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Abstract
In this paper, we present an optimal eighth order derivative-free family of methods
for multiple roots which is based on the first order divided difference and weight
functions. This iterative method is a three step method with the first step as Traub–
Steffensen iteration and the next two taken as Traub–Steffensen-like iteration with
four functional evaluations per iteration. We compare our proposed method with the
recent derivative-free methods using some chemical engineering problems modelled
as nonlinear equations with simple andmultiple roots. Stability of the presented family
of methods is demonstrated by using the graphical tool known as basins of attraction.
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1 Introduction

Many iterative methods have been developed for the solution of problems modelled
as nonlinear equations with simple or multiple roots but it is very difficult to construct
an optimal iterative method for finding multiple roots. It is noteworthy that most of
the higher order optimal methods that were obtained during the past years require
derivative evaluation of the involved function, as in [1], while higher order derivative-
free methods exist rarely in literature because it is a difficult task to preserve the
order of convergence when we replace derivatives by differences. Kansal et al. [7] and
Kumar et al. [8] gave second order iterative schemes to find repeated roots of nonlinear
equations. Sharma et al. [17], Kumar et al. [9, 10], Behl et al. [2] and Rani and Kansal
[13] proposed a fourth-order root finding methods for multiple roots. Qudsi et al. [11,
12] presented three step sixth order iterative methods for finding the multiple roots.
Sharma et al. [15] proposed seventh order convergent iterative scheme for multiple
roots. Sharma et al. in [14, 16] presented eight order scheme for computing multiple
root of nonlinear equations. nevertheless, other derivative-free methods for multiple
roots have been generated by using different approaches, such as [4].

Motivated by the need to find the more efficient iterative method for computing
the root of nonlinear equations, we propose an optimal eighth order derivative-free
method for computing multiple root of nonlinear equations with multiplicity η ≥ 1
in the next section. This method is derivative-free with four functional evaluations
with a univariate and a multivariate weight functions. In Sect. 3, we discuss some
particular cases of weight functions and choose four of them for further investigation.
We compare our methods with two of the recent derivative-free schemes of seventh
[15] and eighth order [14, 16] using physical applications from chemical engineering
and dynamical behaviour in Sect. 4. Our proposed method has wider convergence
region as compared to recent root-finding iterative method.

2 Proposed optimal eighth order scheme

Let τ = w be a multiple root with multiplicity η ≥ 1 of the function g. Let K :
C → C and L : C3 → C be analytic functions in the neighborhood of 0 and (0, 0, 0)
respectively.Wepropose a family of derivative-freemethods of eighth-order involving
first-order divided differences for computing multiple roots with multiplicity η > 1
given by:

ρk = τk + γ g (τk) , whereγ ∈ R\ {0} ,

μk = τk − η
g(τk)

g[τk, ρk] ,

υk = μk − ηpkK (pk)
g(τk)

g[τk, ρk] ,

τk+1 = υk − ηpk L(pk, qk, rk)
g(τk)

g[τk, ρk] , (1)
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where pk = (
g(μk )
g(τk )

)
1
η , qk = (

g(υk )
g(τk )

)
1
η and rk = (

g(υk )
g(μk )

)
1
η . Following result can be used

to investigate the convergence order of presented method (1) and the conditions to be
imposed on weight functions K and L .

Theorem 1 Let g : C → C be analytic in a region enclosing multiple root of g with
known multiplicity η. Suppose that the initial guess τ0 be sufficiently close to the
multiple zero w. Then, the class of iterative schemes defined by (1) has eighth-order
of convergence, when the following conditions are satisfied:

K (0) = 1, K ′(0) = 2, K ′′(0) = −2 and K ′′′(0) = 36,

L000 = 0, L100 = 0, L001 = 1, L101 = 2 − L010,

L110 = 0, L002 = 2, L011 = 4,

(2)

where

Li jk = ∂ i+ j+k

∂ pi∂q j∂rk
L (p, q, r) |(0,0,0) i, j, k ≥ 0.

The error equation for the proposed schemes is:

ek+1 = − 1

24η7
(d1((11 + η)d21 − 2ηd2)(−12(1 + η)2d31 + (−665 − 84η + 5η2)d41

−24η(−5 + 2η)d21d2 − 12η2d22 + 60η2d1d3))e
8
k + O

(
e9k

)
,

being d j = η!
(η + j)!

g(η+ j) (w)

g(η) (w)
, j ≥ 1.

Proof Let w be a multiple root of g such that g( j)(w) = 0, j = 0, 1, 2, . . . , η − 1
with g(η)(w) �= 0. Let ek = τk − w be error in the kth iteration. Considering Taylor
expansion of g(τk) about w, we have:

g(τk) = g(η) (w)

η! eη
k + g(η+1)(w)

(η + 1)! eη+1
k + g(η+2) (w)

(η + 2)! eη+2
k + g(η+3) (w)

(η + 3)! eη+3
k

g(η+4) (w)

(η + 4)! eη+4
k + g(η+5) (w)

(η + 5)! eη+5
k + g(η+6) (w)

(η + 6)! eη+6
k + g(η+7) (w)

(η + 7)! eη+7
k

g(η+8) (w)

(η + 8)! eη+8
k + O(eη+9

k ),

which can be expressed as:

g (τk) = g(η) (w)

η! eη
k

(
1 + d1ek + d2e

2
k + · · · + d7e

7
k + d8e

8
k + O(e9k )

)
, (3)
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where

d j = η!
(η + j)!

g(η+ j) (w)

g(η) (w)
, (4)

and j ∈ N. For ρk = τk + γ g (τk), we obtain:

ρk − w = τk − w + γ g (τk) ,

ρk − w = ek + γ g(τk), (5)

or

ρk − w = ek + γ g(η) (w)

η! eη
k

(
1 + d1ek + d2e

2
k + . . . + d7e

7
k + d8e

8
k + O(e9k )

)
.

