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We study different pointwise recurrence notions for linear dynamical systems from 
the Ergodic Theory point of view. We show that from any reiteratively recurrent 
vector x0, for an adjoint operator T on a separable dual Banach space X, one 
can construct a T -invariant probability measure which contains x0 in its support. 
This allows us to establish some equivalences, for these operators, between some 
strong pointwise recurrence notions which in general are completely distinguished. 
In particular, we show that (in our framework) reiterative recurrence coincides with 
frequent recurrence; for complex Hilbert spaces uniform recurrence coincides with 
the property of having a spanning family of unimodular eigenvectors; and the same 
happens for power-bounded operators on complex reflexive Banach spaces. These 
(surprising) properties are easily generalized to product and inverse dynamical 
systems, which implies some relations with the respective hypercyclicity notions. 
Finally we study how typical is an operator with a non-zero reiteratively recurrent 
vector in the sense of Baire category.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Nous étudions différentes notions de récurrence ponctuelle pour les systèmes 
dynamiques linéaires du point de vue de la théorie ergodique. Nous montrons 
qu’étant donné un opérateur adjoint T sur un espace de Banach dual séparable 
X, et un vecteur réitérativement récurrent x0 pour T , il existe une mesure de 
probabilité T -invariante dont le support contient x0. Ceci nous permet d’établir des 
équivalences, pour ces opérateurs, entre des notions fortes de récurrence ponctuelle 
qui sont en général distinctes. En particulier, nous montrons que dans notre 
cadre, les notions de récurrence réitérative et de récurrence fréquente coïncident ; 
dans le cas des espaces de Hilbert complexes, la récurrence uniforme coïncide 
avec la propriété de posséder une famille de vecteurs propres unimodulaires qui 
engendre un sous-espace dense ; et il en va de même pour les opérateurs à 
puissances bornées sur les espaces de Banach réflexifs complexes. Ces propriétés 
sont facilement généralisables aux systèmes dynamiques produit et inverse, ce qui 
implique des relations avec les notions d’hypercyclicité correspondantes. Finalement 
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nous étudions, dans certains espaces polonais d’opérateurs, la typicité au sens de la 
catégorie de Baire de la propriété de récurrence réitérative.

© 2022 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

1.1. General background

This paper focuses on some aspects of the interplay between topological and measurable dynamics for 
linear dynamical systems, our main aim being to investigate the links in this context between various notions 
of recurrence.

A (real or complex) linear dynamical system (X, T ) is given by the action of a bounded linear operator 
T on a (real or complex) separable infinite-dimensional Banach space X, and we will denote by L(X) the 
set of bounded linear operators acting on such a space X. A linear dynamical system is a particular case of 
a Polish dynamical system (i.e. a system given by the action of a continuous map on a separable completely 
metrizable space), and some of the results obtained in the paper hold in this more general context. Given 
a dynamical system T : X → X and a point x ∈ X we will denote by

Orb(x, T ) := {Tnx : n ∈ N0},

the T -orbit of x, where N0 := N ∪ {0}. Examples of topological properties, for linear dynamical systems, 
which will be of interest to us in this work are:

(a) recurrence: the operator T is said to be recurrent if the set

Rec(T ) :=
{
x ∈ X : x ∈ Orb(Tx, T )

}
,

is dense in X, where each vector x ∈ Rec(T ) is called a recurrent vector for T . By the (not so well-
known) Costakis-Manoussos-Parissis’ theorem (see [14, Proposition 2.1]), this notion is equivalent to 
that of topological recurrence, i.e. for each non-empty open subset U of X one can find n ∈ N such that 
Tn(U) ∩ U �= ∅; and in this case, the set Rec(T ) of recurrent vectors for T is a dense Gδ subset of X;

(b) hypercyclicity: the operator T is said to be hypercyclic if there exists a vector x ∈ X, called a hypercyclic 
vector for T , whose orbit Orb(x, T ) is dense in X. By the Birkhoff’s Transitivity theorem (see [29, 
Theorem 1.16]), this notion is equivalent to that of topological transitivity, i.e. for each pair U, V of 
non-empty open subsets of X one can find n ∈ N0 such that Tn(U) ∩ V �= ∅; and in this case, the set 
of hypercyclic vectors for T , denoted by HC(T ), is a dense Gδ subset of X.

If given a point x ∈ X and a set A ⊂ X we denote the return set from x to A as

NT (x,A) := {n ∈ N0 : Tnx ∈ A},

which will be denoted by N(x, A) if no confusion with the map arises, we can reformulate the above 
notions in the following terms: a vector x ∈ X is recurrent if and only if N(x, U) is an infinite set for 
every neighborhood U of x; and a vector x ∈ X is hypercyclic if and only if N(x, U) is an infinite set 
for every non-empty open subset U of X. Historically, hypercyclicity and its generalizations have been the 
most studied notions in linear dynamics while the systematic study of the linear dynamical recurrence-kind 
properties started recently in 2014 with [14], in spite of the great non-linear dynamical knowledge already 
existing in this area (see for instance [22]).

http://creativecommons.org/licenses/by/4.0/
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Direct relations between these properties and Ergodic Theory arise when we are able to consider a 
probability (or a positive finite) Borel measure μ on X (i.e. defined on B(X), the σ-algebra of Borel sets of 
X), which will sometimes be required to have full support (i.e. μ(U) > 0 for every non-empty open subset U
of X). We will only consider Borel measures in this work, and the word “Borel” will sometimes be omitted. 
If such a measure μ exists, we can study the dynamical system (X, B(X), μ, T ) from the point of view of 
Ergodic Theory and relevant properties are:

(a) invariance: the operator T is said to be μ-invariant, or equivalently, the measure μ is called T -invariant, 
if for each A ∈ B(X) the equality μ(T−1(A)) = μ(A) holds. By the Poincaré’s Recurrence theorem (see 
[36, Theorem 1.4]), this notion implies that for every A ∈ B(X) with μ(A) > 0 there is n ∈ N such 
that Tn(A) ∩ A �= ∅. The Dirac mass δ0 at 0 is always an invariant measure for any operator T , and 
we will say that a T -invariant probability measure μ is non-trivial if it is different from δ0.

(b) ergodicity: the operator T is said to be ergodic with respect to μ, provided that the measure μ is T -
invariant, and for each A ∈ B(X) with T−1(A) = A we have that μ(A) ∈ {0, 1}. It is well known that 
the last statement is equivalent to the fact that, for each pair of sets A, B ∈ B(X) with μ(A), μ(B) > 0
there is n ∈ N0 such that μ

(
T−n(A) ∩B

)
> 0 (see [36, Theorem 1.5]).

When T is ergodic with respect to a measure with full support, it follows from the Birkhoff’s Pointwise 
Ergodic theorem that T is not only hypercyclic, but even frequently hypercyclic: there exists a vector x ∈ X

such that for each non-empty open subset U of X the return set N(x, U) has positive lower density; in other 
words:

dens(N(x, U)) = lim inf
N→∞

card(N(x, U) ∩ [0, N ])
N + 1 > 0.

Such a vector x is said to be a frequently hypercyclic vector for T , and the set of all frequently hypercyclic 
vectors is denoted by FHC(T ). See [3, Corollary 5.5] for the details of this argument, and for more on 
frequent hypercyclicity.

When T is only supposed to admit an invariant measure μ, it follows easily from the Poincaré’s Recurrence 
theorem that μ-almost every x ∈ X is a recurrent point for T (see [22, Theorem 3.3]). Our main line of 
thought in this work will be to connect various (stronger) notions of recurrence via invariant measures, 
proceeding essentially in two steps:

– if T admits vectors with a certain (rather weak) recurrence property, prove that it admits a non-trivial 
invariant measure, perhaps with full support (see Theorem 2.3);

– if T admits a non-trivial invariant measure (perhaps with full support), prove that it admits vectors 
with a certain strong recurrence property (see Lemmas 3.1 and 4.4).

This approach in the context of linear dynamical systems comes from the paper [24], which extends to the 
linear setting some well-known results in the context of compact dynamical systems (see [22, Chapter 3 and 
Lemma 3.17]). The various recurrence notions which we will consider were introduced and studied in the 
work [10], but the initial study of recurrence in linear dynamics started in [14]. In the next subsection, we 
recall the relevant definitions and present the first main result of this paper.

1.2. Furstenberg families: recurrence and hypercyclicity notions

The Banach spaces X considered in this subsection can be either real or complex. Let us first recall the 
following definitions from [10]:
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Definition 1.1. Given a non-empty collection of sets F ⊂ P(N0) we say that it is a Furstenberg family if for 
each A ∈ F we have

(i) A is infinite;
(ii) if A ⊂ B ⊂ N0 then B ∈ F .

The dual family of F is defined as the collection of sets

F∗ := {A ⊂ N0 infinite : A ∩B �= ∅ for all B ∈ F}.

Definition 1.2. Let (X, T ) be a linear dynamical system and let F be a Furstenberg family. A point x ∈ X is 
said to be F-recurrent (resp. F-hypercyclic) if N(x, U) ∈ F for every neighborhood U of x (resp. for every 
non-empty open subset U of X). We will denote by FRec(T ) (resp. FHC(T )) the set of such points and we 
say that T is F-recurrent (resp. F-hypercyclic) if FRec(T ) is dense in X (resp. if FHC(T ) �= ∅).

The families F for which there exist F-hypercyclic operators are by far less common than those for which 
F-recurrence exists since having an orbit distributed around the whole space is much more complicated than 
having it just around the initial point of the orbit. Furstenberg families associated just to recurrence will 
be used in the following subsection, but in the present one we focus on the most known cases of families for 
which both notions exist. In particular, a point x ∈ X is said to be

(a) frequently recurrent (resp. frequently hypercyclic) if dens(N(x, U)) > 0 for every neighborhood U of x
(resp. for every non-empty open subset U of X). We will denote by FRec(T ) (resp. FHC(T )) the set of 
such points, and we say that T is frequently recurrent (resp. frequently hypercyclic) if FRec(T ) is dense 
in X (resp. if FHC(T ) �= ∅);

(b) U-frequently recurrent (resp. U-frequently hypercyclic) if dens(N(x, U)) > 0 for every neighborhood U

of x (resp. for every non-empty open subset U of X). We will denote by UFRec(T ) (resp. UFHC(T )) 
the set of such points, and we say that T is U-frequently recurrent (resp. U-frequently hypercyclic) if 
UFRec(T ) is dense in X (resp. if UFHC(T ) �= ∅);

(c) reiteratively recurrent (resp. reiteratively hypercyclic) if Bd(N(x, U)) > 0 for every neighborhood U of 
x (resp. for every non-empty open subset U of X). We will denote by RRec(T ) (resp. RHC(T )) the set 
of such points and we say that T is reiteratively recurrent (resp. reiteratively hypercyclic) if RRec(T ) is 
dense in X (resp. if RHC(T ) �= ∅);

where for any A ⊂ N0 its:

(a) lower density is dens(A) := lim inf
N→∞

card(A ∩ [0, N ])
N + 1 ;

(b) upper density is dens(A) := lim sup
N→∞

card(A ∩ [0, N ])
N + 1 ;

(c) upper Banach density is Bd(A) := lim sup
N→∞

(
max
m≥0

card(A ∩ [m,m + N ])
N + 1

)
.

