

Towards Search-based
Game Software Engineering

February 2024

Author: Daniel Blasco Latorre

Thesis Supervisors: Dr. Carlos Cetina Englada
Dr. Óscar Pastor López

Dedication

To Alba. You make it all make sense.

To Ehren, for every second that you give me.

To Pilar, Carmen and Manuel, for you showed me the kind of person
that I aspire to be.

As for you, Okami: Thanks for listening.

iii

Acknowledgments

I want to express my deep gratitude to my directors, Dr. Carlos Cetina
and Dr. Óscar Pastor, for their wisdom and guidance. They believed
in this work from the very beginning, and their invaluable help made it
turn into a reality.

I also want to thank the SVIT Research Group at Universidad San Jorge,
an amazing group of people that perfectly embodies what a team should
be. Thank you for the immense generosity, help, patience and warmth
that you brought to this journey.

Last, but not least, thank you to my loved ones for always supporting
me and being the compass that reminds me of what really matters.

v

Abstract

Video games are multidisciplinary projects which involve software devel-
opment to a significant extent. This thesis tackles the software aspect of
video game development through Search-based Engineering. Specifically,
the objective of this work is to leverage the characteristics of video games
towards Search-based Game Software Engineering, including the use of
video game simulations to guide the search, a fine-grained encoding, and
improvement genetic operations.

The approaches proposed outperform the baselines in maintenance (re-
quirement traceability) and content creation (NPC generation) tasks.
Maintenance and content creation are often essential tasks to ensure
player retention by means of updates or expansions. In addition, this
research addresses the need for industrial case studies.

This thesis presents a compendium that includes three papers produced
through the research and published in academic journals, with results
that show that Search-based Game Software Engineering approaches can
provide improved solutions, in terms of quality and time cost.

vii

Resumen

Los videojuegos son proyectos multidisciplinares que implican, en buena
medida, el desarrollo de software. Esta tesis trata la faceta del desarrollo
de videojuegos relativa al software mediante la Ingeniería del Software
basada en Búsqueda (SBSE, Search-based Software Engineering). El
objetivo específico de este trabajo es valerse de las características de los
videojuegos en pro de una Ingeniería del Software de Videojuegos basada
en Búsqueda (SBGSE, Search-based Game Software Engineering), in-
cluyendo el uso de simulaciones de videojuegos para guiar búsquedas,
codificación de granularidad fina y operaciones genéticas de mejora.

Las aproximaciones propuestas superan a las de referencia en mante-
nimiento (trazabilidad de requisitos) y creación de contenido (generación
de NPCs). El mantenimiento y la creación de contenido son, a menudo,
tareas esenciales para garantizar la retención de usuarios por medio de
actualizaciones o expansiones. Además, esta investigación aborda la
necesidad de estudios de caso industriales.

Esta tesis presenta un compendio que incluye tres artículos realizados
durante el proceso de investigación y publicados en revistas académi-
cas, con resultados que muestran que las aproximaciones de la Ingeniería
del Software de Videojuegos basada en Búsqueda (SBGSE, Search-based
Game Software Engineering) pueden mejorar la calidad de las soluciones
generadas, así como reducir el tiempo necesario para producirlas.

ix

Resum

Els videojocs són projectes multidisciplinaris que impliquen, en bona
part, el desenvolupament de software. Aquesta tesi tracta la faceta del
desenvolupament de videojocs relativa al software mitjançant l’Enginyeria
del Software basada en Cerca (SBSE, Search-based Software Engineer-
ing). L’objectiu específic d’aquest treball és valdre’s de les caracterís-
tiques dels videojocs en pro d’una Enginyeria del Software de Videojocs
basada en Cerca (SBGSE, Search-based Game Software Engineering),
incloent-hi l’ús de simulacions de videojocs per a guiar cerques, codifi-
cació de granularitat fina i operacions genètiques de millora.

Les aproximacions proposades superen a les de referència en manteniment
(traçabilitat de requisits) i creació de contingut (generació de NPCs). El
manteniment i la creació de contingut són, sovint, tasques essencials per a
garantir la retenció d’usuaris per mitjà d’actualitzacions o expansions. A
més, aquesta investigació aborda la necessitat d’estudis de cas industrials.

Aquesta tesi presenta un compendi que inclou tres articles realitzats du-
rant el procés d’investigació i publicats en revistes acadèmiques, amb
resultats que mostren que les aproximacions de l’Enginyeria del Software
de Videojocs basada en Cerca (SBGSE, Search-based Game Software En-
gineering) poden millorar la qualitat de les solucions generades, així com
reduir el temps necessari per a produir-les.

xi

Contents

Dedication iii

Acknowledgments v

Abstract - Resumen - Resum vii

Contents xiii

I Introduction
1

II Compendium of Articles
25

1 A Fine-Grained Requirement Traceability Evolutionary Algorithm:
Kromaia, a Commercial Video Game Case Study

27

2 An Evolutionary Approach for Generating Software Models: The
case of Kromaia in Game Software Engineering

71

xiii

Contents

3 Procedural Content Improvement of Game Bosses with an Evo-
lutionary Algorithm

119

III Discussion
173

IV Conclusions
183

xiv

Part I

Introduction

Introduction

This part introduces the context and objectives of this thesis. In
addition, it includes a development overview of the research process, and
describes the methodology applied. The last sections of the chapter present
the structure of this work and the scientific articles that are included in
the document.

3

Context

This thesis addresses the software aspect of video game development
through Search-based Engineering. Consequently, this compendium doc-
ument starts with contextual introductions to Search-based Engineering
within Software Engineering, and video game research, respectively.

