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a b s t r a c t

In this manuscript, we propose an iterative step that, combined with any other
method, allows us to obtain an iterative scheme for approximating the simple
roots of a polynomial simultaneously. We show that adding this step, the order
of convergence of the new scheme is tripled respect to the original one. With
this idea, we also present an iterative method that obtains multiple solutions of
any nonlinear equation simultaneously, without the need to know the multiplicity
of the solutions. We conclude with several numerical experiments to confirm the
behaviour of the proposed methods.
©2023 The Authors. Published by Elsevier Ltd. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Solving nonlinear equations f(x) = 0 is a old problem of science and engineering. To solve this type
f equation is, in general, neither easy nor possible. So, iterative methods are used for approximating
heir solutions. These schemes can be classified, among others, in to single and simultaneous root finding
ethods. Numerous authors have studied the problem of simultaneously obtaining all the roots of polynomial

quations, designing iterative schemes with or without derivatives. See for example [1–6] and the references
herein.

In the paper [7], the authors presented an iterative step to obtain roots simultaneously whatever the type
f nonlinear equation. From an iterative method of order p, we can combine that method, used as a predictor,
ith the mentioned iterative step, to obtain a scheme that obtains roots simultaneously with order 2p. In

his manuscript, we are going to modify step suggested in [7] to increase the order to 3p when dealing with
olynomial equations. In both cases, these methods assume that the solutions have multiplicity one.

For this reason, we also focus in this article on proposing a method that obtains roots simultaneously
hen they are not simple, but without the need to know the multiplicity, that is, we do not employ the
ultiplicity in the iterative expression of the method.
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In the manuscript [8], the authors proposed a method with quadratic order of convergence, and that
obtains multiple roots without knowing this multiplicity. We add to this method the iterative step proposed
in this manuscript, obtaining a method of order 4 for any type of equations and of order 6 for polynomial
equations, which, as we have already mentioned, obtains multiple roots simultaneously.

The manuscript is structured as follows. In Section 2, the order of convergence of the proposed method for
simple roots is presented and analysed. In Section 3, the order of convergence of the method for simultaneous
multiple solutions (2) is studied. In Section 4, several numerical experiments are carried out to see the
behaviour of the proposed iterative methods, and the paper concludes with Section 5, where conclusions are
drawn from the work done.

2. Convergence analysis

Let us denote by ϕ an iterative scheme having order of convergence p. We can define ϕs, using ϕ as a
redictor, as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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Similar to what happens in [7], the order of convergence of the above method is 2p when we solve nonlinear
equations. Next, we are going to prove that method (1) has order of convergence 3p for polynomial equations.

Theorem 1. Let us define a polynomial function of degree n, f : D ⊆ C −→ C in a neighbourhood D of
αi, such that f(αi) = 0 for i = 1, . . . , n. Let us suppose that f ′(αi) ̸= 0 is satisfied for i = 1, . . . , n. If ϕ is an
iterative method with order p, then, taking an initial estimation x(0) close enough to α = (α1, α2, . . . , αn),
sequence {x(k)} generated by method (1) converges to α with order 3p.

Proof. Let us denote by ei,k = x
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Since method y
(k)
j = ϕ(x(k)

j ) has order of convergence p, this means that y
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The previous relation shows that the order of convergence of ϕs is 3p when f(x) = 0 is a polynomial
equation. □

3. Solving multiple solutions simultaneously

In the previous cases, we have assumed that we only have solutions with multiplicity one, but what
happens if we have different multiplicities? For this reason, what we do is to combine the method proposed
in [8], KM method, with the iterative step defined in this manuscript, in order to find as many solutions as
we wish, and are possible, regardless of whether they have multiplicity 1 or higher.
3
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The proposed method, which we denote by KMs, has the following iterative expression, where
(x) = f(x)

f ′(x) , ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
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This scheme has order of convergence 4, for nonlinear equations, and order 6 for polynomial equations.

