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Abstract— This article proposes a novel energy management
strategy (EMS) for a fuel cell electric vehicle (FCEV). The
strategy combines the offline optimization and online algorithms
to guarantee optimal control, real-time performance, and better
robustness in an unknown route. In particular, dynamic pro-
gramming (DP) is applied in a database with multiple driving
cycles to extract the theoretically optimal power split between
the battery and fuel cell with a priori knowledge of the driving
conditions. The analysis of the obtained results is then used to
extract the rules to embed them in a real-time capable fuzzy
controller. In this sense, at the expense of certain calibration
effort in the offline phase with the DP results, the proposed
strategy allows on-board applicability with suboptimal results.
The proposed strategy has been tested in several actual driving
cycles, and the results show energy savings between 8.48% and
10.71% in comparison to rule-based strategy and energy penalties
between 1.04% and 3.37% when compared with the theoretical
optimum obtained by DP. In addition, a sensitivity analysis
shows that the proposed strategy can be adapted to different
vehicle configurations. As the battery capacity increases, the
performance can be further improved by 0.15% and 1.66% in
conservative and aggressive driving styles, respectively.

Index Terms— Battery capacity sensitivity, dynamic program-
ming (DP), energy management, fuel cell electric vehicles
(FCEVs), fuzzy rule learning (FRL).

NOMENCLATURE
Eb Battery energy.
EH2,l Lower heating value of hydroge.
Pb Battery power.
Pb,max Battery maximum power.
Pb,min Battery minimum power.
Pde Vehicle power demand.
Pfc Fuel cell power.
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Pfc,max Fuel cell maximum power.
Rb Battery resistance.
SOC Battery state of charge.
SOCmin Maximum state of charge.
SOCmax Minimum state of charge.
SOCt0 Initial state of charge.
SOCt f End state of charge.
T Duration of driving cycle.
Qm Battery capacity.
1SOC Battery SOC variation.
Ub,oc Battery OCV voltage.
Ib Battery current.
m Mass of the FCEV.
ṁfc Hydrogen consumption.
ηfc FCS efficiency.
ηfc FCS average efficiency.
c Mean value of the GMF.
σ Variance of the GMF.

I. INTRODUCTION

FUEL cell electric vehicles (FCEVs), utilizing hydrogen
instead of diesel and gasoline as power fuels, are a kind of

clean energy vehicles with the advantages of high-energy con-
version efficiency, low noise, and zero exhaust emissions [1],
[2], [3]. Because FCEVs are necessary equipped with an aux-
iliary energy source to realize the power demand for transient
peak and recovery of braking energy, the energy management
strategy (EMS) is indispensable [4], [5]. However, highly
nonlinear system on different timescales, uncertainty in driving
conditions and heavy computational load pose major obstacles
in EMS design [6], [7], [8]. Consequently, an appropriate
and effective EMS implementing optimal control, real-time
performance, and better robustness in FCEVs play an essential
role in improving the powertrain efficiency.

Due to the current interest about the topic, an exten-
sive literature can be found and the reported EMSs can
be classified into three categories: 1) rule-based [9], [10];
2) optimization-based [11], [12]; and 3) reinforcement learning
(RL)-based [13], [14]. The rule-based EMSs, designing by
professional knowledge or engineering experience, dynami-
cally adjust the power distribution between the energy sources
according to the driving conditions, to ensure that the fuel
cell operates at its optimal efficiency [15]. In [16], a real-
time strategy based on multimode was proposed for a FCEV
to improve the efficiencies of each energy source and reduce

https://orcid.org/0000-0003-4221-9847
https://orcid.org/0000-0001-9238-2939
https://orcid.org/0000-0003-2745-1920
https://orcid.org/0000-0002-1724-8649


the degradation rate of the fuel cell. A heuristic control
strategy based on rule logic was presented in [17]. Through
appropriate normalization and denormalization techniques,
the control rules could be applied to a variety of FCEV
powertrain systems. As an extension of deterministic rules,
fuzzy logic combines expert experience to rules and does not
depend on the precise mathematical model of the controlled
object. In [51], a fuzzy rule control strategy regulated the FC
and battery output power under different driving conditions.
To maximize the system efficiency and to minimize the battery
current variation, an adaptive fuzzy logic-based EMS was
designed in [19]. Although their designs are simple and
easy to implement, these strategies usually need to design
EMSs based on experience. The results are not optimal,
and there is a problem of insufficient adaptability to driving
cycles [20].

In addition, the optimization-based EMSs are usually used
to more effectively reduce hydrogen consumption, increase the
fuel cell life span, and increase the driving mileage [21], [22].
According to the different dependence on prior knowledge,
the optimization-based EMSs can be divided into global and
instantaneous optimization methods. Specifically, the global
optimization algorithm mainly includes dynamic programming
(DP), Pontryagin’s minimum principle (PMP), and genetic
algorithm. A bi-loop DP algorithm was proposed in [23],
which could simultaneously optimize the EMS and battery
capacity, as well as analyze the impact of the discrete step
size of DP on the accuracy and computing load. A real-
time and suboptimal EMS based on PMP for FCEVs was
studied in [24], and an online adjoint state update method
was also proposed. In [25], an intelligent EMS combining
genetic algorithm and quadratic programming was presented
to improve the fuel economy of a hybrid electric vehicle.
To solve the finite-time horizon EMS optimal control prob-
lem of hybrid electric vehicles, Wu et al. [26] developed
a logical network-based algorithm that is designed based
on the semi-tensor product of the matrix, and a series of
simulation results validated its effectiveness. However, due to
the large computational load and heavy dependence on driving
conditions, the global optimization algorithm is difficult to
apply in practice. Usually, its results serve as a benchmark for
evaluating policies and formulating rules. The instantaneous
optimization methods mainly include the equivalent consump-
tion minimization strategy (ECMS), model predictive control
(MPC), and so on. Geng et al. [27] studied the EMS of fuel
cell and battery hybrid vehicles based on the ECMS to achieve
better hydrogen economy. Nonetheless, the key challenge is
to estimate the equivalent factor (EF) based on components’
characteristics and dynamics of energy sources, since the EF
plays a substantial role in ECMS performance. Focus on
this problem, Peng et al. [1] derived a quantitative analytical
formula to determine the EF based on the SOC and the average
fuel cell power using the optimal control theory. The perfor-
mance was demonstrated by comparison to the offline PMP-
based strategies. By transforming the global optimal problem
into a local optimization problem in the prediction horizon,
the MPC-based EMS continuously updates the future state

through rolling optimization to obtain the optimization results.
In [28], an EMS based on nonlinear MPC was designed for
FCEVs and employed a recurrent neural network for modeling
a proton exchange membrane fuel cell (PEMFC). The results
indicated that the MPC improved hydrogen economy and
reduced fuel cell degradation. However, developing accurate
mathematical models for achieving preferable solutions is
an imperative premise of these instantaneous optimization
algorithms.