Software Engineering

The origins of Software Engineering can be traced back to the 20th cen-
tury when, after the end of World War II, the knowledge acquired during
that period led to the creation of entities like the Association for Com-
puting Machinery (ACM) [12] and the National Aeronautics and Space
Administration (NASA) [27]. Scientists from these and other institutions,
like Margaret Hamilton, Douglas T. Ross, and Anthony Oettinger coined
the term "Software Engineering" (SE) [17, 25]. Since then, many fields
have emerged within SE: Some of them originated as cross-disciplinary ar-
eas, like Software Architecture [15], Software Testing [21], Model-driven
Engineering [14], or Software Product Lines [22]; the development of
other fields was motivated by the rise of web and mobile technologies,
or the relevance of the Internet of Things [9]; more recently, areas like
Artificial Intelligence [18, 7, 20], Green Computing [16], or Search-based
Software Engineering [11] —to name a few, since the example list is not
intended to be exhaustive— are trending Software Engineering topics.

Search-based Software Engineering

In 2001, Mark Harman and Bryan F. Jones introduced the term Search-
based Software Engineering in a work that made SBSE be a recognized
and established field of study [11], even if the problems addressed by
SBSE were present in past works [10]. SBSE focuses on the applica-
tion of search-based algorithms to Software Engineering contexts in order
to produce near optimal solutions. SBSE involves the reformulation of
Software Engineering problems as search problems by defining, for each
problem studied, the following ingredients:

4

• A representation or encoding of the solution candidates that con-
tains the information required to make possible the study of such
candidates in order to rank, combine or alter them.

• A fitness function or criterion. This function represents how good a
solution candidate is in comparison to others, taking into consider-
ation the information provided by the encoding.

• A set of operators that allow, for instance, the creation of new so-
lution candidates by mixing the encoded information of others that
already exist, or the mutation of a solution candidate by introducing
changes in its encoded representation.

SBSE has been applied successfully to a wide range of general engineering
problems [11] and Software Engineering fields of study, like Model-Driven
Engineering [5]. SBSE is specially useful in the context of problems for
which the production of perfect solutions is difficult, making the search
for near optimal solutions more practical, once the appropriate tolerance
thresholds and quality criteria for a specific problem are defined.

Video Game Development

Commercial video games are complex products with specific needs and
facets which set those projects apart from other software works. Video
game development includes, among other aspects: Game Design, referred
to the design of the abstract game content managed, rules, and mechan-
ics that are part of the final user experience, in the same manner as
traditional, non-digital games; Art Production, which involves the cre-
ation and management of any visual or sound artistic element that is
included in the game; Game Software, which coordinates and integrates
all the different elements of the production of the video game into the
final application that will be run by users. The creation and use of such
software is involved in many different ways in the development of com-
mercial video games, including:

• External utilities like libraries, and tools dealing with tasks like pars-
ing or conversion.

5

• Source code specifically written by the developers in order to realize
a set of requirements, in terms of game mechanics and user experi-
ence. In fact and, in addition to source code, it is possible to use
models in order to develop video game content.

• Game Engines, which are frameworks consisting of varied reusable
components and tools. They boost the development by automatiz-
ing some parts of the process and assisting the developers with the
expansion of the game architecture source code and the management
of elements like 3D meshes, textures, sound clips, among other pro-
duction assets. The use of engines means the implicit inclusion in
the final application of source code that is not directly added by the
developers of the game. Game Engines can be proprietary technol-
ogy produced by the game developers themselves, but in the recent
years the vast majority of companies use external and commercial
Game Engines.

• New content that is added to an already existing game. These con-
tent items, like new characters or levels/stages, may involve new
source code specifically written for them or external files which are
interpreted and translated into its source code realization at run-
time by a Game Engine. The creation of video game content that
involves source code can be done directly writing such code, or by
means of software models supported by the engine used. While code
lets developers control the characteristics of the content with more
detail, the level of abstraction of software models is closer to the
video game domain and further from language or implementation
related constraints, allowing for a more content-focused develop-
ment, as shown by Figure 1. Commercial engines like Unity [24] or
Unreal [8] provide modelling languages which, along with UML, are
shown by Model-Driven game development literature to be used by
developers [29].

6

VIDEO GAME CONTENT

SOURCE CODE

EXECUTION AND CONTROL

SOFTWARE MODELS

· · ·

MESHES

PRODUCTION ASSETS

SOUND CLIPS

···

 GAME ENGINE

GRAPHICS PHYSICS

···

SPECIFIC LOW-LEVEL COMPONENTS

LIBRARIES TOOLS

···

Figure 1: Video game development abstraction level outline.

Game Software Engineering

Game Software Engineering (GSE) consists in the application of Soft-
ware Engineering techniques and methodologies to the specific context
of video game development. In the beginning of the 21st century, GSE
was compared for the first time with classic Software Engineering [19],
and years later literature review works showed a growing interest of re-
searchers in that area [1]. Such surveys evinced the following issues with
regard to research diversity:

• The low number of GSE works dealing with case studies.

• A significantly low number of GSE works that include experiments
in comparison with traditional Software Engineering researches.

7

GAME SOFTWARE
ENGINEERING

SOFTWARE ENGINEERING

SEARCH-BASED
SOFTWARE ENGINEERING

VIDEO GAME DEVELOPMENT

GAME DESIGN

ART PRODUCTION

GAME SOFTWARE

···

SBSE RESEARCH
RELEVANT TOPICS

GS RESEARCH
RELEVANT TOPICS

···

···

ADVANCES IN
TRACEABILITY

LINK
RECOVERY

SOURCE CODE
IDIOSYNCRASY
EXPLOITATION

TOWARDS SEARCH-BASED GAME SOFTWARE ENGINEERING

CODFREL · IST’20
JISBD·JF’21

EXPLORED
IN THIS THESIS

ADVANCES IN
PROCEDURAL

CONTENT
GENERATION

EMOGEN · JSS’21
EBI · MTA’22

ASE·JF’21
HUM’21
CEV’22
PAT’22

···

REQUIREMENTS ENGINEERING

MODEL-DRIVEN ENGINEERING

TRACEABILITY
LINK RECOVERY

MAINTENANCE

···
PREVIOUS TOPICS

GAME
REQUIREMENTS
ENGINEERING

···

GAME
MODEL-DRIVEN
ENGINEERING

CONTENT
GENERATION

EVOLUTIONARY
COMPUTATION

DOMAIN
KNOWLEDGE
LEVERAGED

OPERATIONS AND
EVALUATION

Figure 2: Thesis context and research overview.

