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Abstract: This work was aimed at the characterization of residual generated biomass from pruned
tree species present in the Andean areas of Ecuador as a source of energy, both in plantations and in
urban areas, as a response to the change in the energy matrix proposed by the Ecuadorian government.
From the proximate analysis (volatiles, ashes, and fixed carbon content), elemental analysis (C, H, N, S,
O, and Cl), structural analysis (cellulose, lignin, and hemicellulose content), and higher heating value,
the studied species were pine (Pinus radiata), cypress (Cupressus macrocarpa), eucalyptus (Eucalyptus
globulus), poplar (Populus sp.), arupo (Chionanthus pubescens), alder (Alnus Acuminata), caper spurge
(Euphorbia laurifolia), and lime (Sambucus nigra L.) trees. We evaluated the influence of the presence
of leaves in the biomass. From this characterization, we developed a method based on obtaining
the main components for the identification of the biomass’s species. If the origin of the biomass was
unknown, this method enabled us to identify the species, with all its characteristics. If the origin of
the biomass was unknown, this innovative method enabled the identification of the species from the
lignocellulosic biomass, with all of its characteristics. Finally, we developed regression models that
relate the higher heating value to the elemental, proximate, and structural composition.

Keywords: biomass identification; biomass characterization; bioenergy; higher heating value

1. Introduction

The consensus is that fossil energy reserves have a finite nature and that they have a
substantial role in exacerbating climate change. Conversely, nuclear energy has significant
potential for environmental harm in the event of an accident [1–3]. Due to these develop-
ments, the new energy approach highlights renewable energy sources as a substitute to
fulfill local energy requirements [4], where biomass acquires a more important role to meet
thermal needs [5]. Biomass is characterized as any organic material of biological origin
that has not turned into fossilized matter and can be converted into biofuels. This includes
materials derived from agriculture (both plant and animal sources), forestry, and related
sectors, which encompass fishing and aquaculture. Additionally, biomass encompasses
the biodegradable portion of industrial and urban waste (Directiva 2009/28/CE, 2009). Its
conversion is carried out by using technologies such as direct combustion, liquefaction, hy-
drolysis, pyrolysis, gasification, and fermentation, among others [6,7]. To choose between
these technologies, one needs to conduct a series of tests and analyses. This includes assess-
ing factors such as moisture, volatile substances, fixed carbon, and ash contents through
proximate analysis. Additionally, one should perform elemental analysis to determine
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the levels of carbon, hydrogen, nitrogen, sulfur, oxygen, and chlorine. Structural analysis
is also important, which involves examining components such as lignin, cellulose, hemi-
cellulose, and extractives. Furthermore, conducting thermogravimetric and fermentative
analyses is crucial. Lastly, one should calculate both the higher heating value (HHV) and
the lower heating value (LHV) to complete the evaluation process. The processes involved
in transforming biomass and the quality of the resulting biofuels are contingent on these
specific properties [8]. This is why many authors have created mathematical models to
predict the higher heating value of biomass from the parameters of each type of analysis [9].
However, despite the fact that the use of biomass in rural areas is beginning to become of
interest to farmers in Ecuador, their knowledge of the raw materials to be used as bioenergy
is still very limited.

A significant quantity of unused organic material that could potentially be con-
verted into energy can be derived from the maintenance of urban trees and plantations
in Ecuador’s Bolívar Province. The leftover organic matter, found in both woody and
non-woody plant species, exhibits considerable variation based on factors such as the
species type, planting density, crop management system, and tree size. At present, these
leftover materials are often left in heaps, abandoned, or disposed of through burning in
fields, resulting in no immediate advantages. In fact, this practice incurs extra expenses
and hinders other agricultural activities. A significant amount of previous work has been
published on the study of calculating and/or measuring the energy properties of woody
biomass across many species. However, pruning residues are composed of both wood and
leaves. The ratio of these components (wood biomass to leaf biomass) can influence the
energy characteristics of the biomass overall. In undeveloped countries, where the origin
of chipped biomass may be unknown, the development of methods to identify the species
is very useful in order to know all of its characteristics such as the calorific power, solid
density, and bulk density; elemental analysis (C, H, N, S, O, and Cl) and structural analysis
(cellulose, lignin, and hemicellulose content) are among these methods. For this reason,
this work proposes a thermochemical characterization of the species, which can be used in
this area to identify the species, such as pine (Pinus radiata), cypress (Cupressus macrocarpa),
eucalyptus (Eucalyptus globulus), poplar (Populus sp.), arupo (Chionanthus pubescens), alder
(Alnus acuminata), and lime (Sambucus nigra L.) trees, which are species that are used in
urban areas and from which periodic pruning material is obtained, and which can also be
considered as energy crops in Andean areas.

In this work, we developed a method for the identification of biomass from proximate
analysis (volatile, ash, and fixed carbon content) based on obtaining the main components
and through the application of a probability neural net. Proximate analysis is the least
expensive method of energy characterization. It is available in most biomass laboratories.
Therefore, developing methods to evaluate all the parameters of biomass represents a great
innovation. The first step was to identify the biomass; all the parameters can be found in
the tables. Nevertheless, in addition, we developed models that relate the higher heating
value to the elemental, proximate, and structural composition.

2. Materials and Methods
2.1. Sampling and Analysis

Initially, 25 sampling points were chosen from the Province of Bolívar (Ecuador), which
included forest, agricultural, and urban areas. This province is at an altitude of 2500 m. The
land has a slope from 0 to 30%; the temperature ranges between 6 and 18 ◦C in the highlands
and from 18 to 22 ◦C in the subtropics; and the precipitation varies from 500 to 2000 mm. The
water source derives from the melting of the snow on Chimborazo Volcano.