As a potential solution to real-time optimization challenges,
RL methods have attracted significant attention. RL agents
take action based on the accumulation of long-term rewards.
Therefore, a well-trained RL agent is capable of predicting
system evolution and guarantee optimal control. It has been
demonstrated that RL is an efficient method to manage the
energy of hybrid electric vehicles [29], [30]. In [31], a thor-
ough parametric study was conducted on four key factors
during the Q-learning-based EMS development. To solve the
discrete state variables problem, Wu et al. [32] proposed a
deep Q network (DQN)-based EMS for a hybrid electric bus,
and their results showed that DQN performed better than the
traditional Q-learning model. Lian et al. [33] proposed an
improved optimization framework for EMSs that integrated
expert knowledge into the deep deterministic policy gradient
algorithm and solved the problem of a large space of control
variables. Sun et al. [34] proposed a hierarchical energy
splitting structure to shrink the state-action space based on
an adaptive fuzzy filter, and the reinforcement-learning com-
bining ECMS was presented for tackling the high-dimensional
state-action space. However, sparse rewards are common seen
when using RL. Qi et al. [35] studied a novel RL-based
method for EMSs. Through this new algorithm, they not only
solved the problem of sparse reward in the training process,
but also achieved the optimal power distribution. However,
the RL-based EMS needs to learn from feedback reward and
penalty signals, and it often has characteristics such as noise
and delay.

Accordingly, the current EMS suffers from the inferiorities
of a high-computational cost burden, unsatisfactory optimiza-
tion performance, and poor robustness [36], [37]. A highly
effective EMS should guarantee the optimal control, real-
time performance, and better robustness while is applicable
in practice. Global optimization algorithms, such as DP, can
obtain the optimal energy consumption results under certain
driving conditions, but they are difficult to apply in real
time. The rule-based EMSs are easy to guarantee fast imple-
mentation, but the design of rules mainly relies on expert
experience or prior knowledge and has poor adaptability.
A breakthrough could be to explore effective EMSs that
can enhance algorithm’s strengths and compensate for their
deficiencies. Moreover, rule learning algorithm, as a branch of
machine learning, has the advantages of less reliance on expert
experience, unnecessary requirements for prior knowledge,
strong capability of learning, and portability, which has been
widely applied in industry. Therefore, it would be a problem
worth solving to combine DP and fuzzy rules using rule
learning to design an easy-to-implement online EMS. It can



overcome the limitations of the requirement for engineering
experience in traditional rule-based EMSs and prior driving
information in optimization-based EMSs. To the authors’
knowledge, there are only a few papers on fuzzy rule learn-
ing (FRL) based on theoretical optimization. An improved
rule-based EMS depending on DP and maintaining SOC was
developed in [38], but the rules were determined artificially
according to DP global solutions. Liu et al. [39] and [40]
proposed an EMS based on rule learning according to PMP
optimization results, and the parameters for fitting rules were
solved by the Broyden–Fletcher–Goldfarb–Shanno algorithm.
Nevertheless, the accuracy of the PMP algorithm depends on
the co-states factor, and the sensitivity of the designed strategy
to changes in the component parameters is not analyzed.
Jia et al. [41] proposed a series fuzzy control strategy to
decrease the current fluctuation and improve the durability
of the fuel cell system (FCS). Meanwhile, to increase the
driving mileage, the optimal membership function and fuzzy
rule weight were found based on particle swarm optimization.
However, the designed strategy cannot obtain approximate
optimal results.

Therefore, aiming at eliminating the uncertainty of expert
experience in the fuzzy controller, and combining the advan-
tages of the fuzzy rule control strategy and DP algorithm, this
article presents an EMS based on FRL. First, four standard
driving cycles are selected to establish the optimal database
based on the DP algorithm as the optimal sample database
for FRL. The input and output data of the fuzzy controller
are divided into five classes by the hierarchical clustering
method, and the membership function is designed according
to the classification results of optimal database. The repeated
incremental pruning is performed based on the decision tree
algorithm to eliminate redundant data and avoid overfitting
of rule learning. Then the multiple linear regression model is
applied to identify the parameters of learned rules. Finally, the
influence of battery capacity change on the proposed strategy
is analyzed, and the adaptability of FRL to different battery
capacities is also given.

In brief, there are three contributions in this study.

1) Rules and membership functions of fuzzy rule controller
are learned from optimal data, and none of them require
expert knowledge.

2) The proposed algorithm is designed under the frame-
work of optimization theory to guarantee the suboptimal
control, and its results are only 1.12%–4.13% higher
than the global optimum.

3) The proposed strategy has good robustness and can
maintain a good energy-saving effect when the battery
parameters are changed.

The structure of the remainder of this article is as follows.
The EMS optimal control problem is presented in Section II,
including the model description and the problem formulation.
Section III describes the EMS based on FRL, which aims
to achieve approximate optimality of the proposed strategy.
In Section IV, it analyses the simulation results and evaluates
the effectiveness of the EMS based on FRL. Finally, the main
conclusion are drawn in Section V.

Fig. 1. FCEV configuration.

Fig. 2. FCS efficiency and hydrogen consumption.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

The powertrain structure of the FCEV studied in this article
is shown in Fig. 1, and the parameters of the FCEV are
listed in Table I, which are provided by the Dongfeng Motor
Corporation. It is mainly composed of a FCS, a battery,
a motor, a unidirectional dc–dc converter, and a dc–ac traction
inverter. The FCS is connected to the dc bus through the dc–dc
converter to provide the main energy for the vehicle. The
battery, as an auxiliary energy source, improves the dynamic
response of the powertrain system.

A. Fuel Cell System

A fuel cell is a clean and efficient power generation
device that converts the chemical energy in hydrogen into
electrical energy. The type of fuel cell in this study is a
PEMFC. The fuel cell model for energy optimization is a
static model which neglects dynamic behavior. It is enough to
analyze vehicle energy and estimate fuel consumption using
this model [42], [43]. The model mainly includes efficiency
models and hydrogen consumption models, as shown in Fig. 2.

The hydrogen consumption of the FCS is determined by the
power and corresponding efficiency, which can be seen in the
equation as follows:

ṁfc =
1

EH2,l

∫
Pfc

ηfc(Pfc)
dt. (1)

In the current article, the integral (1) is replaced by a discrete
approximation with a time-step of 1 s.

B. Battery System

Batteries have gradually become one of the important com-
ponents in today’s electric vehicles. They can not only “cut



TABLE I
PARAMETERS OF THE FCEV

Fig. 3. Numerical model characteristics of the battery system. (a) Open circuit
voltage and internal resistance. (b) Charging and discharging efficiency.

peaks and fill valleys” for the required power when outputting,
but also recover braking energy when the vehicle is braking
downhill, which improves the economy of the vehicle [44].

Following the main trend in the EMS, the battery is rep-
resented by an R-int model, which is simple but effective,
composed of a variable resistor and a voltage source in
series [45], as shown in Fig. 3. The battery output power Pb

from the equivalent circuit is

Pb = Ub,oc Ib − Rb Ib
2. (2)

According to the model (2), the battery current Ib is a
function of the open circuit voltage, output power, and internal
resistance of the battery as follows:

Ib =

Ub,oc −

√
U 2

b,oc − 4Rb Pb

2Rb
. (3)

The battery SOC is calculated by the ampere-hour integral
method, and the SOC transfer equation is as follows:

SȮC = −
Ib

Qm
. (4)

C. Mathematical Description of the Optimization Problem

For designing the EMS of FCEVs, the goal is to optimize
the split between battery and fuel cell power to minimize the
fuel consumption in the entire time domain. We suppose the
control variable u is Pfc and the state variable x is SOC; then,
the optimization problem can be described as follows:

J =

∫ T

1
ṁfc(t)dt. (5)

Combining the energy balance in the FCEV (see Fig. 1) with
equations (3) and (4), the SOC dynamics can be represented
as follows:

SȮC = −

Ub,oc −

√
U 2

b,oc − 4Rb(Pde − Pfc)

2Qm Rb
. (6)

The elements in the FCEV powertrain are subject to their
own limitations in terms of performance, and the vehicle must
maintain the battery SOC to avoid eliminating the potential for
energy savings in the future. In the different driving conditions,
start-stop, high load, low load, and variable load operations
degrade the internal physical and chemical materials of fuel
cells, which negatively affects performance. The dynamic
response constraints of fuel cells, 1Pfc,max = 3 kW/s, should
be considered in energy optimization problem. Thus, the
powertrain system constraints are as follows:

0 ≤ Pfc ≤ Pfc,max

−1Pfc,max ≤ 1Pfc ≤ 1Pfc,max

Pb,min ≤ Pb ≤ Pb,max

SOCmin ≤ SOC ≤ SOCmax.