8

Objectives and Development

Goals Pursued

Given the background described, the objective of this work is to improve
GSE, exploring the use of SBSE approaches implemented in such a way
that they leverage the characteristics of video games.

In the articles included in this work, the term approach refers to the
development of an artifact that interacts with a context represented by
a case study. The performance of the approaches implemented in this
thesis was compared with baselines in order to measure the value of the
results produced.

Specifically, this thesis aims to answer the following research questions:

RQ1: How can specific video game domain characteristics be used in
order to develop SBSE approaches that address GSE problems?

RQ2: In case that video game focused SBSE approaches are successfully
developed, what advances or improvements do they bring to GSE?

Industrial Case Study Involvement

The research associated to the articles included in this thesis produced
a set of approaches: CODFREL (Code Fragment-based Requirement
Location), [2], EMoGen (Evolutionary Model Generation) [3], and EBI
(Evolutionary Boss Improvement) [4]. These approaches have been eval-
uated in the context of an industrial case study: Kromaia, a commercial
video game released for PC (Steam) and PlayStation 4 platforms in dig-
ital and physical formats. The following summary describes the main
characteristics of that product as a commercial video game case study,
in the context of the articles presented:

• Apart from external libraries, Kromaia includes over 260,000 lines of
private source code written in C++ that define both a versatile game
engine and specific code for the title. Besides, the architecture used

9

is a complex blend of inheritance and composition that is aligned
with those of other professional engines, like Unity [24].

• It was possible to access the Version Control System used during
the development of Kromaia and, therefore, to know data such as
development time estimations for game content items. In addition,
the developers provided requirement specifications and the corre-
sponding source code realizations.

• The developers of Kromaia created a Domain-Specific Modelling
Language which allows for the definition of game setups, worlds,
stages, characters, or contraptions as models. The game includes a
model interpreter that transforms those models, which are stored in
external files, into the equivalent C++ run-time objects.

Research Development Progress

The top part of Figure 2 shows how the starting point of this work was the
study of the research contexts of Search-based Software Engineering and
Game Software within Software Engineering and Video Game Develop-
ment, respectively. The center part of Figure 2 shows the research works
that are included in this thesis and deal with Requirement Traceability,
Procedural Content Generation, and Procedural Content Improvement,
respectively. Next, those works are introduced.

Requirement Traceability

Systematic Literature Review works [1] described that the most relevant
research topic in the GSE community was the study of Game Require-
ments, which is aligned with the aim of TLR in relation with require-
ments. Consequently, the first work included in this thesis focused on
Requirement Traceability in GSE research, incorporating aspects that
take advantage of certain particularities of Game Software [2].

In addition, the fact that the evaluation was performed in a commercial
video game case study introduced factors that had to be considered in
the design of the approach developed for this work. The highly dispersed
distribution of requirement realization code lines within the source code

10

of a commercial video game, which is a huge solution space to search,
led to the use of one of the main paradigms within SBSE: Evolutionary
Computation [11]. The particularities of Game Software also led the
approach to be a novel fine-grained approach in order to work with code
fragments as potential requirement realizations (instead of dealing with
complete methods as the state of the art).

Additionally, the approach developed made use of the knowledge that
the game developers of the video game case study had in relation to the
higher importance of certain terms (denoted as keywords in the work) in
a requirement description. Therefore, the SBSE aspects brought to GSE
and presented in this work include:

• A fine-grained management of the potential solutions proposed as
requirement realizations. This is related with the architecture pe-
culiarities found in most video games, due to the real-time control
of the entities updated and their relationships, as shown by modern
commercial game engines [23]. This influences the realizations of the
requirements within the game source code, which tend to be highly
dispersed, involving code lines from different and distant methods.

• The use of the game developer’s domain knowledge, in order to iden-
tify important terms in requirements that are specified by means of
natural language. The keywords identified were used in the genetic
operations in order to help with the guidance of the evolutionary
algorithm.

The results showed that the approach, developed with a fine-grained de-
sign and developer knowledge-powered genetic operations, outperformed
the results obtained with a widely used baseline. This work was published
as an article (labelled as IST’20 in this document) in the Information and
Software Technology journal. It was also presented as a journal-first pa-
per in the Spanish Conference on Software Engineering and Databases
(JISBD 2021), in the context of the Computer Science Spanish Confer-
ence (CEDI 20/21). The contribution to this thesis is represented in the
bottom center part of Figure 2.

11

The results obtained in the first work suggested that the importance of
tacit knowledge prevented the solutions produced from being optimal,
especially in cases like requirement descriptions that are defined with
natural language and often lack domain knowledge that remains unwrit-
ten or undocumented.

Procedural Content Generation

The next work tackles Procedural Content Generation (PCG), which is a
hot topic in the video game research community. PCG is concerned with
the algorithm-driven automated generation of game content [26]. PCG
achieved success in the industry, but such success is limited to aspects
like foliage generation (e.g: SpeedTree [13], used in Unity [24] and Unreal
[8]).