(6)

Using Taylor expansion of g (ρk) about w,

g (ρk) = g(η) (w)

η! (ρk − w)η
(
1 + d1(ρk − w) + d2(ρk − w)2 + d3(ρk − w)3

+d4(ρk − w)4 + d5(ρk − w)5 + d6(ρk − w)6 + d7(ρk − w)7

+ d8(ρk − w)8 + O((ρk − w)9)
)

.

By employing (3) and (6) in the first step of (1) and after some algebraicmanipulations,
we get:

μk = d1
η
e2k+

2ηd2−(η+1) d21
η2

e3k+
1

η3

(
(η + 1)2d21 +η (4 + 3η) d1d2 − 3η2d3

)
e4k

+
4∑

i=1

z̊i e
i+4
k + O(e9k ), (7)

where z̊i = z̊i (η, d1, . . . , d8) for i = 1, 2, 3, 4. Now, the Taylor expansion of g (μk)

about w is given by;

g (μk) =
(
e2kd1
η

)η (
1

η! + (2ηd2 − (1 + η)d21 )ek
η!d1 + 1

2ηη!d21
(2(1 + η)2d31

+(η3 + η2 − η + 1)d41

+2η(6 + 3η − 2η2)d21d2 + 4(η − 1)η2d22 − 6η2d1d3)e
2
k + · · · + O(e9k )

)
.

(8)
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Using (5) and (8) in pk =
(
g(μk )
g(τk )

) 1
η
,

pk = d1ek
η

+ (2ηd2 − (2 + η)d21 )e
2
k

η2
+ 1

2η3

(
2(1 + η)2d21

+ (5 + 3η)d31 + 2η(1 + 3η)d1d2 − 6η2d3
)
e3k + · · · + O(e9k ). (9)

By expanding the weight function K (pk) in the neighborhood of 0,

K (pk) ≈ K (0) + pkK
′ (0) + 1

2
p2k K

′′ (0) + 1

6
p3k K

′′′ (0) (10)

Then, for

υk = μk − pk

(
K (0) + K ′ (0) pk + K ′′ (0)

2
p2k + K ′′′ (0)

6
p3k

)
(ek − μk), (11)

we get the expansion of υk around w using (5), (8), (9) and (10):

υk = − (K (0) − 1)d1e2k
η

− (1 + K ′ (0) + η − K (0) (3 + η))d21 + 2(K (0) − 1)ηd2)e3k
η2

+ 1

2η3
(−2(K (0) − 1)(1 + η)2d21 − (K ′′ (0) − 2K ′ (0) (5 + 2η)

+K (0) (11 + 7η)d31 + 2η(4 − 4K ′ (0) − 3K (0) (η − 1) + 3η)d1d2

+ 6(K (0) − 1)η2d3
)
e4k + · · · + O(e9k ). (12)

If we choose the values of K (0), K ′ (0) and K ′ (0) in (12), given as:

K (0) = 1, K ′ (0) = 2 (13)

we obtain

υk = (9 − K ′′ (0) + η)d31 − 2ηd1d2
2η3

e4k − 1

6η4
(6(1 + η)2d31

+(119 + K ′′′ (0) + 72η + η2

−3K ′′ (0) (7 + 3η))d41 + 12η2d22 − 24η2d1d3

+6η(−20 + 3K ′′ (0) + 2η)d21d2)e
5
k + · · · + O(e9k ).

Next, from Taylor expansion of g(υk) about w:
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g(υk) = e4ηk

(
2−η

η!

(
(11 + η) d31 − 2ηd1d2

η3

)η

− 1

3(η3η!)

⎛
⎝2−η

(
(11 + η) d31 − 2ηd1d2

η3

)−1+η

(
6(1 + η)2d31 + (161 + K ′′′ + 90η + η2)d41

+12(η − 13)ηd21d2 + 12η2d22 − 24η2d1d3
))

ek
)

+ · · · + O(e9k ). (14)

By using (5) and (14), qk =
(
g(υk)

g(τk)

) 1
η

becomes:

qk =
(
(11 + η) d31 − 2ηd1d2

)
e3k

2η3
− 1

6η4
(6(1 + η)2d31 + (194 + K ′′′ (0) + 93η + η2)d41

+6η (−27 + 2η) d21d2 + 12η2d22 − 24η2d1d3)e
4
k + · · · + O(e9k ). (15)

Similarly, from (8) and (14) rk =
(
g(υk )
g(μk )

) 1
η
,

rk =
(
(11 + η) d21 − 2ηd2

)
e2k

2η2
+ 1

6η3
(−6 (1 + η)2 d21 − (128 + K ′′′ (0) + 54η − 2η2)d31

+12 (7 − 2η) ηd1d2 + 24η2d3)e
3
k + · · · + O(e9k ). (16)

The expansion of the weight function L (pk, qk, rk) in the neighborhood of (0, 0, 0)
is given by,

L (pk, qk, rk) = L000 + pk L100 + qk L010 + rk L001 + pkqk L110 + pkrk L101

+qkrk L011 + r2k
2
L002,

and therefore,

ek+1 = υk − pk

(
L000 + pk L100 + qk L010 + rk L001 + pkqk L110 + pkrk L101

+qkrk L011 + r2k
2
L002

)
(ek − μk).

