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Automatic Classification of Field Winding Faults in 

Synchronous Motors based on Bicoherence Image 

Segmentation and Higher Order Statistics of Stray 

Flux Signals 

 

Abstract— In this work, the application of the bicoherence (a 

squared normalized version of the bispectrum) of the stray flux 

signal is proposed as a way of detecting faults in the field winding 

of synchronous motors. These signals are analyzed both under the 

starting and at steady state regime. Likewise, two quantitative 

indicators are proposed, the first one based on the maximum 

values of the asymmetry and the kurtosis of the bicoherence 

matrix obtained from the flux signals and the second one relying 

on an algorithm based on the bicoherence image segmentation of 

the obtained pattern for each analyzed state. The results are 

analyzed through a comparative study for the two considered 

motor regimes, obtaining satisfactory results that sustain the 

potential application of the proposed methodology for the 

automatic field winding fault detection in real applications.  

Index Terms— Bicoherence, Motors, Skewness-Kurtosis, Flux, 

Winding Faults  

I. INTRODUCTION 

ondition monitoring of electric motors is of crucial 

importance in the industry due to the primordial role of 

these machines that can drive a huge variety of loads in 

a vast range of different applications. Faults in the electric 

motors can yield unplanned production downtimes, costly 

repairs and even user safety hazards. This is the reason why it 

becomes crucial to develop techniques that are able to reliably 

detect possible failures or defects in the different components 

of the electric motor when these failures are still at their early 

stages of development in the machine [1]-[2]. 

Wound field synchronous motors (WFSM) are far less 

widespread in industry than other types of electric motors, such 
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as cage induction motors This is due to the inherent drawbacks 

that WRSM have, namely: they need auxiliary elements 

(variable speed drives, damper cages) or machines (pony 

motors) for their starting, they have more complex constructive 

characteristics, they have higher cost, etc… [3]. Despite these 

problems, WFSM can be found in some applications involving 

high output powers, since they show interesting features at 

those power ranges, such as higher efficiencies and possibility 

of power factor regulation [4-5]. Due to this, it is not so unusual 

to find WFSM rated several MW that operate in certain plants, 

where they often are critical assets. An interesting case of a 

catastrophic failure in one of these machines, that implied 

losses of several million $ is reported in [6]. 

One of the failures that can happen in WFSM and that can 

lead to very negative repercussions is the fault in the field 

winding of these machines. This may happen due to the 

deterioration of the insulation between field winding turns 

(caused by a diversity of reasons) which can progress to more 

severe failures and even to the forced outage of the machine [7].  

In this sense several works have been carried out using stray 

flux signals for this purpose [8-12], then specifically using 

wound field synchronous motors [13-14]. Despite the variety of 

works that have analyzed this problem, some issues still remain 

as the need of expertness of the user that interprets the results 

of some of the proposed methods, a fact that complicates their 

implementation in autonomous condition monitoring devices 

that can be applied in the field. 

This work proposes the analysis of stray flux signals both 
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under starting and at steady-state for the detection of field 

winding faults in WFSM.  To this end, two high-order statistical 

analysis using bicoherence are evaluated through the combined 

application of the skewness and kurtosis indicator. While the 

bicoherence enables to obtain a visual qualitative representation 

of the frequency content of the analyzed signals. The second 

analysis, based on skewness and kurtosis indicator, enables the 

quantitative discrimination between different fault conditions.  

Moreover, the methodology proposes in this paper enables 

an automatic application of the methodology which is crucial 

for its possible implementation in autonomous devices. The 

results included in the paper, which represent an incremental 

advance versus those presented in [15], show the potential of 

the approach and its suitability for making the diagnostic user-

independent and facilitating its possible future extrapolation to 

the field.  

In synthesis, the main contributions of this work can be listed 

as follows: 

•  Proposal of a new methodology for the detection of field 

winding faults based on stray flux data analysis; the method 

relies on high order spectral analysis for the calculation of the 

bicoherence. The method enables an easy qualitative detection 

of the fault, since it is based on visual patterns. 