The introduced notions follow Definition 1.2 applied to the respective families of positive (lower, upper and 
upper Banach) density sets, and in fact, the inequalities between the respective densities imply the inclusions 
FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ) ⊂ Rec(T ) and FHC(T ) ⊂ UFHC(T ) ⊂ RHC(T ) ⊂ HC(T ). In particular, 
frequent, U-frequent and reiterative recurrence are clearly stronger notions than “usual” recurrence as 
defined in Subsection 1.1, and frequent recurrence is a stronger notion than U-frequent recurrence, which is 
in its turn stronger than reiterative recurrence.
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We point out that all these notions are not specific to the linear setting; we will actually use them in 
the context of Polish dynamical systems in Sections 2, 3, 5 and 6. However, since we are focused on linear 
dynamical systems, our first main result connects all of them in the framework of adjoint operators on 
separable dual Banach spaces:

Theorem 1.3. Let T : X → X be an adjoint operator on a (real or complex) separable dual Banach space X. 
Then we have the equality

FRec(T ) = RRec(T ).

Moreover:

(a) The following statements are equivalent:
(i) FRec(T ) \ {0} �= ∅;
(ii) UFRec(T ) \ {0} �= ∅;
(iii) RRec(T ) \ {0} �= ∅;
(iv) T admits a non-trivial invariant probability measure.

(b) The following statements are equivalent:
(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) T admits an invariant probability measure with full support.

In particular, these results hold whenever T is an operator on a (real or complex) separable reflexive Banach 
space X.

The above theorem is in spirit similar to [24, Theorem 1.3], where it is proved that every (U-)frequently 
hypercyclic operator on a separable reflexive space admits an invariant measure with full support. It is 
observed in [24, Remark 3.5] that the arguments extend to every adjoint operator acting on a separable 
dual Banach space. It is also proved in [24, Proposition 2.11] that, in this same setting, operators admitting 
an invariant measure with full support are exactly those which are frequently recurrent. However, the notion 
of frequent recurrence introduced in [24, Section 2.5] is rather different from the one given in Definition 1.2
since in [24], T ∈ L(X) is called frequently recurrent if for every non-empty open subset U of X there exists 
a vector xU ∈ U for which just the positive lower density of the return set N(xU , U) is required. This notion 
is (at least formally) weaker than the one used here (see Remark 2.5).

The proof of Theorem 1.3 relies on some modifications of the arguments of [24, Section 2], which will be 
presented in Sections 2 and 3. We mention that it cannot be extended to all operators acting on separable 
(infinite-dimensional) Banach spaces. Indeed, it is shown in [10, Theorem 5.7 and Corollary 5.8] that there 
even exist reiteratively hypercyclic operators on the space c0(N) which do not admit any non-zero U-
frequently recurrent vector.

1.3. Uniform, IP∗, Δ∗-recurrence and unimodular eigenvectors

In this subsection the underlying Banach spaces X are assumed to be complex. A vector x ∈ X is 
a unimodular eigenvector for T provided x �= 0 and Tx = λx for some unimodular complex number 
λ ∈ T = {z ∈ C : |z| = 1}. The set of unimodular eigenvectors of T will be denoted by E(T ), and

E(T ) =
⋃

ker(λ− T ) \ {0}.

λ∈T
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Unimodular eigenvectors are clearly frequently recurrent vectors for T , but they enjoy some stronger re-
currence properties like uniform, IP∗ and even Δ∗-recurrence (see Definition 1.5 below). Our general aim 
in this paper is to investigate some contexts in which these strong forms of recurrence actually imply the 
existence of unimodular eigenvectors. We will see that it is indeed the case in (at least) the following two 
situations:

– when T is an operator on a complex Hilbert space (see Theorem 1.7 below);
– when T is a power-bounded operator on a complex reflexive Banach space (Theorem 1.9).

Let us now introduce these stronger recurrence notions which are defined by considering Furstenberg 
families only relevant for the notion of recurrence, and, contrary to those used in Subsection 1.2, having no 
hypercyclicity analogue.

Definition 1.4. Let A ⊂ N0. We say that A is a

(a) syndetic set, if there is m ∈ N such that for every x ∈ N0 we have [x, x + m] ∩ A �= ∅. We will denote 
by

S := {A ⊂ N0 : A is syndetic},

the Furstenberg family of syndetic sets.
(b) IP-set, if there is an increasing sequence (xn)∞n=1 ∈ NN

0 such that

{∑
n∈F

xn : F ⊂ N finite
}

⊂ A.

We will denote by

IP := {A ⊂ N0 : A is an IP-set},

the Furstenberg family of IP-sets.
(c) Δ-set, if there is an infinite set B ⊂ N0 such that (B −B) ∩N ⊂ A. We will denote by

Δ := {A ⊂ N0 : A is a Δ-set},

the Furstenberg family of Δ-sets.

From Definition 1.2 and the dual families notation we have:

Definition 1.5. Let (X, T ) be a linear dynamical system. A point x ∈ X is said to be

(a) uniformly recurrent if N(x, U) ∈ S for every neighborhood U of x. We will denote by URec(T ) the set 
of such points and T is uniformly recurrent if URec(T ) is dense in X;

(b) IP∗-recurrent if N(x, U) ∈ IP∗ for every neighborhood U of x. We will denote by IP∗Rec(T ) the set 
of such points, and T is IP∗-recurrent if IP∗Rec(T ) is dense in X;

(c) Δ∗-recurrent if N(x, U) ∈ Δ∗ for every neighborhood U of x. We will denote by Δ∗Rec(T ) the set of 
such points, and T is Δ∗-recurrent if Δ∗Rec(T ) is dense in X.
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It is shown in [7, Proposition 2] that the above Furstenberg families do not admit a respective hypercyclic-
ity counterpart. As in the previous subsection these recurrence notions could be defined for (non-linear) 
Polish dynamical systems, but since the eigenvectors will play a fundamental role in the connection between 
those concepts we will directly work with complex linear maps. The relation Δ∗ ⊂ IP∗ ⊂ S between the 
families (see [6]), Proposition 4.1 and [10] imply the inclusions

span(E(T )) ⊂ Δ∗Rec(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ) ⊂ FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ).

From there the following question was proposed in [10]:

Question 1.6 ([10, Question 6.3]). Does there exist an operator which is uniformly recurrent but not IP∗-
recurrent?

The uniformly recurrent operators considered in [10] were also IP∗-recurrent, and in fact a partial 
negative answer to Question 1.6 was already given in [10, Theorem 6.2] for the particular case of power-
bounded operators, condition which implies the equality of the two sets IP∗Rec(T ) and URec(T ). The 
second main result of this paper provides a negative answer to Question 1.6 for operators acting on a 
complex separable Hilbert space H, by showing the following stronger statement: any uniformly recurrent 
operator T ∈ L(H) has a spanning set of unimodular eigenvectors. More precisely, define the sets

FRecbo(T ) := FRec(T ) ∩ {x ∈ H with bounded T -orbit};

UFRecbo(T ) := UFRec(T ) ∩ {x ∈ H with bounded T -orbit};

RRecbo(T ) := RRec(T ) ∩ {x ∈ H with bounded T -orbit}.

Since uniformly recurrent vectors have bounded orbit, we have URec(T ) ⊂ FRecbo(T ) ⊂ UFRecbo(T ) ⊂
RRecbo(T ) and hence:

Theorem 1.7. Let T ∈ L(H) where H is a complex separable Hilbert space. Then we have the equalities

span(E(T )) = URec(T ) = RRecbo(T ).

Moreover:

(a) The following statements are equivalent:
(i) E(T ) �= ∅;
(ii) Δ∗Rec(T ) \ {0} �= ∅;
(iii) IP∗Rec(T ) \ {0} �= ∅;
(iv) URec(T ) \ {0} �= ∅;
(v) FRecbo(T ) \ {0} �= ∅;
(vi) UFRecbo(T ) \ {0} �= ∅;
(vii) RRecbo(T ) \ {0} �= ∅;
(viii) T admits a non-trivial invariant probability measure μ with 

∫
H
‖z‖2dμ(z) < ∞.

(b) The following statements are equivalent:
(i) the set span(E(T )) is dense in H;
(ii) T is Δ∗-recurrent;
(iii) T is IP∗-recurrent;
(iv) T is uniformly recurrent;
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(v) the set FRecbo(T ) is dense in H;
(vi) the set UFRecbo(T ) is dense in H;
(vii) the set RRecbo(T ) is dense in H;
(viii) T admits an invariant probability measure μ with full support and 

∫
H
‖z‖2dμ(z) < ∞.

The proof of Theorem 1.7 is really specific to the Hilbertian setting in a somewhat roundabout way. It 
relies on the following three main arguments:

– the existence of a non-trivial invariant measure with a finite second-order moment, under the assumption 
of the existence of a reiteratively recurrent vector with bounded orbit; this argument is the same as the 
one employed in the proof of Theorem 1.3 above;

– the fact that any operator on a space of type 2, admitting an invariant measure with a finite second-
order moment, admits in fact a Gaussian invariant measure whose support contains that of the initial 
measure (see Remark 4.5);

– and lastly, the fact that on spaces of cotype 2, the existence of a Gaussian invariant measure for an 
operator T implies that the unimodular eigenvectors of T span a dense subspace of the support of the 
measure (see Step 3 of Lemma 4.4).

These last two “facts” are far from being trivial, and we refer the reader to [3, Chapter 5] for a proof, as well 
as for an introduction to the role of Gaussian measures in linear dynamics. Since the only spaces which are 
both of type 2 and of cotype 2 are those which are isomorphic to a Hilbert space, our proof of Theorem 1.7
does not seem to admit any possible extension to a non-Hilbertian setting. The following question remains 
widely open:

Question 1.8. Let X be a complex Banach space and let T : X → X be a uniformly recurrent operator. Is 
span(E(T )) a dense set in X? What about the cases where T is an adjoint operator on a separable dual 
Banach space or where X is a reflexive Banach space?

A partial (but not completely satisfactory) answer is our third and last main result, which only concerns 
the power-bounded operators on complex reflexive Banach spaces. It extends [10, Theorem 6.2] by showing 
that such an operator T ∈ L(X) is again uniformly recurrent if and only if has a spanning set of unimodular 
eigenvectors. More precisely, we have:

Theorem 1.9. Let T : X → X be a power-bounded operator on a complex reflexive Banach space X. Then 
we have the equality

span(E(T )) = URec(T ).

In particular:

(a) The following statements are equivalent:
(i) E(T ) �= ∅;
(ii) Δ∗Rec(T ) \ {0} �= ∅;
(iii) IP∗Rec(T ) \ {0} �= ∅;
(iv) URec(T ) \ {0} �= ∅.

(b) The following statements are equivalent:
(i) the set span(E(T )) is dense in X;
(ii) T is Δ∗-recurrent;
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(iii) T is IP∗-recurrent;
(iv) T is uniformly recurrent.

The proof of Theorem 1.9 relies on the splitting theorem of Jacobs-Deleeuw-Glicksberg (see [31, Section 
2.4]). Here the unimodular eigenvectors are obtained in a very different way than in the proof of Theorem 1.7
(via characters on a certain compact abelian group).

Even though the arguments used in the proofs of the two theorems above still hold for complex finite-
dimensional spaces, in this situation one can use directly the canonical Jordan decomposition (see [14, 
Theorem 4.1] and [10, Theorem 7.3]) to obtain a spanning set of unimodular eigenvectors even from “usual” 
recurrence as defined in Subsection 1.1.

1.4. Organization of the paper

Section 2 is devoted to the statement and proof of a purely non-linear result (Theorem 2.3) which allows to 
construct invariant measures from reiteratively recurrent points for a rather general class of Polish dynamical 
systems (which includes the compact ones). Theorem 2.3 is a modest improvement of [24, Theorem 1.5, 
Remarks 2.6 and 2.12] and its proof is based on a modification of the construction given in [24, Section 
2]. In Section 3, we prove some results where frequent recurrence is deduced from reiterative recurrence, 
in particular Theorem 1.3. Theorems 1.7 and 1.9, which provide links between strong forms of recurrence 
and the existence of unimodular eigenvectors, are proved in Section 4. Sections 5 and 6 present some 
applications of the above results in terms of product and inverse dynamical systems respectively, while we 
study in Section 7 the “typicality”, in the Baire Category sense, of some recurrence properties. Lastly, we 
gather in Section 8 some possibly interesting open questions and a few comments related to them.