After substituting the values of pk , qk and rk from (9), (15) and (16), the error equation
becomes:

ek+1 = − 1

η
(L000d1e

2
k ) + 1

η2
((−L100 + L000(3 + η))d21 − 2L000ηd2)e

3
k + · · · + O(e9k ).

(17)
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As Li jk = ∂ i+ j+k

∂ pi ∂q j ∂rk
L (p, q, r) |(0,0,0), in order to achieve higher order of conver-

gence, we use the values:

L000 = 0, L100 = 0, K ′′ (0) = −2, (18)

L001 = 1, L101 = 2 − L010, (19)

L110 = 0, L002 = 2. (20)

By using (18) in (17),

ek+1 = − 1

2η3

(
(−1 + L001) d1

(
(11 + η) d21 − 2ηd2

))
e4k

+ 1

6η4
(6 (−1 + L001) (1 + η)2 d31

+(−161 + K ′′′ (0) (−1 + L001) − 33L010 − 33L101

−90η − 3L010η − 3L101η − η2

+L001

(
227 + 96η + η2

)
d41 + 6(26 + L010 + L101

+2L001 (−14 + η) − 2η)ηd21d2

+12(−1 + L001)η
2d22 − 24(−1 + L001)η

2d1d3)e
5
k + · · · + O(e9k ).

Furthermore, from (19),

ek+1 = 1

24η4

(
d21 (−2 + L010 + L101)

(
2ηd2 − (11 + η) d21

))
e6k + · · · + O(e9k ),

and from conditions (20),

ek+1 = 1

12η6
(d21

(
(11 + η) d21 − 2ηd2

)
(
(
K ′′′ (0) + 12 (8 + η) − 3L011 (11 + η)

)
d21

+6 (−4 + L011) ηd2)e
7
k + · · · + O(e9k ). (21)

Now, by using L011 = 4 in (21), we get

ek+1 = 1

12η6
(−36 + K ′′′ (0)

)
d41

(
(11 + η) d21 − 2ηd2

)
e7k + · · · + O(e9k ).

Clearly, for K ′′′ (0) = 36 in (21), the error equation indicates eighth order of conver-
gence as an optimal order of convergence:

ek+1 = − 1

24η7
(
d1 ((11 + η) d21 − 2ηd2)(−12 (1 + η)2 d31 + (−665 − 84η + 5η2

)
d41

− 24η (−5 + 2η) d21d2 − 12η2d22 + 60η2d1d3)
)
e8k + O(e9k ).

�	
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From Theorem 1, we can get several new root finding methods for multiple roots
by using different cases for K (pk) and L(pk, qk, rk) in the proposed scheme (1). We
discuss few particular cases of the proposed class. It is important to note that the
choice of specific values of parameter γ can be made under the point of view of an
improvement of the stability and awidening of the set of converging initial estimations.
However, as in the iterative expression of the new class, g[τk, ρk] is an estimation of
g′(τk), it is clear that the approximation of the derivative is better when γ is close to
zero.

2.1 Some special cases of weight functions

Many special cases of the proposed scheme (1) can be generated by using different
forms of weight functions K (p) and L(p, q, r). These weight functions satisfy the
conditions given in Theorem 1. We discuss some simple cases as follows:

Case 1 When K (p) is a third-degree polynomial, we can express it as

K (p) = a1 + a2 p + a3 p
2 + a4 p

3.

By using the condition set (2), the weight function K (p) becomes:

K (p) = 1 + 2p − p2 + 6p3.

By taking the other weight function L(p, q, r) as a second-degree polynomial,

L(p, q, r) = b1q + b2qr + b3r + b4r
2,

and applying the conditions stated in Theorem 1, L(p, q, r) becomes

L(p, q, r) = 2q + 4qr + r + r2.

Therefore, the resulting scheme is denoted by FZ1 and has the iterative expression:

ρk = τk + γ g (τk) , where γ ∈ R\ {0} ,

μk = τk − η
g(τk)

g[τk, ρk] ,

υk = μk − ηpk(1 + 2pk − p2k + 6p3k )
g(τk)

g[τk, ρk] ,

τk+1 = υk − ηpk(2qk + 4qkrk + rk + r2k )
g(τk)

g[τk, ρk] .

Case 2 By considering the rational form of weight function K (p) as:

K (p) = 1 + a1 p + a2 p2

1 + a3 p + a4 p2
,
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and imposing conditions (2), we get K (p) in the form,

K (p) = 1 − 9p2

1 − 2p − 4p2
.