•  Proposal of indicators to quantify the severity of the motor 

fault using the combination of the kurtosis and the skewness of 

the flux signal. The indicator is verified in different regimes, 

proving its usefulness for the determination of the fault severity. 

•  Proposal of an automatic fault detection scheme based on the 

segmentation of the image contour obtained from the 

bicoherence calculation. This scheme makes the method 

suitable for potential incorporation of the method in automatic 

condition monitoring systems. 

The paper is organized as follows: Section II shows the basic 

fundamentals of the analysis based on bicoherence. In Section 

III the experimental details are shown. In Sections IV and V, 

respectively, the obtained results using bicoherence and the 

proposed algorithm based on the image segmentation are 

illustrated. Finally, the conclusions of the work are detailed in 

Section VI. 

II. THEORETICAL FOUNDATIONS: BICOHERENCE ANALYSIS  

Higher order spectral analysis is based on the Fourier 

Transform 𝑋(𝑓) of the higher order cumulants of a discrete 

sequence  {𝑥(𝑛)}𝑛=0
𝑁−1  and it can be expressed as follows (where 

𝑋(𝑓) is the Fourier Transform of the sequence  {𝑥(𝑛)}𝑛=0
𝑁−1) 

[16]-[17]: 

𝐵(𝑓1, 𝑓2) = ∑ ∑ 𝐶3𝑥(𝜏1, 𝜏2) ∙  𝑒−2𝜋𝑓1𝜏1 ∙ 𝑒−2𝜋𝑓2𝜏2

𝑁

𝜏2=1

𝑁

𝜏1=1
 

               =
1

𝑁2 𝑋(𝑓1, 𝑓2) ∙ 𝑋(𝑓1) ∙ 𝑋(𝑓2)                             ()      

In this work, the bispectrum absolute value of the stray flux 

signal is employed. The discrete theoretical description is given 

by (2), where N is the number of rows of the square matrix 

(NxN) obtained from the bispectrum. The obtained result is a 

NxN matrix that contains the frequency values of the amplitude 

bispectrum matrix of the analysed stray flux signal [15]. 

        (𝐵𝑥
𝑁(𝑓)) = |𝐵𝑥

𝑁(𝑓1, 𝑓2)|𝑖  ∀𝑖 = 1, … , 𝑁               () 

On the other hand, the bicoherence can be interpreted as an 

automatic index that can be calculated from a single signal. It 

takes values between 0 and 1, which makes it a convenient 

measure to quantify the degree of phase coupling in a signal. 

Then, the Bicoherence, according to equation (2), is defined by 

(3), where the numerator contains the square magnitude of the 

bispectrum in all segments of the time series and the 

denominator is the factor that normalizes the bispectrum. 

Hence, 0 ≤ 𝐵(𝑓1, 𝑓2) ≤ 1. 

𝑏𝑖𝑐2(𝑓1, 𝑓2) =
|𝐵(𝑓1, 𝑓2)|2

𝐸{|𝑋(𝑓1)𝑋(𝑓2)|2}𝐸{|𝑋∗(𝑓1 + 𝑓2)|2}
    (3) 

To verify the validity of the theoretical proposal, several 

experiments are carried out, the results of which are shown 

below in section IV. 

 III. EXPERIMENTS 

Different tests were developed using a 4-pole, 400 V WFSM 

rated 3.4 kVA. The motor was started through a 3-phase variable 

voltage source. The motor was started thanks to the rotor that 

assumed the function of the damper, enabling an asynchronous 

mode starting. The load was an induction motor that acted as 

generator. A picture of the experimental test bench is shown in 

Fig.1. 

The inter-turn failure was forced by using a variable resistance 

RF that could be inserted in parallel at the connections between the 

poles that can be externally accessed (see Fig.2). The three tested 

cases were: healthy machine (no resistor connected, i.e., RF = ∞), 

partial interturn fault in one pole (connected resistor RF=2.7 Ω) and 

complete short-circuited pole (connected resistor RF=0 Ω). 

The stray-flux signals both under the starting and at steady-state 

were captured using a coil sensor with air core with N1=1000 turns 

and round shape. It had an external diameter of 80mm and an 

internal diameter of 39mm (see Fig. 2). 

