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Abstract
The present project focuses on how the scattered wave field generated by the presence
of fixed offshore structures, i.e. bottom-mounted wind turbines, influences the ship’s re-
sponse amplitude. It is worth mentioning that only the F-K forcing of the scattered wave
from the cylinder is considered, i.e. the project disregards a potential scattered wave field
generated by the ship’s interaction with the scattered wave from the cylinder. Therefore,
the ship is not generating any scattered wave field; only the cylinder.

By usingWAMIT andMATLAB, the response AmplitudeOperator (RAO) of both situations,
i.e. ”Open sea” and ”With cylinder”, are compared in a regular sea state for different
heading angles β. These comparisons have indicated that there are indeed reasons to
believe the heading angle plays an important role in safety matters when performing any
kind of wind farm operation.

Finally, an extension of the MATLAB code is adapted to the FORCETechnology procedure
when evaluating a real-time domain ship’s response to incoming irregular waves.
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1 Introduction
Addressing safety and operability challenges for ships in adverse sea conditions is com-
plex, especially during open-sea operations. Numerous experiments at the model scale
and full scale accurately study ship motions although it may be costly compared to a
computational analysis.

This project’s scope is to perform accurate real-time simulations of ocean waves around
off-shore wind turbine foundations and real-time calculations of ocean wave forces on
service vessels. The study starts with a comprehensive analysis of all six degrees of
freedom under a constant sea state (regular waves) and extends to irregular waves while
accounting for the influence of the scattered wave field caused by the presence of the
wind turbine foundation.

Two different ship designs have been used to perform the analysis of motions under both
regular and irregular waves: Wigley Hull and a typical workboat designed and provided by
Steffan Brandt Tolboe. The former is a parameterised boat which can be easily modelled
and frequently used to perform tests while the latter has been rigorously designed to
perform efficiently wind farm operations.

The scattered wave field is first analytically worked out with the exact solution of the diffrac-
tion effects around a cylinder [1], then implemented and validated in Matlab through the
BEM ensuring convergence is achieved. Once it is accomplished, the scattered force
can be included as a prescribed external force along with the F-K force, computed with
WAMIT, and finally obtain the RAOs, where the influence of the cylinder can be observed.

It is also paramount not to forget about the wave heading angle during this operation.
Motions like Roll, which is crucial for ship operability [2], are response-sensitive to sea
waves; others, like Heave, are not. Depending on the situation, these issues can be
addressed with a certain simplicity by modifying the heading angle.

Real-Time Simulation of Service Vessels for Offshore Wind Turbine 1
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2 Background and Case Study
Parameters

2.1 Location
Horns Rev III, approximately 30 km off the Danish Jutland coast (North Sea), will be a
reference in this study, by importing the dimensions of the wind turbine foundations (i.e.
monopile of 6.5m diameter) and the wave climate in that location.

2.2 Climate study
This section is focused on the establishment of amost probable range of the non-dimensional
wave number, i.e. ka (where k is the wave number and a is the cylinder radius), that takes
place at Horns Rev 3 wind farm. To do so, it is necessary to study thoroughly and sepa-
rately wind waves and swell.

Both types of waves will induce a different range of ka since they have inverse character-
istics. While wind waves have a high frequency and small wavelength, swell waves are
known to have a shorter frequency and larger wavelength.

Wavelength and its interaction with the wind turbine foundation are key to studying the
diffraction effects (explained in Section 3.1) and thus, the importance of the scattered
wave field on the ship.

The following figure depicts a scattered density distribution plot of wind waves in Horns
Rev III during 2022 [3]. It can be noted that the range of both Mean period and Signif-
icant wave height is quite large but narrow-banded. Leaving out outsider points, a rep-
resentative wind wave climate would have a mean period from 1.8 s up to 8 s with their
corresponding ka values: 4 and 0.2, respectively.

Figure 2.1: Density plot of Wind waves.
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Conversely, Swell waves wave climate is rather scattered (see Fig. 2.2) [3]. Note also
that swell waves have a lower frequency, giving a most probable non-dimensional wave
number range of 0.1 to 1.45 (i.e. 11 s and 3 s, respectively).

Figure 2.2: Density plot of Swell waves.

Therefore, the most probable range of ka can be set as 0.1 to 4, corresponding to a
wavelength of 189m and 5m; respectively.

2.3 Working conditions. Operatibility
2.3.1 Wind farm ships
When it comes to wind farm operations, there is a wide variety of them that can be per-
formed by different kinds of ships e.g., wind farm operations vessels, known as SOVs,
CSOVs, installation vessels, or jack-up barges, all of them playing a crucial role in every
phase of offshore wind farm operations. Some of the tasks these vessels are important
can be crew transportation, construction, maintenance, and the eventual decommission-
ing of wind turbines, even in some of the most challenging ocean conditions [4].

International standards and regulations encompass a wide array of aspects, starting from
the design and construction stages. Wind farm vessels must adhere to specific guidelines
and requirements to guarantee their structural integrity and stability and, even under ad-
verse weather conditions, they must provide a secure working environment for the crew
involved in wind farm activities.

2.3.2 Wind farm operations
Health, Safety, and Environment (HSE) constitute three of the most key elements across
industries, but their value escalates considerably within offshore wind farm operations.

