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Abstract: In automated storage and retrieval systems (AS/RSs), the utilization of intelligent algo-
rithms can reduce the makespan required to complete a series of input/output operations. This paper
introduces a simulation optimization algorithm designed to minimize the makespan in a realistic
AS/RS commonly found in the steel sector. This system includes weight and quality constraints for
the selected items. Our hybrid approach combines discrete event simulation with biased-randomized
heuristics. This combination enables us to efficiently address the complex time dependencies inherent
in such dynamic scenarios. Simultaneously, it allows for intelligent decision making, resulting in
feasible and high-quality solutions within seconds. A series of computational experiments illustrates
the potential of our approach, which surpasses an alternative method based on traditional simulated
annealing.

Keywords: automated storage and retrieval system; makespan minimization; simulation optimization;
discrete event simulation; biased-randomized algorithms

1. Introduction

Warehousing involves the storage of raw materials, components, work in progress
(WIP), and finished goods. It has consistently been recognized as a crucial element within
the supply chain and within logistics. A well-designed and effectively managed ware-
housing system can yield significant benefits, such as reducing the risk of running out of
stock, mitigating the bullwhip effect, and decreasing the lead time of the final products [1].
Over recent decades, advancements in automation have led to the proliferation of fully
automated solutions like automated storage and retrieval systems (AS/RSs) and automated
vehicle storage and retrieval systems (AVS/RSs) across various industrial environments [2].
An AS/RS comprises two essential components: (i) a storage area that can be subdivided
and (ii) multiple automated machines responsible for material movement within and
outside the storage area. Compared to traditional manual warehouses, AS/RSs offer un-
deniable advantages, including labor savings, an increased storage capacity, a reduced
throughput time, and a decreased occurrence of errors, damage, and risks for operators.
However, the success of AS/RS implementation relies on the efficiency and alignment
of the control policies with the needs of the industrial system. A well-designed AS/RS
must autonomously address various challenges, such as scheduling retrieval and storage
operations, assigning stock items to customer orders, allocating delivery trucks to output
points, and determining routing for operations involving storage and retrieval machines,
among others [3].

Despite their complexity, and owing to their numerous benefits, AS/RSs have rapidly
gained traction across diverse sectors in recent decades. One industry where AS/RSs are
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becoming increasingly prevalent is the steel industry. According to an analysis by the
World Steel Association (https://www.worldsteel.org/, accessed on 15 January 2024), this
industry is at the heart of global development. In 2017, the steel industry achieved sales of
USD 2.5 trillion and generated USD 500 billion in value. For every USD 1 added within the
steel industry, an additional USD 2.50 of value-added activity is supported across other
sectors of the global economy due to purchases of raw materials, goods, energy, and services.
This generates over USD 1.2 trillion in value. In terms of employment, this analysis study
confirmed that the steel industry employs more than 6 million people, and for every 2 jobs
in the steel sector, 13 more jobs are supported throughout its supply chain, resulting in a
total of around 40 million jobs. AS/RSs used in the steel sector significantly differ from
those implemented in other environments, such as AS/RSs for pallets [2], miniloads [4],
shuttle-based AS/RSs [5], etc. These differences predominantly stem from the fact that,
in the steel sector, the systems are designed to handle unconventional stock-keeping units
and typically heavier and bulkier items (e.g., slabs, blooms, billets, tubes and bundles,
metal sheet bundles, etc.). Consequently, solutions proposed for other AS/RSs are often
impractical for systems intended for the steel sector. One of the most prevalent AS/RSs in
the steel sector is the shuttle–lift–crane (SLC)-based AS/RS (SLC-AS/RS) (Figure 1): a fully
automated system specifically designed for storing bundles of long metal bars or tubes,
wherein the stored items themselves act as the unit loads (i.e., the bundles themselves).

Figure 1. A picture of a shuttle–lift–crane AS/RS.

To the best of the authors’ knowledge, the SLC-AS/RS has received limited attention in
the scientific literature despite its significance in this industry. Thus, this paper contributes
to partially filling this gap. Managing the handling of metal bar bundles involves several
constraints related to the weight and quality of goods, complicating operational decisions.
Previous work by Bertolini et al. [6] addressed the allocation problem using simulated
annealing (SA), albeit limited to improving the retrieval phase. In this paper, the authors
expand on the aforementioned work by enhancing both the retrieval and storage oper-
ations. Here, the problem is approached using a simulation optimization methodology
that combines discrete event simulation (DES) principles with a biased-randomized (BR)
algorithm [7]. While the DES component handles intricate time dependencies among
different events, the BR component facilitates intelligent decision making. The resulting
BR-DES is then integrated into a multi-start framework, enabling the generation of multiple
high-quality solutions within short computing times.

https://www.worldsteel.org/
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The remainder of this paper is organized as follows: Section 2 provides an overview of
related work. Section 3 offers a detailed description of the AS/RS under analysis. Section 4
introduces the optimization problem to be solved. Section 5 details the deterministic
heuristic used by the authors to evaluate solutions. The proposed biased-randomized
algorithm, along with its integration into a multi-start framework, is described in Section 6.
The obtained solutions for different instances are compared with those generated by
previous approaches in Section 7. Finally, conclusions and future research directions
are presented in Section 8.