Pine (Pinus radiata), cypress (Cupressus macrocarpa), eucalyptus (Eucalyptus globulus),
poplar (Populus sp.), arupo (Chionanthus pubescens), alder (Alnus acuminata), caper spurge
(Euphorbia laurifolia), and lime (Sambucus nigra L.) trees were identified.

Twenty-five trees of each species were pruned. The samples were collected immediately
after pruning by randomly choosing branches of different diameters, which were stored in
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airtight bags until they reached the laboratory. Samples of branches with leaves and without
leaves were taken in order to evaluate their influence on the biomass properties [10].

After separating the leaves from the wood, the leaves were dried in an oven at a
constant temperature of 105 ◦C. The pieces of wood were initially chipped into 10–15 cm
particles. Then, they were dried. Later, the samples were crushed in a mill to bring them to
a homogeneous size of 3 mm.

After drying, samples of 1 kg of mixtures of wood and leaves were prepared in the
proportions indicated in Table 1 with at least 5 repetitions in each combination.

Table 1. Combinations of wood and leaf mixtures to be characterized.

Percentage of Wood by Mass Percentage of Leaf by Mass

100% 0%
90% 10%
80% 20%
70% 30%
60% 40%
50% 50%
0% 100%

The samples were subjected to proximate analysis (volatiles, ash, and fixed carbon
content), elemental analysis (C, H, N, S, O, and Cl), structural analysis (cellulose, lignin,
and hemicellulose content), and calorific power. The standards used for the analyses are
listed in Table 2.

Table 2. Standards of analysis for biomass characterization.

Standard Reference Title

UNE EN ISO 16559 Solid Biofuels—Terminology, definitions and descriptions
UNE EN ISO 14778 Solid Biofuels—Sampling—Part 1: Sampling methods
UNE EN ISO 14780 Solid Biofuels—Methods for sample preparation

UNE EN ISO 18134-2 Solid Biofuels—Determination of moisture content—oven drying method. Part 2.
Simplified method: Total moisture content.

UNE EN ISO 18125 Solid Biofuels—Determination of calorific value
UNE EN ISO 18123 Solid Biofuels—Determination of Volatile Matter Content
UNE EN ISO 18122 Solid Biofuels—Determination of ash content

UNE EN ISO 16948 Solid Biofuels—Determination of total carbon, hydrogen and nitrogen
content—Instrumental Methods

UNE-EN ISO 16995 Solid Biofuels—Methods for determining the water-soluble content of chlorine, sodium
and potassium

UNE-EN ISO 16994 Solid Biofuels—Determination of total Sulfur and Chlorine content
UNE-EN ISO 16967 Solid Biofuels—Determination of major elements

The structural analysis was performed according to the analytical method followed by
Van Soest [11].

2.2. Biomass Identifier

In order to obtain a biomass species identification system, a principal component
analysis (CPA) was applied. This is a statistical technique of information synthesis, or di-
mension reduction (number of variables). In other words, faced with a database with many
variables, the objective is to reduce them to a smaller number, losing as little information as
possible. The main components are a linear combination of the original variables, and they
are also independent from each other.

If p variables are available, the coordinates of individual i in component 1 and 2
are given by Equations (1) and (2), in which xij is the standardized value of variable j in



Agronomy 2023, 13, 2347 4 of 18

individual i, that is, the average is subtracted and divided by the standard deviation; vj1
and vj2 are the weights of each variable in components 1 and 2, respectively.

yi1 = xi1v11 + xi2v21 + . . . + xipvp1 (1)

yi2 = xi1v12 + xi2v22 + . . . + xipvp2 (2)

The principal components yi1 and yi2 represent new coordinates chosen in such a way
as to include the greatest possible variance. For n individuals, the values of component 1
can be expressed in the matrix form(

y11
... yn1

)
=

(
x11 . . . x1p

... . . .
... xn1 . . . xnp

)(
v11

... vp1

)
y1 = Xv1

To obtain the weights v1, Equation (3) is maximized, which is equivalent to obtaining
the first eigenvector of the matrix S = XTX, such that vT

1 v1 = 1

varY1 =
1
n

yT
1 y1 =

1
n

vT
1 XTXv1 =

1
n

vT
1 Sv1 (3)

To obtain the weights v2, Equation (4) is maximized, which is equivalent to obtaining
the second eigenvector of the matrix S = XTX,such that vT

2 v1 = 0, vT
2 v2 = 1

cov(Y1, Y2) =
1
n

yT
2 y1 =

1
n

vT
2 XTXv1 =

1
n

vT
2 Sv1 (4)

The two output values, one per component, are associated with the biomass species,
defining classification areas through the application of an additional probabilistic neural
network (PNN), applied through the Statgraphics software.

This implies the application of two-stage neural systems PCA + PNN, which is a
novelty to refine the classification.

The probabilistic neural network (PNN) is a unidirectional network made up of four
layers: the input layer, the hidden pattern layer, the sum layer, and the output decision layer,
whose operation results from the Bayesian network and the kernel Fisher discriminant
analysis statistical algorithm [12].

The input layer is made up of a neurons, where a is the number of variables that allow
classification. Since the PNN takes the output of the principal components, 2 variables
enter the PNN ( a = 2), forming a two-dimensional vector

→
y i (yi1, yi2), obtained from the

application of the linear combinations of each principal component.
The hidden pattern layer is made up of n neurons, one for each sample used

for training. We applied 175 samples for training; therefore, the hidden layer had
172 neurons. Each of the neurons in the hidden layer belongs to one of the possible
classes C = {C1, C2, . . . Ck}, where C1 is pine (Pinus radiata), C1 is cypress (Cupressus
macrocarpa), C3 is eucalyptus (Eucalyptus globulus), C4 is poplar (Populus sp.), C5 is arupo
(Chionanthus pubescens), C6 is alder (Alnus Acuminata), C6 is caper spurge (Euphorbia
laurifolia), and C7 is lime (Sambucus nigra L.).