The offshore wind energy sector presents unique challenges that demand meticulous
oversight, given the presence of unfavourable weather conditions, complex machinery,
and considerable distances from the coastline. Such challenges need to be addressed
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with an elevated emphasis on safety and sustainability by the HSE department, responsi-
ble for safety procedures and protocols implementation, employee training, ongoing moni-
toring, and assessment of offshore wind farm activities, execution of emergency response
plans, etc [4].

2.3.3 Wave height and accessibility
All the regulations, requirements, guidelines, and safety measures previously mentioned
need to be carried out within a secure wave climate environment.

Weather conditions are a paramount element to consider when performing wind farm op-
erations. The ability to reach an offshore wind turbine via ship primarily hinges on wave
height. Typically, weather conditions featuring a substantial wave height (Hs) exceeding
1.5m are categorized as ”Weather Days.” As section 2.3.1 states, there is a wide range
of wind farm operations and wind farm ships, each of them with different purposes and
safety measures; however, beyond the ”Weather days” point, even transferring service
personnel from a work vessel to the offshore installation ladder becomes too dangerous.
Even with specialized access systems designed to counteract the ship’s motion, gain-
ing access to offshore wind turbines is feasible only up to a significant wave height of
approximately 2m [5].

Real-Time Simulation of Service Vessels for Offshore Wind Turbine 5
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3 Theory
3.1 Wave diffraction around a cylinder
This section focuses on diffraction effects. These effects become relevant when the ratio
D/L is greater than 0.2, where D is the diameter of the wind turbine foundation and L is
the incident wavelength [6].

A 6.5m cylindrical monopile is analyzed for the case study. That means diffraction effects
will occur around the wind turbine foundation whenever the incident wavelength is 33m or
shorter. On one side of the cylinder (the front part), the incident wave will be reflected in the
opposite direction (wave moving outwards) whereas on the sheltered side, the wavefronts
are bent around the cylinder.

Figure 3.1: Sketch of the incident, diffracted and reflected wave fronts for a vertically
placed cylinder [6].

Regarding the flow around the cylinder in the diffraction flow regime, we can assume it
is unseparated. In order to prove so, the KC number, Eq. (3.1) and maximum wave
steepness ratio, Eq. (3.2) must be considered.

KC =
2πa

D
=

π (H/L)

(D/L) tanh(kh)
(3.1)

where H is the wave height, L; the wavelength, k; the wave number and h; the water
depth.

(
H

L

)
max

= 0.14 tanh(kh) (3.2)

Computing Eqs. (3.1) and (3.2) leads to Fig. 3.2 where it can be seen that diffraction
takes place for such small values of KC number, namely KC < 2. For KC greater than
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2, waves will break, hence, there is no flow separation in the diffraction regime. Since the
wavelength is considered much larger than the wave height during the working conditions,
it can therefore be assumed there is no flow separation, i.e. KC < 2.

Figure 3.2: Flow regimes in terms of KC and D/L [6].

3.1.1 MacCamy and Fuchs Solution
MacCamy and Fuchs (1954) [1] developed an analytical solution applying potential flow
theory, i.e. no flow separation, to describe the diffraction effects for water waves incident
on a vertical cylinder of circular cross-section in finite water depth.

In addition, by assuming linear wave theory, i.e. the wave height is much smaller than the
wavelength, some approximations can be made such as linear superposition [1]. For a
time-harmonic wave at frequency ω, the total velocity potential can be written:

Φ = ℜ
{
ϕ(x, y, z, ω) eiωt

}
(3.3)

ϕ = ϕ0 + ϕs (3.4)

where ϕ0 is the potential function of the undisturbed incident wave approaching the cylin-
der from x ∼ −∞ and ϕs is the scattered wave due to the cylinder.

The potential function ϕ fulfils the following linear boundary value problem:

• The continuity equation:

∇2ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0 (3.5)
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• No velocity through the bed:

∂ϕ

∂z
= 0 at z = −h (3.6)

• The combined free surface boundary condition:

∂2ϕ

∂t2
+ g

∂ϕ

∂z
= 0 at z = 0 (3.7)

• No normal velocity at the body surface:

∂ϕ

∂r
= 0 at the body surface (3.8)

From the linear theory, the incident potential function ϕ0 is obtained:

ϕ0 = igH
2ω

cosh(k(z + h))

cosh(kh)
e−ikx (3.9)

where the z-axis points positively upwards from the mean water level. The cylindrical
wavefronts are assumed to approach the circular cylinder of radius a from x ∼ −∞.

Introducing now polar coordinates to Eq. (3.9) where

x = r cos θ
y = r sin θ

(3.10)

the potential function takes the form:

ϕ0 (r, θ, z) = igH
2ω

cosh(k(z + h))

cosh(kh)
e−ikr cos θ (3.11)

and utilizing the linear dynamic free-surface condition, which requires that the pressure
on the free surface is equal to the atmospheric pressure, the incident wave elevation can
be derived as

η0 (r, θ, t) = −1

g

∂ϕ

∂t
(z = 0) = ℜ

{
Aei(ωt−kr cos θ)

}
, (3.12)

where A = H/2 is the wave amplitude and the last term can be written in terms of the
Bessel functions Jm, starting from m = 0 up to a certain value that ensures the accuracy
required:

e−ikr cos θ =

∞∑
m=0

εm (−i)mJm(kr) cos(mθ) (3.13)

with ϵ0 = 1 and ϵm = 2 for m ≥ 1.