2. Related Work

Automated storage and retrieval systems have long been a focal point in the scientific
community. A comprehensive overview of AS/RS literature was first presented by Rood-
bergen and Vis [2] after over 30 years of research in the field. These authors were the first to
spotlight design and control issues addressed in AS/RSs, encompassing design decisions,
storage assignment, batching, dwell location, sequencing of storage and retrieval requests,
and performance measurement. Recently, Bertolini et al. [8] extended the review, focusing
on papers published between 2009 and 2019. Over the years, numerous aspects related to
AS/RSs have been meticulously studied, while new areas of interest, such as environmental
aspects and energy consumption, have emerged [9,10]. Moreover, as AS/RSs have become
more widespread across different sectors, many challenges initially addressed in classi-
cal AS/RSs for pallets have now been extended to modern systems. These new systems
introduce new issues due to varying physical designs, collaborative machine operations,
and limitations associated with handled unit loads. Among the most researched AS/RS
typologies are shuttle-based AS/RSs [5], mini-loads [11], autonomous vehicle AS/RSs [12],
split platform AS/RSs [13], and tier-to-tier AS/RSs [14]. Thus, Ekren and Heragu [15]
discusses the significance of material handling, specifically focusing on unit load storage
and retrieval systems. The paper highlights the evolution of crane-based automation
technologies since the 1970s, leading to the widespread use of AS/RSs in distribution
and production environments. Roy et al. [16] analyze the adoption of autonomousvehicle-
based AS/RSs as an alternative to traditional automated systems for unit-load operations.
These authors model the system as a multi-class semi-open queuing network with class
switching and propose a decomposition-based approach to evaluate system performance.
Ekren et al. [12] employ a matrix-geometric method to model and analyze an autonomous
vehicle AS/RS as a semi-open queuing network. Their model accounts for waiting times,
and it can solve the network and derive key performance measures. Liu et al. [17] focus on
the travel time analysis of a split-platform AS/RS with a dual command cycle operating
mode and an input/output dwell point policy. The study introduces a continuous travel
time model and validates its accuracy through computer simulations. Liu et al. [13] investi-
gate travel time models for split-platform AS/RSs, where machines employ independent
horizontal shuttles and vertical lifts. The paper presents two dual command travel time
models, which are validated through computer simulations. Hu et al. [18] analyze the
travel time of a novel AS/RS designed for extra heavy loads like sea container cargo, where
conventional stacker cranes may be insufficient. A travel time model is presented under the
stay dwell point policy and validated through computer simulations. In addition, the au-
thors provide guidelines for optimizing the design of a rectangular-in-time AS/RS rack.
Cai et al. [19] model and evaluate an autonomous vehicle AS/RS with tier-to-tier vehicles
utilizing a semi-open queuing network. Various storage/retrieval requests are represented
as different customer classes in the model. Due to the time-consuming nature of analyzing
multiple configurations through computer simulations, this paper employed analytical
methods. This research also compared two synchronization policies. Finally, Zou et al. [14]
also model and analyze tier-captive autonomous vehicle storage and retrieval systems,
introducing a parallel processing policy where arrival transactions can simultaneously
request both the lift and the vehicle. An approximation method, based on decomposing the
fork-join network, is developed to estimate system performance. Simulation models vali-
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dated the effectiveness of analytical models, showing that the fork-join network accurately
estimates system performance under the parallel processing policy. Although other typolo-
gies, like the adoption of two storage and retrieval machines sharing the same path, have
been highlighted [20], the steel sector has been notably neglected throughout this technical
and scientific evolution. Noteworthy contributions specifically aimed at improving AS/RS
performance in the steel sector include works by Bertolini et al. [6] and Zammori et al. [21].

This work introduces novelty in two key areas: (i) the system considered and (ii) the
proposed algorithm. The system under consideration is known as the shuttle–lift–crane
automated storage and retrieval system (SLC-AS/RS), widely deployed in the steel in-
dustry and occasionally used in the wood industry to preserve tree trunks. A detailed
system description is provided in Section 3. Apart from the aforementioned works by
Bertolini et al. [6] and Zammori et al. [21], we are pioneers in offering an optimization
technique for such systems. The proposed solution, described in Section 6, is based on a
discrete-event heuristic (DEH). The DEH combines a swift heuristic algorithm for decision
making with discrete event simulation to evaluate the impact of decisions within a complex
system characterized by high levels of parallelism and resource interaction. While similar
approaches have proven efficient in various contexts, such as those seen in Arnau et al. [22],
the application of a DEH to automated storage and retrieval systems is novel.

3. Modeling an Automated Warehouse in the Steel Sector

The shuttle–lift–crane automated storage and retrieval system is a prevalent storage
solution in the steel industry, specifically designed to store bundles of long metal bars or
tubes ranging from ten to twelve meters in length and weighing between 1000 and 5000 kg.
Notably, this system does not involve picking individual bundles. Rather, each bundle
enters and exits the warehouse without any alterations. As a result, the SLC-AS/RS does
not employ loading units or boxes to store items since the bundles themselves serve as
the unit loads. Typically, the overall storage area of an SLC-AS/RS is divided into several
bearing metal structures known as racks. Each rack can reach heights of up to 20 to 25 m,
widths of 12 m (depending on the stored tubes or bars’ length), and lengths exceeding
100 m. To facilitate understanding this complex system, a schematic representation is
provided in Figure 2, displaying a system comprising three racks and two input and
two output locations.

Figure 2. Schematic representation of ann SLC-AS/RS.
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Unlike standard AS/RSs for pallets, each rack in the SLC-AS/RS is divided into
perpendicular aisles, crossing the rack lengthwise (x-axis) and splitting it into multiple
sections. Storage locations, composed of metal shelves, line both sides of these aisles,
accommodating multiple bundles of varying types and lengths, as depicted in Figure 3.
Consequently, these storage locations are not standardized, and previous allocations can
affect the possibility of utilizing specific storage spaces. This unique aspect of the SLC-
AS/RS could be formulated as a one-dimensional cutting stock problem to minimize the
number of storage locations used.

Figure 3. Example of bundle allocation in a single storage location.

Resource-wise, an SLC-AS/RS encompasses four categories: (i) input/output (I/O)
points; (ii) shuttles; (iii) lifts; and (iv) cranes. Each shuttle serves all racks but only one I/O
point, while each lift serves a single crane and shuttle. Conversely, each crane serves every
lift within its rack. A detailed breakdown of these machines is provided below:

• I/O points: Chain conveyors serve as buffers between the system and external pro-
cesses, such as truck loading or production lines. Input points, equipped with sensors
for bundle alignment and weight control, are also depicted in Figure 4A.

• Shuttles: Vehicles handle horizontal movements, transporting bundles between I/O
points and racks. They can transport one or two bundles, depending on single-depth
or double-deep storage, as illustrated in Figure 4B.

