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A B S T R A C T   

Fuel dilution in engine oil is a frequent problem in internal combustion engines (ICE); its main consequence is the 
reduction of the oil viscosity, decreasing lubrication film strength, and causing a negative impact on friction and 
wear. The standard and more precise methods for assessing fuel content in oil are based on chromatographic 
analysis (e.g., ASTM D3524, ASTM D7593), requiring high-cost equipment and highly qualified personnel. This 
work performed a study to propose an alternative method for quantifying diesel fuel dilution in used engine oil 
by UV–vis and NIR spectroscopy. The samples for the study were prepared from used oil from six different ve
hicles with various mileages. According to the results obtained in this study, NIR spectroscopy proved to be the 
most suitable method for the quantification of diesel fuel in used engine oils. Furthermore, the use of NIR 
spectroscopy combined with multivariate calibration methods could predict the fuel concentration of the samples 
used for validating the model. The best predictive model for the quantification was obtained by Partial Least 
Squares Regression, which achieved a Root Mean Squared Error of prediction of 0.436% and a coefficient of 
determination of 0.9435. In comparison, the parameters for Principal Component Regression were 1.049% and 
0.8441, respectively.   

1. Introduction 

Fuel dilution in engine oil is a common problem for both diesel and 
gasoline internal combustion engines (ICE): when the fuel contaminates 
the engine oil, it modifies its properties, mainly viscosity, reducing 
lubrication film strength and causing a negative impact on friction and 
wear. The implementation of active regeneration of particulate filters by 
delayed fuel post-injection and the move towards hybrid electric vehi
cles and vehicles equipped with stop-start systems will lead to increased 
fuel dilution [1–3]. This will be of more concern in diesel engines since 
significant fuel dilution could persist at the usual sump oil temperatures 
of 100–150 ◦C. In contrast, in gasoline engines, the more volatile gas
oline fuel will have substantially evaporated at these temperatures [3]. 

Consequently, the quantification of fuel in oil (FiO) is an essential 
parameter in the ICE’s condition monitoring, as it allows performance 
prediction and to take proper actions at the right time to avoid damage 
to the engine. The most common standard methods for assessing fuel 
content in oil, such as ASTM D3524 and ASTM D7593 [4,5], provide 
precise results but require high-cost equipment, including gas chro
matographs with flame ionization detectors and temperature 

programmable ovens, appropriate solvents, carrier gas for the proced
ure, highly qualified personnel, and considerable time for calibration. 
Another standard method proposed by ASTM requires a surface acoustic 
wave sensing fuel dilution apparatus; the process is detailed on the 
ASTM D8004; this method is simple but requires specific equipment only 
for that application and frequent recalibrations [6]. Other options, such 
as viscosity analysis and flash point testing, suggest a possible dilution 
problem but do not offer a direct quantification of fuel in oil since 
dilution is not the only factor that modifies these properties [3]. 

Some investigations have been done to propose alternative methods 
for quantification. For example, the work of Sejkorov presented a 
methodology for the construction of the FTIR-PLS regression model for 
the determination of contamination of mineral engine oil by pure diesel 
[7]; the study was done only in samples of fresh oil and presented 
satisfactory results. A different method was proposed by Neupane for 
rapid in situ measurement of the fuel dilution of oil in a diesel engine by 
Laser-Induced Fluorescence (LIF) spectroscopy to monitor the oil [8]. 
Another inline monitoring strategy was developed by Niedermayer, a 
resonant sensor system that based its dilution determination on the 
measurement of the viscosity of the oil tested [9]. 
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In recent years, Near-Infrared (NIR) and UV–Visible spectroscopy 
have proven to provide spectral information that can support the 
development of quantitative analytical methods, with significant ap
plications in the field of Oil Condition Monitoring (OCM), for example, 
the procedure to quantify soot in engine oil by ultraviolet–visible 
spectroscopy [10]. UV–Visible spectroscopy with univariate methods 
has been used to quantify biodiesel in diesel–biodiesel blends. In alliance 
with Partial Least Squares regression (PLS) have been able to quantify 
biodiesel in samples adulterated with vegetable oil [11]. The NIR 
technique combined with chemometrics has been used to discriminate 
crude oils and derivates and quantify them in blends [12]. Another study 
evaluated the use of visible and near-infrared (NIR) to determine the 
biodiesel content in biodiesel/diesel blends using Multiple Linear 
Regression (MLR) and variable selection by Successive Projections Al
gorithm (SPA), concluding that both regions have the potential for 
developing a rapid non-destructive method to quantify the biodiesel 
[13]. In recent years Liu et al. developed a compact moisture-content 
monitoring system based on the visible-near-infrared (Vis-NIR) spec
troscopy technology capable of determining the moisture content in 
lubricating oil of high-speed rail gearbox in a fast, simple, and accurate 
way [14]. 