Let us take L(p, q, r) as the second-degree polynomial

L(p, q, r) = b1 pr + b2qr + b3r + b4r
2,

which becomes,

L(p, q, r) = 2pr + 4qr + r + r2.

Thus, the resulting member of class (1) is denoted by FZ2 and has the following
expression:

ρk = τk + γ g (τk) , where γ ∈ R\ {0} ,

μk = τk − η
g(τk)

g[τk, ρk] ,

υk = μk − ηpk

(
1 − 9p2k

1 − 2pk − 4p2k

)
g(τk)

g[τk, ρk] ,

τk+1 = υk − ηpk(2pkrk + 4qkrk + rk + r2k )
g(τk)

g[τk, ρk] .

Case 3 Let us consider the weight function K (p) in the form of a proper rational
function:

K (p) = 1 + a1 p

a2 + a3 p + a4 p2
.

By using the conditions of Theorem 1, K (p) becomes;

K (p) = 5 + 18p

5 + 8p − 11p2
,

Taking again the second weight function L(p, q, r) as the second-degree polynomial

L(p, q, r) = q + pr + 4qr + r + r2,

the obtained element of family (1) is denoted by FZ3 and can be expressed as

ρk = τk + γ g (τk) , where γ ∈ R\ {0} ,

μk = τk − η
g(τk)

g[τk, ρk] ,
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υk = μk − ηpk

(
5 + 18pk

5 + 8pk − 11p2k

)
g(τk)

g[τk, ρk] ,

τk+1 = υk − ηpk(qk + pkrk + 4qkrk + rk + r2k )
g(τk)

g[τk, ρk] .

Case 4 Let us consider the weight function K (p) in the form:

K (p) = 1 + a1 p + a2 p2 + a3 p3

1 + a4 p
.

After applying conditions (2), the weight function K (p) becomes:

K (p) = 1 + 3p + p2 + 5p3

1 + p
,

and L(p, q, r) is the same as in previous cases,

L(p, q, r) = 2pr + 4qr + r + r2.

So that, the resulting scheme is denoted by FZ4 and has the iterative expression

ρk = τk + γ g (τk) , where γ ∈ R\ {0} ,

μk = τk − η
g(τk)

g[τk, ρk] ,

υk = μk − ηpk

(
1 + 3pk + p2k + 5p3k

1 + pk

)
g(τk)

g[τk, ρk] ,

τk+1 = υk − ηpk(2pkrk + 4qkrk + rk + r2k )
g(τk)

g[τk, ρk] .

3 Numerical and dynamical analysis

In this section, we check the convergence behavior and performance of Case 1 to Case
4 of our proposed eighth order scheme denoted respectively by FZ1, FZ2, FZ3 and
FZ4 by carrying out some nonlinear equations from real life applications of chemical
engineering. We compare the methods with the recent derivative free methods of
seventh order (see [15], Case I(a), Case II(c)) denoted by SH1, SH2 and eighth order
(see [16], M-4 and [14]) denoted as SH3 and SH4. The recent seventh order methods
are defined by, in case of SH1

ρk = τk + γ g (τk) , where γ ∈ R− {0} ,

μk = τk − η
g (τk)

g [τk, ρk]
,
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υk = μk − ηpk
(
1 + 2pk − p2k

) g (τk)

g [τk, ρk]
,

τk+1 = υk − ηqk
(
1 + 2pk + rk + r2k

) g (τk)

g [τk, ρk]
,

and SH2 is

ρk = τk + γ g (τk) , where γ ∈ R− {0} ,

μk = τk − η
g (τk)

g [τk, ρk]
,

υk = μk − ηpk

(
2 + 5pk
2 + pk

)
g (τk)

g [τk, ρk]
,

τk+1 = υk − ηqk
(
1 + 2pk + rk + r2k

) g (τk)

g [τk, ρk]
,

where

pk =
(
g (μk)

g (τk)

) 1
η

, qk =
(
g (υk)

g (τk)

) 1
η

, rk =
(
g (υk)

g (μk)

) 1
η

.

The above mentioned eight order scheme (see [16]) denoted by SH3 is defined as

ρk = τk + γ g (τk) , where γ ∈ R\ {0} ,

μk = τk − η
g (τk)

g [τk, ρk]
,

υk = μk − ηhk (1 + 3hk)
g (τk)

g [τk, ρk]
,

τk+1 = υk − ηpkqk

(
1 + 3hk + 2qk + 8hkqk − 14h3k

(1 + hk) (1 + qk)

)
g (τk)

g [τk, ρk]
.

where,

pk =
(
g (μk)

g (τk)

) 1
η

, qk =
(
g (υk)

g (μk)

) 1
η

, hk = pk
1 + pk

.

The most recent eighth order method (see [14]), denoted by SH4, is defined as:

ρk = τk + γ g (τk) , where γ ∈ R\ {0} ,

μk = τk − η
g (τk)

g
[
τk , ρk

] ,

υk = μk − (3 + 2ηpk + (η − 3) qk) pk
g (τk)

g
[
τk , ρk

] ,

τk+1 = υk − sk ((1 − qk) (3 + (5rk − 3pk − 6) qk) + η (4 + (rk − 3) qk) qk
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+ 2η
(
1 + qk + (2rk − 1) q2k

)
pk − η

(
4pkqk − 1

2
(1 + qk)

)
p2k qk

)
g (τk)

g
[
τk , ρk

] ,

with

pk =
(
g (μk)

g (τk)

) 1
η

, qk =
(
g (ρk)

g (τk)

) 1
η

, rk =
(
g (υk)

g (μk)

) 1
η

, sk =
(
g (υk)

g (τk)

) 1
η

.