This work shows that there is a key aspect present in video games that can
boost Search-based Game Software Engineering (SBGSE) approaches:
the possibility of using simulations. A game simulation is a representation
of a game session that reproduces, with a variable level of accuracy and
abstraction, the behaviours, interactions, and game status changes that
involve all the entities that take part in the video game simulated, like
players, characters, stages, or artifacts.

In terms of gameplay quality satisfaction, the interaction of a human
player with a game is the best fitness method, but it is difficult to ap-
ply in the context of a search-based artifact: for instance, in the case
of evolutionary algorithms, every individual produced must be measured
by means of a fitness function, which prevents an unattended implemen-
tation, demands a high and arguably exhausting amount of time from
human players, and substantially delays the production of results. There-
fore, simulations can act as the main alternative to sessions with human
players. Regardless of its level of abstraction, a simulation produces re-
sults equivalent, in terms of measurement, to those produced in an actual
game session played by a human user.

In traditional software, the design and creation of simulations is often
difficult to the point of requiring an implementation that is more com-
plex than the software simulated. However, in the case of video games,

12

simulations can be more naturally developed. This is due to the inclusion
of entities like Non-Playable Characters or NPCs that act as enemies in
shooters, rival pilots in racing games, or wild creatures in open world
adventures.

NPCs provide a succession of events and interactions that can shape an
emergent “plot” in the same way that it happens during a real game ses-
sion. Due to their potential benefits and, since they are more attainable
in the context of video games, simulations could play a cornerstone role
in search-based PCG.

The aspects brought by this work to SBGSE include:

• The use, in the fitness function that guides the evolutionary algo-
rithm of the approach, of game simulations in order to assess the
solution candidates for game bosses, a complex type of content ne-
glected in past works that used simulations. In this work, the sim-
ulations take into account aspects like game design and mechanics
that represent complex domain knowledge. Since the models pro-
duced by the approach are meant to be loaded by the interpreter,
the approach developed ultimately leverages the model interpreter.

• An encoding for the game boss models managed that allows for the
reparation of encoded individuals that are not considered valid by
the model interpreter of the video game case study. The reparation
actions available are included in the genetic operations.

• The utilization of objective quality metrics present in the Game Re-
search literature in order to measure the value of the solution candi-
dates produced [6]. These measurements allowed for the comparison
between the game bosses created by the human developers and those
proposed as solution candidates by the approach presented.

The results obtained in the second work showed that the approach pre-
sented produced game content that was comparable to the content cre-
ated manually by the human developers of the video game case study. In
addition, the time required was significantly reduced. The work was pub-
lished as an article (labelled as JSS’21 in this document) in the Journal

13

of Systems and Software and was presented in the IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2021) as a
journal-first paper. It was also presented in the First Video Game Sci-
ence Spanish Conference (CEV’22), created by the Video Game Science
Spanish Society (SECiVi). Furthermore, a patent based on the research
(labelled as PAT’22 in this document) was requested in the United States.
Additionally, and in the Genetic And Evolutionary Computation Con-
ference (GECCO 2021), the work was awarded with the Bronze Medal in
the Annual “Humies” Awards for Human-Competitive Results Produced
by Genetic and Evolutionary Computation (labelled as HUM’21 in this
document). This was the first time that a spanish research team won an
award in the 18-year history of the competition. The contributions of
the work to this thesis is represented in the bottom center part of Figure
2.

Procedural Content Improvement

The next step in the research of the PCG topic was exploring the pro-
duction of game bosses by means of improvement. Improvement deals
with the possibility of letting developers focus on certain steps in the
content creation process and delegate others to automated approaches
that perform such improvement to obtain, in the end, complete content.

The developers of the video game case study created bosses through a
process with clear steps that involved Creative Design, Spatial Organi-
zation, Behaviour Specification and Equipment Configuration. The last
step (Equipment Configuration) deals with weaponry and weak point ad-
dition and distribution in a boss, and the bosses included originally in
the game required a testing period of around a month to reach a proper
configuration that could be considered acceptable and satisfactory by the
players.

This work intended to automate that last step in order to produce boss
candidates with good quality and in less time. In addition to the use
of an evolutionary algorithm, a simulation-based fitness and widely used
quality metrics for measuring the results, the aspects presented in this
work include:

14

• The use of partially generated bosses as input, which are encoded
and fed to an evolutionary algorithm as the starting individuals of
the population managed.

• Content improvement-oriented Crossover and mutation genetic op-
erations which contribute to the genetic improvement of the indi-
viduals involved. Once two individuals produce a new one, or when
an individual mutates by means of the Crossover or the mutation
operations, respectively, such operations take advantage on the boss
metamodel. The metamodel is used in order to determine, for in-
stance, the elements of the boss model that should be added in
order to make the boss be valid after the genetic operation. Those
elements are not explicitly included in the encoding and could be re-
lated with steps that occur before Equipment Configuration, which
is the stage that the approach developed focuses on. Therefore, the
improvement affects the initial, partially generated content that the
approach was given as input, and those implicit changes become
evident when the final, complete content produced is decoded.

The results showed that the approach developed in the third work pro-
vided game content that was comparable in terms of quality with the
bosses created by the developers of the original version of the video game
case study. However, the time required in order to produce complete
content was considerably lower. The work was published as an article
(labelled as MTA’22 in this document) in the Multimedia Tools and Ap-
plications Journal, and the contribution to this thesis, as a continuation
of the previous work, is represented in the bottom center section of Figure
2.