This work presents an approach to quantifying fuel dilution in used 
engine oil by UV–vis and NIR spectroscopy, considering them as tech
niques with simple operation and reduced cost, able to produce accurate 
and reliable results rapidly once the calibration model for the quantifi
cation of the particular analyte is done. The techniques will be used 
separately, and part of the study is to determine which one is more 
suitable for the quantification of diesel fuel in used engine oil. The work 
will be focused on diesel fuel dilution attending to the increasing 
problem of fuel dilution in these engines, its market importance, and 
being just the typical engines where condition monitoring is applied. 

2. Methodology 

The first step of this work was to record the fuel and the oil spectra in 
both spectrometers, UV–vis and NIR, and do a spectrum screening to 
compare them with the purpose of identifying regions for potential 
quantification where the absorbance of the fuel was higher than the 
absorbance of the oil. 

The next phase consisted of analyzing prepared fresh oil samples 
with added diesel fuel in known concentrations. This phase aimed to 
evaluate the capabilities of both methods while avoiding interference in 
the spectra from contaminants, such as soot and other typical impurities 
that can be found on used engine oil, streamlining the analysis. Subse
quently, each set of results (UV–vis and NIR spectra) was analyzed with 
univariate methods to determine a correlation between the signal and 
the fuel concentration. Comparing both methods would allow deter
mining which spectrometric technique offers better quantification re
sults to extend the study for used oil samples dopped with diesel fuel. 

The final phase of the work was to use the spectroscopic method that 
provided the best results in the previous step to analyze the samples 
prepared from used oil with univariate methods and chemometric 
techniques, such as Principal Components Regression (PCR) and Partial 
Least Squares (PLS), which led to a calibration model that related the 
concentration of the diesel fuel to the spectral data collected from the 
sample. 

2.1. Samples 

Three types of samples were prepared. Group A consisted of 9 sam
ples prepared using fresh engine oil with added diesel fuel in a con
centration range from 0.0 to 10.0 % (w/w), see Table A1. The fresh 
engine oil used was a commercial SAE 5 W-30 fulfilling quality specs API 
SM/CF and ACEA A5/B5, C2. 

Group B was prepared using the same fresh oil with added diesel fuel, 
but for this group, the fuel was dyed with a commercial UV fluorescent 

fuel dye at a concentration of 600 ppm by mass. The UV dye, Tracerline 
TP-3400, fluoresces a yellow/green color. This group of 6 samples was 
also prepared in a concentration range of 0.0–10.0 % (w/w); see 
Table A2; they were used only in the study performed on the UV–vis 
spectrometer. 

Group C was prepared with used engine oil contaminated by diesel 
fuel. The oil was sampled from diesel engines working on vehicles from 
an urban bus fleet, and samples from six vehicles using the same com
mercial fresh oil SAE 5 W-30 were used. The soot concentration in the 
original samples varied from 0.067 to 0.282 %. In this set, 47 samples 
were prepared with different concentrations of diesel fuel between the 
range of 0.0–10.0 % (w/w), see Table A3. This group was later divided 
into two sets, one of 38 samples for creating the calibration model and 
the other 9 representative samples for evaluating the model, gathering 
low, intermediate, and maximum values in the evaluated fuel concen
tration range, which means that approximately 80 % of the samples 
were used for constructing the model and 20 % for evaluation. The 
samples used for validation are identified in Table A3 as Test_1-9. 

Dilution of the samples of group C was necessary. The samples were 
too dark because of soot content, which caused noise in all the spectral 
range. Two non-polar solvents were tested, heptane and toluene, to 
decide the most suitable one for the subsequent studies. 