2. Invariant measures from reiterative recurrence

In this section, we present a modification of the construction of [24, Section 2] which allows to construct 
invariant measures from reiteratively recurrent points for a rather general class of Polish dynamical systems, 
including the compact ones (see Remark 2.4).

2.1. Topological assumptions and initial comments

We begin this section with some notation: whenever we consider a space of functions we will use the 
symbol 1 to denote the function constantly equal to 1, and given a subset A of the domain of the functions, 
we will write 1A for the indicator function of A, i.e. 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. For 
instance, if we consider �∞ = �∞(N), the space of all bounded sequences of real numbers, 1 ∈ �∞ is the 
sequence with all its terms equal to 1, and for every A ⊂ N, 1A ∈ �∞ will be the sequence in which the 
n-th coordinate is 1 if n ∈ A and 0 otherwise.

A Banach limit is a continuous functional m : �∞ → R such that for every pair of sequences φ =
(φ(n))n≥1, ψ = (ψ(n))n≥1 ∈ �∞, every α, β ∈ R and every a ∈ N:

(a) m(αφ + βψ) = αm(φ) + βm(ψ) (linearity);
(b) φ(n) ≥ 0 for every n ∈ N implies m(φ) ≥ 0 (positivity);
(c) m((φ(n + a)n≥1) = m((φ(n))n≥1) (shift-invariance);
(d) if φ is a convergent sequence then m(φ) = limn→∞ φ(n) (which implies m(1) = 1).

Following [24], each Banach limit m should be viewed as a finitely additive measure on N. In fact we will 
write the result of the action of m on a “function” φ ∈ �∞ as the integral:
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m(φ) =
∫
N

φ(i)dm(i).

Given a topological space (X, τ) we will denote by B(X, τ) its σ-algebra of Borel sets. If there is no 
confusion with the topology we will simply write B(X). All the measures considered in this section will 
be non-negative finite Borel measures, i.e. they could be the null measure, and since they will be defined 
on Polish spaces the finiteness condition will imply their regularity (see [13, Proposition 8.1.12]). Given a 
(non-negative) finite Borel measure μ on a topological space (X, τ) we will denote its support by

supp(μ) := X \
⋃
U∈τ

μ(U)=0

U.

When μ is positive and regular it is easy to show that supp(μ) is non-empty, and the smallest τ -closed 
subset of X with full measure, i.e. μ(supp(μ)) = μ(X), the later being true even if μ is not regular but X is 
second-countable (see [30, Proposition 2.3]). Moreover, a point x belongs to supp(μ) if and only if μ(U) > 0
for every neighborhood U of x.

Before presenting the “measures’ constructing machine” that will be used in the rest of this work, we 
give name to some properties that a Polish dynamical system (X, T ) may have. In particular, let (X, τX)
be the underlying Polish space, τ a Hausdorff topology in X and let Kτ be the set of τ -compact subsets of 
X. The properties that we are going to consider are the following:

(I) T is a continuous self-map of (X, τ) (i.e. T : X → X is τ -continuous);
(II) τ ⊂ τX (i.e. τ is coarser than τX);

(III) B(X, τ) = B(X, τX) (i.e. both topologies have the same Borel sets);
(IV) every τ -compact set is τ -metrizable (i.e. every K ∈ Kτ is τ -metrizable);

(III*) every point of X has a neighborhood basis for τX consisting of τ -compact sets.

In [24, Fact 2.1] it is shown easily how (II) and (III*) imply conditions (III) and (IV). For the concrete 
recurrence results that we obtain, it is necessary to assume conditions (I), (II) and (III*) in order to use 
the reiteratively recurrent points in a successful way. However, without property (III*) and assuming just 
conditions (I), (II), (III) and (IV) we can carry out the “construction” on which everything is based:

Lemma 2.1 (Modification of [24, Remarks 2.6 and 2.12]). Let (X, T ) be a Polish dynamical system. Assume 
that X is endowed with a Hausdorff topology τ which fulfills (I), (II), (III) and (IV). Then for each x0 ∈ X

and each Banach limit m : �∞ → R one can find a (non-negative) T -invariant finite Borel regular measure 
μ on X for which μ(X) ≤ 1 and such that

μ(K) ≥ m(1N(x0,K)) for every K ∈ Kτ .

Moreover, we have the inclusion

supp(μ) ⊂ Orb(x0, T )
τ
.

Remark 2.2. Lemma 2.1 is a rather technical result which allows us to construct invariant measures. Note 
that:

(a) Assumptions (I), (II), (III) and (IV) are fulfilled by the initial topology τX . However, if the τX-compact 
sets are too small, given an arbitrary point x0 ∈ X (even with some kind of recurrence property) we 
could have m(1N(x0,K)) = 0 for every τX -compact set K ⊂ X and hence the measure μ obtained could 
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be the null measure on X. We will consider a strictly coarser topology τ � τX in order to obtain 
“interesting measures” from Lemma 2.1 (see Theorems 1.3 and 1.7).

(b) Following the previous comment, even if the τ -compact sets are big enough, the measure μ could 
be the null measure on X if we choose a point x0 ∈ X for which the return sets N(x0, K) are too 
small and hence m(1N(x0,K)) = 0 for every K ∈ Kτ . We will get “interesting measures” whenever we 
combine Lemma 2.1 together with the existence of a point x0 ∈ X and a Banach limit m for which 
m(1N(x0,K)) > 0 for some τ -compact subsets K of X. Those conditions will come from property (III*) 
together with the existence of a reiteratively recurrent point x0 ∈ RRec(T ), see Theorem 2.3.

(c) In the proof of [24, Theorem 1.5] it is shown that under conditions (I), (II) and (III*), one can change 
the final statement of Lemma 2.1 into:

then for each x0 ∈ X one can find a T -invariant finite Borel measure μ on X such that μ(K) ≥
dens(N(x0, K)) for every K ∈ Kτ ,

simply by choosing a non-principal ultrafilter U on N and considering the Banach limit

m(φ) := lim
U

1
n

n∑
i=1

φ(i) for every φ ∈ �∞.

Moreover, under the same assumptions it is also stated in [24, Remark 2.12] that

for each x0 ∈ X and each K ∈ Kτ one can find a T -invariant finite Borel measure μ on X such that 
μ(K) ≥ dens(N(x0, K)).

This just ensures that the above inequality holds true for only one fixed τ -compact subset K of X. 
We will encounter the same problem when working with the upper Banach density, and we will have 
to combine some more sophisticated Banach limits in order to cope with several τ -compact sets at the 
same time, see Subsection 2.3.

Here is the main result of this section:

Theorem 2.3. Let (X, T ) be a Polish dynamical system. Assume that X is endowed with a Hausdorff topology 
τ which fulfills (I), (II), and (III*). If x0 ∈ X is a reiteratively recurrent point for T , then one can find a 
T -invariant probability measure μx0 on X such that

x0 ∈ supp(μx0) ⊂ Orb(x0, T )
τ
.

Moreover, if T is reiteratively recurrent then one can find a T -invariant probability measure μ on X with 
full support.

Remark 2.4. If the Polish dynamical system T : (X, τX) → (X, τX) is locally compact, its initial topology 
τX already fulfills properties (I), (II) and (III*), and hence (III) and (IV). In particular, the later is true 
whenever (X, τX) is a (metrizable) compact space.

2.2. Proof of Lemma 2.1

We modify the construction given in [24, Section 2.2]. Let (X, T ) be a Polish dynamical system, denote 
by τX the initial topology of X and assume that X is endowed with a Hausdorff topology τ which fulfills 
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(I), (II), (III) and (IV). Fix x0 ∈ X and let m : �∞ → R be a Banach limit. For each K ∈ Kτ denote by 
C (K, τ) the space of all τ -continuous real-valued functions on K.

Fact 2.2.1 (Modification of [24, Fact 2.2]). For every K ∈ Kτ there is a unique (non-negative) finite Borel 
regular measure μK on K such that∫

K

fdμK =
∫
N

(1Kf)(T ix0)dm(i) for every f ∈ C (K, τ).

The measure μK satisfies 0 ≤ μK(K) = m(1N(x0,K)) ≤ 1.

Proof. The first part is obvious by the Riesz’s Representation theorem since, as mentioned in [24, Fact 2.2], 
the formula

L(f) :=
∫
N

(1Kf)(T ix0)dm(i) for every f ∈ C (K, τ),

defines a (non-negative) linear functional on C (K, τ). Moreover, the measure μK satisfies

0 ≤ μK(K) =
∫
N

(1K)(T ix0)dm(i) = m(1N(x0,K)) ≤ m(1) = 1. �

By (III) we have the equality B(X, τ) = B(X, τX) and hence for each K ∈ Kτ we can extend the measure 
μK into a Borel measure on the whole space X (still denoted by μK) using the formula

μK(A) := μK(K ∩A) for every Borel set A ∈ B(X).

Clearly μK(X) ≤ 1, which implies the regularity of these measures. However, since the compact sets K ∈ Kτ

are not necessarily T -invariant and we could have T−1(K) ∩K = ∅, the measures μK are not necessarily 
T -invariant. As in [24] we will define the T -invariant measure we are looking for by taking the supremum 
of the measures μK , and this is possible due to the following fact:

Fact 2.2.2 ([24, Fact 2.3]). If K, F ∈ Kτ and if K ⊂ F , then μK ≤ μF .

Proof. The proof is exactly the same as that of [24, Fact 2.3] and it uses essentially conditions (II), (IV) 
and the positivity of m. �

Since a finite union of τ -compact subsets of X is still an element of Kτ , from Fact 2.2.2 we deduce that 
the family (μK)K∈Kτ

has the following property: for any pair K1, K2 ∈ Kτ one can find F ∈ Kτ such that 
μF ≥ max{μK1 , μK2}. Hence we can continue the construction given in [24, Section 2.2]:

Fact 2.2.3 (Modification of [24, Fact 2.4]). If we set

μ(A) := sup
K∈Kτ

μK(A) for every Borel set A ∈ B(X),

then μ is a (non-negative) Borel measure on X such that μ(X) ≤ 1.

Proof. The proof is exactly the same as that of [24, Fact 2.4] but with μ having the possibility of being the 
null measure. �
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Fact 2.2.4 (Modification of [24, Fact 2.5]). The measure μ is T -invariant and we have the inequality

μ(K) ≥ m(1N(x0,K)) for every K ∈ Kτ .

Proof. The first part of the proof is exactly the same as that of [24, Fact 2.5] and it uses essentially conditions 
(I), (IV), the positivity of m and the fact that it is shift-invariant. By Fact 2.2.1, for each K ∈ Kτ we have 
that

μ(K) ≥ μK(K) = m(1N(x0,K)). �
To finish the proof of Lemma 2.1 we include a property, not shown in [24, Section 2.2], about the support 

of the measure constructed:

Fact 2.2.5. We have the inclusion supp(μ) ⊂ Orb(x0, T )
τ
.

Proof. Write O(x0) := Orb(x0, T )
τ
. First we show that for each K ∈ Kτ we have the inclusion supp(μK) ⊂

K ∩ O(x0): indeed, for any K ∈ Kτ and any point x ∈ K \ O(x0), by compactness, there exists a positive 
function f ∈ C (K, τ) such that

f = 0 on K ∩O(x0) and f(x) = 1.