Real-Time Simulation of Service Vessels for Offshore Wind Turbine 9



Concerning the second part of Eq. (3.3), the scattered potential function [7] ϕs is pre-
sumed to have a similar form to Eq. (3.11) and symmetric shape for θ, i.e., ϕs(−θ) = ϕs(θ)
while satisfying the no-flux condition of the total potential on the cylinder boundary, that is

∂ϕs

∂n
= −∂ϕ0

∂n
→ ∂ϕs

∂r
= −∂ϕ0

∂r
on r = a. (3.14)

The far-field condition that ensures that waves propagate outwards from the cylinder and
vanish as r → ∞, with an asymptotic form, is satisfied by using a linear combination of
the Bessel Functions, in this case, the Hankel Function. Therefore, the scattered potential
function and its corresponding free surface elevation can be written, respectively, as

ϕs(r, θ, z) =
ig
ω

cosh(k(z + h))

cosh(kh)
ηs(r, θ), (3.15)

ηs(r, θ) =
∞∑

m=0

H(2)
m (kr)(α0m cosmθ + β0m sinmθ). (3.16)

where H
(2)
m (kr) is Hankel function of the second kind:

H(2)
m (kr) = Jm(kr)− iYm(kr) →

√
2

πkr
e−i(kr−

mπ
2

−π
4 ) as r → ∞. (3.17)

Here, Ym is the Bessel function of the second kind. Coefficients α0m and β0m can be
derived by invoking the boundary condition, using Eq. (3.13), resulting in

α0m = −εm(−i)m J ′
m (ka)

H
(1)′
m (ka)

(3.18)

β0m = 0,

Lastly, to obtain the total potential function, only one step is left: summing ϕ0 and ϕs

from Eqs. (3.11) and (3.15), respectively. The solution is then:

ϕ(r, θ, z) = igA
ω

cosh [k(z + h)]

cosh(kh)
∞∑

m=0

εm(−i)m
[
Jm(kr)− J ′

m (ka)

H
(2)′
m (ka)

H(2)
m (kr)

]
cos(mθ),

(3.19)

where the prime denotes the derivative with respect to the argument. The dynamic pres-
sure is given by

p(r, θ, z) = iωρϕ = ρg η
cosh [k(z + h)]

cosh kh
. (3.20)

Adapting this equation to a cylinder of radius a, the non-dimensional pressure at any point
on the cylinder surface due to the scattered wave may be calculated as
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p

ρgA
=
cosh [k(z + h)]

cosh (kh)

∞∑
m=0

−εm(−i)m J ′
m (ka)

H
(2)′
m (ka)

H(2)
m (kr) cos(mθ), (3.21)

and the corresponding force on a nearby structure is

F s
j =

∫
Sb

p nj dS, (3.22)

where Sb corresponds to the submerged body surface and nj to the generalized unit
normal vector in direction j.

3.2 Validation of the analytical solution
This section aims to validate the analytical solution from MacCamy and Fuchs and imple-
ment a scattered wave elevation code in Matlab that works for a sufficiently large region
around a cylinder for all possible angles. Apart from Eqs. (3.16) and (3.18), thanks to
linear superposition, the non-dimensional scattered wave elevation can also be obtained
from Eq. (3.19) by subtracting the summation term relative to the Bessel function expan-
sion of the exponential (Eq. (3.13)), resulting in

ηs(r, θ) =

M∑
0

−εm (−i)m

[
J ′
m (ka)

H
(2)′
m (ka)

H(2)
m (kr)

]
cos(mθ) , (3.23)

In this case, m = 0, 1, ...,M , where M corresponds to a sufficiently large number of iter-
ations to achieve the accuracy threshold of 10e-6 in results.

Fig. 3.3 depicts an example of the scattered wave elevation around a cylinder of 6.5m
diameter due to a ka = 4.

Figure 3.3: Scattered wave elevation
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As a way to validate the equation implemented in Matlab, inspiration from [1] has been
drawn by plotting the polar distribution of run-up around a circular cylinder for different
non-dimensional wavelengths, ka, see Fig. 3.4.

(a) ka = 0.5 (b) ka = 1

(c) ka = 3 (d) ka = 5

Figure 3.4: Run-up around a cylinder for different relative wavelength ka.

It can be noted that for small ka the run-up distribution is mostly even around the cylinder,
indicating that long waves are barely disturbed by the presence of the cylinder and thus,
there is no shadow effect. Conversely, as ka increases (i.e., shorter waves), the run-up
variation gets more complex around the cylinder and the diffraction effects grow.

These plots agree well with [1], Fig. 5.1. Therefore, it can be concluded that the calcula-
tion of the analytical solution is valid.

3.2.1 Computational optimization
As Fig. 3.4 shows, it is noted that run-up complexity around the cylinder increases as
ka increases. Hence, more terms m in the expansion will be needed in order to achieve
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10e-6 accuracy threshold on the required calculations, e.g. surface elevation, pressure,
forces, etc.

The range of ka established in Section 2.2 considering climate conditions in the studied
location, Horns Rev III, will help to determine it. Given the greatest value of the obtained
range is ka = 4, we can conclude M = 13, as shown in the following Figure.

Figure 3.5: Number of iterations m to reach an accuracy threshold of 10−6, M .