 

 

Fig. 1. Experimental testbench. 
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Fig. 2. Inserted resistor to simulate the field winding fault and stray flux sensor 

used. 

IV. RESULTS USING BICOHERENCE ANALYSIS  

A. Bicoherence plots. 

   Sometimes the use of classic signal processing techniques 

such as the FFT does not constitute an accurate indicator to 

visually identify a pattern related to the failure in the motor, 

since the harmonics can be found overlapping with other non-

fault related harmonics or even with the spectral noise. An 

example is depicted in Fig. 3, in which the spectra of the stray-

flux signals corresponding to both motor in healthy state, motor 

with moderate field winding failure and motor with severe field 

winding failure are shown. Note that a change in the spectral 

frequencies pattern linked with the winding failure is not clearly 

observable. Due to this, more sophisticated tools as the 

bicoherence are proposed in this paper, as a tool to visually 

enhance the detection of the failure.  

 

Fig. 3. Comparison of the frequency spectrum of the stray flux signals for a 

motor in healthy state (black), moderate field winding failure (red) and severe 

field winding failure (blue) 

   The following figures show the contour plots corresponding 

to the bicoherence of the stray flux signals captured under 

starting and at steady-state operation. In Fig. 4 (healthy 

condition), no clear pattern can be observed in the upper and 

lower corners either at steady state or under starting. Note also 

that at steady state (Fig. 4 (b)) a slight circular pattern appears 

in the center, around the central frequencies, which is not 

observed under starting (Fig. 4(a)).  

         (a) 

 

                                                    (b) 

 

Fig. 4. Bicoherence for healthy condition: (a) under starting, (b) at steady-state  

   On the other hand, in Fig. 5 (moderate fault level) the 

bicoherence patterns are different compared to the healthy case. 

The patterns on the corner are not so concentrated and they 

spread showing a triangular pattern that expands from the 

corner, both for the starting (Fig.5 (a)) and for the steady-state 

(Fig. 5(b)) regimes. Moreover, there is a clear circular pattern 

in the middle of the contour plot at steady-state regime (Fig. 5 

(b)). Finally, Fig. 6 (severe field winding fault level) shows that, 

as the level of fault worsens, the triangular patterns are even 

wider for both regimes, while the circular pattern in the middle 

is clearly noticeable.  

   The triangular patterns appearing in the bicoherence plots of 

Figs. 4 and 5 are clear signatures of the fault and are explained 

by the interactions between the fault frequency components that 

appear when the field winding failure is present. Moreover, the 

Stray flux sensor

Added 
resistances
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width of the pattern is linked with the fault severity, as observed 

in these figures.  The detection of these patterns is rather simple 

and can be carried out by non-expert users. Moreover, they can 

be detected by automatic pattern recognition algorithms 

programmed to this end. 

      (a) 

 

   (b) 

 

Fig. 5. Bicoherence for the moderate field winding fault condition: (a) under 

starting, (b) at steady-state. 

   More specifically, Fig.4 shows a star-shaped pattern that 

corresponds to the interactions between the frequencies of the 

harmonics that are already present in healthy condition over the 

spectrum at steady-state; moreover, a circular pattern can be 

observed around of 0.1 which indicates the phase coupling with 

respect to the fundamental frequency. Additionally, there are 

also replicas of the interactions between multiple harmonics 

and the fundamental component that yield a circular pattern 

about 0.2. 

   In the subsequent figures corresponding to the faulty field 

winding (Figs. 5 and 6), it can be observed that, at steady state, 

the external pattern around 0.2 disappears and only the 0.1 

pattern around the fundamental frequency remains. On the other 

hand, there is a residual noise that is only visible when the 

motor has severe damage. The resulting plots clearly differ 

from that for healthy condition and allow the detection of the 

failure. 

(a) 

 

(b) 

 

Fig. 6. Bicoherence for the severe field winding fault condition: (a) under 

starting, (b) at steady-state. 