For testing those methods numerically, we have performed all computations in
computer algebra software Maple 16 using 300 significant digits of precision. We take
the value of γ = 0.001. Tables show per step numerical errors of approximating real
root |τk − τk−1| of first three iterations, the absolute residual error of the test function
at the third iteration, |g(τ3)|, and the computational order of convergence (see [6]).

COC ≈ ln |g(τk+2)/g (τk+1) |
ln |g (τk+1) /g (τk) | , k = 1, 2, ..

For dynamical analysis, we use the graphical tool known as basins of attraction.
For a polynomial function, basins of attraction is also called a polynomiograph. The
dynamical analysis gives us information about the stability and convergence regions
of iterative schemes. The choice of initial guess decide the convergence of nonlinear
function towards the exact root. Many researchers have used basins of attraction to
show the convergence behaviour of their schemes. Consider a function gk (τ ) where
τ ∈ C andwk be the root of gk (τ ). We have chosen the parameter β = 0.001, 10−5 as
tolerance and we work out the schemes with maximum 15 number of iterations. A grid
of 1000× 1000 points in the complex plane [a, b]× [c, d] is taken into consideration
where the values of a, b, c and d depends upon the zero of the nonlinear function.
We select ‘ hot’ color map and assign black color to the divergence region with few
exceptions. Different shades of colors are decided for different number of iterations
usedby the iterativemethod to converge to the rootwith required accuracy.Wecompare
our presented schemesnamely FZ1−FZ4with recentmethods namedas SH1−SH4.

3.1 Applications to chemical engineering problems

Chemical Engineering deals with the applications of chemistry for industrial purposes.
It effectively analyze the chemical methods to convert materials into more applicable
and useful materials. Let us consider some examples from chemical engineering.

Example 1 Continuous Stirred Tank Reactors (CSTR) Let us consider an isothermal
continuous stirred tank reactor. The components E and M are fed to the reactor at the
rates of Q and q-Q respectively. The following reaction scheme develops in the reactor
(see [3]):

E + M → F

F + M → G

G + M → H
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Table 1 Computational comparison of iterative schemes for g1(τ )

Methods |τ1−τ0| |τ2 − τ1| |τ3 − τ2| |g1 (τ3) | COC

SH1 0.45066 0.22799 0.057457 3.4471 × 10−8 5.65

SH2 0.45066 0.22800 0.057461 3.4527 × 10−8 5.65

SH3 0.33512 0.05596 0.000845 1.3030 × 10−27 5.80

SH4 0.36765 0.09196 0.004311 3.1546 × 10−45 15.34

FZ1 0.36761 0.09191 0.004304 3.5910 × 10−27 8.43

FZ2 0.36761 0.09191 0.004305 3.5772 × 10−27 8.43

FZ3 0.36761 0.09191 0.004304 3.6070 × 10−27 8.42

FZ4 0.36761 0.09191 0.004304 3.5996 × 10−27 8.43

H + M → I

For designing simple feedback control system, this problem is analyzed by Douglas
(see [5]). Consequently, following equation was obtained for the transfer function of
the reactor,

Kc
2.98(τ + 2.25)

(τ 4 + 11.50τ 3 + 47.49τ 2 + 83.06325τ + 51.23266875)
= −1,

where Kc is the gain of proportional controller. The control system is stable for the
values of Kc that yields roots of the transfer function having negative real part. If we
consider Kc = 0, we get the poles of the open loop transfer function as zero of the
nonlinear function

g1(τ ) = (τ 4 + 11.50τ 3 + 47.49τ 2 + 83.06325τ + 51.23266875),

given by τ = −1.45, −2.85, −2.85, −4.35. We take multiple root w = −2.85 with
multiplicity η = 2. By taking the initial guess τ0 = −3.13, the numerical results are
given in Table 1.

The basins of attraction obtained for the methods SH1− SH4 and FZ1−FZ4 are
shown in Figs. 1, 2. The attraction basins for g1 (τ ) are drawn in the rectangular region
[−5, 0] × [−2, 2]. When we observe these basins of attraction, we see that our newly
proposed scheme have better convergence as compared to the methods SH1 − SH4.
We notice that SH1− SH4 take minimum 2 andmaximum 12 iterations, FZ1−FZ4
take minimum 2 and maximum 10 iterations to converge to the root.