Research Methodology

The development process of this thesis was planned taking into consid-
eration the methodology proposed by Roel J. Wieringa in Design science
Methodology for Information Systems and Software Engineering [28].
The motivation behind the use of this methodology is the objective of
contributing to certain Problem Contexts by designing artifacts that in-
teract with those contexts through an empirical cycle. In Design Science,

15

such interaction between an artifact and a Problem Context is denoted as
Treatment. In [2], [3], and [4], the research outcomes include treatments
that consist in the application of approaches that run unattended and
are intended to improve, in terms of quality and time, the performance
of baselines in the Problem Contexts of Traceability Link Recovery, and
Procedural Content Generation/Improvement, respectively. The works
included in the thesis used the Design Science methodology, applying the
following empirical cycle, as shown in Figure 3:

A

PROBLEM
INVESTIGATION

B

TREATMENT
DESIGN

C

TREATMENT
VALIDATION

D

TREATMENT
IMPLEMENTATION

E

IMPLEMENTATION
EVALUATION

UPDATED
RESEARCH
PROBLEM

Figure 3: Empirical cycle used in the Design Science methodology.

A Problem Investigation: In this stage, previous research works were
studied in order to elucidate how SBSE had been used in the past to
address Game Software Research and the potential of the application
of GSE to explore advances and contributions in Game development
hot topics. After such investigation, the research questions were
defined.

B Treatment Design: In the next stage, the approaches that were nec-
essary to answer the research questions were designed, and the ex-

16

perimental setup (that took into account baselines selected during
the Problem Investigation) was specified.

C Treatment Validation: This stage implied validating the treatment
designed by considering the threats to validity that were detected
in the Treatment Design stage. In order to minimize the possible
impact of those threats, various measures were adopted, like ap-
plying widely accepted indicators, or evaluating the approaches in
industrial case studies.

D Treatment Implementation: This stage included both the imple-
mentation of the approaches required and the specification of the
experiments that allowed the interaction of those approaches with
the Problem Context

E Implementation evaluation: In this stage, the execution of the ex-
periments that involved the treatments took place. In addition,
those experiments produced results, that were used in order to an-
alyze and discuss the outcomes of the research with regard to the
research questions.

The last stage, which studies the degree of success of the treatment,
determined an eventual start of a new cycle with an improved perspective
on the Problem Context, and could result in a updated set of research
questions or the re-design of the treatment.

Structure of the Thesis

This work is structured in accordance to the regulations in Universitat
Politècnica de València with regard to PhD thesis development. More
specifically, this thesis presents a compendium of articles and it is orga-
nized as follows:

I. Introduction: The first part of the thesis describes the context
in which the research takes place, the objectives of this work, the
methodology applied through the research, and a summary of the
articles that make up the compendium.

17

II. Compendium of Articles: The second part includes the col-
lection of articles written during the development of the research.
These articles were all published in specialized journals and they
are presented following the format of the thesis, while keeping the
original content and bibliographies.

III. Discussion: The third part discusses the results obtained through
the research, taking into account the different scopes covered by this
thesis.

IV. Conclusions: The last part of the thesis presents the conclusions
of this work, given the objectives that were set and the outcomes of
the research process.

Compendium Description

The following articles have been produced and published in different
journals in the course of the research process presented in this thesis:

1. A Fine-grained Requirement Traceability Evolutionary Al-
gorithm: Kromaia, a Commercial Video Game Case Study
(Information and Software Technology) (Blasco, Cetina, Pastor, 2020)
(IST’20) [2].
This work addresses the problem of Traceability Link Recovery in
commercial video games, taking into account the size of the source
code in industrial products and the inherent requirement disper-
sion of real time simulation game architectures. The CODFREL
approach proposed in this article advances in this field by making
use of game developers’ knowledge and a fine-grained-based search
in order to improve the accuracy of the solutions that are provided
as requirement realization candidates.

2. An Evolutionary Approach for Generating Software Mod-
els: The Case of Kromaia in Game Software Engineering
(The Journal of Systems and Software) (Blasco, Font, Zamorano,
Cetina, 2021) (JSS’21) [3].
This research focuses on Procedural Content Generation in video

18

games (more specifically, game bosses) for commercial products,
from a Game Software Engineering point of view. This work led
to the inclusion, with evolutionary algorithm guidance purposes, of
a fitness function based on game simulations that are designed and
calibrated after the domain specific knowledge provided by game
developers. In addition, the work includes the use of video game-
specific objective quality measures in order to compare the game
content produced by the EMoGen approach presented with the con-
tent created by human developers.

3. Procedural Content Improvement of Game Bosses with an
Evolutionary Algorithm (Multimedia Tools and Applications)
(Blasco, Font, Pérez, Cetina, 2022) (MTA’22) [4].
This article continues the research on the procedural generation of
content for commercial video games, considering the case of the need
for complete content that must be produced taking incomplete and
partially generated content as starting points.

Additionally, two articles included in the compendium were presented in
relevant national and international conferences as journal-first papers as
follows:

• IST’20 was presented in the Spanish Conference on Software Engi-
neering and Databases (JISBD 2021), in the context of the Com-
puter Science Spanish Conference (CEDI 20/21).

• JSS’21 was presented in the IEEE/ACM International Conference
on Automated Software Engineering (ASE 2021).

In 2021, during the Genetic and Evolutionary Computation Conference
(GECCO 2021), JSS’21 was awarded with the Bronze Medal in the 18th
Annual “Humies” Awards for Human-Competitive Results Produced by
Genetic and Evolutionary Computation (HUM’21). Besides, JSS’21 was
presented in 2022 in the First Video Game Spanish Conference (CEV’22),
organized by the Video Game Science Spanish Society (SECiVi).

In 2022, the application corresponding the patent “Method and System
for Automatic Synthesis of Videogame Assets” (PAT’22) by Jaime Font,

19

Daniel Blasco, and Carlos Cetina, based in the methods and techniques
applied in JSS’21 and MTA’22, was ready for examination in the United
States Patent and Trademark Office.