If we suppose that x ∈ supp(μK) and if we take a τ -neighborhood U of x in (K, τ) such that f(U) ⊂ [1/2, ∞[
then we have

0 <
1
2μK(U) ≤

∫
K

fdμK =
∫
N

(1Kf)(T ix0)dm(i) = m(0) = 0,

since f(T ix0) = 0 for every i ∈ N, which is a contradiction. Hence x /∈ supp(μK).
Finally, given x /∈ O(x0) there is an τ -open neighborhood U of x in (X, τ), which by (II) is also a 

τX -neighborhood of x in (X, τX), such that U ∩ O(x0) = ∅. Hence, since supp(μK) ⊂ O(x0) for every 
K ∈ Kτ , we deduce that μK(U) = μK(K∩U) = 0 for every K ∈ Kτ . By the definition of μ we get μ(U) = 0
and hence that x /∈ supp(μ). �
2.3. Proof of Theorem 2.3

Let (X, T ) be a Polish dynamical system, denote by τX the initial topology of X and assume that X is 
endowed with a Hausdorff topology τ which fulfills (I), (II) and (III*).

Fact 2.3.1. Given x0 ∈ X and U ∈ Kτ with Bd(N(x0, U)) > 0, there exists a T -invariant probability measure 
μ on X such that μ(U) > 0. Moreover, we have the inclusion

supp(μ) ⊂ Orb(x0, T )
τ
.

Fact 2.3.1 allows us to (slightly) extend Theorem 2.3 in terms of the recurrence notion introduced in [24, 
Section 2.5] (see Remark 2.5 below for the explicit statement) which at the end turns out to be equivalent 
to the recurrence notion used here (see Theorem 3.3).

Proof of Fact 2.3.1. Since

Bd(N(x0, U)) := lim sup
(

max card(N(x0, U) ∩ [m,m + N ])
)

> 0,

N→∞ m≥0 N + 1
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there exists an increasing sequence of natural numbers (Nk)k∈N ∈ NN and a sequence of intervals Ik =
[ik + 1, ik + Nk] ⊂ N such that

Bd(N(x0, U)) = lim
k→∞

card(N(x0, U) ∩ Ik)
Nk

. (1)

Then we fix the Banach limit m : �∞ → R defined as

m(φ) := lim
U

1
Nk

∑
n∈Ik

φ(n) for every φ ∈ �∞,

for some fixed non-principal ultrafilter U ⊂ P(N) on N. By (1) we have

m(1N(x0,U)) = Bd(N(x0, U)) > 0.

Since τ fulfills (I), (II) and (III*), by [24, Fact 2.1] it also has properties (III) and (IV) so we can apply 
Lemma 2.1 to x0 and m obtaining a (non-negative) T -invariant finite Borel measure μ on X for which 
μ(K) ≥ m(1N(x0,K)) for each K ∈ Kτ and such that

supp(μ) ⊂ Orb(x0, T )
τ
.

In particular we get μ(U) ≥ m(1N(x0,U)) > 0 so μ is a positive T -invariant finite Borel measure. Normalizing 
μ we get the desired measure. �
Fact 2.3.2. Given x0 ∈ RRec(T ), there exists a T -invariant probability measure μx0 on X such that

x0 ∈ supp(μx0) ⊂ Orb(x0, T )
τ
.

Proof. Set O(x0) := Orb(x0, T )
τ
. Using (III*), let (Un)n∈N be a basis of τX -neighborhoods of x0 consisting 

of τ -compact sets. Applying Fact 2.3.1 to each set Un we obtain a sequence (μn)n∈N of T -invariant prob-
ability measures on X for which μn(Un) > 0 and such that supp(μn) ⊂ O(x0) for each n ∈ N. Then the 
measure

μx0 :=
∑
n∈N

μn

2n

is a T -invariant probability measure on X. Moreover, for any τX-neighborhood U of x0 there is an integer 
n ∈ N with Un ⊂ U and hence

μx0(U) ≥ μx0(Un) ≥ μn(Un)
2n > 0.

This implies that x0 ∈ supp(μx0). Also, given x /∈ O(x0) there is a τ -neighborhood V of x, which by (II) 
is also a τX -neighborhood of x, such that V ∩ O(x0) = ∅. Since supp(μn) ⊂ O(x0) for every n ∈ N we 
deduce that μn(V ) = 0 for every n ∈ N and by the definition of μx0 we get μx0(V ) = 0. This implies that 
x /∈ supp(μx0) and hence

x0 ∈ supp(μx0) ⊂ O(x0) = Orb(x0, T )
τ
. �

To complete the proof of Theorem 2.3, let T be reiteratively recurrent. Since X is separable there is a 
countable set {xn : n ∈ N} ⊂ RRec(T ) which is dense in X. Applying Fact 2.3.2 to each point xn we obtain 
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a sequence (μxn
)n∈N of T -invariant probability measures on X such that xn ∈ supp(μxn

) for each n ∈ N. 
Finally, the measure

μ :=
∑
n∈N

μxn

2n

is a T -invariant probability measure on X with full support. �
Remark 2.5. Under the initial topological assumptions of Theorem 2.3, and in view of Fact 2.3.1, a gener-
alization in terms of the recurrence notion introduced in [24, Section 2.5], and following the spirit of [24, 
Proposition 2.11], can be shown:

If for each open subset U of X there is a point xU ∈ X such that Bd(N(xU , U)) > 0, then one can find 
a T -invariant probability measure μ on X with full support.

Indeed, one just has to use (III*) to consider an appropriate countable family of τ -compact sets whose 
τX -interiors form a base of the initial topology τX , apply Fact 2.3.1 to those τ -compact sets and take an 
infinite convex combination of the obtained measures.

3. From reiterative to frequent recurrence

Theorem 2.3 allows us to construct invariant measures starting from reiteratively recurrent points. In this 
section, we exploit this result in order to show that reiterative recurrence for adjoint operators on separable 
dual Banach spaces actually implies the stronger notion of frequent recurrence (Theorem 1.3).

3.1. A key lemma

An important tool for the proof of Theorem 1.3 is the following lemma:

Lemma 3.1 (Frequent Recurrence from Invariant Measures). Let T : X → X be a continuous map on a 
second-countable space X and let μ be a T -invariant probability measure on X. Then μ(FRec(T )) = 1 and 
in particular we have the inclusion

supp(μ) ⊂ FRec(T ).

The above result is the recurrence version of [3, Corollary 5.5], and since recurrence is a local property 
the measure is not required to be with full support, condition under which the map T would clearly be 
frequently recurrent.

Proof of Lemma 3.1. Let B ∈ B(X) be an arbitrary but fixed Borel set with μ(B) > 0. By the Ergodic 
Decomposition theorem (see [23, Theorem 3.42]) there is a T -invariant probability measure m on X for 
which T is an ergodic map and such that m(B) > 0. Let (Un)n∈N be a countable basis of the topology and 
apply the Birkhoff’s Pointwise Ergodic theorem (see [23, Theorem 3.41]) to each of the indicator functions 
1Un

. This yields

dens(N(x, Un)) = lim
N→∞

card(N(x, Un) ∩ [0, N ])
N + 1 = lim

N→∞

1
N + 1

N∑
k=0

1Un
(T kx)

=
∫

1Un
dm = m(Un),
X
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for m-a.e. point x ∈ X, that is, for each n ∈ N there is a set An ⊂ X with m(An) = 1 such that 
dens(N(x, Un)) = m(Un) for every x ∈ An. Since a countable union of null sets is again null, the set

A := supp(m) ∩
( ⋂

n∈N
An

)

satisfies m(A) = 1. We claim that A ⊂ FRec(T ). Indeed, for every x ∈ A and every neighborhood U of x
there is an integer n ∈ N such that x ∈ Un ⊂ U . Since A ⊂ supp(m) we have that Un ∩ supp(m) �= ∅ and 
hence

dens(N(x, U)) ≥ dens(N(x, Un)) = m(Un) > 0.

The arbitrariness of the neighborhood U of x implies that x ∈ FRec(T ). Now, since m(A) = 1 and m(B) > 0
we obtain A ∩B �= ∅ and hence

FRec(T ) ∩B �= ∅.

Since this is true for every set B ∈ B(X) with μ(B) > 0 we deduce that μ(FRec(T )) = 1. Then 
μ(FRec(T )) = 1 and in particular, since supp(μ) is the smallest closed subset of X with full μ-measure, we 
get that

supp(μ) ⊂ FRec(T ). �
Remark 3.2. Lemma 3.1 improves [22, Theorem 3.3] in terms of frequent recurrence by using the Birkhoff’s 
Pointwise Ergodic theorem. Indeed, under the assumptions of Lemma 3.1, [22, Theorem 3.3] shows that 
μ-a.e. point is recurrent, i.e. μ(Rec(T )) = 1.

Combining Theorem 2.3 and Lemma 3.1 we deduce the following result:

Theorem 3.3 (From Reiterative to Frequent Recurrence). Let (X, T ) be a Polish dynamical system, denote 
by τX the initial topology of X and assume that X is endowed with a Hausdorff topology τ which fulfills (I),
(II), and (III*). Then we have the equality

FRec(T )
τX = RRec(T )

τX
.

Moreover:

(a) The following statements are equivalent:
(i) FRec(T ) �= ∅;
(ii) UFRec(T ) �= ∅;
(iii) RRec(T ) �= ∅;
(iv) T admits an invariant probability measure.

(b) The following statements are equivalent:
(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) T admits an invariant probability measure with full support.
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Proof. By definition we always have FRec(T ) ⊂ UFRec(T ) ⊂ RRec(T ), so we just have to show that

RRec(T ) ⊂ FRec(T )
τX

.

Suppose that RRec(T ) �= ∅. Given any x0 ∈ RRec(T ), by Theorem 2.3 one can find a T -invariant probability 
measure μx0 on X for which x0 ∈ supp(μx0). Since separable and metrizable spaces are second-countable, 
Lemma 3.1 implies that x0 ∈ FRec(T )

τX .
Moreover, in both cases (a) and (b) we have: (i) implies (ii) which implies (iii) by definition; (iii) implies 

(iv) by Theorem 2.3; and (iv) implies (i) by Lemma 3.1. �
As we already mentioned in the Introduction, this result is false for general Polish dynamical systems: 

there exist even reiteratively hypercyclic operators on c0(N) without any non-zero U-frequently recurrent 
vector (see [10, Theorem 5.7 and Corollary 5.8]). Working with linear dynamical systems implies a refor-
mulation of the above result, which is Theorem 1.3.

3.2. Proof of Theorem 1.3

Let T : X → X be an adjoint operator on a separable dual Banach space X. Denote by τ‖·‖ the norm 
topology, consider the weak-star topology w∗ and note that:

(I) since T is an adjoint operator, it is a continuous self-map of (X, w∗);
(II) by the definition of the topologies, we have w∗ ⊂ τ‖·‖;

(III*) by the Alaoglu-Bourbaki’s theorem, the translation of the family of closed balls centered at 0 is a 
τ‖·‖-neighborhood basis consisting of w∗-compact sets.

If T : X → X is an operator on a separable reflexive Banach space X the same conditions hold for the 
weak topology. From here one can apply the same arguments as those used in the proof of Theorem 3.3. In 
particular, if we consider a point x0 ∈ RRec(T ) \ {0} then the measure μx0 obtained by Theorem 2.3 is a 
non-trivial invariant probability measure. �
Remark 3.4. The equality FRec(T ) = RRec(T ) and hence the equivalences (i) ⇔ (ii) ⇔ (iii) established in 
Theorem 1.3 are still true when the underlying space X is a non-separable reflexive Banach space. Indeed, 
given an operator T : X → X on a non-separable reflexive Banach space X, and given a point x0 ∈ RRec(T )
we can consider the separable closed T -invariant subspace

Z := span(Orb(x0, T )),

which is again reflexive. Then T |Z : Z → Z is an operator on a separable reflexive Banach space. Moreover, 
recurrence is a local property, i.e. for each Furstenberg family F we have the equality:

FRec(T |Z) = FRec(T ) ∩ Z.