3.3 Motions of a ship in regular waves
This section is largely based on [8] and [9], Section 14.

Studying how regular waves of different frequencies impact a ship is the first step needed
to be able to predict the statistics of the responses to different seaways, which is the main
objective.

The current case consists of evaluating the response of a longitudinally symmetrical ship,
with null forward speed, to regular waves coming from x ∼ −∞ with different frequencies.
As a result, the ship will move in six degrees of freedom and since it has a port/starboard
symmetry, it can be assumed that the longitudinal-vertical plane motions, i.e. surge (η1),
heave (η3) and pitch (η5) are uncoupled from the transverse-vertical plane motions as
sway (η2), roll (η4) and yaw (η6).

Real-Time Simulation of Service Vessels for Offshore Wind Turbine 13



Figure 3.6: Sign convention for fluid forces and moments [9].

The uncoupling results in a reduction in two sets of three linear equations of motion, gov-
erned by Newton’s 2nd law. The linearization of these equations requires the motions to
be generally small, assuming the ship to be stable and the incident wave amplitude rela-
tively small. Therefore, after all transients have decayed to zero, the response of the ship
will be also time-harmonic:

ηj(t) = ℜ
{
ξj(ω)eiωt

}
, j = 1, 2, ..., 6. (3.24)

where ξj(w) = ξj,ae
iϵj is the complex amplitude of the motion. ξj,a = |ξj | is the ampli-

tude motion and ϵj is the phase angle, relative to the incident wave elevation at a certain
location.

The general form of Newton’s second law of the rigid-body motion equations is given by

6∑
j=1

Mij η̈j(t) = Fi(t), i = 1, 2, ..., 6, (3.25)

where Mij are the components of the generalized inertia matrix for the ship, including
mass and moment of inertia terms. η̈j is the acceleration in mode j and Fi corresponds
to the total force or moment acting on the body in direction i.

The total Forces on the body can be divided into three different groups: the hydrostatic
restoring force FS

i , hydrodynamic radiation force FR
i (including added mass and damping

forces), and excitation forces FE
i .

Mij η̈j = FS
i + FR

i + FE
i . (3.26)

This can be pictured in a different angle, where the motion of the body is the superposition
of two states:

1. The structure is restrained from oscillating and there are incident regular waves. The
wave excitation loads take place and are composed of so-called F-K and diffraction
forces and moments, FE

i .

2. There are no incident waves but the structure is forced to oscillate with the wave
excitation frequency in any rigid-body motion mode. Addedmass (Aij) and damping
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(Bij), and restoring terms (Cij) take place, involved in their corresponding forces,
i.e. FR

i and FS
i , respectively.

Therefore, we can rearrange the motion equation as follows

(Mij +Aij) η̈j +Bij η̇j + Cij ηj = ℜ
{
AXieiωt

}
, (3.27)

where η̇j and ηj are the velocity and displacement, respectively, in mode j, A is the am-
plitude of the incident wave and Xi is the complex amplitude of the wave excitation load
due to a regular wave with unit amplitude.

Invoking Eq. (3.24), the body motion equations thus become

ℜ
{[

−ω2(Mij +Aij) + iωBij + Cij

]
ξj(ω, θ)eiωt

}
= ℜ

{
AXi(ω, θ)eiωt

}
, (3.28)

and, given that it is valid for any time instant t, it can be also written as

[
−ω2 (Mij +Aij) + iωBij + Cij

]︸ ︷︷ ︸
Dij

ξj(ω, θ) = AXi(ω, θ). (3.29)

Hence, a solution for the complex motion ξj is given by

ξj(ω, θ) = D−1
ij AXi(ω, θ) (3.30)

where D−1
ij is the inverse of matrix Dij , which can be used to compute the Response

Amplitude Operator (RAO). The RAOs are complex functions of wave frequency ω and
wave heading angle θ.

Hj(ω, θ) =
ξj
A

= D−1
ij Xi(ω, θ) (3.31)

3.4 Extension to irregular seas
The study of irregular waves is largely based on [10].

As discussed in Section 3.1.1, this document’s solutions are based on linear wave theory.
That implies the concept of superposition, i.e. any irregular wave can be reproduced
as a combination of individual regular waves with different wave frequencies ωi, wave
amplitudes Ai, wave phases ϵi and wave numbers ki. Thus, the wave elevation can be
written as

η(x, t) =

N∑
i=1

Ai cos(ωit− ki · x+ εi). (3.32)

and the wave amplitude can be expressed in terms of the wave spectra S(ω)

Ai =
√
2S(ωi)∆ω. (3.33)
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Any wave spectra can fully define any wave system, which is responsible for the elevation
of a sea surface being aGaussian process (i.e. negative and positive values of the surface
elevation are equally likely) and with wave heights following the Rayleigh distribution (i.e.
accounts only for positive values) [9]. For this case, a parameterised wave spectra, i.e.
JONSWAP spectrum has been used

SJ(ω) = AγSPM (ω)γ
exp

(
−0.5

(
ω−ωp
σωp

)2
)

(3.34)

where:

γ = non-dimensional peak shape parameter
σ = spectral width parameter
σa for ω ≤ ωp

σb for ω > ωp

Aγ = 1− 0.287 ln(γ) is a normalizing factor

Average values for the Jonswap experimental data are γ = 3.3, σa = 0.07, σb = 0.09. For
γ = 1, the Jonswap wave spectrum reduces to the PM wave spectrum.