Research Support

The research works included as a compendium in this thesis have been
partially funded as follows:

• [2] and [3] have been supported in part by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish National
R+D+i Plan and ERDF funds under the Project ALPS (RTI2018-
096411-B-I00).

• [4] has been partially supported by the Ministry of Economy and
Competitiveness (MINECO) through the Spanish National R+D+i
Plan and ERDF funds under the Project VARIATIVA under Grant
PID2021-128695OB-I00, and in part by the Gobierno de Aragon
(Spain) (Research Group S05 20D).

Bibliography

[1] Apostolos Ampatzoglou and Ioannis Stamelos. “Software engineering re-
search for computer games: A systematic review”. In: Information and Soft-
ware Technology 52.9 (2010), pp. 888–901. issn: 0950-5849. doi: https:
//doi.org/10.1016/j.infsof.2010.05.004 (cit. on pp. 7, 10).

[2] Daniel Blasco, Carlos Cetina, and Oscar Pastor. “A fine-grained requirement
traceability evolutionary algorithm: Kromaia, a commercial video game case
study”. In: Information and Software Technology 119 (2020). issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2019.106235 (cit. on
pp. 9, 10, 16, 18, 20).

[3] Daniel Blasco et al. “An evolutionary approach for generating software mod-
els: The case of Kromaia in Game Software Engineering”. In: Journal of
Systems and Software 171 (2021), p. 110804. issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2020.110804 (cit. on pp. 9, 16, 18, 20).

20

https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.004
https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.004
https://doi.org/https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804

Bibliography

[4] Daniel Blasco et al. “Procedural content improvement of game bosses with
an evolutionary algorithm”. In: Multimedia Tools and Applications 82 (2022),
pp. 1–33. issn: 1573-7721. doi: https://doi.org/10.1007/s11042-022-
13674-6 (cit. on pp. 9, 16, 19, 20).

[5] Ilhem Boussaïd, Patrick Siarry, and Mohamed Ahmed-Nacer. “A survey on
search-based model-driven engineering”. In: Automated Software Engineer-
ing 24.2 (2017), pp. 233–294 (cit. on p. 5).

[6] Cameron Browne and Frédéric Maire. “Evolutionary Game Design”. In:
IEEE Trans. Comput. Intellig. and AI in Games 2.1 (2010), pp. 1–16. doi:
10.1109/TCIAIG.2010.2041928 (cit. on p. 13).

[7] Bruce G Buchanan. “A (very) brief history of artificial intelligence”. In: Ai
Magazine 26.4 (2005), pp. 53–53 (cit. on p. 4).

[8] Epic Games. Unreal Engine, Version 2018.3.9. Cary, North Carolina, 1998
(cit. on pp. 6, 12).

[9] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. “The internet of things”.
In: Scientific American 291.4 (2004), pp. 76–81 (cit. on p. 4).

[10] M. Harman, Y. Jia, and Y. Zhang. “Achievements, Open Problems and
Challenges for Search Based Software Testing”. In: IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST). 2015,
pp. 1–12. doi: 10.1109/ICST.2015.7102580 (cit. on p. 4).

[11] M. Harman and B.F. Jones. “Search-Based Software Engineering”. In: In-
formation Software Technology 43 (2001), pp. 833–839 (cit. on pp. 4, 5,
11).

[12] Harvard University Harvard Computation Laboratory. Notice on Organi-
zation of an Eastern Association for Computing Machinery. 1947 (cit. on
p. 4).

[13] Inc. Interactive Data Visualization. SpeedTree. Lexington, South Carolina,
2002 (cit. on p. 12).

21

https://doi.org/https://doi.org/10.1007/s11042-022-13674-6
https://doi.org/https://doi.org/10.1007/s11042-022-13674-6
https://doi.org/10.1109/TCIAIG.2010.2041928
https://doi.org/10.1109/ICST.2015.7102580

[14] Stuart Kent. “Model Driven Engineering”. In: Integrated Formal Methods.
Ed. by Michael Butler, Luigia Petre, and Kaisa Sere. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 286–298. isbn: 978-3-540-47884-3 (cit.
on p. 4).

[15] P. Kruchten, H. Obbink, and J. Stafford. “The Past, Present, and Future
for Software Architecture”. In: IEEE Software 23.2 (2006), pp. 22–30. doi:
10.1109/MS.2006.59 (cit. on p. 4).

[16] Patrick Kurp. “Green computing”. In: Communications of the ACM 51.10
(2008), pp. 11–13. doi: 10.1145/1400181.1400186 (cit. on p. 4).

[17] Michael S. Mahoney. “The Roots of Software Engineering”. In: CWI quar-
terly 3 (1990), pp. 325–334 (cit. on p. 4).

[18] Pamela McCorduck et al. “History of artificial intelligence.” In: IJCAI. 1977,
pp. 951–954 (cit. on p. 4).

[19] Michael McShaffry. Game Coding Complete. Paraglyph Publishing, 2003.
isbn: 1932111751 (cit. on p. 7).

[20] Nikesh Muthukrishnan et al. “Brief history of artificial intelligence”. In: Neu-
roimaging Clinics 30.4 (2020), pp. 393–399 (cit. on p. 4).

[21] Jiantao Pan. “Software testing”. In: Dependable Embedded Systems 5.2006
(1999), p. 1 (cit. on p. 4).

[22] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005. isbn: 3540243720 (cit. on p. 4).

[23] Unity Technologies. Unity - Manual: Order of execution for event functions,
Version 2022.3. San Francisco, California, 2022 (cit. on p. 11).

[24] Unity Technologies. Unity, Version 2018.3.9. San Francisco, California, 2005
(cit. on pp. 6, 10, 12).