(7)

III. FRL EMS BASED ON PARAMETERS LEARNING
AND RULES EXTRACTION

As mentioned in the introduction, fuzzy control is a con-
trol method with easy implementation and convenience, but
the design of rules relies on expert experience and cannot
guarantee optimality. DP can guarantee the global optimality,
but it must use all the driving cycles information. It also has
the disadvantage of the curse of dimensionality [46], [47].
Considering the complementarity between fuzzy control and
DP, this study designs an FRL algorithm for EMS of FCEVs.
The FRL mainly includes establishing the optimal database,



Fig. 4. Block diagram of FRL.

learning fuzzy controller parameters, and designing the rule
based on data. The block diagram of FRL is depicted in
Fig. 4. Moreover, the optimal database is based on the optimal
results of DP, and the goal is to learn on the basis of the
optimal benchmark. Automatically learning of the fuzzy rules
from the data extracted from the optimal solutions obtained
by DP, avoids the subjectivity brought by expert experience
to the greatest extent. The global optimum is obtained by the
DP algorithm that needs to preview all distance information.
Theoretically, any optimization- or rule-based strategy in the
short horizon cannot obtain the global optimum, but other
methods differ in the ability to guarantee the global optimality.
In this article, a FRL algorithm is proposed to solve the
energy optimization problem for FCEVs, which simplifies the
algorithm design process and guarantee the sub-optimality.
Moreover, there are different outputs for the same input in
the optimal database, because the global driving cycles need
to be previewed to obtain this result. When there is only
short horizon information of driving cycles, the membership
function designed by the clustering method and the fuzzy rules
extracted from the database can guarantee the sub-optimality
to the greatest extent. Therefore, the methodology in this
article aims at guaranteeing the sub-optimality.

A. Global Optimal Database Establishment

The optimization-based EMS requires high model accuracy,
especially the optimization method for online applications.
When the database is established offline, a more complex
model can be used to ensure that the method can guarantee
global optimal control, which should be more flexible than
using online. The new european driving cycle (NEDC), urban
dynamometer driving schedule (UDDS), manhattan (MAN),
and representative non-LA4 cycle (REP05) driving cycles are
combined into one, and the optimal database is derived from
the energy optimization results of the DP algorithm under the
combined driving cycle. Equations (5)–(7) are discretized with

a time-step of 1 s, and the optimization problem based on DP
algorithm is defined as follows:

min
Pfc(·)

T∑
k=1

ṁfc(k)1t

s.t.: SOC(k + 1) = SOC(k)

−
Ub,oc(k) −

√
Ub,oc(k)2 − 4Rb(k)Pb(k)

2Qm Rb(k)
1t

Pfc(k) + Pb(k) = Pde(k) + Pa

0 ≤ Pfc(k) ≤ Pfc,max

1Pfc,min ≤ 1Pfc(k) ≤ 1Pfc,max

Pb,min ≤ Pb(k) ≤ Pb,max

SOCmin ≤ SOC(k) ≤ SOCmax

SOC(1) = SOC(T ) (8)

where Pde denotes the power demand of the vehicle, and
Pa = 1 kW is the auxiliary power. Fig. 5 shows the velocity
trajectories of four driving cycles and the optimization results
based on the DP.

However, in different time periods of driving cycles, when
the demand power and the battery SOC at the later time are the
same as the previous, the results obtained by DP sometimes
are very different just because the future demand power
is different. This difference is caused by the noncausality
of the DP algorithm. This problem in practical applications
is eliminated by analyzing the database and calculating the
probability, which is discussed in Section III-C. The optimal
results of the combined driving cycle are used as the optimal
database for the next step of fuzzy controller parameter setting
and rule learning.

B. Fuzzy Controller Parameter Learning

The Takagi-Sugeno (T-S) fuzzy controller is selected in this
article, the input is the demand power of the FCEV and the
SOC of the battery, and the fuel cell power is the controller



Fig. 5. Velocity trajectories and energy distributions of driving cycles in
the optimal database. (a) Velocity trajectories of four driving cycles. (b) EMS
results based on the DP algorithm.

output. In fuzzy control, it is necessary to convert the input
precise value into fuzzy language variables for the next step of
fuzzy rule judgment, which requires the membership function
to convert the input precise value, which is fuzzification. The
Gaussian membership function (GMF) is selected in the design
of the fuzzy controller, whose smoothness and accuracy are
between the triangular and trapezoidal membership functions.
The general GMF expression is as follows:

µ(γ ) = e−
(γ−c)2

2σ2 . (9)

To effectively distinguish the types of input data, the data
need to be processed by the hierarchical clustering method.
The results of the DP are used to classify the driving cycles and
vehicle state in terms of the input variable (power demand and
SOC). The hierarchical clustering method is based on distance
to classify and to determine the similarity between each data
point in the database, and the distance calculation uses the
Euclidean distance calculation method as follows:

dist(α, β) =

√√√√ N∑
i=1

(αi − βi )
2 (10)

where dist(α, β) is the Euclidean distance of α and β, and the
clustering method adopts the weighted average method.

The input and output data of the fuzzy controller are divided
into five categories by the hierarchical clustering method.

Fig. 6. Classification and membership degree of optimal data. (a) Clustering
results of the optimal database. (b) Membership function according to the
clustering results.

Although the number of classifications is determined, the c
and σ of the membership function are determined according
to the data clustering results. The classification result is shown
in Fig. 6(a). This article uses the method of hierarchical
clustering instead of expert experience as the design mem-
bership function, which is an effective way to design the
membership function. Since hierarchical clustering divides the
data set into five categories, the number of GMFs input by
this fuzzy controller is also set to 5. The input is normalized.
The parameters c and σ of the GMF are set as the mean
and variance of each clustering result of the database. The
input membership functions after optimizing are as shown in
Fig. 6(b).

C. Rules Design Based on the Data

After the membership function is determined, next is the
rule design. The impact of the DP noncausality mentioned in
Section III-A brings challenges to the rules design, which will
be solved by the repeated incremental pruning based on the
decision tree algorithm. The rules design based on decision
tree involves an iterative process of data pair (attribute-value)
selection.