    

In summary, the proposed method is based, first, on 

obtaining the bicoherence plots of the healthy machine both 

during the start-up and at steady-state. In addition, quantitative 

values of the indicators based on skewness and kurtosis must be 

computed. Afterwards, during the motor life, the bispectrum 

plots must be periodically obtained and the fault indicators 

computed and compared with the healthy ones, detecting 

deviations that are indicative of the appearance of the fault.   

 

   On the other hand, Fig. 7 shows the analysis of the 

computational cost for evaluating the bicoherence for a data 

window ranging from 256 samples to 4096 samples. The 

simulation was carried out on a computer with a W10 12GB of 

RAM and a third-generation i7 processor. Note that the 

computational cost rises exponentially as the number of 

samples to be processed increases. However, also note that the 

analyses displayed in this paper were performed with only 256 

samples of the stray flux signals of the motor in each state, 

which would imply a computational cost of only 1.3 seconds. 
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Fig. 7. Computational cost for evaluating the bicoherence for a data window 

ranging from 256 samples to 4096 samples . 

 

In the following sections, two quantitative indicators are 

proposed to automatically detect the failure and determine the 

fault severity. The analyzes were performed both during startup 

and at steady state. 

 
 

B. Fault Indicator Based on Skewness and Kurtosis of 

Bicoherence. 

In this work, the use of two fault severity indicators based on 

high-order statistical analysis, such as asymmetry (S) and 

kurtosis (k) (see (4)), is proposed. The proposed indicators are 

based on the maximum values of the asymmetry and the 

kurtosis of the bicoherence matrix both when the motor is at 

steady state as well as during startup: 

    

𝑆 =
𝐸(𝑥 − 𝑢)3

𝜎3
            𝑘 =

𝐸(𝑥 − 𝑢)4

𝜎4
   

                                                                                          (4) 

 

Then the respective indicators are given by (5), where 𝑢 is the 

mean of the bicoherence, σ is its standard deviation, and E(t) 

represents the expected value of the t quantity: 

𝐼𝑛𝑑𝑆 = max (
𝐸( 𝑏𝑖𝑐2(𝑓1, 𝑓2) − 𝑢)3

𝜎3
 )        

                                                                                        (5) 

𝐼𝑛𝑑𝑘 = max (
𝐸( 𝑏𝑖𝑐2(𝑓1, 𝑓2) − 𝑢)4

𝜎4
 )     

Table I and II show the value of the skewness and kurtosis-

based indicators, respectively, revealing a progressive 

decrement under starting as the winding fault worsens. The 

trend of both indicators during startup follows a common 

decreasing pattern, then in steady state it follows an erratic 

trend. In any case, both fault indicators clearly differ between 

healthy and faulty conditions, becoming interesting 

informational sources for the quantification of the fault severity. 

The difference in the values of the method based on kurtosis 

reveals a greater range of fault indication, both during start-up 

and at steady-state, although in the latter the trend is more 

erratic. 

TABLE I.  TABLE I. VALUE OF THE SKEWNESS INDICATOR FOR 

DIFFERENT FAULT CONDITIONS 

Under starting 

Healthy Moderate fault Severe fault 

8.7227 7.1297 7.0359 

At steady-state 

Healthy Moderate fault Severe fault 

9.6385 8.2746 9.1977 

TABLE II.  TABLE II. VALUE OF THE KURTOSIS INDICATOR FOR 

DIFFERENT FAULT CONDITIONS 

Under starting 

Healthy Moderate fault Severe fault 

88.8614 61.8200 54.7955 

At steady-state 

Healthy Moderate fault Severe fault 

102.6651 75.1721 94.1826 

 

Other experiments can be carried out using other types of 

quantities such as vibrations or acoustic signals of the motor to 

extend the results obtained. The generalization of the method 

only implies obtaining a pattern of the healthy state of the motor 

at the beginning, during start-up and at steady-state, which can 

be carried out during motor commissioning. 

V. BICOHERENCE IMAGE SEGMENTATION  

 

This section is intended to deepen in the automatic fault 

diagnosis, by applying an image processing methodology to the 

bicoherence plots obtained in previous sections for each fault 

condition and considered regime (see Figs. 4 to 6). Based on 

this method, a second fault indicator is proposed.  