The input layer standardizes the values, subtracting the average from each one and
dividing the standard deviation of the training individuals in each class. Later, the input
neurons feed each of the neurons in the hidden layer.

The hidden layer calculates the distances from the standardized input vector
→
y ei to

each of the vectors or training patterns
→
p j through the kernel normal standard probability

density function, as shown in Equation (5), where σk is 1, since the input variables are
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standardized in each group. hijk represents the chances that an individual with input

variables
→
y ei(yei1, yei2), when compared to an individual j pattern, belongs to class k.

hijk =
(

2πσ2
k

)−a/2
e
−

(
→
y i−
→
p j)

T
(
→
y i−
→
p j)

2σ2
k (5)

In the sum layer, the conditional probability or likelihood that each vector
→
y ei (the

input data) belongs to the i-th class is calculated by Equation (6), where nk is the number
of patterns of class k used in the training, hijk, with this being the values obtained from
function (6) that belong to the class k.

P(v ∈ Ck) =
1
nk

nk

∑
i=1

hijk (6)

The output layer selects the class with the highest plausibility, according to Equation (7)

classi f y(C1, C2, . . . , Ck) = P (v ∈ Ck) (7)

Maximum probability areas are delimited from the PNN for the possible ranges of yei1
and yei2.

After training, another 200 samples are used in order to validate the system.

3. Results and Discussion
3.1. Calorific Power

Tables 3 and 4 show the statistical summaries of HHV and LHV. Standardized bias
and standardized kurtosis analyze the distribution shape, which can be used to assess
whether the sample comes from a normal distribution. Values of these statistics outside
the range of −2 to +2 would indicate significant deviations from normality, which would
tend to invalidate many of the statistical procedures that are usually applied to these data.
In this case, the variables were within the range. Therefore, the average and the standard
deviation allowed us to determine the percentage of samples with HHV and LHV values
in a defined interval. We can observe that the HHV of the species studied was between 17
and 19.5 MJ/kg, and the LHV varied between 15 and 17 MJ/kg.

Table 3. Statistical description of the HHV in the species studied.

Average Standard
Deviation

Variation
Coefficient Minimum Maximum Standard

Bias
Standardized

Kurtosis(MJ/kg)

Alder 18.36 0.45 2.47 17.37 19.51 −1.18 1.10
Poplar 18.61 0.55 2.95 17.70 19.12 −1.36 1.19
Arupo 18.41 0.34 1.87 18.08 18.97 1.32 1.11

Cypress 17.50 0.31 1.74 17.12 17.87 −0.04 −0.71
Eucalyptus 17.46 0.33 1.89 17.25 18.04 1.89 2.02

Pine 18.52 0.39 2.11 18.14 19.03 0.51 −1.13
Caper spurge 18.82 0.33 1.77 18.37 19.21 −0.34 −0.55

Lime tree 18.22 0.65 3.57 17.12 19.21 −0.46 −1.36

Figure 1 shows the LSD intervals of the ANOVA analysis that decomposes the
variance of HHV [MJ/kg]. It can be observed that the cypress and eucalyptus species
had a significantly lower higher heating value than the poplar, lime tree, arupo, alder,
and cypress.
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Table 4. Statistical description of the LHV in the species studied.

Average
(MJ/kg)

Standard
Deviation

Variation
Coefficient Minimum Maximum Standard

Bias
Standardized

Kurtosis

Alder 16.73 0.32 1.92% 16.82 17.50 −0.81 −0.78
Poplar 16.94 0.37 1.84% 16.32 17.11 −0.18 −0.94
Arupo 16.59 0.32 1.97% 16.25 17.12 1.15 0.99

Cypress 15.39 0.29 1.89% 15.06 15.75 0.13 −0.95
Eucalyptus 15.40 0.28 1.84% 15.21 15.89 1.83 1.91

Pine 16.59 0.37 2.26% 16.28 17.07 0.46 −1.11
Caper spurge 16.84 0.32 1.91% 16.02 17.20 −0.28 −0.82

Lime tree 16.16 0.71 4.39% 15.06 17.74 −0.35 −1.41
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3.2. Elemental and Proximate Analysis

The characterization parameters of the different materials are shown in Table 5. The
normality of the distribution of all the variables was verified.

No significant differences could be observed between the studied species. The volatiles
content was around 80% of the weight. The ash content was less than 3%, except in caper
spurge, which was 5.44%. The nitrogen content was less than 1%. The average higher
heating value was 18.35 MJ/kg.

Table 6 shows the Pearson correlation coefficients between each pair of variables.
These correlation coefficients range from −1 to +1, and they measure the strength of the
linear relationship between variables. The asterisk indicates the statistical significance
of the estimated correlations with P-values of less than 0.05, which indicate correlations
significantly different from zero, with a confidence level of 95.0%.

The % of ashes, volatiles, and fixed carbon showed a significant negative linear
relationship between them. This was obvious since, as any of the fractions increased, the
other two decreased. The values of these three variables were complementary. On the other
hand, we can observe that the content of hydrogen and oxygen influenced the content of
volatiles and fixed carbon. Since the analyzed samples were dry, the hydrogen and oxygen
present were associated with structural carbohydrates (cellulose, hemicellulose, and lignin),
not with water. This can be demonstrated by the fact that the content of these elements
barely influenced the calorific power. If the samples were wet, the content of hydrogen and
oxygen would be negatively related to the calorific power, since a large content of these
elements is linked to the presence of water [10,13]. Apart from that, nitrogen was more
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closely related to fixed carbon and the carbon content was strongly related to the higher
heating value of the samples.

Table 5. Proximate and elemental analysis of the species studied.