3.1.1 Equations of state

An equation of state (EOS) relates the molar volume, temperature and the pressure of
a substance. Its simplest form is the ideal gas equation of state:

PV = nRT ,
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Fig. 1 Attraction basins of SH1–SH4 on g1 (θ)

where P , V and T represents pressure, volume and temperature of a gas respectively.
Here n is the number of moles of gas and R is the universal gas constant. There are
many improved variants of EOS but we will not discuss all of them. We start with
the virial equation of state which is the first improved form of EOS. We also discuss
four improved cubic EOS: the Van DerWaals (VW), the Redlich–Kwong (RK), Soave
Redlich–Kwong (SRK) and Peng–Robinson (PR) forms. All these equations can be
written in the following form (see [18]):

V 3 +
[
(c1 − 1)b − RT

P

]
V 2 +

[
(c2 − c1)b

2 − c1
RTb

P
+ aα(Tr )

P

]
V

−
(
c2b

2 + c2
RTb

P
+ a(Tr )

P

)
b = 0, (22)

with different values of constants c1 and c2. Here a and b are the parameters defined
as:

a = λaz
(RTc)2

Pc
, b = λbz

RTc
Pc

,
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Fig. 2 Attraction basins of FZ1–FZ4 on g1 (θ)

where Tc and Pc represents critical temperature and critical pressure respectively and

Tr = T

Tc
. For Van Der Waals and Redlich–Kwong EOS, α(Tr ) = 1. Moreover, at the

critical isotherm, all equations of state have the value of the function α(Tr ) equal to
unity.

Example 2 Virial Equation of State Let us consider the virial equation of state:

V = RT

P

(
1.0 + b

V
+ c

V 2

)
.

By using the values of parameters of a particular gas b = −159, c = 9000, P =
75, T = 430.85, R = 82.05, we obtain the nonlinear function

g2(τ ) = τ − 471.3499 + 7,49,444.6310

τ
− 4.242149100

τ 2
,

where τ = V . Above equation has root w = 213.0 with η = 1. We choose initial
guess τ0 = 100 and numerical results are shown in Table 2.
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Table 2 Computational comparison of iterative schemes for g2(τ )

Methods |τ1−τ0| |τ2 − τ1| |τ3 − τ2| |g2 (τ3) | COC

SH1 57.8615 55.1035 0.03674 3.0740 × 10−22 6.40

SH2 57.9774 54.9924 0.03196 1.2360 × 10−22 6.39

SH3 50.2996 65.4799 2.77779 9.3283 × 10−10 7.34

SH4 61.8919 51.0887 0.02117 2.1628 × 10−13 3.18

FZ1 63.5901 52.6489 3.23725 5.1981 × 10−10 8.83

FZ2 61.4648 51.8840 0.34715 2.2013 × 10−17 7.65

FZ3 63.0133 54.1869 4.19855 3.0668 × 10−9 9.18

FZ4 63.0860 52.5102 2.59452 8.6714 × 10−11 8.63

Fig. 3 Attraction basins of SH1–SH4 of g2 (θ)

It can be observed that the computational estimation of the order of convergence
COC is the best at FZ1–FZ4, meanwhile the error at the third iteration is the lowest at
SH1–SH2 and FZ2.

In Example 2, the basins of attraction obtained for the methods SH1–SH4 and
FZ1− FZ4 are shown in Figs. 3, 4. Observing the region [100, 250]×[−10, 10], we
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Fig. 4 Attraction Basins of FZ1–FZ4 of g2 (θ)

conclude that SH1-SH4 take minimum two and maximum 10 numbers of iterations to
converge to the root. On the other hand, FZ1–FZ4 take minimum two and maximum
8 iterations to converge to the root. In this example, black color shows the divergence
region only for SH3 and in all other cases, it indicates the hue of two iterations.

Example 3 VanDerWaals Equation of StateBy using the values c1 = c2 = 0, λb = 1
3 ,

λa = 9
8 , z = 3

8 and α(Tr ) = 1, we get the reduced Eq. (22) in the form:

V 3 −
(
b + RT

P

)
V 2 + a

P
V − a

P
b = 0. (23)

For finding the volume V of a particular gas, we have to use the values of remaining
parameters. For the given parameters a and b of a particular gas, we can get values of n
(number of moles), P (pressure) and T (absolute temperature), such that the equation
(23) has multiple root with multiplicity 3. By using these values, we get the nonlinear
function

g3(τ ) = τ 3 − 5.22τ 2 + 9.0825τ − 5.2675,
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Table 3 Computational comparison of iterative schemes for g3(τ )

Methods |τ1−τ0| |τ2 − τ1| |τ3 − τ2| |g3 (τ3) | COC

SH1 0.23667 0.01332 6.2573 × 10−6 3.2539 × 10−56 6.39

SH2 0.23667 0.01331 6.2956 × 10−6 3.7232 × 10−56 6.38

SH3 0.23399 0.01598 2.0101 × 10−5 2.1424 × 10−53 6.97

SH4 0.23825 0.01174 1.3118 × 10−6 2.7176 × 10−74 7.49

FZ1 0.23816 0.01182 1.6046 × 10−6 5.5066 × 10−70 7.12

FZ2 0.23818 0.01181 1.7411 × 10−6 1.5188 × 10−69 7.14

FZ3 0.23817 0.01182 1.5054 × 10−6 2.4843 × 10−70 7.11

FZ4 0.23817 0.01182 1.5457 × 10−6 3.4551 × 10−70 7.11

Fig. 5 Attraction basins of SH1–SH4 of g3 (θ)

where τ = V . This equation has the multiple root w = 1.75 with multiplicity η = 2.
By taking the initial guess τ0 = 2.00, the numerical results are presented in Table 3.