• Lifts: Responsible for vertical movements and transporting bundles between shuttles
and the top of racks or cranes. Figure 4C showcases an example of these lifts.

• Cranes: Essential for storage and retrieval operations, moving bundles between lifts
and shelves or vice versa. Each rack houses one crane capable of three-axis movements,
as detailed in Figure 4D.

Figure 4. Main elements of a shuttle–lift–crane AS/RS.
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For a comprehensive understanding of the SLC-AS/RS operations and cycle time
computation, refer to Zammori et al. [21]. In this work, we focus on the behavior and
interactions of machines during input and output operations. The operation begins when
the entering bundle reaches an input point. If the shuttle is not near the input point, it is
recalled, the bundle is loaded upon arrival, and then proceeds to the assigned rack. Once
the bundle is loaded onto the lift, it is transported to the top of the rack and requested by
the crane for storage. The crane then moves the bundle to the designated storage location.
Similarly, we will consider the process for retrieval or output operations. The operation
is sent to the crane, which retrieves the required bundle from the storage location and
transports it to the corresponding lift for output.

4. Detailed Problem Description

This section provides an accurate description of the problem being studied in this
paper, which includes the main assumptions and description of the stock-keeping units,
a description of the customers’ orders and storage facilities, and a formal model.

4.1. Main Assumptions and Stock-Keeping Units Description

We consider an SLC-AS/RS with single, deep storage locations, featuring one single
crane on each rack and only one shuttle for each I/O point. Due to the latter two aspects,
there is no need to consider anti-collision policies. Additionally, since each shuttle is
associated with exactly one I/O point, shuttles linked to an input point solely perform
input operations, while those connecting racks to an output point exclusively execute
output operations. As previously mentioned, the stock-keeping units (SKUs) comprise
bundles of metal bars, hereafter denoted as i ∈ B. Each SKU i is defined by the following
attributes: (i) a unique code, ci; (ii) a specific quality level, qi, influenced by factors like
the geometric dimensional tolerances of the bar, chemical purity of the material, and the
presence of surface damages; (iii) a weight wi and length Li; and (iv) the rack ri where the
bundle is located, along with its position inside the rack, denoted as pi.

4.2. Customers’ Orders and Storage Requests

All customer orders, denoted as output requests, k ∈ Rout, possess the following
attributes: (i) an arrival time, ρk; (ii) a required product identified by a unique code, ck;
(iii) a specified required quantity, wk; (iv) a minimum quality level of the material, qk; and
(v) an indicator specifying the I/O point used, sk. Distinguishing customer orders k ∈ Rout

from storage orders (input requests k ∈ Rin) involves an additional attribute, tk. In the
former case, tk holds a value of zero, whereas in the latter case, it holds a value of one.
The interpretation of the remaining attributes varies based on tk. For instance, in a customer
order, ck, wk, and qk signify the product, quantity, and required quality level, respectively.
Conversely, in a storage request, they represent the product, weight, and quality of the
incoming bundle, respectively.

In an SLC-AS/RS, processing customers’ orders differs slightly from traditional AS/RS
setups for pallets. Typically, customers specify a particular product type, along with a
quantity in kilograms and a desired quality level. The fulfillment of this request necessitates
one or more bundles, ensuring that the overall quantity and quality of retrieved bundles
closely match the required specifications. This resembles a knapsack problem embedded
within the larger issue at hand.

4.3. Mathematical Formalization and Scope of the Algorithm

The primary objective of the proposed approach is to minimize the makespan, denoted
as the time required to complete a given set of operations. Here, j ∈ J = {1, 2, . . . , N}
represents the operations to fulfil requests, m ∈ M denotes the set of machines (such
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as shuttles, lifts, and cranes), and ENDm(j) signifies the time at which machine m ∈ M
finishes operation j. The objective function can be formally defined as:

min A (1)

where A is a newly introduced variable subject to the following constraints:

A ≥ ENDm(j), ∀j ∈ J, ∀m ∈ M (2)

For each storage request, represented by k ∈ Rin, we define an input operation.
Similarly, for each customer order k ∈ Rout, one or more retrieval operations are defined
based on the required quantity and stock availability. The algorithm does not handle the
assignment of input/output points to requests, as this decision relies on external factors.
Specifically, the input point depends on the production line from which the entering bundle
originates, while the output point is chosen by the truck driver, typically opting for the
first available one. The sequence in which requests are processed is highly constrained.
For input requests, rearranging the order of entry bundles once they have reached the
input point and placed on the conveyor is time-consuming due to their substantial weight
(over five tons) and length (up to twelve meters). Altering the sequencing of input requests
involves significant expenses, typically requiring at least two operators and a forklift or
a bridge crane. Hence, changing the sequence of input requests should be minimized.
Regarding output requests, due to the bulkiness of the bundles, they cannot be temporarily
stored in a loading area or yard (as with classic pallets). Therefore, output requests should
generally adhere to first-in-first-out (FIFO) logic. Postponing an output request is rare and
only considered when the required product (in the required quantity) is not in stock.

The constraints for assigning bundles to output operations and empty spaces to
input operations can be formalized as follows. For a storage operation j ∈ Rin, the only
requirement is that the space accommodating the entering bundle bj must be of sufficient
length. Thus, if Lj represents the length of bj, Lσ denotes the length of a generic space,
and zσ,j ∈ 0, 1 is a decision variable equal to one only if space σ is assigned to operation j,
the following constraint must be satisfied:

Lj ∗ zσ,j ≤ Lσ, ∀j ∈ J, ∀σ ∈ S (3)

Conversely , for a customer order, quantity and quality constraints are essential.
For each customer order k ∈ Rout, the difference between the required and retrieved
quantities must fall within certain limits:

wk −△ ≤ ∑
i∈Bk

wi ≤ wk +△, ∀k ∈ Rout (4)

where Bk represents the set of in-stock bundles selected to fulfil customer order k, and△ de-
notes an acceptable deviation from the required quantity. Regarding the quality constraint,
Bk must have an average quality level equal to or higher than the required quality qk:

qk ≤
∑i∈Bk

qi

|Bk|
, ∀k ∈ Rout (5)

where |Bk| refers to the cardinality of set Bk.