% Ashes % Volatiles % Fixed
Carbon %C %N %H %O HHV

(MJ/kg)

Poplar Average 1.29 82.21 16.5 44.152 0.642 3.917 0.873 18.334
Standard deviation 0.04 0.32 0.317 1.042 0.0295 0.235 1.571 0.081

Alder
Average 1.05 82.126 16.824 51.354 0.483 3.562 38.96 18.558

Standard deviation 0.06 0.438 0.383 0.649 0.016 0.086 0.684 0.466

Arupo Average 1.76 83.453 14.787 49.275 0.578 3.453 41.546 18.503
Standard deviation 0.07 0.257 0.237 1.101 0.016 0.073 0.987 0.408

Cypress Average 2.19 81.341 16.469 49.446 0.459 3.769 39.68 17.306
Standard deviation 0.06 0.136 0.09 1.517 0.025 0.0225 1.454 0.201

Eucalyptus Average 2.19 83.45 14.36 48.998 0.477 3.405 40.519 17.554
Standard deviation 0.06 0.66 0.663 1.4476 0.022 0.179 1.4692 0.422

Caper
spurge

Average 5.44 83.04 11.52 44.97 0.51 4.777 0.417 18.64
Standard deviation 1.18 1.17 1.826 0.4 0.065 0.455 0.3099 0.556

Pine
Average 1.05 82.13 16.82 51.354 0.483 3.563 38.96 18.525

Standard deviation 0.06 0.44 0.383 0.649 0.016 0.086 0.684 0.467

Lime tree
Average 2.22 80.07 17.71 50.999 0.981 3.715 38.522 18.838

Standard deviation 0.05 0.39 0.33 0.41 0.03 0.05 0.48 0.32

Table 6. Pearson correlation coefficients (* significant value with 95% level of confidence).

% Ashes % Volatiles % Fixed Carbon % C % N % H % O HHV
(MJ/kg)

% Ashes −0.49 * −0.03 −0.07 −0.02 0.0023 −0.09 −0.10
% Volatiles −0.49 * −0.85 * −0.35 −0.45 −0.60 * 0.54 * −0.23

% Fine carbon −0.03 −0.85 * 0.44 0.53 * 0.69 * −0.57 * 0.33
% C −0.07 −0.35 0.44 0.13 0.2675 −0.93 * 0.86 *
% N −0.014 −0.45 0.53 * 0.13 0.3214 −0.17 0.51 *
% H 0.0023 −0.60 * 0.69 * 0.27 0.32 −0.45 0.04
% O −0.09 0.54 * −0.57 * −0.93 * −0.17 −0.4455 −0.19

HHV (MJ/kg) −0.10 −0.23 0.33 0.86 * 0.51 * 0.0395 −0.19

As there were no significant differences in the parameters of the proximate and
elemental analysis, it was not possible to identify the sample immediately, especially if
it was crushed material. This encourages us to investigate the possibility of devising
identification methods based on these analyses in order to be able to assess the traceability
of materials at a commercial level.

3.3. Structural Analysis

In Table 7, we can observe that the content of cellulose, hemicellulose, lignin, and
extractives was strongly influenced by the composition of the samples in terms of the
percentage of wood and leaves. In all species, the analysis of variance showed that there
were significant differences between the different types of mixture. We can see that the
content of leaves decreased the mass percentages of cellulose, hemicellulose, and lignin,
and increased the percentage of extractives.
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Table 7. Structural analysis of the species studied (mean ± standard deviation).

% Wood % Sheets % Cellulose % Hemicellulose % Lignin % Extractives

Poplar
100 0 46.16 ± 0.49 19.98 ± 0.20 7.25 ± 0.25 26.60 ± 0.68
50 50 32.04 ± 0.41 15.67 ± 0.54 8.95 ± 0.38 43.33 ± 0.36
0 100 21.59 ± 1.10 12.01 ± 0.22 12.21 ± 0.13 54.18 ± 0.24

Alder
100 0 47.57 ± 1.41 16.63 ± 0.11 7.97 ± 0.32 28.87 ± 0.47
50 50 36.28 ± 0.42 14.07 ± 0.22 7.85 ± 0.05 41.80 ± 0.35
0 100 15.72 ± 0.93 15.76 ± 0.93 6.49 ± 0.60 62.02 ± 0.34

Arupo
100 0 52.18 ± 0.47 19.27 ± 0.21 5.30 ± 0.17 23.24 ± 0.47
50 50 37.93 ± 0.50 15.22 ± 0.23 5.55 ± 0.14 41.29 ± 0.74
0 100 22.31 ± 1.69 12.69 ± 2.49 14.49 ± 3.47 59.60 ± 0.19

Cypress
100 0 54.43 ± 1.81 14.32 ± 0.42 19.13 ± 0.71 12.12 ± 0.31
50 50 30.09 ± 1.63 12.13 ± 0.86 10.08 ± 0.15 47.70 ± 0.18
0 100 17.63 ± 0.62 9.48 ± 0.10 11.40 ± 0.26 64.55 ± 0.24

Eucalyptus
100 0 54.64 ± 1.19 24.62 ± 0.24 5.57 ± 0.21 15.17 ± 0.28
50 50 35.15 ± 1.23 13.39 ± 0.51 3.86 ± 0.52 47.60 ± 0.14
0 100 22.88 ± 0.51 6.57 ± 0.78 2.48 ± 0.37 68.06 ± 0.28

Caper spurge
100 0 37.18 ± 0.58 15.05 ± 0.64 7.59 ± 0.85 33.27 ± 0.38
50 50 23.46 ± 0.18 12.05 ± 0.17 5.10 ± 0.24 56.16 ± 0.63
0 100 10.79 ± 0.044 7.24 ± 0.29 2.48 ± 0.15 78.50 ± 0.34