The Jonswap wave spectrum is expected to be a reasonable model for:

3.6 < Tp/
√

Hs < 5

Note that this particular spectra depends on the wind speed U10, specifically at a height
of 10m above the mean sea level, and the fetch F .

The integral wave parameters used are the following:

• Hs = 2m.

• Tp = 7 s.

These and many other integral wave parameters can be expressed through the n-th order
spectral moment, defined by:

mn =

∫ ∞

0
ωnSη(ω)dω. (3.35)

It can be noted that the variance of the wave system becomes identical tom0, equivalently
the area under the spectrum. In addition, the zeroth order spectral moment can be related
to the average of the 1/3 highest waves in the spectrum by the following equation

Hs = 4
√
m0. (3.36)

Given the previous relations, it is straightforward to obtain the wave spectra (see Fig. 3.8)
from the non-dimensional incident irregular wave signal from Fig. 3.7.
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Figure 3.7: Incident wave signal.

Figure 3.8: JONSWAP spectra.

Real-Time Simulation of Service Vessels for Offshore Wind Turbine 17



Linear Time-Domain Formulation
Any linear, time-invariant system is fully characterized by its impulse response such that
the response to any excitation, by convolution with the Impulse Response Function (IRF),
can be known.
Radiation Forces
Invoking Bernoulli’s equation and integrating the pressure over the wetted body surface
with the generalized normal vector nj , the radiation forces are obtained

FR
j =

∫
Sb

pknjdS

= −
[
a∞jkẍk +

∫ t

−∞
Kjk(t− τ)ẋk(τ)dτ

] (3.37)

as the combination of an impulsive andmemory term, i.e. the true addedmass a∞jk and the
convolution integral, corresponding to the radiation Impulse response Functions (IRFs).
The Impulsive Diffraction Problem
The diffraction, as seen in Section 3.1, is a component of the general solution for linear
wave-structure interaction and formed by the combination of the incident wave potential
ϕ0 and the scattered potential ϕs (also known as ϕ7). It thus represents the interaction of
the fixed body with an incident wave.

Assuming the incident waves can be represented by a superposition of long-crested im-
pulsive waves, the diffraction IRF is then

KjD(t) = −ρ

∫
Sb

∂

∂t

(
ϕ̂0 + ϕ̂7

)
njdS. (3.38)

and a particular wave exciting forces (measured at the origin of the body coordinate sys-
tem) is obtained by convolution with the diffraction IRF

FjD(t) =

∫ ∞

−∞
KjD(t− τ)ζ0(τ)dτ. (3.39)

The Time-Domain Equations of Motion
Combining the radiation and diffraction forces discussed above, with the inertial Mjk and
hydrostatic Cjk loading gives the equations of motion in the time-domain

(
Mjk +A∞

jk

)
ẍk(t) +

∫ t

−∞
Kjk(t− τ)ẋk(τ)dτ + Cjkxk(t) = FjD(t) (3.40)

where a sum over repeated indices k is implied.
Since the IRF’s and FRF’s are Fourier transform pairs, the time- and frequency-domain
formulations are equivalent:

18 Real-Time Simulation of Service Vessels for Offshore Wind Turbine



Ajk(ω) = A∞
jk −

1

ω

∫ ∞

0
Kjk(t) sinωtdt (3.41a)

Bjk(ω) =

∫ ∞

0
Kjk(t) cosωtdt (3.41b)

Xj(ω) =

∫ ∞

−∞
KjD(t)e−iωtdt (3.41c)

and

Kjk(t) = − 2

π

∫ ∞

0
ω
(
Ajk(ω)−A∞

jk

)
sinωtdω =

2

π

∫ ∞

0
Bjk(ω) cosωtdω (3.42a)

KjD(t) =
1

2π

∫ ∞

−∞
Xj(ω)eiωtdω. (3.42b)
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4 Numerical Methods
4.1 Closed form validation case
This section aims to validate the procedure used to evaluate Eq. (3.22) and predict the
force on a nearby structure influenced by the scattered wave field due to the cylinder.
Hence, a bottom-mounted plate will be considered at a distance r = d from the cylinder,
representing an arc with radius d, from θ1 to θ2, as depicted in Fig. 4.1.

Figure 4.1: Layout of cylinder and bottom-mounted plate used for forces validation [7].

Following [7], the force on the arc can be written in closed form. With the unit normal
vector to the plate given as n⃗ = [cos θ, sin θ, 0] and, inserting Eq. (3.21) into Eq. (3.22),
the force due to the scattered wave field in the x-direction yields

F s
1 =ρgA

∫ 0

−h

∫ θ2

θ1

cosh[k(z + h)]

cosh kh

∞∑
m=0

ϵm(−i)m J ′
m(ka)

H ′
m(ka)

H(2)
m (kd) cosmθ cos θ d dθ dz

F s
1

ρgAhd
=
tanh kh

kh

∞∑
m=0

ϵm(−i)m J ′
m(ka)

H ′
m(ka)

H(2)
m (kd)

1

m2 − 1
(cosmθ1 sin θ1 −m cos θ1 sinmθ1 − cosmθ2 sin θ2 +m cos θ2 sinmθ2) .