5. Evaluation of the Solutions

The solution generated by the proposed algorithm includes a set of operations j ∈ J,
encompassing both input and output operations aimed at fulfilling the requests. Each
input operation corresponds to an empty storage location where the entry bundle will
be stored. Similarly, every output operation is linked to a bundle in stock for retrieval.
Sorting the operations by their scheduled execution time enables the computation of the
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makespan through a discrete event simulation. This simulation can accommodate stochastic
processing times and is applicable irrespective of the system’s complexity. Notably, the de-
terministic simulation considered here naturally extends to a stochastic one. During each
simulation run, deterministic processing times can be substituted with randomly generated
times using corresponding probability distributions. The specific probability distributions
employed to model these random processing times are derived from fitted historical data.
To elucidate the computation of the makespan analytically, a simple example is provided
below, showcasing machines and operations:

• rj, sj, and lj represent the crane, shuttle, and lift necessary for operation j, dependent
on its associated operation and the bundle it involves.

• j∗r,s,l denotes the most recent operation involving machines r, s, and l. Similarly, j∗r
signifies the most recent operation involving only r, while j∗r,s indicates the most recent
operation involving crane r and shuttle s.

Key events occurring during the simulation of each operation are defined as follows:

• AVAILm(j) represents the moment when operation j becomes available for machine m.
• STARTm(j) signifies the start time when machine m initiates work on operation j.
• ENDm(j) indicates the completion time when machine m finishes work on operation j.
• P1j and P2j denote the first and second positions that crane rj must visit to execute

operation j. If j is an input operation, P1j represents the interchange point between
lift lj and crane rj, while P2j denotes the storage location. Conversely, for an output
operation, P1j corresponds to the storage location, while P2j indicates the interchange
point between lift lj and crane rj.

An illustration of the SLC-AS/RS under consideration is depicted in Figure 5. The lay-
out assumes a configuration with one crane and two lifts within the rack (with one lift
designated for each I/O point). The warehouse comprises ten aisles, each spanning a
length of one meter. For the input shuttle, traversal of the rack occurs through the fourth
aisle, while the output shuttle navigates along the eighth aisle. Within each aisle, storage
consists of three levels, each standing at a height of one meter. The crane’s movement
follows a uniform, linear trajectory, covering one meter per second in both length and
height. The unidirectional travel time for the lifts is presumed to be 3 s, while the upload
and download times are estimated at 5 s. Additionally, the one-way travel time for shuttles
to reach the rack is set at 6 s. The operations to be executed include:

• t1 = OUTPUT; ρ1 = 3; P11 = (5, 1); P21 = (8, 0).
• t2 = INPUT; ρ2 = 4; P12 = (4, 0); P22 = (7, 2).
• t3 = INPUT; ρ3 = 10; P13 = (4, 0); P23 = (1, 3).
• t4 = OUTPUT; ρ4 = 11; P14 = (7, 2); P24 = (8, 0).
• t5 = OUTPUT; ρ5 = 20; P15 = (7, 1); P25 = (8, 0).

In a properly executed simulation, the timing for each event (in seconds) is detailed in
Table 1. Additionally, a Gantt chart depicting the sequence of operations is presented in
Figure 6.

Table 1. Timing of the events (in seconds) associated with each of the operations in the showcased simulation.

Operations

Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

AVAILr1 (1) = ρ1 = 3 STARTs2 (2) = 4 STARTs3 (3) = 26 AVAILr4 (4) = 11 AVAILr5 (5) = 20
STARTrr (1) = 3 AVAILr2 (2) = 23 AVAILr3 (3) = 45 STARTr4 (4) = 77 STARTr5 (5) = 92
ENDr1 (1) = 17 ENDs2 (2) = 26 ENDs3 (3) = 48 ENDr4 (4) = 90 ENDr5 (5) = 109

STARTs1 (1) = 17 STARTr2 (2) = 27 STARTr3 (3) = 50 STARTs4 (4) = 90 STARTs(5) = 112
ENDl1 (1) = 28 ENDr2 (2) = 42 ENDr3 (3) = 66 ENDl4 (4) = 101 ENDl(5) = 123
ENDs1 (1) = 39 ENDs4 (4) = 112 ENDs(5) = 134
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Figure 5. Planar (left) and frontal (right) view of the SLC-AS/RS considered.

Figure 6. Schematic representation of operations in the presented example.

6. The Proposed Simulation Optimization Algorithm

This section delineates the hybrid algorithmic approach utilized to address the afore-
mentioned problem. This approach combines biased randomization with discrete-event
heuristics; consequently, both concepts are described in the following subsections.

6.1. Biased-Randomized Heuristics

The algorithm proposed can be classified as a biased-randomized heuristic. BR al-
gorithms are part of the family of random search methods extensively employed for ad-
dressing large-scale NP-hard optimization problems. As described by Dominguez et al. [7],
in a BR algorithm, solution-building elements are arranged in a list based on logical cri-
teria specific to the optimization problem at hand. Subsequently, during each iteration
of the solution-construction process, a new element is selected from this list according to
a probability distribution. The probability of selection increases with a higher position
of the element in the sorted list. This approach aims to introduce slight modifications to
the greedy constructive path, facilitating exploration beyond local optima by traversing
‘similar’ paths (retaining most of the heuristic logic) within shorter computing times.