Theorem 2. Let us consider a sufficiently differentiable function f : D ⊆ C −→ C in a neighbourhood
of αi for i = 1, . . . , n, such that f(αi) = 0 for i = 1, . . . , n with unknown multiplicity mi ∈ N − {1},

or i = 1, . . . , n. Taking an initial estimation x(0) close enough to α = (α1, α2, . . . , αn), then method KMs

onverges to α with order 4.
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that is, ei,k+1 ∼ e2
i,y,k. And, since ei,y,k has order of convergence 2, it is proven that method KMs has order

f convergence 4 for nonlinear equations. Similar to Theorem 1, we can prove that the KMs method has
rder of convergence 6 for polynomial equations. □

. Numerical results

In this section, different numerical experiments are carried out in order to analyse the selected methods
or solving nonlinear equations. Here, we modify Newton’s method (denoted by N), Steffensen’s method [9]
denoted by S), the N4 and N8 methods designed in [10], and the M4 and M6 schemes constructed in [11].
ccording to the same notation used in the previous section, let us denote by ϕs the step-added variant of
n iterative scheme ϕ.

The numerical results shown in this section have been performed using Matlab 2020b with variable
recision arithmetic with 2000 digits. The iterative process ends when ∥F

(
x(k+1)) ∥2 is less than the chosen

olerance, where F
(
x(k+1)) =
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(
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(k+1)
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, . . . , f
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eached. In the different tables, we shown: ∥F
(
x(k+1)) ∥2, where x(k+1) is the last iteration, ∥x(k+1) −x(k)∥2,

he number of iterations necessary to satisfy the required tolerance, and the approximated computational
rder of convergence (ACOC), defined in [12], by:

p ≈ ACOC = ln(∥x(k+1) − x(k)∥2/∥x(k) − x(k−1)∥2)
ln(∥x(k) − x(k−1)∥2/|∥x(k−1) − x(k−2)∥2) .

e perform different numerical experiments, both with single and multiple roots.

• f1(x) = (x − 1)(x + 2)(x − 5) = 0. Initial estimations x(0) = (0.5, −1, 4) and x(−1) = 0.95(0.5, −1, 4),
−200
and tolerance 10 .
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Table 1
Results for the equation f1(x) = 0.

Method ∥x(k+1) − x(k)∥2 ∥F (x(k+1))∥2 Iteration ACOC

Ns 1.5973 × 10−72 3.2438 × 10−436 4 6.0624
Ss 2.1948 × 10−178 2.431 × 10−1066 8 5.9526
N4,s 2.9452 × 10−43 4.945 × 10−524 3 12.766
N8,s 3.2577 × 10−150 0 3 25.388
M4,s 3.971 × 10−171 0 4 12.449
M6,s 1.1206 × 10−11 6.2692 × 10−207 3 19.283
KMs 2.2214 × 10−165 3.0604 × 10−534 7 3.2246

Table 2
Results for the equation f2(x) = 0.

Method ∥x(k+1) − x(k)∥2 ∥F (x(k+1))∥2 Iteration ACOC

Ns 1.6047 × 10−7 2.1743 × 10−26 24 1.0
Ss 4.7822 × 10−8 1.5417 × 10−26 26 1.0
N4,s 3.4075 × 10−7 3.2454 × 10−26 15 1.0
N8,s 3.3765 × 10−7 6.0992 × 10−27 12 1.0
M4,s 2.1164 × 10−7 9.1334 × 10−27 17 1.0
M6,s 3.8861 × 10−6 3.9141 × 10−40 37 5.0101
KMs 5.1263 × 10−10 1.2125 × 10−28 4 5.6266

• f2(x) = (x − 1)4(x − 3)2(x + 2) = 0. Initial estimations x(0) = (0.8, 3.5, −1.5) and x(−1) =
0.95(0.8, 3.5, −1.5).

• f3(x) = (ex2−1 − ex3−2x2−x+2)2 = 0. Initial estimations x(0) = (−1.2, 1.2, 2.8) and x(−1) =
1.05(−1.2, 1.2, 2.8).