Again proposed methods reach better estimations of the theoretical order of con-
vergence in the first three iterations. Moreover, the best error is obtained by SH4, FZ3
and FZ4.
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Fig. 6 Attraction basins of FZ1–FZ4 of g3 (θ)

For the Van Der Waals equation of state, the basins of attraction obtained for the
methods SH1–SH4 and FZ1–FZ4 are shown in Figs. 5, 6. We use the region [0, 2] ×
[−1, 1] to draw the basins of attraction. The dynamical analysis shows that SH1–SH4
take minimum two and maximum eight numbers of iterations to converge to the root
and FZ1–FZ4 takeminimum two andmaximumnine numbers of iterations to converge
to the root.

Example 4 Redlich–Kwong Equation of State We consider the RK equation of state
for solving V at critical isotherm. For this purpose, we use the values c1 = 1, c2 = 0,
λb = 0.2599, λa = 1.2824, z = 0.333 and α(Tr ) = 1 and obtain Eq. (22) in the form
of Redlich–Kwong equation of state:

V 3 − RT

p
V 2 −

(
b2 + RTb

P
− a

P

)
V − ab

p
= 0.

Let us solve the above equation for Carbon Dioxide (CO2) at T = Tc = 304.2,
P = Pc = 72.85. By using these values, we get the nonlinear equation:

V 3 − 4.175703501V 2R + 5.8123166576V R2 − 2.696653814R3 = 0,
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Table 4 Computational comparison of iterative schemes for g4(τ )

Methods |τ1−τ0| |τ2 − τ1| |τ3 − τ2| |g4 (τ3) | COC

SH1 0.68578 2.6224 × 10−7 1.6232 × 10−22 5.7044 × 10−203 3.00

SH2 0.68578 2.6224 × 10−7 1.6232 × 10−22 5.7044 × 10−203 3.00

SH3 0.68578 2.6175 × 10−7 7.0445 × 10−23 2.7133 × 10−350 6.06

SH4 0.68578 2.6231 × 10−7 9.3785 × 10−23 1.9846 × 10−348 6.07

FZ1 0.68578 2.6225 × 10−7 9.3719 × 10−23 1.9638 × 10−348 6.07

FZ2 0.68578 2.6225 × 10−7 9.3719 × 10−23 1.9638 × 10−348 6.07

FZ3 0.68578 2.6225 × 10−7 9.3719 × 10−23 1.9638 × 10−348 6.07

FZ4 0.68578 2.6225 × 10−7 9.3719 × 10−23 1.9638 × 10−348 6.07

where R = 0.082057366080960, and solving for τ = V ,

g4(τ ) = τ 3 − 4.175703501τ 2R + 5.8123166576τ R2 − 2.696653814R3,

gives us the multiple root w = 0.1142157436 with multiplicity η = 3. By using
the initial guess τ0 = 0.8, the numerical results are shown in Table 4, with excellent
results in the first three iterations.

In Example 4, the basins of attraction obtained for the methods SH1–SH4 and FZ1–
FZ4 are shown in Figs. 7, 8.We drawbasins of attraction in the region [−2, 2]×[−2, 2]
and conclude that SH1–SH4 and FZ1–FZ4 use minimum two and maximum three
numbers of iterations to converge to the root. In this example, black color shows the
hue of two iterations for all iterative schemes. FZ1–FZ4 has globally wider black
region as compared to SH1–SH4.

Example 5 Soave Redlich–Kwong Equation of State Let us take the values c1 =
1, c2 = 0, λb = 0.2599, λa = 1.2824 and τ = 0.333 to get Eq. (22) in the form
of Soave Redlich–Kwong equation of state:

V 3 − RT

P
V 2 −

(
b2 + RT

P
− aα(Tr )

P

)
V − abα(Tr )

P
= 0,

whereα(Tr ) =[1+(0.485081+1.55171w−0.15613w2)(1−T 0.5
r )]2. w represents the

acentric factor of a specific gas. We solve this equation for Ammonia at T = 302.15,
P = 229.9×103.We use Tc = 405.55, Pc = 1.128×107, w = 0.250 and R = 8.314
and get the nonlinear equation:

g5(τ ) = τ 3 − 0.01092681644τ 2 + 2.059291793 × 10−6τ − 6.067720966 × 10−11,

where τ = V . It has a simple rootw = 0.0001547767475. We choose the initial guess
τ0 = 0.0003885 and the numerical results are presented in Table 5.
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Fig. 7 Attraction basins of SH1–SH4 of g4 (θ)

Table 5 shows the best performance of FZ1–FZ4 schemes, even for simple roots.
For g5(τ ), the basins of attraction obtained for the methods SH1 − SH4 and

FZ1 − FZ4 are shown in Figs. 9, 10. For this example, we consider the region
[−1, 1]× [−1, 1] for dynamical analysis. The basins of attraction of SH1− SH4 and
FZ1− FZ4 indicate that all iterative schemes take minimum two and maximum six
iterations to converge to the root except SH3 which take minimum 2 and maximum 7
numbers of iterations for convergence towards the root. For all iterative schemes, hue
of black color shows the divergence region except FZ3 and SH3 in which it indicates
two iterations.