22

https://doi.org/10.1109/MS.2006.59
https://doi.org/10.1145/1400181.1400186

Bibliography

[25] Matti Tedre. The Science of Computing: Shaping a Discipline. CRC Press,
2014. isbn: 9781482217704 (cit. on p. 4).

[26] Julian Togelius et al. “Search-Based Procedural Content Generation: A Tax-
onomy and Survey.” In: IEEE Trans. Comput. Intellig. and AI in Games
3.3 (2011), pp. 172–186 (cit. on p. 12).

[27] 85th United States Congress. National Aeronautics and Space Act. 1958
(cit. on p. 4).

[28] Roel J Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014 (cit. on p. 15).

[29] Meng Zhu and Alf Wang. “Model-driven Game Development: A Literature
Review”. In: ACM Computing Surveys 52.6 (2019), pp. 1–32. issn: 0360-
0300. doi: 10.1145/3365000 (cit. on p. 6).

23

https://doi.org/10.1145/3365000

Part II

Compendium of Articles

Chapter 1

A Fine-Grained Requirement
Traceability Evolutionary

Algorithm: Kromaia, a
Commercial Video Game Case

Study
Commercial video games usually feature an extensive source code

and requirements that are related to code lines from multiple methods.
Traceability is vital in terms of maintenance, so it is necessary to explore
such search spaces properly. This work presents and evaluates COD-
FREL (Code Fragment-based Requirement Location), our approach to
fine-grained requirement traceability, which lies in an evolutionary al-
gorithm and includes encoding and genetic operators to manipulate code
fragments that are built from source code lines. We compare it with a
baseline approach (Regular-LSI) by configuring both approaches with dif-
ferent granularities. We evaluated our approach and Regular-LSI in the
Kromaia case study. The approaches are configured with method and code
line granularity and work on 20 requirements that are provided by the de-
velopment company. Our approach and Regular-LSI calculate similarities
between requirements and code fragments or methods to propose possible
solutions and, in the case of CODFREL, to guide the evolutionary algo-
rithm. The results show that our approach outperforms Regular-LSI in
precision and recall, with values that are 26 and 8 times better, respec-
tively, even though it does not achieve the optimal solutions.

27

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

1.1 Introduction

Traceability has been shown by researchers to have a significant impact
on successful software engineering projects [42]. This has encouraged
reliability and maintainability improvement efforts to trace and verify
critical, non-reliable sections in software systems [24]. Traceability Link
Recovery (TLR) has been studied by software engineers for a considerable
number of years [25], [37], and low defect rates in software products are
associated to more complete Traceability [33].

In the video game industry, the titles classified as AAA are those pro-
duced and distributed by a mid-sized or major publisher and are typically
more complex than regular games and have high development and mar-
keting budgets. Due to the nature of real-time physics simulation, high
numbers of interacting entities, and long chains of events that branch and
have a significant impact on the course of the game, AAA video games
feature many requirements that involve more than one complete method.
Current traceability approaches [10] evaluate methods in the source code
of a software product as atomic units. The purpose of approaches of this
type is to decide which method or method set is the best candidate for
a given requirement, conceiving requirements as functionalities that are
likely to be mainly defined by one or various complete methods in the
source code of a software product. These approaches are not suitable for
AAA video games featuring dispersed requirements.

Our approach, Source Code Fragment-based Requirement Location (COD-
FREL), generates possible solutions that are more flexible than complete
methods. Our approach relies on an evolutionary algorithm which:

• searches for flexible solution candidates, represented by code frag-
ments, i.e., sets of code lines belonging to the source code that are
not necessarily contiguous or included in a single method.

• explores the search space through genetic operations involving
mutation and fusion. The search process is guided by similitude
evaluation between the terms present in a code fragment and those
specified by the requirement; this similitude is measured through
Latent Semantic Indexing (LSI) [28].

28

1.1 Introduction

Our evaluation compares our approach to Regular-LSI. Regular-LSI uses
LSI, but it does not use code fragments or an evolutionary algorithm.
We compare our CODFREL approach to Regular-LSI using require-
ments from Kromaia, a commercial video game case study. Kromaia
is a physics-based space simulation video game that was developed by
Kraken Empire (www.krakenempire.com) and published by Rising Star
Games (www.risingstargames.com). This is a title that has been released
worldwide both digitally and physically, translated to eight languages,
and ported from PC to PlayStation 4.

In order to evaluate our approach and Regular-LSI, we have config-
ured different versions of the two approaches: our CODFREL approach
was studied using code fragments and complete method granularity;
and Regular-LSI was configured with three different cut-off strategies to
search for the best complete method, a set containing the 10 best com-
plete methods, and a set containing the 10 best code lines, considering
each code line as a method. The results obtained show that, in com-
parison to Regular-LSI, our approach provides better solutions, both in
terms of precision and recall, for requirements that are dispersed within
the source code. Precision, recall and F-measure are information retrieval
metrics that are widely used [8]. These results show that, using the dif-
ferent configurations mentioned, our CODFREL approach outperforms
Regular-LSI in precision, recall, and F-measure, with average values of
57% and 28% for precision, around 27% for recall, and 29% and 21% for
F-measure. Regular-LSI obtained average values of 4%, 0.7%, and 0.1%
for precision, for the different configurations used. For recall, the values
were 0.5%, 0.5%, and 9%. F-measure reached values of 0.9%, 0.6%, and
0.2%.

Both our approach and Regular-LSI output a solution that has to be
manually refined to obtain all of the code that is relevant to the re-
quirement. The solutions generated by our approach are better starting
points in comparison to Regular-LSI. However, our approach does not ob-
tain perfect solutions (every relevant code line in a requirement). Tacit
knowledge, which is not written in the requirements, causes this issue.
Therefore, we plan to deal with this matter through reformulations that
expand the requirements with descriptions provided by domain experts.