Comparing the results obtained with each solvent, samples diluted 
with toluene showed noise in the area surrounding 4600 cm− 1 which 
was relevant to the study - as will be demonstrated in Section 3.1.2.; 
consequently, this solvent was discarded, and heptane was the chosen 
solvent since it was able to dissolve the samples more proficiently for 
this application. Heptane has the additional benefit of being less toxic 
than toluene. 

Part of the study was to select the appropriate dilution ratio 
attending to the soot content on the used oil. Fig. A1 shows three tested 
dilution ratios obtained for a sample from group C that contained 0.067 
% of soot and 0.000 % of diesel fuel; Table A4 indicates the used ratios. 
The selected ratio for this case was 3.4 g of heptane per gram of sample 
since it produced a clean enough spectrum to work on the analysis stage. 
The dilution ratios used for the rest of the samples according to the soot 
content of the used oil were chosen following a similar testing proced
ure, aiming to obtain a dilution that has similar behavior for all the 
samples with 0.000 % of diesel fuel. The selected dilution ratios for each 
concentration of soot used in the study are shown in Table A5. 

2.2. Instruments 

The UV–vis spectral data were acquired in a Perkin Elmer UV–vis 
Lambda 365 spectrophotometer equipped with a deuterium and tung
sten halogen lamp with a double beam. The spectra were recorded over 
the wavelength range of 700 and 200 nm, or 14285.7 – 50000 cm− 1 in 
terms of wavenumber, with a spectral resolution of 1 nm. 

The NIR spectra were acquired in a Perkin Elmer FT-NIR Spectrum 
Two N equipped with a lithium tantalate (LiTaO3) NIR detector. The 
spectra were recorded over the wavenumber range of 11500–4400 
cm− 1, or 869.6–2272.7 nm in terms of wavelength, with 24 accumula
tive scans with a resolution of 4 cm− 1. 

The measures in both spectrophotometers were made using a quartz 
cuvette with an optical path length of 10 mm. All the samples in the 
study were measured in triplicate to mitigate any errors that could affect 
the next modeling step, specifically the experimental errors inherent to 
the procedure. To record the spectra of Group C, the samples were 
diluted with heptane using the dilution ratios specified in Table A5; the 
reference cell was filled with the solvent. 
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3. Results and discussion 

3.1. Fuel, oil, and fresh oil samples analysis 

3.1.1. Ultraviolet–visible analysis 
After comparing the oil and the diesel fuel spectra, it was not possible 

to identify a prominent difference between the fuel and the oil spectra. 
As expected, the analysis of the UV–vis spectra of the group A samples 
could not provide results for the quantification of fuel in oil. 

The next proposal was to study the use of a fuel dye to enable 
quantification in the UV–vis region, following a similar approach to the 
one done by Neupane et al. [8] when using laser-induced fluorescence 
spectroscopy. For this proposal, group B samples were used. It was 
noticed that the addition of the dye influences the absorption spectra, 

creating areas of higher absorption. 
For the spectra of the group B samples, the use of the dye in the fuel 

allowed the identification of an area that changed as a function of the 
concentration of fuel in each sample, which could be used for quantifi
cation by applying a univariate method. 

For each prepared sample, the absorbance spectrum of the fresh oil 
was subtracted from the absorbance spectrum of the sample; the area 
under peak centered at 424.4 nm was calculated on the equipment 
software Perkin Elmer UV Win Lab DPV considering the baselines at 
405.0 nm and 445.0 nm. Fig. 1 displays an expansion to highlight the 
area used for quantification. Later, the spectral peak area calculated was 
correlated with the fuel concentration; the linear fit is displayed in 
Fig. 2. The determination coefficient obtained for this group of samples 
was R2 = 0.8240. 

Fig. 1. Group B samples UV–vis spectra expansion between 400 and 500 nm.  

Fig. 2. Linear fitting for the fresh oil samples doped with dye diesel fuel and 
analyzed by UV–vis. 

Fig. 3. Fresh engine oil and diesel fuel NIR spectra between 6000 and 
4500 cm− 1. 
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3.1.2. Near-infrared analysis 
Comparing the fresh oil and the diesel fuel NIR spectra, it was 

possible to identify a specific peak at the wavenumber 4600 cm− 1, 
where the absorbance of the fuel was higher than the absorbance of the 
oil, as shown in Fig. 3. This peak could possibly be used to correlate the 
spectrum collected from a sample to the concentration of the diesel fuel 
in the sample. 