Pine
100 0 54.74 ± 0.31 39.67 ± 1.52 14.28 ± 0.37 13.93 ± 0.12
50 50 37.06 ± 1.31 28.48 ± 0.96 10.93 ± 0.47 37.41 ± 0.28
0 100 20.67 ± 0.68 16.63 ± 0.53 8.19 ± 0.25 58.63 ± 0.45

Lime tree
100 0 51.18 ± 0.56 17.48 ± 0.54 10.81 ± 0.33 20.52 ± 0.65
50 50 27.43 ± 0.90 14.45 ± 0.50 8.72 ± 0.22 49.40 ± 0.35
0 100 12.43 ± 0.61 10.68 ± 0.38 6.08 ± 0.27 70.81 ± 1.21

On the other hand, significant differences can be observed between the species, which
can be classified into two groups:

(a). Species with high cellulose content: lime tree, pine tree, eucalyptus, cypress, and arupo;
(b). Species with low cellulose content: caper spurge, alder, and poplar.

3.4. Regression Models

A valid regression model for determining the higher heating value from elemental
analysis for all the studied species is presented below. Due to the uncertainty in the
composition of wood and leaves when the biomass arrives at the processing plant, a general
method is proposed, which was obtained from samples with different compositions. We
observed that the presented model explains 94% of the variability in the calorific power.
The r2

aj 0.93 is presented in order to compare the proposed model with other models with
a different number of variables.

r2 = 94.07%

r2
aj = 93.01%

Standard deviation of the residues = 0.45 MJ/kg

Mean absolute error (MAE) = 0.32

Durbin-Watson statistic = 2.1906 (p = 0.4130)



Agronomy 2023, 13, 2347 9 of 18

HHV (MJ/kg) = −34.3184 + 0.737288·%Cd + 1.41779·%N + 0.767188·%O −
0.192502·%Volatiles

The standard error of the estimate shows that the standard deviation of the residues
was 0.45 MJ/kg. This value can be used to construct limits for new observations. The
mean absolute error (MAE) of 0.32 was the average value of the residuals. The Durbin–
Watson (DW) statistic examines the residuals in order to determine if there is any significant
correlation based on the order in which they occur in the data file. Since the P-value was
higher than 0.05, there was no indication of serial autocorrelation in the residuals at a
95.0% confidence level.

This model was validated with a set of 25 samples different from those used to obtain
it. To perform this, we analyzed the values provided by the model and those obtained from
the analyses through the paired samples test, based on the Student t-distribution.

3.5. Principal Component Analysis

This type of analysis seeks to define new coordinates and a linear combination of
all the variables by collecting the maximum variability in the population. These new
coordinates are called principal components and allow the representation of individuals in
a biphasic scatter diagram. Table 8 shows the coefficients of the standardized variables of
the proximate analysis (% ashes, % volatile, and % fixed carbon) for the calculation of each
of the main components applied to the data of the eight evaluated species.

Table 8. Weights of the variables for the calculation of the components for the differentiation of
8 species.

Component Component
1 2

% Ashes 0.488337 0.716929
% Volatiles 0.503154 −0.697145

% Fixed carbon −0.712996 −0.000936423

The weight of each variable can be seen in Figure 2. This graph facilitated an interpre-
tation of the influence of each of the variables on the components. The higher heating value
influenced component 1 and 2 in an almost similar way; however, fixed carbon influenced
component 1 more than component 2 in a positive way, whereas the volatiles influenced
component 2 more than component 1, and their influence was negative. On the contrary,
the ash had a negative influence on component 2 and a positive influence on component 1.

Based on this, it can be deduced that the samples located in the first quadrant of the
biphasic diagram have a higher high-heat value and fixed carbon than the volatile ones.
The samples in the second quadrant have a high content of volatiles and higher heating
value. The samples in the third quadrant have a high volatile content, but the higher
heating value is lower. The samples in the fourth quadrant have a high ash content and a
high calorific power.

This result enables us to propose a biomass identification system, since the main
components obtained from the proximate analysis and higher heating value distribute
each species in an area of the diagram. Figure 3a shows the average values of the samples
(n = 10) and we can observe that the eight species are distributed separately. This is a major
innovation since we did not find a similar identification system in the bibliography.
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The calculation of the main components for the eight studied species was carried
out with Equations (8) and (9), in which the values of the variables in the equation were
standardized by subtracting their average and dividing them by their standard deviations.

CP1 = 0.488337·%Ashes + 0.503154·%Volatiles − 0.712996·% Fixed Carbon (8)

CP2 = 0.716929·%Ashes + −0.697145·%Volatiles − 0.000936423·% Fixed Carbon (9)

Due to the fact that the pine tree, poplar, eucalyptus, and arupo species are very
close in the biphasic dispersion diagram (Figure 3a), we analyzed the possibility of
better discriminating these species by carrying out another principal component analysis
exclusively with six species (Figure 3b). The new values of the coefficients of each of
the variables can be seen in Table 9. When only the samples of the pine tree, cypress,
eucalyptus, arupo, alder, and lime tree species were used, the first principal component
had the following equation:

CP1 = 0.563214·HHV (MJ/kg) −0.76697·%Ashes − 0.674207·%Volatiles +
0.618112·% Fixed Carbon

The second principal component had the following equation:

CP2 = 0.307495·HHV (MJ/kg) + 0.262354·%Ashes + 0.184166·%Volatiles +
0.246231·% Fixed Carbon
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Table 9. Weights of the variables in components 1 and 2 for differentiation of 6 species.