Applying Theorem 1.3 to T |Z we have

x0 ∈ RRec(T |Z) and hence x0 ∈ FRec(T |Z) ⊂ FRec(T ).

However, we cannot say the same about statement (iv) of Theorem 1.3 since separability is essential to 
construct and extend the invariant measures onto the whole space. The above arguments are also restricted 
to the reflexive case because closed subspaces of a dual Banach space are not necessarily dual Banach spaces 
(consider c0(N) ⊂ �∞(N)).
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4. From uniform recurrence to unimodular eigenvectors

Our aim in this section is to connect some recurrence properties (stronger than those considered in 
Sections 2 and 3), for linear dynamical systems on complex Banach spaces, to the existence of unimodular 
eigenvectors. This investigation is motivated by the fact that, given a complex linear map T : X → X

on a complex topological vector space X, the linear span of its unimodular eigenvectors E(T ) consists of 
Δ∗-recurrent vectors. It is shown in [10, Lemma 7.1 and Corollary 7.2] that they are IP∗-recurrent, and 
in fact, the same arguments hold by using [22, Proposition 9.8] applied to the Kronecker system consisting 
of the compact group Tk and the (left) multiplication (z1, ..., zk) 
→ (λ1z1, ..., λkzk) for a fixed k-tuple 
(λ1, ..., λk) ∈ Tk. We give an alternative proof via invariant measures:

Proposition 4.1. Let T : X → X be a complex linear map on a complex topological vector space X. A linear 
combination of unimodular eigenvectors E(T ) is a Δ∗-recurrent vector, i.e. span(E(T )) ⊂ Δ∗Rec(T ).

Proof. Given λ ∈ T let Rλ : T → T be the λ-rotation map where z 
→ λz. Then given ε > 0, since the 
Haar measure on T is a Rλ-invariant measure with full support, by the Poincaré’s Recurrence theorem (see 
[22, Theorem 3.2 and Page 177]) there is A ∈ Δ∗ such that for the set B(1, ε/2) := {z ∈ T : |1 − z| < ε/2}
we have

Rn
λ(B(1, ε/2)) ∩B(1, ε/2) �= ∅ for every n ∈ A.

By the triangular inequality we get |λn − 1| < ε for each n ∈ A and hence

Δ∗ � A ⊂ {n ∈ N : |λn − 1| < ε} so {n ∈ N : |λn − 1| < ε} ∈ Δ∗.

Since the Furstenberg family Δ∗ is a filter (see [6]) and λ ∈ T and ε > 0 were chosen arbitrarily the proof 
is finished. �

Hence, given a complex linear dynamical system T : X → X we will always have:

span(E(T )) ⊂ Δ∗Rec(T ) ⊂ IP∗Rec(T ) ⊂ URec(T ) ⊂ RRecbo(T ).

Our goal is now to prove Theorem 1.7, which states that for any operator acting on a complex Hilbert 
space, the existence of a non-zero reiteratively recurrent vector with bounded orbit, and in particular the 
existence of a uniformly recurrent vector, implies the existence of a unimodular eigenvector. The proof of 
Theorem 1.7 relies heavily on the machinery of Gaussian measures on (complex separable) Hilbert spaces. 
We begin by recalling some basic facts concerning these Gaussian measures, as well as some deeper results 
pertaining to the Ergodic Theory of Gaussian linear dynamical systems. We refer the reader to one of the 
references [12] or [16] for more about Gaussian measures on Banach spaces, and to [3] and [4] for more on 
their role in linear dynamics.

4.1. Ergodic Theory for linear dynamical systems and Gaussian measures

The study of Ergodic Theory in the framework of linear dynamics started with the pioneering work 
of Flytzanis (see [20,21]), and was then further developed in the papers [1], [2] and [4], among others, 
focusing on the existence of invariant Gaussian measures satisfying some further dynamical properties such 
as weak/strong mixing.
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Definition 4.2. A Borel probability measure m on a complex Banach space X is said to be a Gaussian 
measure if every continuous linear functional x∗ ∈ X∗ has a complex Gaussian distribution when considered 
as a random variable on (X, B(X), m).

It is now well understood that the dynamics of a linear dynamical system (X, T ) are closely related to the 
properties of the unimodular eigenvectors of T . The situation is especially well understood in the Hilbertian 
setting, since the existence of an invariant Gaussian measure (with full support, or with respect to which 
T is ergodic or weakly/strongly mixing) can be fully characterized in terms of the properties of the set 
E(T ). See [1] and [3] for details. These characterizations do not hold true, in general, in the Banach space 
setting, but still many results are preserved allowing for a rather through understanding of Ergodic Theory 
of linear dynamical systems in this Gaussian framework. See [2], [3] and [4] for details. Even though Gaussian 
measures are an essential tool for our proof of Theorem 1.7 (see Lemma 4.4 below), the properties that such 
measures (may) have are properties that arbitrary probability measures can have too. We introduce these 
properties following [12]:

Definition 4.3. Let μ be a probability measure on a Banach space X:

(a) suppose that there exists an element x ∈ X such that∫
X

〈x∗, z〉dμ(z) = 〈x∗, x〉 for every x∗ ∈ X∗,

then x is called the expectation of the measure μ, and in this case we will write∫
X

zdμ(z) := x;

(b) we say that μ is centered if its expectation exists and it is equal to 0 ∈ X;
(c) we say that μ has a finite second-order moment, if∫

X

‖z‖2dμ(z) < ∞.

If μ has a finite second-order moment then its expectation (called the Pettis integral of μ) exists (see 
[15, Page 55]). Given a centered probability measure μ on X with a finite second-order moment, following 
[12, Page 169] and [3, Theorem 5.9], we can define the covariance operator of such a measure μ as the 
bounded linear operator R : X∗ → X satisfying

〈y∗, Rx∗〉 =
∫
X

〈y∗, z〉〈x∗, z〉dμ(z)

for every pair of elements x∗ and y∗ of X∗. In other words,

Rx∗ :=
∫
X

〈x∗, z〉zdμ(z) for every x∗ ∈ X∗. (2)

Any Gaussian measure m on X has a finite second-order moment (see [3, Exercise 5.5]), and since we 
will consider in this work only centered Gaussian measures, we will always have an associated covariance 
operator for such a measure m.
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When H is a complex separable Hilbert space, the covariance operator of a centered probability measure 
μ on H with a finite second-order moment is usually defined, in a slightly different way, as the bounded 
linear operator S : H → H for which

〈Sx, y〉 =
∫
H

〈x, z〉〈y, z〉dμ(z) for every x, y ∈ H,

i.e.

Sx :=
∫
H

〈x, z〉zdμ(z) for every x ∈ H. (3)

Observe that, contrary to (2), in this case 〈Sx, ·〉 : H → C is an anti-linear functional acting on H. Also, 
S is a self-adjoint positive trace-class operator on H. It is a standard result (see for instance [3, Corollary 
5.15]) that the Gaussian covariance operators on H are exactly the positive trace-class operators on H, i.e. 
for such an operator S there exists a Gaussian measure m on H for which we also have that

〈Sx, y〉 =
∫
H

〈x, z〉〈y, z〉dm(z) for every x, y ∈ H.

The possibility of constructing a Gaussian measure m with the same covariance operator as μ, together 
with the fact that the support of the Gaussian measure m is exactly S(H) (i.e. the closed linear span of the 
range of its covariance operator, see [3, Proposition 5.18]) is the key to prove the following lemma, inspired 
from the pioneering work [21] of Flytzanis. This lemma is crucial for the proof of Theorem 1.7.

Lemma 4.4 (Unimodular Eigenvectors from Invariant Measures). Let T ∈ L(H), where H is a com-
plex separable Hilbert space, and let μ be a (non-trivial) T -invariant probability measure on H such that ∫
H
‖z‖2dμ(z) < ∞. Then we have the inclusions

supp(μ) ⊂ span(supp(μ)) ⊂ span(E(T )).

Proof. Suppose first that μ is a centered measure on H. Then, since H is a Hilbert space, the covariance 
operator S of μ defined as in (3) satisfies

〈Sx, y〉 =
∫
H

〈x, z〉〈y, z〉dμ(z) =
∫

supp(μ)

〈x, z〉〈y, z〉dμ(z) for every x, y ∈ H,

and by [3, Corollary 5.15], it is also the covariance operator of a certain Gaussian measure m on H. From 
now on we split the proof in three steps:

Step 1. The Gaussian measure m is T -invariant:
Given x, y ∈ H we have

〈TST ∗x, y〉 = 〈ST ∗x, T ∗y〉 =
∫
H

〈T ∗x, z〉〈T ∗y, z〉dμ(z) =
∫
H

〈x, Tz〉〈y, Tz〉dμ(z)

=
∫
H

〈x, z〉〈y, z〉d(μ ◦ T−1)(z) =
∫
H

〈x, z〉〈y, z〉dμ(z) = 〈Sx, y〉,

since μ is T -invariant. By [3, Proposition 5.22] we deduce that m is T -invariant.
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Step 2. We have the equality span(supp(μ)) = supp(m):
By [3, Proposition 5.18] we know that supp(m) = ker(S)⊥ = S(H). Moreover, the subspace 

span(supp(μ))
⊥

is included in the set

⎧⎪⎨
⎪⎩y ∈ H : 〈Sx, y〉 =

∫
supp(μ)

〈x, z〉〈y, z〉dμ(z) = 0 for every x ∈ H

⎫⎪⎬
⎪⎭ =

= S(H)
⊥ ⊂

⎧⎪⎨
⎪⎩y ∈ H :

∫
supp(μ)

|〈y, z〉|2dμ(z) = 0

⎫⎪⎬
⎪⎭

= {y ∈ H : 〈y, z〉 = 0 for μ-a.e. z ∈ H}
(∗)= {y ∈ H : 〈y, z〉 = 0 for every z ∈ supp(μ)} = span(supp(μ))

⊥
,

where the equality (∗) follows from the continuity of the maps 〈y, ·〉 : H → C.
Step 3. We have the inclusion supp(μ) ⊂ span(E(T )):

In [3, Theorem 5.46] it is stated that if a Banach space X has cotype 2, then every operator in 
L(X) admitting a Gaussian invariant measure with full support has a spanning set of unimodular 
eigenvectors. Since the support of m is a closed linear subspace of H (Step 2) and every Hilbert 
space has cotype 2, [3, Theorem 5.46] applied to the T -invariant measure m (Step 1) implies that 
supp(m) ⊂ span(E(T )), and hence using again Step 2 we get that

supp(μ) ⊂ span(supp(μ)) = supp(m) ⊂ span(E(T )).

Suppose now that μ is not centered and define the measure

ν(A) :=
∫
T

μ(λA)dλ for every Borel set A ∈ B(H).

Then ν is a (non-trivial) probability measure on H and it is T -invariant since

ν(T−1(A)) =
∫
T

μ(λT−1(A))dλ =
∫
T

μ(T−1(λA))dλ = ν(A).

Using the density of the simple functions in L1(H, B(H), ν) one can show that ν is centered since

∫
H

zdν(z) =
∫
T

⎛
⎝∫

H

λzdμ(z)

⎞
⎠ dλ =

∫
T

λ

⎛
⎝∫

H

zdμ(z)

⎞
⎠ dλ = 0,

and also that ν has a finite second-order moment since

∫
H

‖z‖2dν(z) =
∫
T

⎛
⎝∫

H

‖λz‖2dμ(z)

⎞
⎠ dλ =

∫
H

‖z‖2dμ(z) < ∞.