Two of the earliest biased-randomized procedures were proposed by Arcus [23] and
Tonge [24], known as biased random sampling (BRS), and used to bias the selection of
randomly generated solutions. Subsequently, numerous priority-rule-based heuristics
have been developed. Before the advent of BR techniques utilizing skewed probability
distributions like the geometric one, probabilistic tabu search (PTS) was introduced by
Glover [25] and expanded upon again by Glover [26]. Another metaheuristic framework
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implementing similar concepts is ant colony optimization (ACO), pioneered by Dorigo
and Gambardella [27]. However, many of these approaches define probabilities using
empirical distributions. An alternative approach advocates employing theoretical probabil-
ity distributions. Consequently, some authors have advocated for the implementation of
skewed theoretical probability distributions to devise BR algorithms. Overall, the primary
advantages of utilizing a theoretical probability distribution over empirical ones include:
(i) the reduced computing times required for generating random numbers (employing ana-
lytical expressions instead of loops); and (ii) simplification of the fine-tuning process (which
might become intricate when using empirical probability distributions due to the numerous
parameters and their ranges). Among the most commonly used theoretical probability dis-
tributions in BR algorithms is the geometric distribution, chosen likely due to its flexibility,
simplicity, and dependence on a single parameter. The algorithm’s dependence on a single
parameter streamlines the fine-tuning process, avoiding time-consuming complexities.

6.2. Adding Discrete Event Simulation Principles to BR

To synchronize the various events within the warehouse, the BR heuristic is enhanced
with a discrete event simulation. Employing DES allows for a consistent and reliable
evaluation of the impacts of BR decisions. Given the system’s high parallelism and synchro-
nization complexities, measuring the makespan of a set of operations would be infeasible
without DES. Consequently, during the deterministic discrete event simulation of the sys-
tem, a BR process is employed at each decision stage to select the next building element
from a list of candidates. This hybrid BR-DES approach facilitates the rapid generation of a
range of feasible solutions (in terms of event synchronization) guided by the logic of the
constructive heuristic, ensuring potentially favorable solutions in terms of quality. The inte-
gration of BR with DES is depicted in Figure 7. The entire algorithm can be visualized as a
multi-start framework, where, until the computational time does not surpass a predefined
threshold, new, random but oriented solutions are continually generated from scratch.
This architecture comprises two distinct components: the BR heuristic, which includes a
Monte Carlo simulation that makes random but oriented decisions, and the discrete event
simulation. Each new solution is created by running the simulation, delegating decisions
to BR within what we term the algorithm simulation loop. Subsequently, the new solution
is compared with the best solution obtained so far and this is replaced if superior.

Within the simulation loop, key decisions made by BR include the sequencing of
input and output operations, the selection of retrieved bundles to fulfil customer orders,
and the allocation of storage locations for entering bundles. Specifically, input and output
requests are jointly processed using an FIFO criterion. For each request, the algorithm
strives to deliver a satisfactory and feasible solution—such as assigning a storage location
for input operations or a set of bundles for output operations. If the solution found is
deemed infeasible, the request is postponed, and the subsequent input request is processed.
For instance, when k ∈ Rin represents an input request and the solution is infeasible, all
subsequent input requests originating from the same input point sk are deferred. This
strategy minimizes changes to the input request queue, crucial due to the complexities of
handling large metal bar bundles, as detailed in Section 4. Specifically, if the non-feasible
input request involves storing a bundle of type ck, all subsequent inputs are postponed
until after the next output request requiring retrieval of the same bundle type. This
action, as exemplified in Table 2, ensures sufficient space is created by the output request,
guaranteeing fulfillment of the previously postponed non-feasible request k.
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Figure 7. Flowchart of a generic discrete-event heuristic.

Table 2. List of requests before (left) and after (right) the postponement process.

Request
k

Type
tk

I/O Point
sk

Bundle
Type ck

Request
k

Type
tk

I/O Point
sk

Bundle
Type ck

1 IN 1 A 2 IN 2 B

2 IN 2 B 4 OUT 3 B

3 IN 1 C 5 OUT 3 A

4 OUT 3 B 1 IN 1 A

5 OUT 3 A 3 IN 1 C

6 IN 2 C 6 IN 2 C
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If the non-feasible request pertains to an output, it is deferred until after the subsequent
input that introduces the required product type into the system. The pseudo-code outlining
the overall BR-DES algorithm is presented in Algorithm 1. The parameters within the
algorithm should be interpreted as follows: requests denotes the list containing both input
and output orders to be processed; racks signifies the list of warehouse racks; and beta
represents the vector of parameters utilized for the geometric distributions employed in
the various BR processes.

Algorithm 1 Pseudo-code of the proposed BR-DES algorithm.

input: requests, racks, beta
solution← NULL ▷ init final solution
while length(requests) > 0 do

nextr ← getNextRequest(requests)
reqSol ← NULL ▷ init solution to current request
if type(nextr) == Input then

sol ← processInput(nextr, solution, racks, beta)
else if type(nextr) == Output then

sol ← processOutput(nextr, solution, racks, beta)
end if
if isFeasible(sol) then

postponementProc(nextr, requests) ▷ request postponed
else

solution← add(solution, sol)
end if

end while
return solution

For an input operation, the objective is to identify an available space within the
warehouse to accommodate the incoming bundle. The space must be sufficiently long,
aligning with the bundle’s type (code). To determine a viable solution, all racks are taken
into consideration. During each iteration, racks are prioritized based on the availability
of their respective cranes, with one of these racks chosen through a BR procedure. This
phase is crucial for ensuring an equitable distribution of workload among all cranes.
Specifically, the BR procedure incorporates a geometric probability distribution, as proposed
in Hatami et al. [28]. If x denotes the position occupied by a candidate in the previously
sorted list and β represents the parameter of the geometric probability distribution, then
the probability f (x) of selecting candidate x is calculated as follows:

f (x) = (1− β)x (6)

When the chosen rack contains feasible storage locations, one of them is randomly
selected using a uniform distribution. The decision is recorded in the emerging solution,
and a new operation is scheduled to update the system’s state. However, if the selected rack
lacks feasible space, it is eliminated from the list of potential racks, and the BR rack-selection
process is reiterated. If the list of potential racks becomes empty without finding a solution,
a non-feasible solution is returned. In such cases, the BR-DES procedure postpones the
input request. The pseudo-code for processing input operations is presented in Algorithm 2.