In the bicoherence plots of Figs. 4 to 6, a triangular pattern 

that enabled to detect the fault condition was identified. This 

pattern varies as the failure increases, but there is a certain 

graphic similarity in all the triangular obtained patterns. 

In order to obtain a function that defines the degree of motor 

fault as a function of the relative changes of the bicoherence 

pattern, an algorithm based primarily on binary segmentation 

using the Otsu method [18] to filter the relevant information is 

proposed. Once a clean pattern is obtained, the information is 

processed. Otsu's method is a variance-based technique to find 

the threshold value where the weighted variance between 

foreground and background pixels is minimal. The Otsu method 

[19-20], can be described as follows: 
 

                                        𝐾𝑖 =
𝜎2𝐵

𝜎2𝐺
                                    (6) 

 

where 𝐾𝑖 is the threshold value, 𝜎2𝐵 is a global variance of 

the entire image and 𝜎2𝐺 is the variance between classes. Once 
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every image is segmented, to process the information, three 

fixed-size quadrants are extracted from all the images; hence, 

there is a total of nine quadrants, corresponding to the 

bicoherence during startup and at steady-state for each 

condition (healthy, moderate and severe failure). Fig. 7 and 8 

show, respectively, the results of this segmentation process.  

             
 

 

 

Fig. 8. Bicoherence image segmentation during startup. a) Healthy b) 

Moderate Fault c) Severe Fault. 

The three selected regions for each picture are: the upper 

right and lower left corners, representing the variation of the 

triangular patterns, and the center region that is the one that 

differentiates between the starting and the steady state. 

 

                   
 

 

 

Fig. 9. Bicoherence image segmentation at steady state. a) Healthy b) 

Moderate Fault c) Severe Fault. 

In the previous figures it can be noticed that, unlike what 

happens at steady state, the circular pattern of harmonics does 

not appear during the startup. Once the segmentation is 

obtained, an analysis of the pixels "on/off" is carried out in each 

quadrant. The relationship is represented as follows: 

                 𝐹(𝑒, 𝑎) = 𝑃(𝑥, 𝑦)     ∇  𝑥, 𝑦 ∈  ℝ                  () 

 where 𝑃(𝑥, 𝑦) is the point that represents the relation in a 

plane. 

A. Function to evaluate the fault severity 

Once the segmentation is obtained, a fault indicator function 

is proposed. It is based on spiraling through a matrix of fixed 

size that contains the relevant information of each one of the 

selected quadrants. 

If the patterns obtained in Figs. 7 and 8 are analyzed, it can 

be noticed that, as the fault becomes more severe, a triangular-

shaped area of "off" pixels in the center of the pattern (figures 

 



7 

 

7b, 7c, 8b, 8c) is generated. When the fault increases, the "on" 

pixels are very close to the edges, due to the increase in the 

triangular area (Figs.7c and 8c respectively). On the contrary, 

in the healthy case, there is a pattern of "on" pixels concentrated 

close to the quadrant center. The idea is to weight with a greater 

value those pixels that are closer to the edges, since the 

underlying hypothesis is that the edges are related to the fault 

while the center to the healthy state. 

Based on these ideas, three quadrants are taken in each image 

for the three considered conditions (see Figs 7 and 8); the 

central quadrant is taken to discriminate between the START-

UP regime and the STEADY-STATE, while the UPPER 

RIGHT and LOWER LEFT quadrants are used to assess the 

severity of the motor failure. 

The main idea of the proposed algorithm is to run through 

each quadrant following a spiral of the 𝑁𝑥𝑁 quadrant matrix; 

in this way, the farthest layer from the center is run in each 

iteration (Fig. 10).  

A weight with value 100 is initialized and it will decrease 

10% of its current value in each iteration, in such a way that the 

weight is maximum in iteration 1 (closer to the edge) and 

minimum in the last iteration (closer to the center). The matrix 

iteration process is shown in Fig. 10.  

 
 

Fig. 10. Spiral matrix algorithm for fault indicator function. 