• f4(x) = (x2 − 1)2 = 0. Initial estimations x(0) = (−1.5, 1.5) and x(−1) = 0.95(−1.5, 1.5). For f2, f3 and
f4, we use as tolerance 10−25.

Table 1 shows the data obtained for the equation f1(x) = 0. We can observe that the approximations
obtained are similar in all cases. We can observe that the methods that obtain better approximations are
those with higher ACOC. Also, we see that in this case Steffensen’s method performs more iterations than
method KMs, which is focused on finding solutions with multiplicities greater than 1.

The results for the equation f2(x) = 0 are given in Table 2. For the methods KMs, Ss and M4,s, the
vector of obtained solutions is approximately (1, 3, −2), while for the rest of the methods it is approximately
(1, 3, 3). Thus, we can observe that the KMs method converges to more roots in fewer iterations. Moreover,
as is shown in the ACOC column, the only method that obtains an approximate computational convergence
order that is similar to the theoretical one, is the KMs method.

Table 3 summarizes the results for solving f3(x) = 0. For the methods different from KMs, the vector of
approximations obtained is approximately (−1, 1, 1), while for method KMs it is approximately (−1, 1, 3).
Thus, we can observe that method KMs converges to more roots than the rest of the methods, and moreover,
it does so in fewer iterations. Moreover, we can see that it is the only method that obtains an ACOC similar
to the theoretical order.

The numerical results obtained for f4(x) = 0 are shown in Table 4. For the methods Ss, M4,s and M6,s, the
vector of approximations obtained is approximately (1, 1), while for the other methods it is approximately
(−1, 1). The conclusions for this example are similar to the previous one.

As a conclusion of these numerical experiments, we observe that the method to use when the roots are
not simple is the method KMs since the rest of them do not converge or do not obtain as many roots as
possible. Besides, for a tolerance that is not too demanding, they need too many iterations to satisfy the
stopping criterion.
6
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Table 3
Results for the equation f3(x) = 0.

Method ∥x(k+1) − x(k)∥2 ∥F (x(k+1))∥2 Iteration ACOC

Ns 9.0686 × 10−14 5.8438 × 10−26 21 0.99958
Ss n.c n.c n.c n.c
N4,s 2.2828 × 10−13 6.6358 × 10−26 14 0.99165
N8,s 1.3799 × 10−13 4.755 × 10−27 11 0.97952
M4,s n.c n.c n.c n.c
M6,s n.c n.c n.c n.c
KMs 4.0863 × 10−12 2.6753 × 10−33 4 8.9077

Table 4
Results for the equation f4(x) = 0.

Method ∥x(k+1) − x(k)∥2 ∥F (x(k+1))∥2 Iteration ACOC

Ns 1.6904 × 10−13 8.9803 × 10−27 22 1.0
Ss 2.7531 × 10−13 8.5756 × 10−27 18 1.0
N4,s 1.8699 × 10−13 2.0183 × 10−27 15 1.0
N8,s 8.317 × 10−13 8.6956 × 10−27 11 1.0
M4,s 3.2951 × 10−11 2.6339 × 10−44 28 2.0108
M6,s 1.384 × 10−6 7.035 × 10−27 49 2.3229
KMs 3.1386 × 10−22 3.9569 × 10−69 4 4.0326

5. Conclusions

In this manuscript, we have defined an iterative method for polynomial equations from any other iterative
method that obtains roots simultaneously, and this new iterative scheme is three times the order of the
original iterative method. We have also added the iterative step to a method proposed in [8] in order to
obtain a new iterative method that obtains solutions with several multiplicities simultaneously, without the
need to use the value of the multiplicity in its iterative expression. This method has order 4 for nonlinear
equations, and increases to order 6 for polynomial equations. After the convergence analysis, different
numerical experiments are made with the proposed simple root methods based on known methods in order to
study the performance of these new iterative schemes, showing that the ACOC is close to the expected order
of convergence. We have also performed experiments with the method for multiple solutions simultaneously
to observe the behaviour of the method.
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