reference Manual: first, the 3 GPIO MIO banks, which hold
the first 78 numbers [0:77] and then the 3 GPIO EMIO banks, going just after them [78:173]. So, in the
device tree and in the system itself, when referencing to aGPIOpin, the number of referencewill always
be the one decribed above. For the device-tree, the node representing the GPIO banks should also be
referenced. In the Enclustra Reference design this is usually called &gpio.

gpio: gpio@ff0a0000 {
compatible = "xlnx,zynqmp-gpio-1.0";
status = "disabled";
#gpio-cells = <0x2>;
gpio-controller;
interrupt-parent = <&gic>;
interrupts = <0 16 4>;
interrupt-controller;
#interrupt-cells = <2>;
reg = <0x0 0xff0a0000 0x0 0x1000>;
power-domains = <&zynqmp_firmware PD_GPIO>;

};

8.2 From PetaLinux

PetaLinux, following the philosophy of the linux kernel where “Everything is a file”, has the GPIO pins
directly accessible from the user file system. For accessing peripherals, Linux uses the /sys directory,
usually referred to as sysfs. The steps to, for example, toggle GPIO number 78 are as follows: Go to
/sys/class/gpio directory. There is a file called export, which includes a list of which GPIO pins are
controlled by the OS. By writing a number in that file, a GPIO pin can be “unlocked” to be controlled
from the OS with the following command:

echo GPIO_number > /sys/class/gpio/export

where GPIO_number is computed in the following way: inside the /sys/class/gpio directory there
will be one or more folders named gpiochip followed by a number. Inside each of these folders there
is a text file called label. The label that identifies the GPIO being discussed in this section are the
zynqmp_gpio. Once the correct folder is known, pick the number that the gpiochip folder ends on.
Then add the GPIO pin number in the convention explained previously. For example, if our folder is
named gpiochip334 and you want to use GPIO pin 78, you add 334 + 78 = 412, so the command would
be echo 412 > /sys/class/gpio/export. This will create a new folder called gpio412. Inside gpio412 by
writting to several text files one can change the value of the GPIO and the I/O type just like in u-boot,
by using the following commands:

echo "out" > /sys/class/gpio/gpio412/direction # Set direction to output
echo "in" > /sys/class/gpio/gpio412/direction # Set direction to input
echo 1 > /sys/class/gpio/gpio412/value # Set value to high level
echo 0 > /sys/class/gpio/gpio412/value # Set value to low level

This philosophy of editing files to change hardware state means that by using any linux library that
allows to open, edit and close files like fstream can be used. However, there are some practices that
should be followed when accessing sysfs. These guidelines are explained in the sysfs rules in the kernel
documentation [24].
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QSPI redundant boot through TFTP
server

This section covers the creation of the bootmethod thatwill be used in theDPB2prototype. This
method can already be implemented in the ST1 base board as it only involves the integrated
Quad Serial Peripheral Interface (QSPI) memory in the XU8+ SOM, which is the same one used
in the DPB2 prototype albeit with upgraded memory capacities.

9.1 Image size analysis

The OS image to perform the tests in the ST1 base board is an incomplete beta version of the OS
image that will be loaded in the QSPI flash. This image has the following features, oriented to
test a basic functionality of the OS together with the data link through TCP/IP:

• Init scripts to configure bonding

• Drivers for all the devices needed such as clock generator, PHY chips and the Gigabit
Ethernet IP Core.

• Debugging tools and flags such as ethtool, phytool, mdiotool, etc…

• Software packages like the DAQ reference application, ifupdown to bring interfaces up
and down

• SystemD init system to initialize the network services, NTP, among others.