After the collection of the spectra of the group A samples, it was 
confirmed that there was a differentiation around the located wave
number on each sample, which is shown in Fig. 4. Therefore, the height 
at 4600 cm− 1, considering 0 as the base, was correlated with the con
centration of diesel fuel. The correlation proved the existence of a linear 
relationship between the peak height at 4600 cm− 1 and the concentra
tion of diesel fuel in the sample; the fitting equation displayed a deter
mination coefficient of R2 = 0.9855 in the studied range, as shown in 
Fig. 5. 

3.1.3. Comparison of both spectrometric techniques 
Comparing the results of both methods, the NIR spectroscopy led to 

the obtention of significantly better outcomes for quantification using 

the fresh oil samples doped with diesel fuel. This method showed a 
stronger correlation between the signal and the fuel concentration using 
a more straightforward procedure. In contrast, the correlation obtained 
by the UV–vis method was not considered strong enough to continue the 
study with used engine oil samples. Consequently, NIR spectroscopy was 
the chosen spectroscopic alternative to continue the analysis with the 
samples prepared from used oil from diesel engines. 

3.2. Used oil samples analysis: Near-infrared analysis 

3.2.1. Univariate analysis: Peak height and peak area analysis. 
The first approach to obtain a model that related the fuel concen

tration in the sample to the NIR spectral data collected was to use uni
variate analysis in a particular group of samples from Group C; all 
prepared from used oil from the same engine. 

For this initial part of the study, nine samples from group C were 
analyzed (samples C_8 – C_17, see Table A3). The soot content in the 
original sample was 0.067 %. To generate a calibration model for this 
data, two methods of univariate quantitative analysis were used, peak 
height and peak area analysis. 

For the peak height analysis, the height at 4600 cm− 1, considering 
0 as the base, was correlated with the concentration of diesel. The fitting 
displayed a determination coefficient of R2 = 0.9646 in the studied 
range. The results are presented in Fig. A2. 

For the spectral peak area analysis, the areas were measured 
considering the peak height at 4600 cm− 1 and one baseline from 4635 to 
4558 cm− 1. For the construction of the calibration model, the area 
corresponding to each sample was the difference after subtracting the 
area of the used oil without diesel added from the area of the prepared 
sample. The determination coefficient was R2 = 0.9615, which indicates 
a strong correlation between the located peak area and the concentra
tion of diesel fuel in the samples. Additionally, the similarity between 
the coefficients obtained by both univariate methods and the result for 
the fresh oil samples reinforces the hypothesis that it is possible to es
timate the dilution for used oil samples from the measurements of mo
lecular absorbance in the NIR region using the proposed dilution 
method. The results are presented in Fig. A3. 

The same procedure was applied to another group of seven samples 
(samples C_41 – C_47, see Table A3), prepared from used oil from 
another engine (Vehicle_6), having a higher content of soot (0.115 %). 
The results obtained were equivalent to the previous ones; for this sec
ond group, the fitting equations presented a determination coefficient R2 

of 0.9715 and 0.9749, respectively, for peak height and peak area 
analysis. 

These separate analyses on a reduced part of the samples were per
formed to test whether it was possible to correlate the obtained NIR 
spectra with the fuel content in the sample even after the dilution as a 
feasibility analysis. The use of samples prepared from the same source 
(vehicle) enhances the calibration; it is expected that including samples 
with different content of soot in the same calibration would lessen the 
coefficient of determination, considering the limitations of univariate 
methods. 

3.2.2. Multivariate analysis 
Although some studies have successfully used the spectral peak area 

analysis in the near-infrared region, as the work of Brülls [15], the most 
common practice for this type of spectroscopy is the use of multivariate 
regression methods like Principal Component Regression (PCR) and 
Partial Least Squares Regression (PLSR) [16], especially when dealing 
with complex matrixes like used engine oil. Multivariate methods allow 
the construction of a calibration model for more than one analyte. They 
can construct the model for the analyte in the presence of multiple 
spectral interferents. 

These methods require a larger number of samples to create a robust 
model that allows the prediction of future unknown samples. The 
objective is to include in the model definition as many samples as 

Fig. 4. Group A samples NIR spectra between 4700 and 4500 cm− 1.  