In the rules design, the data set of fuel cell power involves
five categories, which are very low (“SL”), low (“L”), medium
(“M”), high (“H”), and very high (“SH”), and thus, a set



TABLE II
FREQUENCY OF THE FUEL CELL POWER AND THE

VEHICLE POWER DEMAND

TABLE III
CONDITIONAL PROBABILITY OF THE FUEL CELL OUTPUT

AND THE VEHICLE POWER DEMAND

of rules for the five output categories should be designed.
The design process should lead to only one relation between
the fuzzy controller inputs and outputs. Through the statistics
of the database, the frequency table of the output and the
input attributes can be obtained, as shown in Table II. Then,
the conditional probability that the fuel cell power belongs
to different classes of the power demand can be calculated
according to the frequency table, as shown in Table III.

When the output power Pfc of the fuel cell is “SL,” that
is, the output is very small, and the maximum value of the
conditional probability is selected at this time. Among the five
groups of conditional probabilities, the conditional probability
is the largest when Pm = L , and P(Pfc = SL | Pm = L) =

1518/2699. However, when Pm = L , Pfc = SL is not
completely established, the rule still needs to be learned down
to make further rule distinctions. 1518 examples are extracted
that satisfy Pfc = SL | Pm = L from the database, and the
conditional probability of the next level of input SOC can be
obtained, as shown in Table IV. According to the conditional
probability in Table IV, the maximum value is when Pm = L
and SOC = SH, Pfc = SL. Although the probability is not 1,
only one case can be selected for the formulation of a rule,
which is the pruning of redundant data. Under the previous
condition, the frequency of the optimal data “SOC = SH”
is the highest. Thus, “SOC = SH” is used as the selected
rule. The reason for choosing the data group with the highest
probability is that this rule covers more examples, and the
output of the learned rule will be closer to a suboptimal result.
Therefore, the design of the first rule is completed as follows:

if Pm = L and SOC = SH, then Pfc = SL.

Before learning the second rule, all examples containing
Pm = L and SOC = SH, Pfc = SL are deleted from the
optimal database, and on this basis, the next rule is learned.

TABLE IV
CONDITIONAL PROBABILITY OF BATTERY SOC WHEN

Pfc = SL AND Pm = L

TABLE V
FUZZY CONTROL RULES AFTER LEARNING

By analogy, the rules can be traversed and learned according
to database sequentially. In addition, it should be noted that
implicit rules in the database may not involve all the situations,
and the specific rules are designed to solve this problem.
For example, when “Pm = L , SOC = H” and “Pm = L ,
SOC = SH,” the matching output does not exist in the
database. When Pm = SL, the range of demand power is
negative, and during the solution process of DP, the battery
SOC is not maintained at a high state at this time, which is
determined by the charging efficiency of the battery and the
SOC operating range decided. The fuzzy rule after theoretical
optimal learning is shown Table V.

In fact, every rule learned from the global optimal solution
can be regarded as an optimal data set. The input attributes of
the fuzzy controller have a strong correlation with the output
power of the fuel cell. To better describe this relationship,
we use a multiple linear regression model to fit the data of
each rule [40]

Yi = θ0 + θ1x1 + θ2x2 + . . . θm xm (11)

where Yi is the output power of the fuel cell in rule i , xm

is the mth input value corresponding to the i th rule, and θm

is the regression coefficient of the i th rule corresponding to
input xm . Since each rule is extracted from multiple data sets,
it can be written in matrix form as follows:

Yi = X iθi (12)

Yi =
[
y1 y2, . . . , ym

]T X i

=


1 x11 x12 · · · x1m

1 x21 x22 · · · x2m
...

...
...

. . .
...

1 xn1 xn2 · · · xnm


n×m

(13)

where X i represents the data set included in the i th rule. Each
row in X i represents the specific data in the data set covered by



Fig. 7. HIL experiment platform of intelligent connected vehicles.

the i th rule. m and n indicate that the rule contains input and
group data. The normal equation is used to solve the regression
coefficient in the above formula

θi =
(
X i

T X i
)−1

X i
T Yi . (14)

After the regression coefficients are solved, we can obtain the
output function Yi of the i th rule. The output result of each
function and the membership fi of each rule are weighted
and averaged, and the final solution of the controller can be
obtained as follows:

Ȳ =
Y1 f1 + Y2 f2 + · · · + Yi fi

f1 + f2 + · · · + fi
. (15)

At this point, the design of the fuzzy rule controller based on
the theoretical optimum is completed.

IV. EVALUATION OF THE PROPOSED STRATEGY

In this section, the actual driving trajectories collected under
the intelligent connected vehicle test bench and the actual road
in Wuhan, China are used to evaluate the energy-saving perfor-
mance of proposed EMS. Then, the sensitivity and adaptability
of the FRL algorithm are summarized and analyzed.

A. Experimental Results in Advanced Intelligent Connected
Vehicle Test Bench

The hardware-in-the-loop simulation (HIL) experiment is
carried out on the advanced intelligent connected vehicle test
bench to restore the largest part of the actual driving situation,
which verifies the effectiveness of the proposed EMS. The HIL
experiment platform is shown in the Fig. 7. The intelligent
connected traffic environment builds virtual traffic conditions
based on the software SCANeR to form a complete virtual
traffic flow in urban areas. In the virtual traffic environment,
the controllable driving of the target vehicle is realized through
the human–machine interface, and the power demand of the
target vehicle is transmitted to the powertrain system plat-
form to complete the virtual–real combination control and
optimization results verification environment. Two drivers with
different driving styles drive separately under the same road
conditions to obtain two different speed profiles. The speed
profiles are named Cycle 1 and 2, respectively.

Fig. 8. Q-learning, GA-FR, FRL, and DP power optimization results in
Cycle 1. (a) Speed trajectories of Cycle 1. (b) Results of fuel cell power for
four strategies. (c) Results of SOC for four strategies. (d) Fuel cell operating
points distribution of the FRL algorithm.

The genetic algorithm-optimized fuzzy rule (GA-FR) and
the Q-learning algorithm are selected for comparison with
the proposed strategy of this article, and their design refers
to the [48] and [49], respectively. Under the collected actual
velocity trajectories Cycle 1, the proposed strategy is com-
pared with GA-FR, Q-learning and DP algorithm to verify the
effectiveness, and the results are shown in Fig. 8. These four
algorithms have roughly the same fuel cell power trajectories
in Cycle 1, and their fuel cell power fluctuates within a small
range when the power demand changes. However, when the
required power of the vehicle is large, the fuel cell output
power of the FRL and DP algorithms is somewhat different.
The fuel cell output based on the FRL algorithm is larger than
that based on the DP. This is because during rule design, the
amount of sample data is small when the required power is
large. Most of the required power in the database is below
20 kW, and the proportion of data above 20 kW is small.
The fuel cell power of FRL has less fluctuation than that
of GA-FR in the high acceleration cases, indicating that the
proposed method outperforms GA-FR. The reason is that the
FRL performs the repeated incremental pruning based on the
decision tree algorithm, which eliminates redundant data and
avoid overfitting of rule learning. The other reason is that the
input and output of GA-FR are derived from the membership
function obtained through iterative learning under driving
conditions shown in Fig. 5(a). While in the FRL algorithm, its
output is calculated from the optimal data using multiple linear
regression model, which can better reflect the characteristics
of small fuel cell fluctuations in global energy optimization.
Although the genetic algorithm can theoretically achieve the
global optimal results, its performance is limited by the selec-
tion of initial population and optimization parameters, which
may result in a local optimum [50]. In the SOC trajectory
of Cycle 1, the change in trend of the SOC of the FRL, Q-
learning and DP algorithms is the same, but the SOC obtained
by the FRL algorithm varies comparatively more in the vertical
direction. The reason for this is that the DP algorithm knows
the global driving cycle information. Q-learning-based SOC
trajectory is more similar to that of DP than FRL-based,



Fig. 9. Actual urban road line. The line is circular, that is, it starts and ends
at the same.