The files that need to be loaded in the QSPI flash, their content and size are displayed in the
following table:

File Name Content Estimated size
1. BOOT.BIN FSBL, PMU, U-Boot 10MB
2. boot.scr Booting command options 10kB (negligible)
3. image.ub Kernel and rootfs 35MB

TheMercury XU8+has a Spansion 64MBQSPI flash. For the first tests (ST1 +XU8) this poses
a significant disadvantage to testing redundant boot because there is not enough space to fit a
copy of the image.ub due to its size. Also, there is just enough room for two BOOT.BIN and one
image.ub, while the boot script doesn’t pose any problem, there can be many copies but for the
sake of simplicity, two are going to be introduced.
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9.2 Boot script modifications

In more recent versions (from 2020.1) [1], the procedure to bootup the Linux kernel is using a script
written with U-boot instructions. This script is transferred from non-volatile memory to main
memory at a default address. This script is just made of the commands that Uboot uses to boot up
Linux. Depending on the source where the kernel image is (JTAG, QSPI or SD Card) the commands
will be different. As an addition, a fast remote way to load the image is also wanted to serve as a
backup in case the local flash memory fails.

A crucial step for this project is getting redundancy in the boot process due to the long time the
memories allocating the OS image must endure. To prevent that a hard failure on some memory bits
causes a boot error, several copies of the same image can be included inside the QSPI memory.

However, not only the image is used for a correct boot up process, there are three files and each one
of themhas a different procedure of redundancywhen it comes to its role in the booting process. These
files are BOOT.BIN, boot.scr and image.ub and how booting process makes redundancy work for each
stage is described as follows:

• BOOT.BIN: Corresponding to thefirst boot stage, once thedevice is poweredon, theMPSoc reads
4 pins called the MODE pins and decides where is this file that contains the FSBL, Device tree,
PMUfirmware, bitstreamandu-boot.elf to load the SSBL. Before loading this file, the device does
a CRC check and if it fails then it will look for another BOOT.BIN file that can be a copy of the
first one with an offset of 32 KB, so there can be several files in the same local memory let it be
QSPI or eMMC and if there is an error loading the first then the second one can be used an so
on. This procedure can be found in the Xilinx UG1085, chapter 11: Boot and configuration. This
document has all the technical information about Zynq Ultrascale+ architecture.

• boot.scr: the boot script is the file searched after booting u-boot as SSBL and contains the
U-boot command needed for loading the PetaLinux image. To look for this file, the
environment variable boot_targets is used, where there is a list of all the possible places that the
device can use to boot from. The first one will always be the one related to the MODE pins
selection because the chip itself appends that name in the boot_targets variable. Each of the
entries on this environment variable has another environment variable associated called
bootcmd_<device>, which a script (all of it written inside the environment variable) that sources
the boot.scr file. When sourcing the script, first it does a CRC check comparing it with a code
that is generated in the header by mkimage command when generating the script file. If it fails it
jumps to the next device in boot_targets variable until it finds a valid boot.scr file.

• image.ub: the FIT formatted image with linux kernel and rootfs in a single file. The redundancy
for this is having several imageswhich canbe in the same localmemory asBOOT.BIN andboot.scr
or inadifferentoneas theboot_targets variable isnowused to iterate in the for loop insideboot.scr
to search for a valid image.

The boot script can be edited by following this procedure as it is treated just as another Yocto recipe
with some template files that are filled at building time with some environment variables:

1. Go to <project-folder>/components/yocto/layers/meta-xilinx/meta-xilinx-core/recipes-bsp/u-
boot/u-boot-zynq-scr directory.

2. There will several files, each one a script for a specific hardware or case. Through a quick
petalinux-build it was deduced that the template used to create the script was
boot.cmd.generic

3. Open the corresponding file, in this case boot.cmd.generic.
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4. Make the changes. Remember this is an u-boot script, so the commands there must belong to
that environment.

5. To refresh the changes issue the following commands. They will clean the u-boot recipe and
recompile it again with the changes made to the script.

hyperk1@hyperk1:/$ petalinux-build -c -u-boot -x cleansstate

hyperk1@hyperk1:/$ petalinux-build -c -u-boot

WARNING: There may be a bug in which the u-boot won’t compile giving an error about bb.ui.
This can be solved by executing petalinux-build -x disttclean

6. Open boot.scr and check that the changes have been made.

9.3 Memorymap and boot flow proposal

For redundant boot up, two aspects need to be defined:

• Memory map: The QSPI memory will be the memory to be read when the board turns on. This
means that all the files to do at least a basic load up of the second stage boot loader (U-boot)
must be located there. Also, the memory layout is not as simple as loading one copy of each file
and booting up. Figure 3.9.1 shows a memory map proposition for the 64MB QSPI flash, where
due to space constraints, only the redundancy of the twofirst stages (BOOT.BIN and boot.scr) are
tested.