The first part of the proof implies that supp(ν) ⊂ span(supp(ν)) ⊂ span(E(T )) and hence we only have 
to show that supp(μ) ⊂ supp(ν). In order to see this, pick x0 ∈ supp(μ) and ε > 0. Then let δ :=
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μ(B(x0, ε/2)) > 0, where B(x0, ε/2) denotes the open ball of X centered at x0 and of radius ε/2, and note 
that B(x0, ε/2) ⊂ λB(x0, ε) for any λ ∈ T with

|λ− 1| < ε

2(‖x0‖ + 1) .

Indeed, given x ∈ B(x0, ε/2) we have that ‖λx0 − x‖ ≤ ‖(λ − 1)x0‖ + ‖x0 − x‖ < ε. Then for such a 
λ ∈ T we have that μ(λB(x0, ε)) ≥ δ and hence ν(B(x0, ε)) > 0. The arbitrariness of ε > 0 implies that 
x0 ∈ supp(ν). �
Remark 4.5. If we start the proof of Lemma 4.4 with the underlying space being a Banach space X which 
has type 2, then there exists a Gaussian measure m on X whose covariance operator is R, as defined in (2). 
Indeed, since R is a symmetric and positive operator it admits a square root: there exist some separable 
Hilbert space H and an operator K : H → X such that R = KK∗ (see [3, Page 101]). Moreover, by the 
finite second-order moment condition of μ, the operator K∗ is an absolutely 2-summing operator and hence 
such a Gaussian measure m on X exists by [3, Corollary 5.20]. However, in the Step 3 of the proof above 
the underlying space needs to have cotype 2. Since the only spaces which are both of type 2 and of cotype 
2 are those which are isomorphic to a Hilbert space, the proof of Lemma 4.4 does not extend outside of the 
Hilbertian setting.

We are now ready to prove Theorem 1.7.

4.2. Proof of Theorem 1.7

Let T : H → H be an operator on a complex separable Hilbert space H. We already know that 
span(E(T )) ⊂ URec(T ) ⊂ RRecbo(T ), so we just have to prove that

RRecbo(T ) ⊂ span(E(T )).

To see this, let x0 ∈ RRecbo(T ) \ {0} and let M > 0 be such that Orb(x0, T ) is contained in MBH , the 
‖ · ‖-closed ball of radius M centered at 0. If we denote by w the weak topology of H, we have the inclusion

Orb(x0, T )
w ⊂ MBH .

By Theorem 2.3 there is a (non-trivial, because x0 �= 0) T -invariant probability measure μx0 on X such 
that

x0 ∈ supp(μx0) ⊂ Orb(x0, T )
w
,

and hence ∫
H

‖z‖2dμx0(z) =
∫

supp(μx0 )

‖z‖2dμx0(z) ≤ M2 < ∞.

By Lemma 4.4 we get that x0 ∈ supp(μx0) ⊂ span(E(T )) as we wanted to show.
Suppose now that there is a countable set {xn : n ∈ N} ⊂ RRecbo(T ) which is dense in H. For each 

n ∈ N pick Mn > 0 and kn ∈ N such that

Orb(xn, T )
w ⊂ MnBH and 2nM2

n ≤ 2kn .
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Applying Theorem 2.3 to each vector xn we obtain a sequence (μxn
)n∈N of T -invariant probability measures 

on H such that xn ∈ supp(μxn
) ⊂ Orb(xn, T )

w
for each n ∈ N. Consider the measure

μ :=
∑
n∈N

μxn

2kn
,

which is a (positive) T -invariant finite Borel measure on H with full support such that

∫
H

‖z‖2dμ(z) =
∑
n∈N

1
2kn

∫
H

‖z‖2dμxn
(z) ≤

∑
n∈N

M2
n

2kn
≤ 1.

Normalizing μ we get a T -invariant probability measure with full support and finite second-order moment.
Moreover, in both cases (a) and (b) we have: (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) ⇒ (vii) by definition; 

(vii) implies (viii) using Theorem 2.3 as in the above arguments; and (viii) implies (i) by Lemma 4.4. �
Remark 4.6. The equalities span(E(T )) = URec(T ) = RRecbo(T ) and hence the equivalences (i) ⇔ (ii) ⇔
(iii) ⇔ (iv) ⇔ (v) ⇔ (vi) ⇔ (vii) established in Theorem 1.7 are still true when the underlying space H
is a complex non-separable Hilbert space. Since the closed subspaces of a Hilbert space are again Hilbert 
spaces, the same arguments as those used in Remark 3.4 apply. We loose again the measures equivalences, 
i.e. statement (viii).

As mentioned in the Introduction and in Remark 4.5, the proof of Lemma 4.4 and hence that of Theo-
rem 1.7 do not extend outside of the Hilbertian setting.

We finish this section with the proof of Theorem 1.9, which concerns the power-bounded operators on 
complex reflexive Banach spaces X. The proof relies on the splitting theorem of Jacobs-Deleeuw-Glicksberg, 
and is really specific to the setting of power-bounded operators. We follow the presentation and notation of 
[31, Section 2.4]: if S is a semigroup of L(X), we say that S is weakly almost periodic if for any x ∈ X the 
set S x = {Sx : S ∈ S } has a w-compact closure.

4.3. Proof of Theorem 1.9

Given a power-bounded operator T : X → X on a complex reflexive Banach space X, we already 
know that span(E(T )) ⊂ URec(T ) so we just have to show the inclusion URec(T ) ⊂ span(E(T )). We set 
O(x) := Orb(x, T )

w
for each x ∈ X.

Since T is power-bounded, every T -orbit is bounded and has a w-compact closure. Hence, by the Jacobs-
Deleeuw-Glicksberg theorem [31, Section 2.4, Theorem 4.4] applied to the (weakly almost periodic) abelian 
semigroup of operators {Tn : n ∈ N0} ⊂ L(X), we obtain that X = Xrev ⊕Xfl where

Xrev := {x ∈ X : y ∈ O(x) ⇒ x ∈ O(y)} and Xfl := {x ∈ X : 0 ∈ O(x)}.

Moreover, by the second part of this same theorem [31, Section 2.4, Theorem 4.5] we also get that

Xrev = span(E(T )).

Let us now show that URec(T ) ⊂ Xrev. Indeed, given x ∈ URec(T ) \ {0} we can consider the map T |O(x) :
(O(x), w) → (O(x), w) which is a w-compact dynamical system. Since the weak topology is coarser than the 
norm topology we have x ∈ URec(T |O(x)) and hence by [22, Theorem 1.17] the system T |O(x) is minimal so 
every T |O(x)-orbit is dense in O(x). Finally, given y ∈ O(x) we have
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O(y) = Orb(y, T )
w

= Orb(y, T |O(x))
w

= O(x)

which implies that x ∈ O(y). The arbitrariness of y ∈ O(x) shows that x ∈ Xrev. �
5. Product dynamical systems

Given a property of a dynamical system T : X → X, it is usual to ask whether the product dynamical 
system T × T : X ×X → X ×X has the same property. Studied cases in linear dynamics are transitivity 
or hypercyclicity (which gives us the concept of topological weak mixing), and in general F-transitivity or 
F-hypercyclicity (see [8] and [18]). Here we show that the above theorems still work for the product systems.

Theorem 5.1 (From Reiterative to N -Dimensional Frequent Recurrence). Let N ∈ N and suppose that for 
each 1 ≤ i ≤ N there is a Polish dynamical system (Xi, Ti) such that (Xi, τXi

) can be endowed with a 
Hausdorff topology τi which fulfills (I), (II), and (III*) with respect to the map Ti and the topology τXi

. 
Then for the product dynamical system T : (X, τX) → (X, τX), where τX is the product topology of the N -th 
τXi

topologies, we have the equality

FRec(T )
τX =

N∏
i=1

RRec(Ti)
τXi .

In particular:

(a) The following statements are equivalent:
(i) FRec(T ) �= ∅;
(ii) UFRec(T ) �= ∅;
(iii) RRec(T ) �= ∅;
(iv) RRec(Ti) �= ∅ for every 1 ≤ i ≤ N .

(b) The following statements are equivalent:
(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) Ti is reiteratively recurrent for every 1 ≤ i ≤ N .

Proof. We clearly have the inclusion

FRec(T ) ⊂
N∏
i=1

RRec(Ti).

Now given x0 = (x1, ..., xN ) ∈ X such that xi ∈ RRec(Ti) for each 1 ≤ i ≤ N , let us show that x0 ∈
FRec(T )

τX . Applying Theorem 2.3 we obtain a Ti-invariant measure μxi
on Xi such that xi ∈ supp(μxi

)
for each 1 ≤ i ≤ N . Since

B(X, τX) =
N∏
i=1

B(X, τXi
),

we can consider the product measure μx0 :=
∏N

i=1 μxi
on the product space X, which is a T -invariant 

measure (see [36, Theorem 1.1 and Definition 1.2]) for which x0 ∈ supp(μx0). Applying now Lemma 3.1 we 
deduce that x0 ∈ FRec(T )

τX . �
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The following immediate corollaries yield a product version of Theorem 1.3:

Corollary 5.2. Let N ∈ N and consider for each 1 ≤ i ≤ N an adjoint operator Ti : Xi → Xi on a separable 
dual Banach space Xi. Then, for the direct sum operator T = T1 ⊕ · · · ⊕ TN : X → X on the direct sum 
space X = X1 ⊕ · · · ⊕XN , we have the equality

FRec(T ) =
N∏
i=1

RRec(Ti).

In particular, the following statements are equivalent:

(i) T is frequently recurrent;
(ii) T is U-frequently recurrent;
(iii) T is reiteratively recurrent;
(iv) Ti is reiteratively recurrent for every 1 ≤ i ≤ N .

Moreover, the result holds whenever some of the Ti are operators defined on some reflexive Banach spaces 
Xi.

In the statement above, and whenever we consider a direct sum space X1 ⊕ · · · ⊕XN , one can use any 
norm defining the usual product topology on X1 ⊕ · · · ⊕XN (see Theorem 5.8).

Definition 5.3. Let (X, T ) be a linear dynamical system and let n ∈ N. We will denote by Tn : Xn → Xn

the n-fold direct sum of T with itself, i.e. the dynamical system

Tn := T ⊕ · · · ⊕ T︸ ︷︷ ︸
n

: X ⊕ · · · ⊕X︸ ︷︷ ︸
n

−→ X ⊕ · · · ⊕X︸ ︷︷ ︸
n

,

where Xn := X ⊕ · · · ⊕X︸ ︷︷ ︸
n

is the n-fold direct sum of X with itself.

Corollary 5.4. Let T : X → X be an adjoint operator on a separable dual Banach space X. Then the 
following statements are equivalent:

(i) for every n ∈ N, Tn is frequently recurrent;
(ii) for every n ∈ N, Tn is U-frequently recurrent;
(iii) for every n ∈ N, Tn is reiteratively recurrent;
(iv) T is reiteratively recurrent.

In particular, the result holds whenever T is an operator on a reflexive Banach space X.

As a consequence of the above fact we can prove some results related with hypercyclicity. We start with 
an independent proof of [18, Theorem 2.5 and Corollary 2.6] for the particular case of the reiteratively 
hypercyclic (adjoint) operators:

Theorem 5.5. Let T : X → X be a reiteratively hypercyclic adjoint operator on a separable dual Banach 
space X. Then for every n ∈ N the operator Tn is reiteratively hypercyclic and frequently recurrent. In 
particular, the result holds whenever T is an operator on a separable reflexive Banach space X.
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Proof. Let n ∈ N. Since T is reiteratively hypercyclic we know that:

(a) T is topologically weakly mixing (see [7, Page 548]), and hence Tn is topologically transitive, and in 
particular hypercyclic;

(b) T is reiteratively recurrent, and by the above results Tn is frequently recurrent, in particular reiteratively 
recurrent.