(4.1)

It can be noted that the trigonometric expression needs to be defined form = 1. By setting
m = 0 and taking the limit as m → 1 the first two terms can be computed from

sin θ2 − sin θ1, m = 0 (4.2)
1

2
(θ2 − θ1 + cos θ2 sin θ2 − cos θ1 sin θ1) , m = 1. (4.3)

Furthermore, replacing the Bessel Functions in Eq. (4.1) by Jm gives the Froude-Krylov
force (F-K) on the plate in the x-direction, i.e. F 0

1 , as seen in the following equation:
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−Jm(kd) → J ′
m (ka)

H
(2)′
m (ka)

H(2)
m (kd) (4.4)

A comparison of both non-dimensional forces, i.e. F-K and scattered forces, acting on
a plate of 40º with h/a = 4 and d/a = 2, is depicted in Fig. 4.2. The left-hand figure
corresponds to an arc placed in front of the cylinder which could be deduced since there
is an increase in the total force on the plate due to the scattered force contribution for long
waves. It can also be noted the diffraction effects giving an oscillation of the total force as
waves get shorter, vanishing as wavelength approaches 0. Conversely, when the arc is
placed behind the cylinder, the scattered wave field dampens the resultant force on the
plate for all wavelengths, due to the sheltering effect.

(a) Arc in front of the cylinder. (b) Arc behind the cylinder.

Figure 4.2: Comparison of forces changing the position of the arc around the cylinder.

4.1.1 BEM validation
Previously, in Section 4.1, an exact solution was worked out to compute the forces on a 40º
arc bottom mounted near the cylinder. While This is a closed-form solution that cannot
be generalized, this section will apply a low-order panel method over a same structure
where the pressure will be assumed constant (equal to the value at the centroid) on each
flat panel that approximates the structure. Thus,

Fi =
N∑
j=1

pj ni sj , i = 1, 2, ..., 6, (4.5)

where pj is the pressure at each panel centroid j, ni the unit normal vector to the panel
in the i direction, and Sj , the area of panel j.

This method considers the aforementioned arc discretized using a collection of N flat
panels defined by four vertices, as shown in Fig. 4.3, which are defined in the local body
coordinate system centred at the centre of the arc (i.e. centroid) with the x-axis along the
arc radius.
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Figure 4.3: Example of panel geometry, top view. N=200.

A comparison of the forces obtained by the exact solution from Eqs. (4.1) and (4.4), and
the one computed with the panel method can be seen in Fig. 4.4, where the difference
between them is depicted (i.e. error). Both forces, i.e. scattered and F-K follow a similar
error profile, where the error of the real part increases exponentially as ka increases, i.e.
as waves get shorter although the imaginary part remains close to 0. In addition, as the
number of panels N increases, it is noticeable how the error converges to 0 for all ranges
of ka. Therefore, we can conclude the panel method implementation in MATLAB is valid.
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(a) Scattered force comparison, N=100. (b) F-K comparison, N=100.

(c) Scattered force comparison, N=200. (d) F-K comparison, N=200.

(e) Scattered force comparison, N=300. (f) F-K force comparison, N=300.

Figure 4.4: Convergence of BEM method changing number of panels.

Lastly, the following figure depicts an overview of the absolute relative error when varying
the number of panels; concluding then, that a greater number of panels is needed when
calculating the forces for greater values of ka.
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(a) Scattered force absolute relative error. (b) F-K absolute relative error.

Figure 4.5: Convergence of BEM method.

4.2 DTU Motion Simulator
DTUMotionSimulator is a Matlab package, available from girlab.gbar.dtu.dk, for simulating
the linear response of a marine structure to ocean waves. Therefore, the equations of
motions need to be solve in the time-domain in order to simulate the interaction of a
structure with a prescribed ocean wave elevation time-series (described in Section 3.4),
specified at the origin of the body coordinates.

The convolution can be avoided when calculating the wave exciting force if computed in
the frequency-domain. For each incident wave heading angle, a Fast Fourier Transform
(FFT) is performed to the incident wave elevation, moved to the body coordinate origin,
multiplied by the diffraction FRF and accumulated in the frequency domain. Then, an
Inverse FFT is needed to get the time-domain forcing.

FjD(t) =

∫ ∞

−∞
KjD(t− τ)ζ0(τ)dτ = IFFT {Xj(ω)c0(ω)} (4.6)

where Xj(ω) = FFT {KjD(t)} and c0(ω) = FFT {η0(t)}.

Conversely, the radiation force is computed in the time-domain via the trapezoid rule.
There is an interval where the IRF is non-zero 0 ≤ t ≤ tlim and x(t) is non-zero over the
range 0 ≤ x(t) ≤ tm where tm = m∆t, for m = 0, 1, ...,M total time steps. The range of
integration is therefore ts ≤ τ ≤ t where ts = max(0, tm − tlim), or discretely m0 = ts/∆t.
Eq. (4.7) shows the convolution integral for the radiation forces at time-step m:

∫ tm

ts

K(t− τ)ẋ(τ)dτ ≈ ∆t

[
1

2
(K0ẋm +Km−m0 ẋm0) +

m−1∑
n=m0+1

Km−nẋn

]
(4.7)

where Kn = K(n∆t) and ẋn = Ẋ(n∆t).