Figure 3.9.1: Spansion QSPI 64MBmemorymap. Eachmemory address points to a standard 1
byte cell

88



CHAPTER 9. QSPI REDUNDANT BOOT THROUGH TFTP SERVER FINAL MASTER THESIS

Having just one image.ub file (the linux kernel) is not critical because as long as U-boot loads
correctly, another local memories can be read or even performing a PXE bootup by downloading
an image from a TFTP server and boot from there.

• Boot up flow: It is mandatory to have a controlled boot up flow that takes advantage of having
several copies of the same file. Considering how Zynq Ultrascale+ does the search for the files it
needs to boot up, the boot flow shown in figure 3.9.2 has been made.

Figure 3.9.2: Boot up flow. The flow is divided into color-coded blocks where the blocks of the
same color correspond to the same boot up phase, just reading different file or performing
different operations to get the file from other sources

The most critical step is being able to find a valid BOOT.BIN file as it contains the first stage boot
loader that initialises the hardware in the board. This is very similar to how a standard computer
bootsup: it has aROMmemorywhere it stores theessential bootupcodeandknows that is always
going to be there at bootup. If some failure occurs due to component degradation, BOOT.BIN
might not be correctly read and we would have a dead board just from the start. To avoid this,
Zynq Ultrascale+ performs a CRC check and if BOOT.BIN is not valid, it will jump a 32KB offset
and look for the next valid file there. That is why in figure 3.9.1, both BOOT.BIN are separated an
offset of 32KB.
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Chapter 1

Prototype tests andmodifications for
mass manufacturing

Now that a form factor has been decided, a prototype following it can be manufactured.
However, what comes after that? The answer is, of course, a mass manufacturing of DPB that
contain fixes made to sort out issues found during the prototypes’ test.

The prototypeswere received on July 2023 and there has been some time to perform tests on
them. In figure 4.1.1, the DPB board (left) can be seen with many other boards like the Digitizer
(right) and the Low Voltage board (left up).

Figure 4.1.1: Testbench for the DPB assembled in the UPV i3M labs

Thus, a list with the changes to bemade for the re-spin could be elaborated. The changes are
minor and they do not involve changing the architecture, the form factor, the size of the board
or the communication protocols to be used:

• Clock routing: There is someclocks thatmake theFPGAwork that are routed in a complex
way through a PLL.This can be simplified by just using a fixed oscillator aswe only require
a 125MHz clock.

• SFP cages: The SFP cages are not correctly aligned with the border, they should protrude
a little bit beyond the board so that the flap used to insert the SFP module does not
deteriorate when pulling in or out the module.
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• Assigning unique MAC Address: this board has Ethernet interfaces and each one must have
a unique MAC Address to identify itself in the physical layer. However, this board includes an
EEPROM memory where an unique MAC address is stored. Normally, EEPROM memories are
sold that only hold that MAC Address.

• I2C bus slaves collision: due to the use of multiplexers in the I2C bus, there is some times when
the SFP modules, who share the same I2C address, might be connected at the same time to the
I2C bus. So, when the I2C master wants to read one of them, both of the SFPs reply at the same
time causing a bus collision. This can be solved by using only one I2C multiplexer instead of two,
which is the current design.

• Current leakage to the SFPs: the power switches to turn off the SFPs individually to save power
seem to not lock down the power totally as there are some SFPs that turn on when connected
even if the power switch is disabled.

• Fix themounting holes: there are some mounting holes that are not in the correct position with
respect to the mechanical structure that will hold the DPB in place when mounted in the vessel.
This should be reviewed together with the vessel team to find a solution.

After manufacturing a prototype with these changes, we will proceed with mass manufacturing, as
the design is already done and only minor changes that will take from 4 to 6 weeks to be included in
the schematics, now the unitary cost is much lower, given also that 900 boards will be manufactured
instead of just 12. Table shows the manufacturing cost of the mass manufacturing of the DPB.