Algorithms 2024, 17, 46 13 of 20

Algorithm 2 Pseudo-code for input processing

input: nextr, solution, racks, beta
pRacks← copy(racks) ▷ list of racks to consider
sol ← NULL ▷ solution to the current request
while sol == NULL and length(pRacks) > 0 do

pRacks← sort(pRacks, key : craneAvailability) ▷ sort racks prioritizing the busiest
ones

rack← findBR(pRacks, beta) ▷ select a rack by using BR
pPlaces← feasiblePlaces(rack) ▷ feasible storage locations
if length(pPlaces) > 0 then

place← randomUniformChoice(pPlaces) ▷ pick a random storage location
sol ← newInputOperation(nextr, rack, place)
scheduleOperation(solution, sol) ▷ schedule the new operation to carry out

else ▷ if rack has no feasible solution, remove it
pRacks← remove(pRacks, rack)

end if
end while
return sol

For output operations, constructing a solution involves selecting multiple bundles.
Upon choosing a bundle, the system’s state must be updated to accurately select the
subsequent bundle. However, the solution cannot be deemed feasible until all required
bundles have been retrieved. Therefore, before initiating solution construction, the system’s
state is saved to enable restoration to a previous state if the solution is found to be non-
feasible. The construction process operates iteratively. If, at any stage, quantity constraints
are violated and no feasible bundles remain, the process is halted, the system state is
restored, and a non-feasible warning is issued. Similarly, if the construction process
adheres to quantity constraints but violates quality constraints, the system state is restored
and a non-feasible warning is issued. For a bundle to be considered feasible, its weight,
in addition to the weight of the current solution, must not surpass a predefined threshold.
Bundles from prior input operations are only considered if the respective input operation
has concluded. If no feasible bundles exist in the selected rack, the rack is eliminated from
the list of potential racks, and the process begins anew with another rack. Conversely,
if feasible bundles are available, they are arranged by decreasing the weight and then by
the difference between their quality and the required quality level. Bundles with quality
levels closer to the required level are given priority. Once the bundles are sorted, one
of them is selected using a new geometric distribution (note that the β parameter value
used here may differ from the one used for rack selection). Subsequently, the solution’s
weight, total quality, and the count of retrieved items are updated. The system state is also
updated, and the list of possible racks is reset. This process continues iteratively until a
feasible solution is achieved. The pseudo-code for processing output operations is detailed
in Algorithm 3.
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Algorithm 3 Pseudo-code for output processing.

input: nextr, solution, racks, beta
sSolution← copy(solution) ▷ save the state of the solution
sol ← NULL ▷ solution to the current request
pRacks← copy(racks) ▷ list of racks to consider
w← 0 ▷ total weight of retrieved bundles
q← 0 ▷ total quality of retrieved bundles
n← 0 ▷ number of retrieved bundles
while w < weightRequired(nextr)− acceptedError(nextr) and length(pRacks) > 0 do

pRacks← sort(pRacks, key : craneAvailability) ▷ sort racks prioritizing the busiest
ones

rack← findBR(pRacks, beta) ▷ select a rack by using BR
pBundles← feasibleBundles(rack, w, nextr) ▷ feasible bundles in rack
if length(pBundles) > 0 then

pBundles← sort(pBundles, key : increasingWeight) ▷ sort bundles by weight
pBundles← sort(pBundles, key : deltaQuality) ▷ sort bundles by quality
bundle← findBR(pBundles, beta) ▷ select a bundle by using BR
w← w + weight(bundle) ▷ update weight
q← q + quality(bundle) ▷ update quality
n← n + 1 ▷ update number of retrieved bundles
op← new OutputOperation(nextr, rack, bundle) ▷ instantiate a retrieve
scheduleOperation(solution, op) ▷ schedule a retrieval operation
sol ← add(sol, op)
pRacks← copy(racks) ▷ restore the set of possible racks

else
pRacks← remove(pRacks, rack)

end if
end while

7. Computational Experiments

The BR-DES algorithm was implemented in Python 3.7 and executed using the
CPython interpreter. The testing was conducted on a standard personal computer equipped
with an Intel QuadCore i7 CPU running at 2.4 GHz and 8 GB RAM with the Ubuntu 18.04
operating system. When constructing the experimental data sets, the quality level of each
bundle was randomly generated using a uniform probability distribution between 1 (mini-
mum level) and 10 (maximum level). Then, the quality of a solution was computed as the
average of the quality of the retrieved bundles. The input quantity was randomly generated
using a uniform probability distribution between 700 and 1300, expressed in kilograms. We
assume that two bundles enter together as input, each with an average weight of 500 kg.
Finally, since a customer might require many bundles, the output quantity was randomly
generated using a uniform probability distribution between 700 and 10,000, expressed in
kilograms. Table 3 displays the data corresponding to Instance 1, where type 0 represents
an input point and type 1 refers to an output point. Both the desired quality and quantity
are provided as reference values. These reference values will be compared with those
associated with the solution provided by each algorithm to calculate the mismatch. Similar
data for the remaining instances, as well as the algorithm code, are available at https:
//github.com/mattianeroni/Shuttle-Lift-Crane-AS-RS (accessed on 15 January 2024).

https://github.com/mattianeroni/Shuttle-Lift-Crane-AS-RS
https://github.com/mattianeroni/Shuttle-Lift-Crane-AS-RS
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Table 3. Example of an instance data set—Instance 1.