Component Component
1 2

HHV (MJ/kg) 0.307495 0.563214
% Ashes 0.262354 −0.76697

% Volatiles −0.674207 0.184166
% Fixed carbon 0.618112 0.246231

3.6. Implementation of the Probabilistic Neural Network

Table 10 shows the results of using the trained neural network to classify observations
of the eight species. Among the 150 cases used to train the model, 94.5% were correctly
classified. We can observe that of the 25 poplar samples, 22 were correctly classified, but
2 samples were classified as eucalyptus. Of the 25 eucalyptus samples, 23 were correctly
classified; however, 3 were classified as poplar. This means that both species were very
close in terms of their own characteristics of the proximate analysis, which means that there
was a percentage of error in the classification between 8 and 12%. That is, the samples of
these species were correctly discriminated between 88 and 92%. On the other hand, there
were six pine tree samples that were classified as poplar.

Table 10. Results from the neural network trained to classify observations of the 8 species.

Current Sample
Size

Prediction

Species Poplar Alder Arupo Cypress Eucalyptus Caper Spurge Pine Lime Tree

Poplar 25 23 0 0 0 2 0 0 0
(92%) (0.00%) (0.00%) (0.00%) (8%) (0.00%) (0.00%) (0.00%)

Alder
25 0 25 0 0 0 0 0 0

(0.00%) (100%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

Arupo 25 0 0 25 0 0 0 0 0
(0.00%) (0.00%) (100%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

Cypress 25 0 0 0 25 0 0 0 0
(0.00%) (0.00%) (0.00%) (100%) (0.00%) (0.00%) (0.00%) (0.00%)

Eucalyptus 25 3 0 22 0 0 0 0 0
(12%) (0.00%) (88%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

Caper
spurge

25 2 0 0 0 0 23 0 0
(8%) (0.00%) (0.00%) (0.00%) (0.00%) (92%) (0.00%) (0.00%)

Pine
25 4 0 0 0 0 0 21 0

(6%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (94%) (0.00%)

Lime tree
25 0 0 0 0 0 0 0 25

(0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (100%)

Percentage of training cases correctly classified: 94.5%.

In order to check whether the classification percentage of the eucalyptus samples could
be improved, the analysis of the probabilistic neural network was repeated for six species
only (Table 11). Then, we observed that 8 of the 25 eucalyptus samples were classified as
arupo (32%).

Figure 4 shows the identification areas of the different species from the application
of the probabilistic neural network to the main components obtained from the variables
of the proximate analysis. Figure 4a shows the identification areas when variables from
eight different species are used. Figure 4b shows the identification areas when six different
species are used.
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Table 11. Results of the neural network trained to classify observations of the 6 species.

Current Prediction

Species Alder Arupo Cypress Eucalyptus Caper Spurge Pine

Alder 25 25 0 0 0 0 0
(100%) (0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

Arupo 25 25 25 0 0 0 0
(0.00%) (100%) (0.00%) (0.00%) (0.00%) (0.00%)

Cypress 25 0 0 25 0 0 0
(0.00%) (0.00%) (100.%) (0.00%) (0.00%) (0.00%)

Eucalyptus 25 0 8 0 17 0 0
(0.00%) (32.00%) (0.00%) (68.00%) (0.00%) (0.00%)

Caper spurge 25 0 0 0 0 25 0
(0.00%) (0.00%) (0.00%) (0.00%) (100%) (0.00%)

Pine 25 0 0 0 0 0 25
(0.00%) (0.00%) (0.00%) (0.00%) (0.00%) (100%)

Percentage of training cases correctly classified: 94.6%.
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We can observe that the areas constituted closed convex regions, and that there were
no islands in which there could be classification errors. In the validation of these areas, we
obtained a percentage of success in the identification of the species of 96.30%.

3.7. The Effect of the Leaves

In Figure 5, we can see that the content of leaves in the biomass increased the percent-
age of ashes. When the biomass was made up exclusively of wood, all species, except caper
spurge, have an ash content of less than 3%. However, they exceeded this value when the
leaf content exceeded 40%, and the ash percentage could reach 10% in the lime tree and
caper spurge.
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Figure 5. Variation in ash content with the percentage of leaves in the sample.

As shown in Figure 6, the presence of leaves had little influence on the higher heating
value in these species, with no significant differences between the different types of mix-
tures, except in the lime tree, in which the higher heating value decreased from 19 MJ/kg
in 100% wood samples to 16.5 MJ/kg in 100% leaf samples. On the other hand, in Table 12,
we verify that the presence of dry leaves did not raise the nitrogen content above 3.5% in
any species. The sulfur content in the wood of the species studied was negligible, at less
than 0.01%. We can observe that, although it increased with the presence of leaves, the
sulfur content in the samples of 100% leaves was very low, except in poplar, which did not
exceed 0.4%. This means that the formation of oxidizing agents will be small and tolerable
for current thermal installations.
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Table 12. Variation in calorific value, nitrogen, and sulfur percentages with the presence of leaves in
pruning biomass.

% Wood % Leaves PC (MJ/kg) %N %S

Poplar
100 0 18.33 0.69 0.12
50 50 18.35 1.50 0.21
0 100 18.55 2.20 0.37

Alder
100 0 18.61 0.83 0.00
50 50 19.31 1.94 0.00
0 100 18.42 3.63 0.04

Arupo
100 0 18.41 0.59 0.00
50 50 17.92 1.05 0.00
0 100 18.79 2.59 0.04

Cypress
100 0 17.50 0.48 0.00
50 50 19.04 0.63 0.00
0 100 19.36 0.98 0.00

Eucalyptus
100 0 17.46 0.50 0.00
50 50 18.49 0.71 0.00
0 100 20.05 1.34 0.00

Caper spurge
100 0 18.64 0.55 0.42
50 50 18.56 1.75 0.06
0 100 18.68 2.73 0.07

Pine
100 0 18.52 0.47 0.00
50 50 19.43 0.89 0.00
0 100 19.42 1.13 0.00

Lime tree
100 0 18.82 1.06 0.00
50 50 17.50 2.16 0.01
0 100 16.52 3.72 0.12
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4. Discussion

Researchers around the world are working on elemental, proximate, structural, ther-
mogravimetric, and fermentative analyses. The results shown in this work present several
novelties: firstly, the available materials were analyzed in the Andean province of Ecuador,
where the production of bioenergy resources has not yet been developed. Secondly, we
proposed a characterization system that allowed the analyzed materials to be identified.
Even without knowing its origin, it allowed us to find out the species of wood and, later
on, its characteristics, through a proximate analysis.