DPBMass Manufacturing Total Estimated Cost
Item [EUR]
One time NRE development
for upgrading the SOM

7.400,00 €

Manufacturing cost
for 900 units

724.500,00 €

Total Cost without VAT 731.900,00 €

Table 1.1: DPBMassmanufacturing costs

As these 900 boards will be the ones mounted in HKK they need to be tested, so an automated test
procedure should be developed together with a list of items to be fulfilled to assert that the board is
ready to work in the detector. These tests, assembly and packaging of the boards to be sent to Japan
will be done at CERN (Geneva) as a collaborative effort of all the institutions involved in this project.
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Chapter 2

Lessons learned

The Hyper-Kamiokande project is a long-term effort to build the next generation of neutrino
detectors. As I said in the first chapter of this TFM, this is translated into a several year effort
that gave birth to two TFM, the MUISE one [1] and this one, being the latter the continuation
of the first. In the first TFM, most of the time went into learning to develop software and use
the tools provided by Xilinx in their standard evaluation boards. In this case, the goals are more
project-specific as the form factor, architecture and specifications are fixed.

At the end of this 6 month-time work, the following conclusions can be enumerated:

• The SOM form factor: learning about the existence of this brand new type of PCB has
been very revealing to me personally as it adds even more flexibility if it is possible to an
already flexible platform. FPGAs were born with this concept in mind; use generic
re-programmable logic cells to implement your own combinational and sequential
functions which, at the end of the day, is the same as creating hardware from an ASIC.
The SOM form factor will allow to have all the complexity inside an already commercially
available and thoroughly tested product while the base board is the perfect place for our
I/O needs. Remember that the DPB needs to have 6 SFP port together with MiniSAS and
even a custom connector for interfacing with the power supply board (LV).

• PetaLinux versions and patching: One of the problems found during the setup for
using the SOM was the fact that Enclustra had BSP templates that used version 2022.1
and the version used in HKK is 2022.2 so an upgrade was needed using that template as a
departure point. The process went smoothly until the two ethernet interfaces of the ST1+
baseboard were tested, seeing that one of them did not work. This issue was a very good
lesson to learn how to patch PetaLinux and specially how to inspect the codebase
looking for bugs using the procedures stated in Part III, chapter 7.

• Bonding: This special addon driver for the network capabilities in Linux proved to be
very useful as it configures several physical interfaces to be seen as just one virtual
interface from the outside, making the redundancy work much more simple and better
handled as Linux takes care of everything. Your application only needs to point to that
virtual interface and Linux will decide through which physical interface the data will be
sent.

• Fiber optics standard: Working with ethernet FPGA cores that implement the Physical
Coding Sublayer and the Physical Medium access also helped to learn which standards
at the physical layer exist. Normally, we are used to have 1000-BaseT in our homes (The
standard copper twisted pair Rj45 Gigabit connection). However, as we are talking about
fiber optics here, we have 1000-BaseX which can be 1000-BaseLX or 1000-BaseSX
depending if the fiber is single mode or multi-mode.
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• Booting with fallback measures: we are used to systems were only one source can be used for
booting normally. For computers, just the main hard drive, for smartphones, the main flash
storage. Why not combine several of them? From NOR flash, going through emmc, even
downloading the OS from the internet on the spot, figure 3.9.2 shows how a redundant bootup
can be built easily. HKK project demands this kind of mechanism for the DPB because of the
inability to repair it or replace it without having to drain a whole tank of water, which is both
time consuming and expensive.

• TheDPB next prototypes: there is still a lot of work to do. The first DPB baseboard prototype is
already in our laboratories undergoing extensive testing as shown in figure 4.1.1. As of November
2023, the integration tests are still undergoing to connect the digitizer, the timing link, the DAQ
and the DPB together to have a Vertical Slice Test (VST) in January to be able to detect errors for
the next prototype.