By [10, Theorem 2.1], reiterative recurrence plus hypercyclicity imply reiterative hypercyclicity. We deduce 
that Tn is reiteratively hypercyclic and frequently recurrent. �

If we start just with reiterative recurrence, having a dense set of orbits converging to 0 implies a strong 
notion of hypercyclicity:

Theorem 5.6. Let T : X → X be an adjoint operator on a separable dual Banach space X. Suppose that 
there is a dense set X0 ⊂ X such that T kx → 0 as k → ∞ for each x ∈ X0. The following statements are 
equivalent:

(i) for every n ∈ N, Tn is U-frequently hypercyclic and frequently recurrent;
(ii) T is reiteratively recurrent.

In particular, the result holds if T is an operator on a separable reflexive Banach space X.

Proof. Clearly (i) implies (ii) even if T : X → X is not a linear map. If we suppose (ii) and we fix n ∈ N, 
by the above results we get that Tn is frequently recurrent and in particular U-frequently recurrent. Let 
Y0 := X0 ⊕ · · · ⊕X0 the n-direct sum of the set X0. Then Y0 is a dense subset of the n-fold direct sum Xn

and every orbit of a point of Y0 converges to (0, ..., 0) ∈ Xn. By [10, Theorem 2.12], the existence of Y0 and 
the U-frequent recurrence imply that Tn is U-frequently hypercyclic. �

It would be interesting to change the assumption of U-frequent hypercyclicity in the above statement into 
that of frequent hypercyclicity. However, as exposed in [10, Question 2.13], the following is an open problem:

Question 5.7 ([10, Question 2.13]). Let T be a frequently recurrent operator admitting a dense set of vectors 
with orbit convergent to 0. Is T is frequently hypercyclic?

If now we focus on Theorems 1.7 and 1.9, their generalizations for product linear dynamical systems 
follow in a much easier way, since any N -tuple formed by unimodular eigenvectors is a linear combination 
of such vectors for the direct sum map:

Theorem 5.8. Let N ∈ N and suppose that for each 1 ≤ i ≤ N :

(a) we have an operator Ti : Hi → Hi on a complex Hilbert space Hi. Then, for the direct sum operator 
T = T1 ⊕ · · · ⊕ TN : H → H on the direct sum Hilbert space H = H1 ⊕ · · · ⊕HN , we have the equality:

span(E(T )) =
N∏
i=1

RRecbo(Ti).

In particular, the following statements are equivalent:
(i) the set span(E(T )) is dense in H;
(ii) the set RRecbo(Ti) is dense in Hi for every 1 ≤ i ≤ N .
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(b) we have a power-bounded operator Ti : Xi → Xi on a complex reflexive Banach space Xi. Then, for the 
direct sum operator T = T1 ⊕ · · · ⊕ TN : X → X on the direct sum space X = X1 ⊕ · · · ⊕XN , we have 
the equality

span(E(T )) =
N∏
i=1

URec(Ti).

In particular, the following statements are equivalent:
(i) the set span(E(T )) is dense in X;
(ii) the set URec(Ti) is dense in Xi for every 1 ≤ i ≤ N .

Proof. Since the vector (0, ..., 0, xi, 0, ..., 0) belongs to E(T ) whenever xi ∈ E(Ti) for each 1 ≤ i ≤ N , it is 
enough to apply Theorems 1.7 and 1.9 to each operator Ti. �

Finally we get the desired generalization of Theorems 1.7 and 1.9:

Corollary 5.9. Let T ∈ L(H) where H is a complex Hilbert space. The following statements are equivalent:

(i) for every n ∈ N, the set span(E(Tn)) is dense in Hn;
(ii) for every n ∈ N, Tn is Δ∗-recurrent;
(iii) for every n ∈ N, Tn is IP∗-recurrent;
(iv) for every n ∈ N, Tn is uniformly recurrent;
(v) for every n ∈ N, the set FRecbo(Tn) is dense in Hn;
(vi) for every n ∈ N, the set UFRecbo(Tn) is dense in Hn;
(vii) for every n ∈ N, the set RRecbo(Tn) is dense in Hn;
(viii) the set RRecbo(T ) is dense in H.

Corollary 5.10. Let T : X → X be a power-bounded operator on a complex reflexive Banach space X. The 
following statements are equivalent:

(i) for every n ∈ N, the set span(E(Tn)) is dense in Xn;
(ii) for every n ∈ N, Tn is Δ∗-recurrent;
(iii) for every n ∈ N, Tn is IP∗-recurrent;
(iv) for every n ∈ N, Tn is uniformly recurrent;
(v) T is uniformly recurrent.

6. Inverse dynamical systems

As in the case of products, given a (topological) dynamical system T : X → X with some property, it 
is natural to ask whether the inverse dynamical system T−1 : X → X (if it exists and is continuous) has 
the same property. This is true for hypercyclicity and reiterative hypercyclicity (see [9]), but it fails for 
U-frequent hypercyclicity (see [33]) and frequent hypercyclicity (see [34]). It is also known that the inverse 
of a frequently hypercyclic operator is U-frequently hypercyclic (see [5, Proposition 20]).

If we focus on recurrence properties, the inverse of a recurrent operator is again recurrent as [14, Propo-
sition 2.6] shows. A simpler proof (in a transitive style) of that fact would be:

Proposition 6.1 ([14, Proposition 2.6]). Let T : X → X be an invertible operator. Then T is recurrent if 
and only if so is T−1.
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Proof. By [14, Proposition 2.1] the result follows from the equivalence

Tn(U) ∩ U �= ∅ if and only if U ∩ T−n(U) �= ∅,

valid for any non-empty open subset U of X. �
However, it is also shown in [14, Remark 2.7] that the sets Rec(T ) and Rec(T−1) may not be equal in 

spite of the fact that their closures coincide. For general F-recurrence notions the following problem was 
proposed in [10]:

Question 6.2 ([10, Question 2.14]). Let T be an invertible operator. If T is reiteratively (resp. U-frequently, 
frequently or uniformly) recurrent, does T−1 have the same property?

In fact, we could ask the same question for IP∗, Δ∗-recurrence and unimodular eigenvalues. However, 
for the latest the linearity is enough to show it since if

Tx = λx for some λ ∈ T , then T−1x = λ(T−1λx) = λx,

so clearly span(E(T )) = span(E(T−1)). In order to answer Question 6.2 in our dual/reflexive or Hilbertian 
setting we just have to recall the following trivial fact: given a homeomorphism T : X → X on a Polish 
space X and a Borel measure μ on X, μ is T -invariant if and only if it is T−1-invariant.

Theorem 6.3 (From Reiterative to Inverse Frequent Recurrence). Let T : X → X be a homeomorphism of 
the Polish space (X, τX), and assume that X is endowed with a Hausdorff topology τ1 which fulfills (I) for 
T , (II), and (III*). Then we have

FRec(T )
τX = RRec(T )

τX ⊂ FRec(T−1)
τX ⊂ RRec(T−1)

τX
.

Moreover:

(a) If T is reiteratively recurrent then T−1 is frequently recurrent.
(b) If RRec(T ) �= ∅ then FRec(T ) ∩ FRec(T−1) �= ∅.
(c) If X can be endowed with a Hausdorff topology τ2 which fulfills (I) for T−1, (II), and (III*), then the 

above inclusions are equalities and T is reiteratively (and hence frequently) recurrent if and only if so 
is T−1.

Proof. The equality is shown in Theorem 3.3. The first inclusion follows from Lemma 3.1 applied to the 
measures constructed with Theorem 2.3 for each point of RRec(T ), using the fact that they are T−1-
invariant. The second inclusion follows by definition. Moreover, if there exists x0 ∈ RRec(T ) and if we take 
the invariant probability measure μx0 on X constructed with Theorem 2.3, then by Lemma 3.1 we have

μx0(FRec(T )) = 1 = μx0(FRec(T−1))

which implies that FRec(T ) ∩ FRec(T−1) �= ∅. Finally, if such a topology τ2 exists we can apply the first 
part of the result to T−1 obtaining RRec(T−1)

τX ⊂ FRec(T )
τX . �

As a corollary of the above theorem, and using the arguments from Theorem 1.3 we have:
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Corollary 6.4. Let T : X → X be an invertible adjoint operator on a separable dual Banach space X. Then 
we have the equalities

RRec(T ) = FRec(T ) = FRec(T−1) = RRec(T−1).

Moreover:

(a) T is reiteratively (and hence frequently) recurrent if and only if so is T−1.
(b) If RRec(T ) \ {0} �= ∅ then [FRec(T ) ∩ FRec(T−1)] \ {0} �= ∅.

In particular, the result holds whenever T is an operator on a reflexive Banach space X.

Proof. Let S : Y → Y be an operator on a Banach space Y such that Y ∗ = X and S∗ = T . It is a known 
fact that T is invertible if and only if S is invertible, and in this case, T−1 = (S−1)∗, so T−1 is also an 
adjoint operator on the separable Banach space X and hence it is w∗-continuous. The result follows from 
the above theorem applied to T : X → X, (X, ‖ · ‖) and the topology w∗. �

With the above fact we give an alternative proof of [9, Theorem 3.6] for adjoint operators:

Theorem 6.5. Let T : X → X be an invertible adjoint operator on a separable dual Banach space. If T
is reiteratively hypercyclic (and hence frequently recurrent) then so is T−1. In particular, the result holds 
whenever T is an operator on a separable reflexive Banach space X.

Proof. By the above theorem T−1 is frequently recurrent and in particular reiteratively recurrent. Since 
hypercyclicity (or transitivity) is also preserved by taking the inverse system, [10, Theorem 2.1] implies that 
T−1 is reiteratively hypercyclic. �

We cannot change the assumption of reiterative hypercyclicity in the statement of Theorem 6.5 above into 
the assumption of U-frequent hypercyclicity since there are invertible U-frequently hypercyclic operators on 
�p(N) (1 ≤ p < ∞) whose inverse is not U-frequently hypercyclic (see [33]). However, it would be interesting 
to know whether it is possible to change the assumption of reiterative hypercyclicity into that of frequent 
hypercyclicity: even though it is known that there are invertible frequently hypercyclic operators on �1(N)
whose inverse is not frequently hypercyclic (see [34]), one can check that these are not adjoint operators 
and moreover by [5, Proposition 20] the inverse of a frequently hypercyclic operator is always U-frequently 
hypercyclic.

All the counterexamples mentioned here are C-type operators, which were introduced for the first time 
in [32] and further developed in [26,33,34], so a possible counterexample for the frequent hypercyclicity case 
could arise from those operators. If, on the other hand, one wishes to prove an analogue of Theorem 6.5
for the frequent hypercyclicity case in our dual/reflexive framework, one cannot take a similar approach 
since there are chaotic operators, which are in particular frequently recurrent and hypercyclic, but not 
U-frequently hypercyclic (see [32] and [26]) and hence not frequently hypercyclic.

If we now focus on uniform, IP∗ and Δ∗-recurrence, Theorems 1.7 and 1.9 combined with the equality 
span(E(T )) = span(E(T−1)) give us the following:

Corollary 6.6. Let T : H → H be an invertible operator on a complex Hilbert space H. Then we have the 
equalities

RRecbo(T ) = span(E(T )) = span(E(T−1)) = RRecbo(T−1).

In particular, T is uniformly (and hence IP∗ and Δ∗) recurrent if and only if so is T−1.



184 S. Grivaux, A. López-Martínez / J. Math. Pures Appl. 169 (2023) 155–188
Corollary 6.7. Let T : X → X be an invertible operator on a complex reflexive space X. If T is power-
bounded, then we have

URec(T ) = span(E(T )) = span(E(T−1)) ⊂ URec(T−1).