Carbon, hydrogen, and oxygen are the main components of biomass. Out of the
three, carbon generally has a direct correlation with the higher heating value (HHV) [14,15].
This was demonstrated in this work, in which it was verified that the contents of N and
S in the studied species were not problematic. The concentration of N and S in biomass
is important because they are involved in the generation of NOx, SO2, and SO3 gas. Cl
produces acid emissions with a corrosive effect during combustion. This makes these
elements undesirable in the composition of biomass [16]. The contents of C in biomass can
range between 42 and 71%; H, between 3 and 11%; O, between 16 and 49%; N, between
0.1 and 12%; S, between 0.01 and 2.3%; and Cl, between 0.01 and 0.9% [17]. The results
shown in the tables show that the species are in the typical ranges of materials used for
solid biofuels. Similarly, CP (dry basis) ranges between 17 and 20 MJ kg−1, which is very
different from wood forests (pine tree with 21 MJ kg−1) and fruit forests (19 MJ kg−1). In
wet biomass, the values obtained decrease depending on the moisture content [18].

Biomass contains a variable amount of cellulose, hemicellulose, and lignin, and small
amounts of lipids, proteins, simple sugars, and starch. Moreover, it contains inorganic
constituents and a fraction of water. Out of all of them, cellulose, hemicellulose, and lignin
are the three main constituents [6,19]. The combination of cellulose, hemicellulose, and
lignin is known as lignocellulose, which accounts for about half of the matter produced in
photosynthesis and represents the most abundant renewable organic resource on Earth [19].
The structural analysis of biomass is especially important in the development of production
processes for other fuels and chemical products, as well as in the study of the combustion
phenomenon. On the other hand, these analyses can be useful for the determination of
higher heating value (HHV) [20]. Along with cellulose, hemicellulose, lignin, ashes, or
minerals, there are other materials in biomass known as extractives, which correspond to
fatty acids, resin acids, tannins, sugars, terpene oligomers, sterols, hydrocarbons, etc. The
amount of them that appears depends on the species, the part of the tree, the time of year,
and other factors. The extractives have a higher heating value of about 35 MJ kg−1, which
is very interesting for energy applications [20]. Proximate analyses consist of determining
the content of volatile matter, fixed carbon, and ash present in the biomass [16,19]. It is
interesting to study these parameters to know how biomass combusts. For example, some
ash content can be related to certain combustion and ignition problems; on the other hand,
the higher heating value of biomass increases when fixed carbon and volatile material
increase [19]. A large number of scientific articles are based on the evaluation of the
fermentability of waste [21–23] or on its gasification by pyrolysis in the absence of oxygen
from structural analysis. All the references shown demonstrate the great topicality and
worldwide interest of this type of research.

5. Conclusions

The studied species (pine (Pinus radiata), cypress (Cupressus macrocarpa), eucalyptus
(Eucalyptus globulus), poplar (Populus sp.), arupo (Chionanthus pubescens), alder (Alnus
acuminata), and lime (Sambucus nigra L.)) presented a higher heating value which was
enough to consider their use as solid biofuel. The nitrogen and sulphur contents were low.
They did not exceed the limits considered inadequate for the formation of oxidants that
could affect the materials of thermal installations.

Although the presence of leaves in the pruning biomass increased the percentage of ash,
N, and S content, it did not significantly affect the suitability of the materials as biofuels.
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The percentage of wood and leaves in the samples significantly influenced the
content of cellulose, hemicellulose, lignin, and extractives. The leaf content decreased
the mass percentages of cellulose, hemicellulose, and lignin, and increased the percentage
of extractives.

The studied species did not present significant differences in the parameters of the
proximate and elemental analysis. This means that it was not possible to identify the
sample immediately, especially if it was crushed material. This encourages investigating
the possibility of devising identification methods based on these analyses in order to assess
the traceability of materials at a commercial level.

The combination of principal component analysis with a probabilistic neural net-
work proved to be an effective method to identify the species from the ash, volatile, and
fixed carbon content. The percentage of correctly classified cases was approximately
95%. This is very useful if the nature of the material that reaches a plant before being
used as biofuel is unknown.

Author Contributions: B.V.M. performed the conceptualization, methodology, validation, formal
analysis, investigation, writing—original draft preparation, writing—review and editing, and funding
acquisition. J.G.-C. performed the formal analysis and funding acquisition. J.E.F.R. performed the
methodology and validation. I.L.C. performed the writing—review and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets from the current study are available from the correspond-
ing author upon reasonable request.

Acknowledgments: This work was carried out within the framework of the work “Analysis of
the implementation of biomass exploitation chains in rural communities in the province of Bolívar
(Ecuador)” of the ADSIEO-COOPERATION program of the Polytechnic University of Valencia
(UPV). The Ecuadorian Energy Exploitation Research Network of Biomass (ECUMASA) and the
IBEROMASA Network of the Ibero-American Program of Science and Technology for Development
(CYTED) participated in this program.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ferre, A.J.C.; Martínez, J.A.L. Briquettes of plant remains from the greenhouses of Almería (Spain). Span. J. Agric. Res. 2009, 7, 525–534.