Fig. 10. Q-learning, GA-FR, FRL, and DP power optimization results in
WHUC 1. (a) Speed trajectories of WHUC 1. (b) Results of fuel cell power for
four strategies. (c) Results of SOC for four strategies. (d) Fuel cell operating
points distribution of the FRL algorithm.

because the average power of the fuel cell based on Q-learning
is relatively larger in the whole operating condition. To keep
the initial and terminal SOC consistent, the battery must follow
the law of first charging and then discharging. In addition, the
GA-FR-based SOC changes slowly compared with that of the
other three algorithms. In Cycle 1, the GA-FR-based SOC
decreases by 5.65%, and the FRL and Q-learning based SOC
decreases by 3.39% and 2.45%, respectively. Fig. 8(d) depicts
the fuel cell operating points in Cycle 1. The fuel cell power
distribution in Cycle 1 is more dispersed, and the fuel cell
power varies from 3 to 10 kW.

B. Effectiveness and Robustness Analysis of the Proposed
Methodology in an Open Traffic Environment

Moreover, the actual velocity trajectories in Wuhan, China
are also used to verify the effectiveness of the proposed
method. A vehicle is driven on a city route in Wuhan,
China, as shown in Fig. 9, which is described by demanded
velocity at each point of time. The total length of the route is
about 23.2 km, and two speed trajectories of different driving
styles are collected, which are named Wuhan Urban Cycle
(WHUC) 1 and WHUC 2, respectively. The speed trajectories
and optimization results of WHUC 1 are shown in Fig. 10.

In WHUC 1, the similarity of fuel cell power based on
FRL, Q-learning and DP is high, and the fuel cell power
has a stronger ability to follow the global optimal trajectory.

However, based on the GA-FR based strategy, the output
power of the fuel cell fluctuates greatly. The reasons for this
are the same as mentioned in Section IV-A. From 500 to
750 s and from 1000 to 1250 s of WHUC 1, there are
some differences in the fuel cell power of the FRL and DP
algorithms. This is because the power demand of the vehicle
is relatively high and fluctuates greatly in these stages. The
battery power cannot meet the demanded power, and thus, the
fuel cell outputs more to meet the driving demand. Q-learning
and FRL algorithms have a good performance in inhibiting
fuel cell degradation, which is attributed to their good learning
ability and adaptability. Before 1500 s of WHUC 1, the SOC
trajectories based on FRL and DP basically coincide. In the
second half of the driving cycle, it can be observed that
the FRL algorithm learns the global optimality of the DP,
making the battery constantly charged to maintain the SOC
balance. In the first half, the SOC of Q-learning is slightly
lower than that of other three algorithms, and then it rises,
reaching 54.32% in the final. The frequency and efficiency
of the fuel cell operating points in the WHUC 1 according
to the FRL strategy are shown in Fig. 10(d). The fuel cell
power varies from 3 to 10 kW, and the operating point is
mainly concentrated at approximately 5 kW, thus maintaining
a high efficiency. Through the above verification and analysis,
the FRL algorithm has learned the global optimality from DP,
and can guarantee optimal control. Moreover, the results in
the advanced intelligent connected vehicle test bench and open
traffic environment show that the proposed methodology has
good robustness and maintains the battery SOC in a better
range.

C. Comparison of Equivalent Hydrogen Consumption

Evaluating the quality of an EMS ultimately comes down
to hydrogen consumption. The rule-based strategy referred to
the [38] is selected for comparison with the proposed strategy.
For a fair comparison, the equivalent hydrogen consumption
mb,H2 of the battery is introduced to consider the final SOC
change as follows [51]:

mb,H2 =
1SOC · Eb · 3600

ηfc · Qm
. (16)

Table VI shows the hydrogen consumption of four strategies in
different driving cycles. The hydrogen consumption calculated
by FRL have a difference of less than 1.12%–4.13% with
DP, while the hydrogen improvement is in the range of
8.48%–10.71% compared with the rule-based strategy. The
energy saving effect of FRL is about 1% higher than that
of GA-FR, and it is also slightly better than the Q-learning
algorithm. Therefore, the superior performance of the pro-
posed strategy reaching a remarkable reduction in hydrogen
consumption, especially in urban driving cycles.

D. Sensitivity Analysis of the FRL Algorithm

The component size can determine the energy-saving effect
of an EMS [23], [52], [53]. Sections IV-A and IV-B studies
the energy-saving effect when the battery capacity is fixed,
but changing the battery capacity will affect the distribution



TABLE VI
HYDROGEN CONSUMPTION RESULTS OBTAINED WITH THE SET

OF TESTED STRATEGIES IN DIFFERENT DRIVING CYCLES

of energy. This section discusses the difference for different
battery capacities between the FRL-based EMS and optimal
hydrogen consumption, and analyses the sensitivity of FRL to
battery capacity.

The battery capacity is changed by changing the number
of connections in parallel. The optional parameters of the
battery are 2.102, 4.205, and 6.31 kWh, whose corresponding
capacities are 6, 12, and 18 Ah, respectively. The energy
saving effect of FRL is analyzed in Cycle 1 and 2, and the
results are shown in Table VII. In Cycle 1 and 2, the hydrogen
consumption of the FRL-based EMS decreases as the battery
capacity increases, and the difference from the optimal value
decreases. Fig. 11 shows the database clustering results that the
battery energy is 4.205 and 6.31 kWh, respectively. Compared
with Fig. 6(a), the clustering results of power demand in
Fig. 11 show little change, because the increase in battery
energy leads to a small increase in vehicle mass and a slight
increase in power demand. However, the clustering results of
SOC and fuel cell power vary greatly. As the battery energy
increases, the battery output power increases, resulting in a low
output power of the fuel cell. The clustering results show that
battery energy is 2.102 kWh are dispersed, while the clustering
results of fuel cell power for 4.205 and 6.31 kWh of battery
energy are increasingly concentrated, leading to the shift of
the operating point of the fuel cell to the high-efficiency zone.
Thus, the overall energy saving effect improves.

E. Adaptability Analysis of the FRL Algorithm

As mentioned in Section IV-D, when the powertrain system
parameters change, the corresponding energy distribution law
also changes. After changing the battery capacity, it is nec-
essary to reestablish the optimal database, reclassify the data,

Fig. 11. Database clustering results. (a) Battery energy is 4.205 kWh.
(b) Battery energy is 6.31 kWh.

TABLE VII
COMPARISON OF HYDROGEN CONSUMPTION RESULTS FOR

DIFFERENT BATTERY CAPACITIES

and reextract and learn the rules. This section simplifies the
above process and applies the fuzzy rule learned for a battery
capacity of 6 Ah to powertrain systems with different battery
capacities. Meanwhile, as a comparison, the results applied
to the corresponding battery capacity when the corresponding
database is changed are also given.