In particular, if T is uniformly recurrent then span(E(T−1)) is a dense set in X. Moreover, if T−1 is also 
power-bounded then the above inclusion is an equality and T is uniformly (and hence IP∗ and Δ∗) recurrent 
if and only if so is T−1.

7. How typical is a reiteratively recurrent operator?

Let H be a complex separable Hilbert space. For any M > 0, denote by LM (H) the set of bounded 
operators T ∈ L(H) such that ‖T‖ ≤ M . Our aim in this short section is to present a result pertaining 
to the typicality of reiteratively recurrent operators of LM (H), with M > 1, for one of the two (Polish) 
topologies SOT and SOT∗. The framework that we use here is presented in detail in [26, Chapters 2 and 3], 
so we will be rather brief in our presentation and refer the readers to the works [25], [26] or [27] for more 
on typical properties of operators on Hilbert or Banach spaces.

We recall that the Strong Operator Topology (SOT) on L(H) is defined as follows: any T0 ∈ L(H) has a 
SOT-neighborhood basis consisting of sets of the form

UT0,x1,...,xs,ε := {T ∈ L(H) : ‖(T − T0)xi‖ < ε for i = 1, ..., s},

where x1, ..., xs ∈ H and ε > 0.
The Strong∗ Operator Topology (SOT∗) is the “self-adjoint” version of SOT: a basis of SOT∗-

neighborhoods of T0 ∈ L(H) is provided by the sets of the form

VT0,x1,...,xs,ε := {T ∈ L(H) : ‖(T − T0)xi‖ < ε and ‖(T − T0)∗xi‖ < ε for i = 1, ..., s},

where x1, ..., xs ∈ H and ε > 0.
It is easily shown that (LM (H), SOT) and (LM (H), SOT∗) are Polish spaces for any M > 0 (see [35, 

Section 4.6.2]), and hence, a property of operators T ∈ LM (H) will be called typical if the set of operators 
fulfilling it is co-meager (i.e. contains a dense Gδ set), and atypical if its negation is typical. Following the 
notation used in [26] we can write

HC(H) := {T ∈ L(H) hypercyclic};

INV(H) := {T ∈ L(H) admitting a non-trivial invariant measure};

and for each M > 1 the set HCM (H) is defined as HC(H) ∩ LM (H). Following the spirit of this study we 
introduce the following notation:

RHC(H) := {T ∈ L(H) reiteratively hypercyclic};

RRec(H) := {T ∈ L(H) reiteratively recurrent};

RRec 	=∅(H) := {T ∈ L(H) : RRec(T ) \ {0} �= ∅};

and as it was done previously for the set HC(H), for each M > 1, we will denote the respective bounded 
versions of these sets of operators by RHCM (H), RRecM (H) and RRec	=∅

M (H).
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Let us first recall that a SOT-typical operator in LM (H), for M > 1, has any form of recurrence one can 
wish for: by [17] it is known that a typical T ∈ LM (H) is unitarily similar to MB∞, where B∞ denotes 
the backward shift of infinite multiplicity on �2(N, �2(N)), and MB∞ is such that the linear span of its 
unimodular eigenvectors is dense in �2(N, �2(N)), see [17, Theorem 5.2].

With respect to the topology SOT∗, it is proved in [26, Theorem 2.29] that for every M > 1 the set 
HCM (H) \ INV(H) is co-meager in the space (HCM (H), SOT∗). In other words, a SOT∗-typical hypercyclic 
operator on H admits no non-trivial invariant measure. Combining Theorem 2.3 of the present work with 
[26, Theorem 2.29] we obtain:

Corollary 7.1. For every M > 1, the set RRec 	=∅

M (H) is meager in (LM (H), SOT∗). In other words, a
SOT∗-typical operator on H has no non-zero reiteratively recurrent point.

Moreover, since [10, Theorem 2.1] implies that reiterative recurrence plus hypercyclicity is equivalent to 
reiterative hypercyclicity, we have that RHC(H) = RRec(H) ∩HC(H). Using Corollary 7.1 we can improve 
[26, Corollary 2.36] in terms of reiterative recurrence:

Corollary 7.2. For every M > 1, the set RRec	=∅

M (H) ∩ HCM (H) is meager in the space (HCM (H), SOT∗). 
In particular, the set RHCM (H) is meager in (HCM (H), SOT∗). In other words, a SOT∗-typical hyper-
cyclic operator on H does not admit any non-zero reiteratively recurrent point, and, in particular, is not 
reiteratively hypercyclic.

8. Open problems

In this section we gather some possibly interesting open questions and a few comments related to them. 
We start by Questions 1.6 and 1.8, already stated in Subsection 1.3, which we recall here with some extra 
generality:

Question 8.1 (Question 1.8). Let T be a uniformly recurrent operator on a complex Fréchet space X. Is 
span(E(T )) a dense set in X? What about the cases where T is an adjoint operator on a separable dual 
Banach space or where X is a reflexive Banach space?

Question 8.2 (From [10, Question 6.3] and Question 1.6). Does there exist an operator (possibly on a Fréchet
space) which is uniformly recurrent but not Δ∗-recurrent? What about distinguishing uniform recurrence 
from IP∗-recurrence?

Note that these two questions make sense in the more general context of complex Fréchet spaces, and in 
fact both questions are still unsolved for that rather general class of spaces. It is clear that, in every possible 
complex context, a positive answer to Question 8.1 implies a negative one to Question 8.2. Moreover, it 
would even imply a negative answer for the real case of Question 8.2: given any uniformly recurrent real
linear dynamical system we could consider its complexification, and by the product-arguments used for 
Theorem 5.8 we would get unimodular eigenvectors and hence Δ∗-recurrence; the initial real dynamical 
system could possibly not contain the obtained unimodular eigenvectors, but the real and complex parts of 
such vectors would clearly be Δ∗-recurrent for the original real system. It is worth mentioning that uniform 
and IP∗-recurrence are completely distinguished for compact dynamical systems (see the construction from 
[19], its properties in [11] and use [22, Theorems 1.15 and 9.12]), so the question is if the linearity avoids 
that distinction.

The technique used in the proof of Theorem 1.7 (via Gaussian measures) is very different from the 
one used in Theorem 1.9 (via the Jacobs-Deleeuw-Glicksberg theorem). Indeed we loose the contact with 
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measures and the unimodular eigenvectors are obtained from a totally different construction (see [31, Section 
2.4]). It seems to us that a more general “eigenvectors’ constructing machine”, not restricted to the measures 
or power-bounded assumptions, should be developed in order to provide a better answer to Question 8.1. 
What we know for the moment, leaving apart the power-bounded case which seems very specific, is the 
following:

Proposition 8.3. Let T ∈ L(H), where H is a complex separable Hilbert space. Given a T -invariant w-
compact subset K of H for which 0 /∈ K, we have

span(E(T )) ∩K �= ∅ and in particular E(T ) �= ∅.

Proof. We have that T |K : (K, w) → (K, w) is a w-compact dynamical system, so it admits a T |K-invariant 
probability measure μ on K (see [22, Page 62]). Since the norm topology and the weak topology on H have 
the same Borel sets, we can extend the measure μ into a Borel probability measure on the whole space H
(still denoted by μ) using the formula

μ(A) := μ(K ∩A) for every Borel set A ∈ B(H).

Note that μ is T -invariant. We deduce that:

(a) μ is non-trivial, since 0 /∈ K;
(b) μ has a finite second-order moment, since supp(μ) ⊂ K.

Lemma 4.4 implies that span(E(T )) ∩K �= ∅ and in particular E(T ) �= ∅. �
Remark 8.4. Let H be a complex separable Hilbert space. Since the set Orb(x, T )

w
is a T -invariant w-

compact subset of H for any point x ∈ H with bounded T -orbit, the arguments of the above proposition 
imply that for any M > 1, a SOT∗-typical operator T ∈ LM (H) has the property that every bounded orbit 
of T contains 0 in its weak closure.

Proposition 8.5. Let T be an adjoint operator on a complex separable dual Banach space X. Let n ∈ N and 
λ ∈ T . Given a [λT ]n-invariant w∗-compact and convex subset K of H for which 0 /∈ K, we have

E(T ) ∩ span(Orb(x, T )) �= ∅ for some x ∈ K,

and in particular E(T ) �= ∅.

Proof. By the Schauder’s Fixed-Point theorem there is x ∈ K for which the identity [λT ]nx = x holds. 
Taking α = λ−n ∈ T we get that (α− Tn)x = 0. If we split the polynomial (α− zn) ∈ C[z] we have

(α− zn) =
n∏

i=1
(αi − z),

where the αi’s are distinct n-th roots of α in T . Considering the vectors

y0 := x and yj := (αj − T )yj−1 =
j∏

i=1
(αi − T )x for each 1 ≤ j ≤ n,

we have y0 �= 0 since 0 /∈ K, but yn = (α − Tn)x = 0. Then for some 0 ≤ k ≤ n − 1 we have that 
yk ∈ E(T ) ∩ span(Orb(x, T )). In particular E(T ) �= ∅. �
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Another natural question concerning Theorem 1.7 is the relevance, in assertions (v) to (vii) of both 
parts (a) and (b), of the assumption that the vectors under consideration have bounded orbit. This fact is 
used in order to ensure that the invariant measures, which by Theorem 2.3 can be constructed from each 
reiteratively recurrent vector, have a finite second-order moment. To omit this boundedness assumption (or 
weak versions of it) seems to require new ideas. We recall here the following open problem from [26]:

Question 8.6 ([26, Question 8.3]). Does there exist an operator on a complex separable Hilbert space ad-
mitting a non-trivial invariant probability measure but no eigenvalues?

The following product and inverse questions also remain open:

Question 8.7. Let T be an operator on a Fréchet space X. If T is reiteratively (resp. U-frequently, frequently, 
uniformly) recurrent, does the n-fold direct sum T ⊕ · · · ⊕ T , n ≥ 2, have the same property?

Question 8.8 (From [10, Question 2.14] and Question 6.2). Let T be an invertible operator on a Fréchet 
space X. If T is reiteratively (resp. U-frequently, frequently, uniformly, IP∗ or Δ∗) recurrent, does T−1

have the same property?

It is worth mentioning that Question 8.7 is also open for usual recurrence, as defined in Subsection 1.1, 
and it seems to be a non-trivial question. For the IP∗ and Δ∗ cases, the fact that such families are filters 
(see [6]) implies a positive answer.

As mentioned in [10], the set of periodic points Per(T ) of an operator T has the property that Per(T ) is 
either equal to X or is a meager set (by the Baire Category theorem, either Per(T ) is of first category or 
else Tn = I for some n ∈ N). The same phenomenon happens (at least when X is a Banach space) with 
the set of uniformly recurrent vectors URec(T ), since by [10, Corollary 3.2] if URec(T ) is co-meager in X
then T is power-bounded and URec(T ) = X. This motivates the following question:

Question 8.9 ([10, Question 2.9]). Let T be an operator on a Fréchet space X. Do we always have that 
either FRec(T ) = X or FRec(T ) is a meager set?

This seems to be a non-trivial question even in the dual/reflexive setting, since the frequently recurrent 
points obtained in our construction form a “big” set with respect to a certain invariant measure, and usually 
this has nothing to do with the “bigness” from the topological point of view (i.e. in the Baire Category 
sense). In fact, given any chaotic operator T : X → X (i.e. hypercyclic with a dense set of periodic points), 
it admits an invariant probability measure μ on X with full support (see [28, Corollary 3.6]) and hence 
μ(FRec(T )) = 1 by Lemma 3.1. However, since T is hypercyclic we have that FRec(T ) is a meager set, 
otherwise by [10, Theorem 2.7] the set FHC(T ) = FRec(T ) ∩ HC(T ) would be co-meager contradicting [5, 
Corollary 19].
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