As the last paragraph of this TFM I just have to say, even after writing two Final Master Thesis based
on the same line of work, there is still somuchwork to do and somuch time left (3 years at aminimum)
that I also decided to do my PhD Thesis in this group, as I see it as a grand opportunity to work in an
international prestigious project performingmy tasks using the latest advances in electronics, which is
something I personally enjoy. For the reader who has reached this point, receivemy sincerest gratitude
for spending part of your time to read this. Thank you.
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Part V

Annexes



Annex 1

Additional figures

Figure 5.1.1: Si570 specs included in the HiTech Global FMC
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Annex 2

Additional Listings

Gigabit Ethernet MAC device tree configuration with two phy chips:

&gem0 {
status = "okay";
/delete-property/ local-mac-address;
phy-mode = "rgmii-id";
phy-handle = <&phy0>;
phy0: phy@3 {

reg = <3>;
txc-skew-ps = <1800>;
txen-skew-ps = <420>;
txd0-skew-ps = <420>;
txd1-skew-ps = <420>;
txd2-skew-ps = <420>;
txd3-skew-ps = <420>;
rxc-skew-ps = <900>;
rxdv-skew-ps = <420>;
rxd0-skew-ps = <420>;
rxd1-skew-ps = <420>;
rxd2-skew-ps = <420>;
rxd3-skew-ps = <420>;

};
phy1: phy@7 {

reg = <7>;
txc-skew-ps = <1800>;
txen-skew-ps = <420>;
txd0-skew-ps = <420>;
txd1-skew-ps = <420>;
txd2-skew-ps = <420>;
txd3-skew-ps = <420>;
rxc-skew-ps = <900>;
rxdv-skew-ps = <420>;
rxd0-skew-ps = <420>;
rxd1-skew-ps = <420>;
rxd2-skew-ps = <420>;
rxd3-skew-ps = <420>;

};
};

&gem3 {
status = "okay";
/delete-property/ local-mac-address;
phy-handle = <&phy1>;
phy-mode = "rgmii-id";

};
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Si5338 PLL Device tree configuration:

#include <dt-bindings/clock/clk-si5338.h>
&i2c0 {

si5338@70 {
compatible = "silabs,si5338";
reg = <0x70>;
#address-cells = <1>;
#size-cells = <0>;
#clock-cells = <1>;
/* connect xtal to 25MHz, in5/in6 to 100MHz */
clocks = <0>, <0>, <&ref100>, <0>, <0>;
clock-names = "xtal", "in12", "in3", "in4", "in56";
/* connect xtal as source of refclk */
silab,ref-source = <SI5338_REF_SRC_CLKIN3>;
/* connect in5/in6 as source of fbclk */
silab,fb-source = <SI5338_FB_SRC_NOCLK>;
/* connect divrefclk as source of pll */
silab,pll-source = <SI5338_PFD_IN_REF_REFCLK>;
/* Choose one MS for pll master */
silabs,pll-master = <0>;
/* Specify pll-vco frequency. pll-master is ignored. */
silabs,pll-vco = <2450000000>;
/* output list */
clkout0 {

reg = <0>;
silabs,drive-config = "3V3_LVDS";
silabs,clock-source = <SI5338_OUT_MUX_MSN>;
silabs,disable-state = <SI5338_OUT_DIS_ALWAYS_ON>;
clock-frequency = <5000000>;
enabled;

};
clkout1 {

reg = <1>;
silabs,drive-config = "3V3_LVDS";
silabs,clock-source = <SI5338_OUT_MUX_MSN>;
silabs,disable-state = <SI5338_OUT_DIS_ALWAYS_ON>;
clock-frequency = <156250000>;
enabled;

};
clkout2 {

reg = <2>;
silabs,drive-config = "3V3_LVDS";
silabs,clock-source = <SI5338_OUT_MUX_MSN>;
silabs,disable-state = <SI5338_OUT_DIS_HIZ>;
clock-frequency = <156250000>;

};
clkout3 {

reg = <3>;
silabs,drive-config = "3V3_LVDS";
silabs,clock-source = <SI5338_OUT_MUX_MSN>;
silabs,disable-state = <SI5338_OUT_DIS_HIZ>;
clock-frequency = <156250000>;

};
};

};
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