Fig. 5. Linear fitting for the fresh oil samples dopped with diesel fuel and 
analyzed by NIR. 
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possible that represent all the potential variations expected. This way, 
the model should be able to predict external samples with different 
characteristics. It is important to consider that a calibration set that 
includes a wide variation of sample types and a substantial component 
range will allow a calibration model where a more comprehensive range 
of samples may be analyzed, but with a resultant loss of accuracy [16]. 

For this analysis, all the samples of group C were included, 38 
samples in the model definition and the other 9 samples for the vali
dation process. Each sample was measured in triplicate, and all three 
spectra were included in the calibration. 

The chemometric calculations were done on Spectrum Quant 
Quantitative Analysis Software by Perkin Elmer. For both methods, the 
preprocessing consisted of mean centering the spectral data, which 
means that the mean spectrum of the samples is subtracted from each 
standard, and excluding the regions from 11500 to 9000, 5950–5630; 
4446–4400 cm− 1 since they presented noise and do not have informa
tion that could contribute to the model, but instead would distortion it. 
This selection of the appropriate regions enhances the robustness of the 
model and diminishes the computational cost of the calculations. Fig. 6 

shows all the spectra included in the model definition for both methods. 

3.2.2.1. Principal component regression. The PCR algorithm was 
employed to build a quantitative calibration model to assess the con
centration of diesel fuel in the prepared samples of used engine oil. 

The model’s performance was adjusted by K-fold cross-validation. 
The method is based on an iterative algorithm that removes one or 
more sample spectra from the data matrix, in this case, 3 samples at a 
time, and then a model is built based on the remaining samples [16]. The 
model is then used to estimate the previously removed samples; the 
process was repeated for all the samples in the calibration set. This al
lows calculating the error from the cross-validation. The number of 
principal components used by the model was determined as the number 
of components that provides a model with the smallest standard error of 
cross-validation (SECV) [17]. 

For this model, the number of principal components selected by the 
method was 7, which achieves a SECV of 1.771 %. Fig. 7 plots the 
calculated standard error of cross-validation (SECV) for each principal 
component in the PCR model. 

The evaluation of the calibration was assessed by the determination 
coefficient (R2

c ) and the standard error of estimate (SEE), which can be 
described as the squared root of the residual variance divided by the 
degrees of freedom, where the degrees of freedom are equal to calibra
tion samples (ns) minus the number of principal components (nf ) minus 
one, attending that the data was mean-centered [17]. The parameters 
are calculated as in the following equations: 

SEE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ns

i=1
(yi − ŷi)

2

ns − nf − 1

√
√
√
√
√ (1)  

R2
c = 1 −

∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − yi)

2 (2)  

where yi, ŷi, are respectively, the reference and the predicted value by 

Fig. 6. Spectra of the set of samples included in the model.  

Fig. 7. Calculated standard error of cross-validation (SECV) for each principal component in the PCR model.  
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the model and yi is the average of the observation values by the model. 
The coefficient of determination (R2) for the whole model gives the 

proportion of the variability of the property that the model describes. It 
indicates the strength of the relationship between the property values 
and the scores. 

The proposed PCR calibration model presented a coefficient of 
determination (R2

c ) of 0.8441 and a standard error of estimate (SEE) of 
1.353 %. The standard error of cross-validation was 1.771 %. 

To value the model’s actual performance, the concentration of nine 
test samples was predicted by the model; the predicted concentration 
and the prepared concentration of the samples are shown in Table 2. To 
evaluate the performance of the predictions, the parameters used were 
Root Mean Squared Error of Prediction (RMSEP) and coefficient of 

determination of the test set (R2
p), that can be defined as follows: 

RMSEP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1
(yi − ŷi)

2

m − 1

√
√
√
√
√

(3)  

R2
p = 1 −

∑
(ŷi − yi)

2

∑
(ŷi − yi)

2 (4)  

where yi, ŷi, are respectively, the reference and the predicted value by 
the model and yi is the average of the observation values by the model, 
and m is the number of samples in the test set. The results are shown in 
Table 1. 

3.2.2.2. Partial least squares regression. A second chemometric 
approach for the fuel in oil quantification was made using Partial Least 
Squares Regression (PLS) to develop the quantitative calibration model. 
The spectral data were mean-centered. The performance of the model 
was adjusted by adjusted by K-fold cross-validation, the number of 
latent variables (LV) was optimized following the previous criteria and 
established at 7 latent variables. 