Type Bay Desired Quality Desired Quantity Length (in Shelves)

0 1 9 900 5
0 0 4 1200 4
0 1 8 800 5
0 0 1 800 6
0 1 7 900 6
0 1 5 1200 5
0 0 2 1000 5
0 1 9 1000 4
0 0 7 1100 6
1 2 9 3056 4
1 2 10 766 3
1 3 4 3719 3
1 3 10 6682 4
1 2 6 6788 6
1 3 2 8165 6
1 2 10 4257 6
1 2 4 9901 5
1 2 10 1449 3
1 2 7 6592 4
1 2 10 7505 4
1 3 5 6394 3
1 3 5 1922 6
1 3 9 6943 5
1 3 6 1615 3
1 2 3 2567 4
1 3 5 1268 4
1 2 6 6621 5
1 3 2 8400 5
1 2 7 9665 6
1 3 4 8262 3

As can be seen in Tables 4 and 5, our algorithm demonstrates an efficient performance,
since it is capable of providing competitive solutions in just a few seconds, while other
approaches require noticeably longer times without reaching the same solution quality.
To validate the proposed methodology, a comparison with three distinct approaches is
presented. The selected benchmark approaches are as follows: (i) a random algorithm
utilizing a uniform probability distribution to select from different possibilities at each
step of the solution-construction process; (ii) a greedy heuristic that consistently chooses
the top-listed element in the candidates’ list, sorted based on a minimum time criterion;
and (iii) the simulated annealing method proposed by Bertolini et al. [6] for a similar
problem, adapted for the specific problem considered in this study by incorporating new
constraints. The random approach serves as a lower-bound benchmark and was obtained
by implementing the proposed BR-DES while substituting the geometric distribution with
a uniform distribution. This adjustment was achieved by setting the beta value to 0 in
the BR-DES algorithm. However, when employing such low beta values, the algorithm
often failed to find a feasible solution. To address this limitation, we utilized a geometric
probability distribution with a slightly higher beta value of 0.3, allowing the algorithm
to discover feasible solutions in most test scenarios, although not all. On the other hand,
the greedy algorithm presents a practical solution for warehouse system managers and
was acquired by implementing the proposed BR-DES with a beta value of 1. The SA
algorithm by Bertolini et al. [6] is currently the only algorithm explicitly tailored for this
type of automated warehouse system (i.e., an SLC-AS/RS). While theoretically serving as
a solid benchmark, the original SA algorithm did not consider any constraints regarding
the sequence of request processing. To ensure a fair comparison, we integrated these
constraints into the SA algorithm.



Algorithms 2024, 17, 46 16 of 20

For the comparison, we employed the actual layout of an SLC-AS/RS consisting of
three racks, each containing 500 storage locations, with two input and two output points.
In the computational experiments, 12 different request lists were used, each varying in size
(30, 60, 90, and 150 requests). Every algorithm was executed three times on each request
list to monitor both its average performance and its variability. The comparison primarily
focuses on the total makespan, expressed in minutes (Table 4), and computational time
(Table 5). Additionally, we monitored the overall mismatch between the quantities and
quality levels required by customers (Table 6). The parameters of the proposed algorithm,
namely the betas of the geometric distribution used in the selection of racks (βr) and
bundles (βb), were adjusted in each iteration according to trimmed Gaussian distributions.
The means of these Gaussian distributions (µr = 0.7 and µb = 0.9) were determined through
a series of empirical experiments, exploring combinations of µr ∈ (0, 1) and µb ∈ (0, 1)
with a step of 0.1. Both were set with a standard deviation of 0.025. Regarding SA, the same
parameter values as proposed in Bertolini et al. [6] were employed. All BR-DES and SA
results were acquired after exploring 1000 solutions. The makespan results are presented in
Table 4. As anticipated, our proposed algorithm consistently outperforms the greedy and
random approaches, as well as the SA algorithm, in all instances. Notably, the random and
greedy approaches often fail to find feasible solutions, whereas our algorithm consistently
obtains feasible solutions in all scenarios.

Table 4. Comparison of makespans (in minutes) achieved by the greedy, random, BR-DES, and SA
approaches for each instance (row).

Instance Number of Requests Greedy
Random (Beta = 0.3) BR-DES SA

Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

1 30 (9 in/21 out) 37.24 48.36 2.29 32.04 0.15 43.22 4.52
2 30 (12 in/18 out) 35.34 39.41 0.48 31.03 0.32 37.12 3.28
3 30 (12 in/18 out) 40.53 49.47 4.87 38.02 0.18 44.97 0.01
4 60 (9 in/51 out) 55.46 71.95 3.76 51.19 0.89 59.03 0.74
5 60 (12 in/48 out) 52.20 69.00 5.82 44.63 2.08 54.25 2.17
6 60 (26 in/34 out) 52.24 72.04 0.93 48.93 0.55 52.10 1.75
7 90 (42 in/48 out) 112 132.43 - 105.02 3.9 110.84 10.23
8 90 (28 in/62 out) 89.29 115.24 4.18 88.32 1.52 89.20 3.33
9 90 (35 in/55 out) 108.36 132.14 4.70 107.50 1.84 110.34 2.21

10 150 (38 in/112 out) - - - 230.96 100.23 257.12 23.04
11 150 (73 in/77 out) - 255.67 - 227.94 7.90 241.23 0.34
12 150 (59 in/91 out) - - - 195.89 6.64 201.32 6.43

Table 5. Computational times (in seconds) associated with each of the approaches (greedy, random,
BR-DES, and SA) for each instance (row).

Instance Number of Requests Greedy
Random (Beta = 0.3) BR-DES SA

Avg. St.Dev. Avg. St.Dev. Avg. St.Dev.

1 30 (9 in/21 out) 0.001 0.001 0 1.002 0.002 5.234 0.122
2 30 (12 in/18 out) 0.001 0.001 0 1.034 0.004 8.032 0.392
3 30 (12 in/18 out) 0.001 0.002 0 1.009 0 6.003 3.211
4 60 (9 in/51 out) 0.001 0.001 0 1.023 0.002 6.023 0.045
5 60 (12 in/48 out) 0.001 0.003 0 1.206 0.034 5.998 1.520
6 60 (26 in/34 out) 0.001 0.003 0 1.115 0.078 5.104 2.174
7 90 (42 in/48 out) 0.002 0.005 0 1.904 0.022 19.047 2.348
8 90 (28 in/62 out) 0.001 0.019 0 1.821 0.103 18.222 2.011
9 90 (35 in/55 out) 0.003 0.004 0 2.338 0.088 22.304 8.327