Example 6 Peng–Robinson Equation of State We also consider PR equation of state
for finding multiple root of V at critical isotherm by using the values c1 = 2, c2 =
−1, λb = 0.2531, λa = 1.4874, z = 0.3074 and α(Tr ) = 1. Equation (22) takes the
form:

V 3 +
(
b − RT

P

)
V 2 −

(
3b2 + 2

RTb

P
− a

P

)
V +

(
b2 + RTb

P
− a

P

)
b = 0.
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Fig. 8 Attraction basins of FZ1–FZ4 of g4 (θ)

Table 5 Computational comparison of iterative schemes for g5(τ )

Methods |τ1−τ0| |τ2 − τ1| |τ3 − τ2| |g5 (τ3) | COC

SH1 2.1473 × 10−4 1.8984 × 10−5 3.5515 × 10−9 3.3046 × 10−40 6.62

SH2 2.1474 × 10−4 1.8974 × 10−5 3.5809 × 10−9 3.5980 × 10−40 6.62

SH3 2.1016 × 10−4 2.3538 × 10−5 1.5977 × 10−8 3.5683 × 10−38 7.31

SH4 2.1733 × 10−4 1.6352 × 10−5 4.3624 × 10−10 1.8206 × 10−38 4.85

FZ1 2.1733 × 10−4 1.6388 × 10−5 5.7010 × 10−10 2.6777 × 10−51 7.84

FZ2 2.1763 × 10−4 1.6088 × 10−5 5.8223 × 10−10 6.0847 × 10−51 7.80

FZ3 2.1733 × 10−4 1.6389 × 10−5 5.1223 × 10−10 1.4036 × 10−51 7.81

FZ4 2.1733 × 10−4 1.6390 × 10−5 5.3649 × 10−10 2.8767 × 10−52 8.00

Let us solve Peng–Robinson equation of state for Oxygen O2 at T = Tc = 153,
P = Pc = 50 and using these values we get following nonlinear equation:

V 3 − 2.821923704V 2R + 2.654417796V R2 − 0.8322849442R3 = 0,
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Fig. 9 Attraction basins of SH1–SH4 of g5 (θ)

where R = 0.0831446261815324. Solving for τ = V ,

g6(τ ) = τ 3 − 2.821923704τ 2R + 2.654417796τ R2 − 0.8322849442R3,

gives us the multiple root w = 0.07820926381 with multiplicity η = 3. By using the
initial guess τ0 = 0.9, the numerical results are presented in Table 6.

In this last example, we solve Peng–Robinson equation of state for oxygen O2 and
the basins of attraction obtained for the methods SH1-SH4 and FZ1−FZ4 are shown
in Figs. 11, 12We use the region [−2, 2]×[−2, 2] to draw the basins of attraction and
examine that SH1-SH4 and FZ1-FZ4 use minimum two and maximum three numbers
of iterations to converge to the root. In this example, the black color indicates the hue
of two iterations for all iterative schemes. We observe that newly proposed scheme
has globally wider black region as compared to recent methods.
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Fig. 10 Attraction basins of FZ1–FZ4 of g5 (θ)

Table 6 Computational comparison of iterative schemes for g6(τ )

Methods |τ1−τ0| |τ2 − τ1| |τ3 − τ2| |g6 (τ3) | COC

SH1 0.82179 6.4750 × 10−7 2.4432 × 10−21 2.2617 × 10−192 3.00

SH2 0.82179 6.4750 × 10−7 2.4432 × 10−21 2.2617 × 10−192 3.00

SH3 0.82179 6.4575 × 10−7 1.0577 × 10−21 1.2054 × 10−332 6.06

SH4 0.82179 6.4772 × 10−7 1.4120 × 10−21 9.1919 × 10−331 6.08

FZ1 0.82179 6.4750 × 10−7 1.4106 × 10−21 9.0543 × 10−331 6.08

FZ2 0.82179 6.4750 × 10−7 1.4106 × 10−21 9.0543 × 10−331 6.08

FZ3 0.82179 6.4750 × 10−7 1.4106 × 10−21 9.0543 × 10−331 6.08

FZ4 0.82179 6.4750 × 10−7 1.4106 × 10−21 9.0543 × 10−331 6.08
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Fig. 11 Attraction basins of SH1–SH4 of g6 (θ)

4 Conclusion

There exist many numerical root-solvers with high order of convergence that require
derivative evaluations for finding the multiple root of a function. The derivative free
higher-order techniques for computing multiple root are rare and yet to be explored. It
is not an easy task to attain an optimal derivative-free root-finder family of methods.
We have presented a derivative-free optimal eighth order iterative scheme for finding
the zeros of a nonlinear equations with known multiplicity of zeros with a univariate
and a multivariate weight functions. The number of functional evaluations required
for our presented scheme is four. We have compared the numerical results of our
presented scheme with the most recent methods in the literature. We conclude that
our method gives eight order of convergence also for the case when function has root
of multiplicity one. The dynamical comparison of our presented method with recent
seventh and eighth order methods shows that newly proposed method has, in general,
wider convergence region. It is apparent from the numerical results and construction
that our presented family of method is optimal and efficient in terms of small residual
errors.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.
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Fig. 12 Attraction basins of FZ1–FZ4 of g6 (θ)
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