Then it is possible to avoid second-order ODE and reduce the system to a first-order
ODE in time by considering the extended vector of velocities and positions: [ẋk;xk], k =
1, 2, ..., 6
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d

dt

[
ẋj
xj

]
=

[
M−1

jk (Rjkẋj + FjD + FjNL)

ẋj

]
(4.8)

where Rkj contains all the radiation and hydrostatic contributions from past time-steps,
while Mjk hold all contributions from the current step and FjD and FjNL correspond to
the diffraction exciting force and nonlinear external force vectors, respectively. Finally, a
solution is reached by integrating the equations forward in time using the classical explicit
Runge-Kutta (4,4) scheme.

Finally, the RAOs for every motion can be computed as the ratio of the FFT of the motions,
i.e. the vector of velocities and positions, to the FFT of the incident wave elevation

| ξk |= FFT
{
[ẋk;xk]

−1
}
FFT {η0(t)} , k = 1, 2, ..., 6. (4.9)
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5 Results

5.1 Wigley hull
The Wigley hull is mathematically defined and frequently used to perform validation work
and tests. For the current case, the following dimensions are utilised, [11]:

• L/B: 10

• L/T: 16

• Length: 11.5m

• Wigley Hull equation: y = ±B
2

[
1−

(
2x
L

)2] [
1−

(
z
T

)2]
.

The dimensions are chosen to roughlymodel the boat shown in Fig. 5.1, which is designed
to transport personnel safely and quickly to and from wind farms.

Figure 5.1: 3D design of a typical workboat [11].

With WAMIT, it is possible to calculate the hydrodynamic coefficients from a given geom-
etry. In this case, a Wigley hull is generated by flat panels with the mentioned dimensions
(see the following figure).
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Figure 5.2: Wigley hull flat panel discretization.

Eq. (3.31) has been used to plot the following figures, from 5.4 to 5.7. They represent
the RAOs for different approaching angles β of the ship with respect to the cylinder with
incoming regular waves from x ∼ −∞. In addition, the contribution of the scattered wave
field from the cylinder to the RAOs can be observed for all modes of motion (orange line).

Fig. 5.3 depicts the different approaching angles of the ship to the cylinder where the RAO
has been evaluated. It should be mentioned that the ships sketched do not belong to this
section but to 5.2, since the main purpose of this figure is to show the heading angles β
studied.
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Figure 5.3: Ship approaching angles β.

To begin with, the RAO due to placing the ship in front and behind the cylinder is de-
picted in Fig. 5.4. It can be noted that the transverse-vertical plane motions have been
disregarded since they are negligible (perpendicular to the incoming wave). Hence, only
the longitudinal-vertical plane motions, i.e. surge (ξ1), heave (ξ3) and pitch (ξ5) are anal-
ysed. The results show what was expected beforehand: the scattered wave field due to
the cylinder decreases the RAO in the shadow zone for essentially medium-long range
waves.
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Figure 5.4: RAO for ship located in front and behind the cylinder.

It is known from Eq. (3.27) that when ω → 0 the vertical motions are dominated by the
hydrostatic restoring spring term. This is reflected in the low-frequency area of the RAO,
where the the ship tends to ”follow” the waves; thus, the RAO tends to 1 for Heave (ξ3).
Physically, at very low frequencies, the wavelength is large compared to the horizontal
length of the ship and it will ”follow” the waves.

Conversely, under the situation of low-period waves approaching, the ship’s response is
no longer dependent on the incoming waves since vertical motions are then dominated
by the mass term; the wavelengths are too short compared to the dimensions of the ship.
This can be observed on every RAO for every mode: RAO∼ 0 when ω → ∞.

Figs. 5.5 and 5.6 show RAO for longitudinal-vertical and transverse-vertical motions,
respectively, when the ship is shifted to half the first and second quadrants (β = 45 and
β = 135). Contrarily to Fig. 5.4, every body motion is considered in this case since there
is no longer a motion (see 3.6) perpendicular to the incoming wave.

Regarding the RAO magnitude, it can be noted that every motion in Fig. 5.5 is smaller
(especially the surge, reduced by roughly half) compared with Fig. 5.4 since the ship is
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no longer parallel to the incoming wave. On the other hand, transverse-vertical motions
in Fig. 5.6, seem to increase their response as β approaches 90º.

On top of that, given this ratio, L/B = 10, the dimensions of the ship play an important
role in the RAO for different heading angles. That is, transverse-vertical plane motions,
due to length similarity with the incoming wave, have a greater response to shorter waves
compared to longitudinal-vertical plane motions.

When comparing the influence of the cylinder on the RAO to the open water in Fig. 5.5, it is
worth mentioning the response amplitude due to the scattered wave field is less fluctuating
for longitudinal-vertical motions when the ship is placed for β > 90º. Nonetheless, the
scattered wave field makes no additional impact on the RAO on the transverse-vertical
motions in Fig. 5.6.

Figure 5.5: Longitudinal-vertical plane RAO for β = 45 and β = 135.

Real-Time Simulation of Service Vessels for Offshore Wind Turbine 31



Figure 5.6: Transverse-vertical plane RAO for β = 45 and β = 135.

In this case, longitudinal-vertical plane motions of the ship are perpendicular to the in-
coming wave; hence, negligible (ξ1 and ξ5). However, the scattered wave field impact on
both is remarkable. In this position, as expected, Sway and Roll are the most affected
motions on the body although there is no difference in the RAO when considering the
scattered wave field. As mentioned before, a short beam induces the transverse motions
to be affected by shorter waves, hence, RAOs cover greater ω.
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Figure 5.7: RAO for ship located 90º with respect to the incident wave.