10 150 (38 in/112 out) - - - 2.904 0.155 35.120 2.664
11 150 (73 in/77 out) - 0.027 - 3.011 0.095 33.979 2.884
12 150 (59 in/91 out) - - - 2.992 0.121 34.014 6.092

An additional noteworthy aspect is the greater variability exhibited by the SA algo-
rithm when compared to the BR-DES algorithm. This variability is due to the SA algorithm’s
exploration of infeasible solutions across numerous iterations, as it is not guided by a dis-
crete event list. In contrast, BR-DES operates based on a discrete event list, allowing for
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feasibility and making informed decisions at each stage. Consequently, it requires consider-
ably less computational time to achieve comparable or superior solutions compared to those
generated by the SA algorithm. Computational times are displayed in Table 5. Notably,
our BR-DES consistently outperforms the SA algorithm in terms of solution quality as well
as computational efficiency. Throughout the tests, we closely monitored the deviation,
encompassing both quantity and quality indicators, between the optimal solution derived
by the algorithms and the customer-requested specifications. Table 5 presents the aggregate
discrepancy observed after fulfilling all the requests. Each algorithm underwent three
executions for each instance. In these terms, BR-DES emerges as the superior approach.
The top solutions obtained by BR-DES for each instance are significantly approximate to
the customers’ specified requirements, both in terms of quality and quantity. Following
closely, the SA algorithm constitutes the second-best alternative. At times, the greedy
algorithm produces commendable solutions. However, this achievement often prolongs the
makespan. Minimizing the divergence between the proposed solution and the customers’
stipulations holds immense significance. Even as the primary objective revolves around
reducing the makespan, meticulous adherence to the aforementioned quality and quantity
requisites significantly augments customer satisfaction.

Table 6. Mismatches in quantity (kilograms) and quality levels between the required and retrieved
items for each approach (greedy, random, BR-DES, and SA) and instance (row).

Instance
Greedy Random (Beta = 0.3) BR-DES SA

Quantity
Mismatch

Quality
Mismatch

Quantity
Mismatch

Quality
Mismatch

Quantity
Mismatch

Quality
Mismatch

Quantity
Mismatch

Quality
Mismatch

1 2373 3.70 9219 16.40 1326 9.59 2881 40.21
2 1890 8.42 6084 36.89 860 14.91 1421 28.91
3 1134 14.19 7470 16.72 931 21.95 1721 22.21
4 3468 16.94 23,205 112.86 3809 67.58 5580 93.21
5 8880 15.78 12,432 56.66 3143 12.28 5772 88.28
6 2418 29.62 7832 84.69 2539 50.36 4103 18.22
7 4896 38.63 19,296 13.96 4752 20.17 5193 33.22
8 9610 15.42 21,204 55.61 3640 41.71 3698 17.03
9 8525 13.27 4850 146.91 5225 42.46 4433 31.99

10 - - - - 6272 19.15 9003 198.02
11 - - 12,936 15.44 6006 14.14 8633 92.26
12 - - - - 7189 120.45 8874 6.31

Figures 8 and 9 visually juxtapose the considered approaches with regards to makespan
and quantity mismatch. Since the greedy and random approaches fail to produce feasible
solutions for Instances 10 to 12, only Instances 1 to 9 are considered in these figures. Notice
that the BR-DES algorithm outperforms all other approaches both in terms of the makespan
and the quantity mismatch.

Figure 8. Makespan comparison of different approaches.
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Figure 9. Quantity mismatch comparison of different approaches.

8. Conclusions and Future Perspectives

This paper has discussed a complex and realistic warehouse automated storage and
retrieval system (AS/RS) in the steel industry sector. The peculiar characteristics of this
sector, notably the considerable size and weight of items and bundles stored and retrieved,
alongside stringent quality constraints, constitute a challenge when enhancing the system
performance. Traditional approaches such as developing a simulation model or employing
classical optimization methods, albeit viable, present limitations to providing optimal
solutions within reasonable computational time frames. Hence, this paper advocates a
novel hybrid simulation optimization algorithm. It combines the precision of discrete
event simulations, crucial in managing time dependencies within the system’s sequential
operations, with a biased-randomized heuristic. This combination, encapsulated within a
multi-start framework, swiftly generates a multitude of promising, high-quality solutions
in seconds, outperforming the more traditional simulated annealing (SA) metaheuristic.
Although the SA algorithm is a robust approach, it struggles to adequately address the
intricate time dependencies among events in the warehouse system.

Our approach boasts adaptability, a key advantage for accommodating novel scenarios.
Based on simulation principles, it holds the potential to evolve into a simheuristic [28],
adept at tackling stochastic versions of the problem. This adaptability extends to various
AS/RS configurations, thus illustrating its versatility. Furthermore, the computational
experiments conducted confirm the capacity of our approach in providing feasible and
high-quality solutions for optimization problems characterized by complex constraints,
especially those entailing intricate time dependencies among decisions.

From a managerial perspective, the proposed approach can enhance decision-making
processes, particularly in managing the complexities of AS/RS operations characterized by
time-dependent sequences and stringent constraints. The BR-DES algorithm is specifically
tailored to the challenges of steel storage systems, including large item sizes, substantial
weights, and strict quality constraints. From a business impact perspective, the algorithm
contributes to improving the operational efficiency by rapidly generating high-quality
solutions, resulting in a reduced makespan and optimized resource utilization. This,
in turn, can lead to savings in labor, energy, and equipment usage. The algorithm’s focus
on reducing the discrepancy between the proposed solutions and customer specifications
ensures an enhanced customer satisfaction, thereby positively impacting customer relations.

The following points outline the potential directions for future research: (i) extend-
ing our approach to achieve full automation, enabling the algorithm to make decisions
autonomously without human intervention; (ii) improving the algorithm’s handling of
weight and quality constraints, particularly in more constrained scenarios, to enhance
its effectiveness even further; and (iii) expanding the approach to encompass scenarios
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involving random times and stochastic availability of items, broadening its applicability to
diverse, less deterministic environments.
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