The adaptability of the proposed strategy to different battery
parameters is verified under Cycle 1 and 2, which is demon-
strated by comparing the hydrogen consumption optimized by
DP. The difference in hydrogen consumption ηh,dif is defined



Fig. 12. Difference in hydrogen consumption between FRL and DP.

as [23] follows:

ηh,dif =
JFRL − JDP

JDP
(17)

where JFRL denotes the total equivalent hydrogen consumption
of FRL and JDP is the total hydrogen consumption of DP.
The results are shown in Fig. 12. The blue solid line shows
the results when the fuzzy rules learned for a battery capacity
of 6 Ah are applied to 6, 12, and 18 Ah. The brown dotted line
shows the results when the fuzzy rules learned for a battery
capacity of 6, 12, and 18 Ah are applied corresponding to 6,
12, and 18 Ah, respectively. It can be seen from the blue solid
line that in the two driving cycles, as the battery capacity
increases, the energy-saving effect of the proposed strategy
improves. In Cycle 1, the energy-saving effect decreases
from 1.18% to 1.13%, while in Cycle 2, the energy-saving
effect decreases from 3.37% to 2.18%. Moreover, when the
battery capacity is 18 Ah, the fuzzy rules are learned under
this parameter and then applied under this parameter. The
energy-saving effect eventually drops to 1.03% and 1.71%
in Cycle 1 and 2, respectively, which shows that learning
under the same battery capacity, and then verifying under this
parameter, the energy-saving effect is better. However, it has
little effect on energy savings whether or not the rules are
updated when the battery capacity changes. In Cycle 1 and 2,
this difference is about only 0.1% and 0.8%, respectively.

Through the above analysis, the conclusion can be drawn
that the FRL-based EMS still maintains a good energy-saving
effect for the powertrain system under different battery capac-
ities. The energy-saving effect of an algorithm is greatly
affected by changes (such as component aging) in the system
model in practical applications. The main goal of this article
is to solve the real-time energy optimization problem for
FCEVs. The methodology presented in this article can be
used to address algorithmic performance degradation due
to system model changes. The output characteristics of the
energy source can be used to identify whether components are
aging, resulting in changes in model parameters. Specifically,
a degradation model of an FCS can be built based on the
decrease of voltage. Moreover, the polarization curve can be
determined by the decrease in voltage at a rated current, and
it is easy to measure the voltage of a fuel cell. Then the

degree of fuel cells degradation can be calculated from voltage
degradation at the rated current to determine the state of
health. The fuzzy rule controller can add an input dimension to
identify whether the fuel cell internal voltage degrade. Finally,
the efficiency curves and hydrogen consumption of fuel cells
can be obtained based on the state of health. The voltage
of the FCS can therefore be measured to identify the degree
of degradation of the fuel cell, and then the different energy
management strategies can be designed based on the degree
of degradation to adapt to changes in the internal parameters
of the fuel cell. For more information about the degradation-
adaptive EMSs, please refer to [54]. Similarly, this idea is
also suitable for batteries. Moreover, the energy management
problem of electric vehicles is a common requirement of
hybrid powertrain system, this strategy can be applied to
hybrid electric vehicles with other powertrain architectures.
It is also promising to apply this methodology to the field of
power generation.

V. CONCLUSION

A FRL-based EMS is investigated to improve the hydro-
gen economy and SOC maintenance capability of FCEVs.
Firstly, the DP algorithm is applied to solve the offline energy
optimization and establishing the optimal database. Then, the
fuzzy rules are extracted from the optimal database and the
membership function is designed by hierarchical clustering.
The multiple linear regression model is applied to fit the
parameters of each rule. The results promise a reduction
in hydrogen consumption by approximately 1.5% and 10%
compared with the rule-based strategy and the GA-FR, and
they are close to or slightly better than Q-learning algorithm.
We also demonstrate that the energy-saving effect approaches
the theoretical optimum as battery capacity increases. More-
over, the algorithm can still achieve good hydrogen economy
when the parameters of the vehicle power system are changed,
such as the battery capacity.

We also acknowledge the limitations that the performance
of the proposed method depends on the accuracy of the
system model, because the fuzzy rules are learned through
the optimal database obtained by the DP algorithm. When the
model accuracy is poor, the energy-saving performance of the
fuzzy controller may be reduced. In addition, the proposed
method cannot handle the model imprecision and uncertainty.
To ensure the effectiveness of the method, the simulation
model accuracy for the optimal database based on DP must be
guaranteed to a certain extent. Moreover, the offline simulation
results can be compared with the actual experimental results to
obtain more accurate data, so that the database can be matched
as closely as possible with the actual dynamics of the system,
and then do rule learning on this basis.

REFERENCES

[1] H. Peng, J. Li, L. Löwenstein, and K. Hameyer, “A scalable, causal,
adaptive energy management strategy based on optimal control theory
for a fuel cell hybrid railway vehicle,” Appl. Energy, vol. 267, Jun. 2020,
Art. no. 114987.

[2] J. Zhou, J. Liu, Y. Xue, and Y. Liao, “Total travel costs minimization
strategy of a dual-stack fuel cell logistics truck enhanced with artificial
potential field and deep reinforcement learning,” Energy, vol. 239,
Jan. 2022, Art. no. 121866.



[3] X. Wu, X. Hu, X. Yin, L. Li, Z. Zeng, and V. Pickert, “Convex pro-
gramming energy management and components sizing of a plug-in fuel
cell urban logistics vehicle,” J. Power Sources, vol. 423, pp. 358–366,
May 2019.

[4] Q. Xun, N. Murgovski, and Y. Liu, “Chance-constrained robust co-
design optimization for fuel cell hybrid electric trucks,” Appl. Energy,
vol. 320, Aug. 2022, Art. no. 119252.

[5] Q. Xun, N. Murgovski, and Y. Liu, “Joint component sizing and energy
management for fuel cell hybrid electric trucks,” IEEE Trans. Veh.
Technol., vol. 71, no. 5, pp. 4863–4878, May 2022.

[6] R. Rodriguez, J. P. F. Trovão, and J. Solano, “Fuzzy logic-model predic-
tive control energy management strategy for a dual-mode locomotive,”
Energy Convers. Manage., vol. 253, Feb. 2022, Art. no. 115111.

[7] J. Gao, M. Li, Y. Hu, H. Chen, and Y. Ma, “Challenges and developments
of automotive fuel cell hybrid power system and control,” Sci. China
Inf. Sci., vol. 62, no. 5, pp. 1–25, May 2019.

[8] X. Hu, C. Zou, X. Tang, T. Liu, and L. Hu, “Cost-optimal energy
management of hybrid electric vehicles using fuel cell/battery health-
aware predictive control,” IEEE Trans. Power Electron., vol. 35, no. 1,
pp. 382–392, Jan. 2020.

[9] R. Koubaa and L. Krichen, “Double layer metaheuristic based energy
management strategy for a fuel cell/ultra-capacitor hybrid electric vehi-
cle,” Energy, vol. 133, pp. 1079–1093, Aug. 2017.

[10] B. M. Duan, Q. N. Wang, J. N. Wang, X. N. Li, and T. Ba, “Calibration
efficiency improvement of rule-based energy management system for a
plug-in hybrid electric vehicle,” Int. J. Automot. Technol., vol. 18, no. 2,
pp. 335–344, Apr. 2017.

[11] B.-H. Nguyen, T. Vo-Duy, M. C. Ta, and J. P. F. Trovao, “Optimal energy
management of hybrid storage systems using an alternative approach
of Pontryagin’s minimum principle,” IEEE Trans. Transport. Electrific.,
vol. 7, no. 4, pp. 2224–2237, Dec. 2021.