5.2 Concept Hull
This section presents a similar analysis as done in 5.1 using a typical workboat. Fig.
5.8 shows the flat panel version geometry of the ship hull. The dimensions used for the
analysis are the following:

• Length: 15m

• Depth: 26m

• Distance to the cylinder: 15m

This workboat was designed by Steffan Brandt Tolboe in his BEng project and kindly made
available to us in this project.
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Figure 5.8: Hull design. Author: Steffan Brandt Tolboe.

Once the geometry is generated and introduced to WAMIT, hydrodynamic coefficients
can thus be calculated and then the RAO, Figs 5.9 to 5.12; where the same pattern of
analysis has been followed: first, a comparison of the longitudinal motions response for
β = 0; secondly, analysis of everymotion response and comparison of β = 45 and β = 135
and lastly; RAO for β = 90. Expectedly, similar results are obtained regarding the impact
of the scattered wave field.

Firstly, Fig. 5.9 shows no additional valuable information to its analogous from the Wigley
Hull case: similar RAO for both open water and considering the scattered wave field for
every mode but the Surge which is now significantly reduced.

Secondly, regarding Figs. 5.10 to 5.12, only when the ship is placed in β = 90 (Fig. 5.12),
the influence of the cylinder becomes noticeable for essentially ξ1 and ξ5 since both are
aligned with the reflected waves from the cylinder.

It can be concluded then, by agreeing that the most influenced position of the ship by the
cylinder is the one with a heading angle β = 90 º.
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Figure 5.9: RAO for ship located in front and behind the cylinder.
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Figure 5.10: Longitudinal-vertical plane RAO for β = 45 and β = 135.
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Figure 5.11: Transverse-vertical plane RAO for β = 45 and β = 135.
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Figure 5.12: RAO for ship located 90º with respect to the incident wave.

5.2.1 Ship motions under irregular waves

Similarly to the analysis of the regular wave, RAOs for different heading angles are shown
in the following figures (Figs. 5.13 to 5.16) with the x-axis measured in Hz. These plots are
the result of the DTUMotionSimulator package, where the JONSWAP spectrum of Hs =
2m and Tp = 7s and the scattering contribution from the cylinder have been included.
Working out the equations of motion in the time domain by using RK-(4,4) and applying
Eq. (4.9). As expected, because of linear superposition, RAO due to regular waves
shows no difference fromRAO due to irregular waves besides some present perturbations
essentially for frequencies close to 0Hz and greater than 1Hz.
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Figure 5.13: RAO for ship located 0º and 180º with respect to the incident wave.
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Figure 5.14: Longitudinal-vertical plane RAO for β = 45 and β = 135
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Figure 5.15: Transverse-vertical plane RAO for β = 45 and β = 135
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Figure 5.16: RAO for ship located 90º with respect to the incident wave.
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6 Conclusions and Future Work
In this project, a thorough analysis of ship motions in regular and irregular waves was
undertaken, providing insights into the complex dynamics experienced by vessels at sea.
The investigation comprised twomajor sections: one theory based on the diffraction forces
set up, validation and application to BEM, and the second part focused on the study of the
motions of a traditional Wigley hull and a conceptual workboat hull (including an extension
to irregular waves).

The analysis of ship motions in regular waves began by looking into the fundamental
principles governing the dynamics of a longitudinally symmetrical ship subjected to waves.
By uncoupling the six degrees of freedom and linearizing the equations of motion, the
Response Amplitude Operators (RAOs) were derived for different wave frequencies ω
and heading angles β. The obtained RAOs provided valuable insights into how the ship
responds to wave-induced excitations in both longitudinal and transverse planes.

The subsequent quest extended the analysis to irregular waves, by leaning on linear wave
theory and using the JONSWAP spectrum. This allowed diving into the time-domain for-
mulation of the linear wave-structure interaction, incorporating radiation forces, diffraction
effects, and their convolution with the incident wave signal. The resulting equations of
motion provided a comprehensive understanding of the ship’s behaviour in realistic sea
conditions.

After examining the flat panel ship’s motions under different sea states, observations re-
vealed that the scattered wave field significantly influences specific heading angles: β = 0
and β = 90 where the Pitch response stands out among others. However, when placing
the ship right behind the wind turbine foundation, i.e. β = 180, a reduction in the ship’s
response to essentially every mode of motion takes place. During these particular ori-
entations, the relation between the hull geometry and incoming waves led to amplified
ship motions. Recognizing these key heading angles is crucial for the design of vessels
ensuring a secure working environment.

There are still some key aspects that require further study. Firstly, there is a need to
analyse the scattering contribution of the ship itself. While the project focuses on the
impact the scattered waves from the cylinder produce, accounting for the ship’s scattering
contribution could offer a more complete picture of how waves interact with the vessel.
Additionally, the research could be extended by including a non-stationary situation of the
ship. However, for the stationary one, the next step would be conducting physical model
experiments in FORCETechnology wave tank with the new incorporated code accounting
for the scattered wave field.

Lastly, the insights gained from this project have practical implications for the maritime
industry, reinforcing the importance of considering scattered wave effects in the pursuit of
safer and more efficient marine transportation and operations.
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