Fig. 8 represents the standard error of cross validation (SECV) and 
the cumulative Y-variance achieved by adding each latent variable in 
the model. 

The calibration was evaluated by the determination coefficient (R2
c ) 

and the standard error of estimate (SEE) where for this case, the degrees 
of freedom are equal to calibration samples minus the number of latent 
variables used in the model minus one. 

The parameters for the model built by the PLS method were the 
following: a determination coefficient of 0.9435 and a standard error of 
estimate of 0.814 %; Table 1 summarizes the parameters for both 
models. 

For both methods, the same samples were predicted, and the results 
are shown in Table 2. The parameters root mean squared error of pre
diction (RMSEP) and coefficient of determination of the test set (R2

p) 
were calculated from the values of Table 2 and following Eqs. (3) and 
(4). The PCR model achieved a RMSEP of 1.049 %, while the PLS 
attained a RMSEP of 0.436 %; this is a magnitude of the expected error 

Table 1 
Parameters of PCR and PLS models to determine fuel dilution in used engine oil.  

Algorithm N. 
variables 

R2
c SEE (% 

wt) 
SECV 
(% wt) 

RMSEP 
(% wt) 

R2
p 

PCR 7  0.8441  1.353  1.771  1.049  0.8507 
PLS 7  0.9435  0.814  1.518  0.436  0.9698  

Table 2 
Prediction results for PCR and PLS models.  

Test samples Diesel content 
estimation resulting 
from 

Absolute error for 

Sample Diesel content (% 
wt) 

PCR (% 
wt) 

PLS (% 
wt) 

PCR (% 
wt) 

PLS (% 
wt) 

Test_1  4.00  4.47  3.97  0.47  0.03 
Test_2  8.10  9.11  7.97  1.01  0.13 
Test_3  7.50  7.17  8.18  0.33  0.68 
Test_4  3.00  3.63  3.25  0.63  0.25 
Test_5  3.08  5.05  3.81  1.97  0.73 
Test_6  6.31  5.93  6.46  0.38  0.15 
Test_7  8.97  8.00  8.72  0.97  0.25 
Test_8  2.21  2.01  2.43  0.20  0.22 
Test_9  5.03  4.14  4.46  0.89  0.57  

Fig. 8. Calculated standard error of cross validation (SECV) for each LV in the PLS model.  
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for future samples predicted by the model, which means that better 
prediction results would be obtained from the PLS method. This result 
proves that it was possible to obtain a model to access the concentration 
of diesel fuel in used oil samples using NIR spectroscopy, which could be 
used as an alternative technique in case chromatography is not 
available. 

Although the results presented for the univariate methods presented 
a higher coefficient of determination, 0.9646 for the peak heigh analysis 
against 0.9435 for the PLS model, the PLS model has the advantage of 
including a larger variety of samples in the same range of concentrations 
of 0 to 10 % of diesel fuel. The univariate analysis was performed on a 
reduced group of samples prepared from the same source. In contrast, 
the multivariate analysis incorporates samples prepared from used oil 
from six different vehicles, with various mileages and content of soot. 

4. Conclusion 

This investigation proposes a method to quantify diesel fuel in used 
engine oil by NIR spectroscopy using a dilution procedure to enable the 
collection of the NIR spectra; it was verified that the dilution ratio must 
be proportional to the soot content of the engine oil. It was possible to 
correlate the fuel dilution with the NIR spectra of used oil samples using 
univariate methods, as the peak heigh at 4600 cm− 1 or the peak area 
from 4635 to 4558 cm− 1 achieving coefficients of determination of 
0.9646 and 0.9615, respectively, on a study done on nine samples pre
pared from the same used oil. 

The best predictive model for the quantification of fuel dilution in 
used oil samples applying chemometric analysis techniques to the 
spectral data was obtained by Partial Least Squares Regression, which 
achieved a root mean squared error of prediction of 0.436 % and a co
efficient of determination of 0.9435. In comparison, the parameters for 
Principal Component Regression were 1.049 % and 0.8441, respec
tively. These multivariate models include samples prepared from used 
oil from six different vehicles, with various mileages and soot content. 
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