[12] Q. Xun, V. Roda, Y. Liu, X. Huang, and R. Costa-Castelló, “An adaptive
power split strategy with a load disturbance compensator for fuel
cell/supercapacitor powertrains,” J. Energy Storage, vol. 44, Dec. 2021,
Art. no. 103341.

[13] X. Tang, J. Chen, T. Liu, Y. Qin, and D. Cao, “Distributed deep
reinforcement learning-based energy and emission management strategy
for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 70, no. 10,
pp. 9922–9934, Oct. 2021.

[14] G. Du, Y. Zou, X. Zhang, T. Liu, J. Wu, and D. He, “Deep reinforcement
learning based energy management for a hybrid electric vehicle,” Energy,
vol. 201, Jun. 2020, Art. no. 117591.

[15] T. Hofman, R. M. van Druten, A. F. A. Serrarens, and M. Steinbuch,
“Rule-based energy management strategies for hybrid vehicles,” Int. J.
Electr. Hybrid Veh., vol. 1, no. 1, pp. 71–94, 2007.

[16] L. Xu, J. Li, M. Ouyang, J. Hua, and G. Yang, “Multi-mode control
strategy for fuel cell electric vehicles regarding fuel economy and
durability,” Int. J. Hydrogen Energy, vol. 39, no. 5, pp. 2374–2389,
Feb. 2014.

[17] M. Sorrentino, C. Pianese, and M. Cilento, “A specification indepen-
dent control strategy for simultaneous optimization of fuel cell hybrid
vehicles design and energy management,” IFAC-PapersOnLine, vol. 49,
no. 11, pp. 369–376, 2016.

[18] F. Odeim, J. Roes, L. Wülbeck, and A. Heinzel, “Power man-
agement optimization of fuel cell/battery hybrid vehicles with
experimental validation,” J. Power Sources, vol. 252, pp. 333–343,
Apr. 2014.

[19] H. Yin, W. Zhou, M. Li, C. Ma, and C. Zhao, “An adaptive fuzzy
logic-based energy management strategy on battery/ultracapacitor hybrid
electric vehicles,” IEEE Trans. Transport. Electrific., vol. 2, no. 3,
pp. 300–311, Sep. 2016.

[20] H. Zhang, J. Peng, H. Tan, H. Dong, and F. Ding, “A
deep reinforcement learning-based energy management framework
with Lagrangian relaxation for plug-in hybrid electric vehicle,”
IEEE Trans. Transport. Electrific., vol. 7, no. 3, pp. 1146–1160,
Sep. 2021.

[21] L. Guo, H. Chen, B. Gao, and Q. Liu, “Energy management of HEVs
based on velocity profile optimization,” Sci. China Inf. Sci., vol. 62,
no. 8, pp. 1–3, Aug. 2019.

[22] H. F. Gharibeh, A. S. Yazdankhah, and M. R. Azizian, “Energy
management of fuel cell electric vehicles based on working condition
identification of energy storage systems, vehicle driving performance,
and dynamic power factor,” J. Energy Storage, vol. 31, Oct. 2020,
Art. no. 101760.

[23] S. Hou, J. Gao, Y. Zhang, M. Chen, J. Shi, and H. Chen, “A comparison
study of battery size optimization and an energy management strategy
for FCHEVs based on dynamic programming and convex programming,”
Int. J. Hydrogen Energy, vol. 45, no. 41, pp. 21858–21872, Aug. 2020.

[24] K. Song, X. Wang, F. Li, M. Sorrentino, and B. Zheng, “Pontryagin’s
minimum principle-based real-time energy management strategy for fuel
cell hybrid electric vehicle considering both fuel economy and power
source durability,” Energy, vol. 205, Aug. 2020, Art. no. 118064.

[25] Z. Chen, C. C. Mi, R. Xiong, J. Xu, and C. You, “Energy management of
a power-split plug-in hybrid electric vehicle based on genetic algorithm
and quadratic programming,” J. Power Sources, vol. 248, no. 15,
pp. 416–426, Feb. 2014.

[26] Y. Wu, J. Zhang, and T. Shen, “A logical network approximation to
optimal control on a continuous domain and its application to HEV
control,” Sci. China Inf. Sci., vol. 65, no. 11, pp. 1–18, Nov. 2022.

[27] B. Geng, J. K. Mills, and D. Sun, “Two-stage energy management
control of fuel cell plug-in hybrid electric vehicles considering fuel
cell longevity,” IEEE Trans. Veh. Technol., vol. 61, no. 2, pp. 498–508,
Feb. 2012.

[28] D. F. Pereira, F. D. C. Lopes, and E. H. Watanabe, “Nonlinear model
predictive control for the energy management of fuel cell hybrid electric
vehicles in real time,” IEEE Trans. Ind. Electron., vol. 68, no. 4,
pp. 3213–3223, Apr. 2021.

[29] Q. Zhou, D. Zhao, B. Shuai, Y. Li, H. Williams, and H. Xu, “Knowledge
implementation and transfer with an adaptive learning network for real-
time power management of the plug-in hybrid vehicle,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5298–5308, Dec. 2021.

[30] Q. Zhou et al., “Multi-step reinforcement learning for model-free pre-
dictive energy management of an electrified off-highway vehicle,” Appl.
Energy, vol. 255, Dec. 2019, Art. no. 113755.

[31] B. Xu et al., “Parametric study on reinforcement learning optimized
energy management strategy for a hybrid electric vehicle,” Appl. Energy,
vol. 259, Feb. 2020, Art. no. 114200.

[32] J. Wu, H. He, J. Peng, Y. Li, and Z. Li, “Continuous reinforcement
learning of energy management with deep Q network for a power split
hybrid electric bus,” Appl. Energy, vol. 222, pp. 799–811, Jul. 2018.

[33] R. Lian, J. Peng, Y. Wu, H. Tan, and H. Zhang, “Rule-interposing
deep reinforcement learning based energy management strategy for
power-split hybrid electric vehicle,” Energy, vol. 197, Apr. 2020,
Art. no. 117297.

[34] H. Sun, Z. Fu, F. Tao, L. Zhu, and P. Si, “Data-driven reinforcement-
learning-based hierarchical energy management strategy for fuel
cell/battery/ultracapacitor hybrid electric vehicles,” J. Power Sources,
vol. 455, Apr. 2020, Art. no. 227964.

[35] C. Qi et al., “Hierarchical reinforcement learning based energy manage-
ment strategy for hybrid electric vehicle,” Energy, vol. 238, Jan. 2022,
Art. no. 121703.

[36] X. Hu, J. Han, X. Tang, and X. Lin, “Powertrain design and control in
electrified vehicles: A critical review,” IEEE Trans. Transport. Electrific.,
vol. 7, no. 3, pp. 1990–2009, Feb. 2021.

[37] S. Hou, H. Chen, Y. Zhang, and J. Gao, “Speed planning and energy
management strategy of hybrid electric vehicles in a car-following sce-
nario,” Control Theory Technol., vol. 20, no. 2, pp. 185–196, May 2022.

[38] H. He, X. Wang, J. Chen, and Y.-X. Wang, “Regenerative fuel cell-
battery-supercapacitor hybrid power system modeling and improved
rule-based energy management for vehicle application,” J. Energy Eng.,
vol. 146, no. 6, Dec. 2020, Art. no. 4020060.