[CrossRef]
2. Callejón-Ferre, A.J.; Velázquez-Martí, B.; López-Martínez, J.A.; Manzano-Agugliaro, F. Greenhouse crop residues: Energy

potential and models for the prediction of their higher heating value. Renew. Sustain. Energy Rev. 2011, 15, 948–955. [CrossRef]
3. Callejón-Ferre, A.J.; Carreño-Sánchez, J.; Suárez-Medina, F.J.; Pérez-Alonso, J.; Velázquez-Martí, B. Prediction models for higher

heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel
2014, 116, 377–387. [CrossRef]

4. Demirbas, A.H.; Demirbas, I. Importance of rural bioenergy for developing countries. Energy Convers. Manag. 2007, 48, 2386–2398.
[CrossRef]

5. Manzano-Agugliaro, F.; Alcayde, A.; Montoya, F.G.; Zapata-Sierra, A.; Gil, C. Scientific production of renewable energies
worldwide: An overview. Renew. Sustain. Energy Rev. 2013, 18, 134–143. [CrossRef]

6. Demirbas, M.F. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [CrossRef]
7. Zhang, L.; Xu, C.; Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag.

2010, 51, 969–982. [CrossRef]
8. Yin, C.-Y. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 2011, 90, 1128–1132.

[CrossRef]
9. Vargas-Moreno, J.M.; Callejón-Ferre, A.J.; Pérez-Alonso, J.; Velázquez-Martí, B. A review of the mathematical models for

predicting the heating value of biomass materials. Renew. Sustain. Energy Rev. 2012, 16, 3065–3083. [CrossRef]
10. Velázquez-Martí, B. Aprovechamiento de la Biomasa Para Uso Energético, 2nd ed.; Barcelona: Reverté, Spain, 2018.

https://doi.org/10.5424/sjar/2009073-437
https://doi.org/10.1016/j.rser.2010.11.012
https://doi.org/10.1016/j.fuel.2013.08.023
https://doi.org/10.1016/j.enconman.2007.03.005
https://doi.org/10.1016/j.rser.2012.10.020
https://doi.org/10.1016/j.apenergy.2009.04.043
https://doi.org/10.1016/j.enconman.2009.11.038
https://doi.org/10.1016/j.fuel.2010.11.031
https://doi.org/10.1016/j.rser.2012.02.054


Agronomy 2023, 13, 2347 18 of 18

11. Van Soest, P.J.; Wine, R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal.
Chem. 1968, 51, 780–785. [CrossRef]

12. Specht, D.F. Probabilistic neural networks. Neural Netw. 1990, 3, 109–118. [CrossRef]
13. Sajdak, M.; Velazquez-Marti, B. Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of

Sophora japonica. Renew. Energy 2012, 47, 188–193. [CrossRef]
14. Telmo, C.; Lousada, J.; Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and

chemical analysis of wood. Bioresour. Technol. 2010, 101, 3808–3815. [CrossRef]
15. Pérez-Arévalo, J.J.; Callejón-Ferre, A.J.; Velázquez-Martí, B.; Suárez-Medina, M.D. Prediction models based on higher heating

value from the elemental analysis of neem, mango, avocado, banana, and carob trees in Guayas (Ecuador). J. Renew. Sustain.
Energy 2015, 7, 053122. [CrossRef]

16. Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933.
[CrossRef]

17. Velázquez-Martí, B.; Estornell, J.; López-Cortés, I.; Martí-Gavilá, J. Calculation of biomass volume of citrus trees from an adapted
dendrometry. Biosyst. Eng. 2012, 112, 285–292. [CrossRef]

18. Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain.
Energy Rev. 2011, 15, 2262–2289. [CrossRef]

19. Arin, G.; Demirbas, A. Mathematical modeling the relations of pyrolytic products from lignocellulosic materials. Energy Sources
2004, 26, 1023–1032. [CrossRef]

20. Khan, A.A.; de Jong, W.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies.
Fuel Process. Technol. 2009, 90, 21–50. [CrossRef]

21. Pardão, J.; Diaz, I.; Raposo, S.; Manso, T.; Lima-Costa, M.E. Sustainable bioethanol production using agro-industrial by-
products. In Proceedings of the 4th IASME/WSEAS International Conference Energy, Environment, Ecosystems and Sustainable
Development, Crete Island, Greece, 24–26 July 2007; pp. 149–153.

22. Sarris, D.; Matsakas, L.; Aggelis, G.; Koutinas, A.A.; Papanikolaou, S. Aerated vs non-aerated conversions of molasses and olive
mill wastewaters blends into bioethanol by Saccharomyces cerevisiae under non-aseptic conditions. Ind. Crops Prod. 2014, 56, 83–93.
[CrossRef]

23. Yu, M.; Li, J.; Chang, S.; Du, R.; Li, S.; Zhang, L.; Fan, G.; Yan, Z.; Cui, T.; Cong, G.; et al. Optimization of ethanol production from
NaOH-pretreated solid state fermented sweet sorghum bagasse. Energies 2014, 7, 4054–4067. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/jaoac/51.4.780
https://doi.org/10.1016/0893-6080(90)90049-Q
https://doi.org/10.1016/j.renene.2012.04.002
https://doi.org/10.1016/j.biortech.2010.01.021
https://doi.org/10.1063/1.4934593
https://doi.org/10.1016/j.fuel.2009.10.022
https://doi.org/10.1016/j.biosystemseng.2012.04.011
https://doi.org/10.1016/j.rser.2011.02.015
https://doi.org/10.1080/00908310490494595
https://doi.org/10.1016/j.fuproc.2008.07.012
https://doi.org/10.1016/j.indcrop.2014.02.040
https://doi.org/10.3390/en7074054

	Introduction 
	Materials and Methods 
	Sampling and Analysis 
	Biomass Identifier 

	Results and Discussion 
	Calorific Power 
	Elemental and Proximate Analysis 
	Structural Analysis 
	Regression Models 
	Principal Component Analysis 
	Implementation of the Probabilistic Neural Network 
	The Effect of the Leaves 

	Discussion 
	Conclusions 
	References