The function takes an array as an input, that corresponds to 

the quadrant to be analyzed. Starting from a null value, 

𝐹𝑎𝑖𝑙𝑢𝑟𝑒 = 0 and using the following operation variables: 

• 𝑚𝑎𝑥𝑥 → X matrix Dimension (quadrant) 

• 𝑚𝑎𝑥𝑦 →  Y matrix Dimension (quadrant) 

• 𝑎𝑢𝑥𝑥 → iteration of the matrix by the X dimension 

• 𝑎𝑢𝑥𝑦 → iteration of the matrix by the Y dimension 

• 𝑤𝑒𝑖𝑔𝑡ℎ → Pixel Weight 

 

A flowchart description of the functionality of the proposed 

method that yields an indicator of the severity of motor fault is 

shown in Fig. 11, 12 and 13 respectively.  

The first step of the iteration process is to calculate the upper 

quadrant region of the matrix obtained from the contour 

representation of the bicoherence (see Figs. 8 and 9, 

respectively). 

Subsequently, the regions of the right and lower quadrant are 

calculated, and finally the region of the left quadrant. Each 

iteration is performed taking into account the variables listed 

above. 

 The updating process of each loop is executed until reaching 

the matrix dimensions, represented by the   𝑚𝑎𝑥𝑥 y 𝑚𝑎𝑥𝑦  

variables respectively. Before the completion of the first 

iteration of the general loop, all auxiliary variables represented 

by  𝑎𝑢𝑥𝑥 , 𝑎𝑢𝑥𝑦  are updated. These variables correspond to the 

iteration index for the X and Y quadrant dimension, 

respectively. 

Finally, the cumulative sum of the weights represented by 

each pixel, which in this case corresponds to the variable 

𝑤𝑒𝑖𝑔𝑡ℎ, is updated. This cumulative sum corresponds to the 

weights of the pixels of the matrix of each quadrant, for each 

motor condition. 

The whole process is repeated from step 1 to step 3 until the 

analysis of all graphical information provided by the 

segmentation of the bicoherence contour image is covered. 

 

 

Fig. 11. Ilustration of: Step 1 of the flowchart description of the functionality 

of the proposed method based on bicoherence image segmentation. 

 

Fig. 12. Ilustration of : Step 2 of the flowchart description of the functionality 

of the proposed method based on bicoherence image segmentation. 
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Fig. 13.  Ilustration of: Step 3 of the flowchart description of the functionality 

of the proposed method based on bicoherence image segmentation. 

 

As a result of the application of the proposed algorithm, a 

non-dimensional indicator is obtained that facilitates to 

determine the fault severity; this indicator increases its value as 

the severity of the failure gets worse. The results can be 

observed in Fig. 14, in which an upward trend can be observed 

for both considered regimes (i.e. the startup and the steady 

state), as the fault severity increases. 

 

Fig. 14. Output and trend of the fault indicator function based on bicoherence 

image segmentation. 

VI. CONCLUSION 

This work has proposed a field winding fault detection 

method for WFSM based on the bicoherence analysis of stray 

flux signals. In the paper, the potential of the use of high-order 

spectral analysis and its combination with statistical indicators 

based on cumulants such as asymmetry and kurtosis is assessed. 

Two methodologies for different regimes (starting and steady-

state) are applied.  

On the other hand, a fault indicator function based on the 

segmentation of the image patterns obtained from bicoherence 

is also proposed.  The method is based on segmenting the area 

of relevant information and developing a spiral matrix 

processing algorithm to obtain a quantitative indicator of the 

fault severity. 

Under both regimes, it is possible to discern, by using the 

bicoherence image pattern whether the motor is healthy, or it 

has a certain level of field winding failure. Likewise, it is shown 

that the indicators calculated based on higher order central 

cumulants as skewness and kurtosis are also a good alternative 

to determine the fault severity, showing better results under 

starting. 

Finally, the results of this work can be generalized and 

incorporated into real time motor condition monitoring 

systems. The use of high order statistics offers the possibility of 

detecting other types of faults given the noise immunity of high 

order spectral analysis techniques. This can be an interesting 

tool to explore the detection of other types of faults in 

synchronous motors as well as to apply the method to other 

machines, as induction motors. 
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