[39] Y. Liu, J. Liu, Y. Zhang, Y. Wu, Z. Chen, and M. Ye, “Rule learn-
ing based energy management strategy of fuel cell hybrid vehicles
considering multi-objective optimization,” Energy, vol. 207, Sep. 2020,
Art. no. 118212.

[40] Y. Liu, J. Liu, D. Qin, G. Li, Z. Chen, and Y. Zhang, “Online energy
management strategy of fuel cell hybrid electric vehicles based on rule
learning,” J. Cleaner Prod., vol. 260, Jul. 2020, Art. no. 121017.

[41] H. Jia, J. Tang, Y. Yu, Y. Sun, B. Yin, and C. Zhang, “Energy
management strategy of fuel cell/battery hybrid vehicle based on series
fuzzy control,” Int. J. Automot. Technol., vol. 22, no. 6, pp. 1545–1556,
Dec. 2021.

[42] X. Han, F. Li, T. Zhang, T. Zhang, and K. Song, “Economic energy man-
agement strategy design and simulation for a dual-stack fuel cell electric
vehicle,” Int. J. Hydrogen Energy, vol. 42, no. 16, pp. 11584–11595,
Apr. 2017.

[43] K. Simmons, Y. Guezennec, and S. Onori, “Modeling and energy
management control design for a fuel cell hybrid passenger bus,”
J. Power Sources, vol. 246, pp. 736–746, Jan. 2014.



[44] X. Zhao and G. Guo, “Braking torque distribution for hybrid electric
vehicles based on nonlinear disturbance observer,” Proc. Inst. Mech.
Eng., D, J. Automobile Eng., vol. 233, no. 13, pp. 3327–3341, Nov. 2019.

[45] Y. Liu, J. Li, Z. Chen, D. Qin, and Y. Zhang, “Research on a multi-
objective hierarchical prediction energy management strategy for range
extended fuel cell vehicles,” J. Power Sources, vol. 429, pp. 55–66,
Jul. 2019.

[46] A. H. Ganesh and B. Xu, “A review of reinforcement learning based
energy management systems for electrified powertrains: Progress, chal-
lenge, and potential solution,” Renew. Sustain. Energy Rev., vol. 154,
Feb. 2022, Art. no. 111833.

[47] A. Biswas, P. G. Anselma, and A. Emadi, “Real-time optimal energy
management of multimode hybrid electric powertrain with online train-
able asynchronous advantage actor–critic algorithm,” IEEE Trans. Trans-
port. Electrific., vol. 8, no. 2, pp. 2676–2694, Jun. 2022.

[48] C. Wang, R. Liu, and A. Tang, “Energy management strategy of
hybrid energy storage system for electric vehicles based on genetic
algorithm optimization and temperature effect,” J. Energy Storage,
vol. 51, Jul. 2022, Art. no. 104314.

[49] T. Liu, Y. Zou, D. Liu, and F. Sun, “Reinforcement learning of
adaptive energy management with transition probability for a hybrid
electric tracked vehicle,” IEEE Trans. Ind. Electron., vol. 62, no. 11,
pp. 7837–7846, Dec. 2015.

[50] X. Hu, J. Han, X. Tang, and X. Lin, “Powertrain design and control in
electrified vehicles: A critical review,” IEEE Trans. Transport. Electrific.,
vol. 7, no. 3, pp. 1990–2009, Feb. 2021.

[51] D. Zhou, A. Al-Durra, F. Gao, A. Ravey, I. Matraji, and M. G. Simões,
“Online energy management strategy of fuel cell hybrid electric vehi-
cles based on data fusion approach,” J. Power Sources, vol. 366,
pp. 278–291, Oct. 2017.

[52] Y. Li, X. Tang, X. Lin, L. Grzesiak, and X. Hu, “The role and application
of convex modeling and optimization in electrified vehicles,” Renew.
Sustain. Energy Rev., vol. 153, Jan. 2022, Art. no. 111796.

[53] L. Zhang, X. Hu, Z. Wang, F. Sun, J. Deng, and D. G. Dorrell, “Mul-
tiobjective optimal sizing of hybrid energy storage system for electric
vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1027–1035,
Feb. 2018.

[54] K. Song, Y. Ding, X. Hu, H. Xu, Y. Wang, and J. Cao, “Degradation
adaptive energy management strategy using fuel cell state-of-health for
fuel economy improvement of hybrid electric vehicle,” Appl. Energy,
vol. 285, Mar. 2021, Art. no. 116413.

Shengyan Hou received the M.Eng. degree in
control engineering from the Jilin University,
Changchun, China, in 2020, where he is currently
pursuing the Ph.D. degree in control science and
engineering.

His current research focuses on optimal control of
intelligent-connected vehicles.

Hai Yin received the B.S. degree in automation
and the M.Eng. and Ph.D. degrees in control sci-
ence and engineering from the Harbin Institute of
Technology, Harbin, China, in 2005, 2007, and 2015,
respectively.

From 2007 to 2016, she was an Engineer with the
Institute of Basic and Cross-Cutting Sciences. She
is currently a Senior Engineer with the State Key
Laboratory of Automotive Simulation and Control,
Jilin University, Changchun, China. Her research
interests include automotive control and nonlinear
control.

Benjamín Pla received the B.Eng. degree in indus-
trial engineering from the Universitat Politécnica
de Valéncia (UPV), Valencia, Spain, in 2004, and
the Ph.D. degree from the Research Institute CMT-
Motores Térmicos, Valencia, in 2009.

During this process, he passed through different
research grants until receiving a Lecturer position in
2008. He is currently an Associate Professor, giving
lectures on thermodynamics and fluid-mechanics in
the Aerospace Degree of the UPV. His research
activities are a part of the Engine Control Research

Group with CMT-Motores Térmicos. His research interest is focused on the
control and diagnosis of vehicle powertrains.

Jinwu Gao received the B.Eng. degree from the
Department of Automation Measurement and Con-
trol Engineering, Harbin Institute of Technology,
Harbin, China, in 2005, and the Ph.D. degree from
the Department of Control Science and Engineering,
Harbin Institute of Technology, in 2012.

From 2012 to 2014, he was an Assistant Pro-
fessor with Sun Yat-sen University, Guangzhou,
China. In July 2014, he held a post-doctoral
position with the Department of Engineering and
Applied Science, Sophia University, Tokyo, Japan.

From 2016 to 2020, he was an Associate Professor with Jilin University,
Changchun, China, where he has been a Professor since September 2020.
His research interests include control theory and application in automotive
powertrain.

Hong Chen (Fellow, IEEE) received the B.S. and
M.S. degrees in process control from Zhejiang
University, Hangzhou, China, in 1983 and 1986,
respectively, and the Ph.D. degree in system
dynamics and control engineering from the
University of Stuttgart, Stuttgart, Germany,
in 1997.

In 1986, she joined the Jilin University,
Changchun, China. From 1993 to 1997, she was a
Wissenschaftlicher Mitarbeiter with the Institut für
Systemdynamik und Regelungstechnik, University

of Stuttgart. Since 1999, she has been a Professor at Jilin University and
hereafter a Tang Aoqing Professor. From 2015 to 2019, she served as the
Director of the State Key Laboratory of Automotive Simulation and Control.
In 2019, she joined Tongji University as a Distinguished Professor. Her
current research interests include model predictive control, nonlinear control,
and applications in mechatronic systems focusing on automotive systems.