29

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

The structure used in the paper is the following: Section 2 describes
the motivation for our work. Section 3 presents an overview of our COD-
FREL approach. Section 4 presents the code fragment encoding. Section
5 describes the operations used in code fragment generation. Section 6
discusses how code fragment suitability is determined. Section 7 deals
with the evaluation, comparing our approach to Regular-LSI, and Sec-
tion 8 discusses the results obtained. Section 9 deals with future work,
Section 10 describes the threats to validity, and Section 11 summarizes
related works. Finally, Section 12 presents our conclusions.

1.2 Motivation

Commercial video games, like Kromaia, often behave like real-time simu-
lation applications, which coordinate internal update processes and data
structures that render information as audiovisual data. This data is
meant to be coherent with internal logics, but it is not necessarily di-
rectly related to them in terms of locality.

Apart from various libraries used in the project, Kromaia features a con-
siderably high number of private code lines (over 260,000) resulting from
two main blocks, both of which are owned by the development company:
a proprietary game engine, and the video game source code (VGSC).
The case study focuses on the VGSC, which contains over 145,000 lines
of code.

The use of an evolutionary algorithm emerges as a response to a sit-
uation in which the solution space is huge and the requirements are
dispersed. Taking into account the VGSC, the current traceability ap-
proaches [10] (which feature method granularity) are required to evaluate
approximately 9000 complete methods. However, code fragments (the
granularity in our approach) may feature any code line in the VGSC, so
the total number of possible code fragments in the VGSC is over 2145,000.
Our approach, CODFREL, works with code fragments and uses an evo-
lutionary algorithm to search such a large solution space.

30

1.3 Overview of the CODFREL Approach

1.3 Overview of the CODFREL Approach

This section presents our CODFREL approach. The approach has a clear
goal: to obtain the code fragment from the source code that realizes a
requirement that is specified in a natural language. The evolutionary al-
gorithm of CODFREL iterates a code fragment population, which evolves
through genetic operations inspired by processes that are present in na-
ture. This evolutionary algorithm is driven by a fitness operation that
takes into consideration the requirement. In the end, the output deliv-
ered is a ranking, which is a list sorted by a fitness value that features
code fragments that might realize the requirement described.

The upper left section in Fig. 1.1 shows an example of input to our
CODFREL approach.

• The Source Code. In this paper, we evaluate our approach on the
Kromaia VGSC, and we also use it as a running example.

• The Requirement (in natural language) to be located in our case
study. The requirement is in the Game Design Document created
for the video game. The requirement terms may include general
vocabulary that is commonly used in the video game industry and,
more specifically, terms of the specific video game that are likely to
be found in the VGSC.

• In order to minimize the effects of both irrelevant and deceiving
terms, our approach asks to select the most relevant terms in the
requirement. These terms, the Keywords, help our approach to
find starting points and provide guidance to the evolutionary algo-
rithm.

The section on the right of Fig. 1.1 shows the main steps in our approach.

• First, the Keyword Code Line Classification step identifies
those code lines from the VGSC that feature keywords, which are
tagged terms in the requirement. These lines are used in both the
initial code fragment population creation step and in those genetic
operations involving the expansion of existing code fragments.

31

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

NEW
CODE FRAGMENTS

CODE FRAGMENT
POPULATION

GENETIC
OPERATIONS

FITNESS

STOP?

NO

YES

CODFREL APPROACH

KEYWORDS

decreases, armour

POPULATION
INITIALIZATION

KEYWORD CODE LINE
CLASSIFICATION

REQUIREMENT

When a human unit gets
damage, its armour level
decreases and its interface
shows it.

SOURCE CODE

…

ClearGameData();

if (!backup.IsEmpty()) {

…

DamageArmour(value);

if (value < threshold) {

DecreaseArmourLevel();

UnitHuman::Warn();

…

UpdateHUDInterface();

DecreaseArmourInterface();

…

void UnitHuman::Reset() {

DetachItems();

…

CODE FRAGMENT CODE LINES FITNESS

1 ClearGameData(); 0.75

if (!backup.IsEmpty()) {

DamageArmour(value);

DecreaseArmourLevel();

UnitHuman::Warn();

DecreaseArmourInterface();

2 UpdateHUDInterface(); 0.50

DecreaseArmourInterface();

0 ClearGameData(); 0.35

if (value < threshold) {

···
Figure 1.1: CODFREL Overview

32

1.3 Overview of the CODFREL Approach

• The Population Initialization step calculates the starting code
fragment population, which is extracted from the VGSC using code
lines determined by the keywords. Each initial code fragment is
generated as follows: first, a random code line with keyword pres-
ence is selected as the starting point. Then, the code fragment is
completed by adding a random number of code lines that are placed
before and after the starting code line. Random initialization is a
common practice in evolutionary computation.

• The Genetic Operations step produces a new code fragment gen-
eration. This step involves the use of a selection operator that
chooses the code fragments that will be the parents of the new gen-
eration. This selection, which is done using fitness values, is meant
to promote the best code fragments in the population to be parents.
Then, new code fragments are produced by mixing code lines from
two parents through a fusion operation. This step also introduces
modifications in the new code fragments using a guided mutation
operation (by adding or removing code lines from the code frag-
ment), which hopefully would make the new code fragments reach
fitness values that exceed what their parents achieved.

• The Fitness step evaluates the code fragments by assigning a value
that depends on the similarity between each code fragment and the
requirement. The code fragments that share more terms with the
requirement will get the highest values.

The process is over when a code fragment features a fitness value that
is greater than a predefined threshold or once a certain time limit is
reached. As a result, our CODFREL approach produces a code fragment
set, where each code fragment is relevant to the requirement (see the lower
section in Fig. 1). The set may be organized as a ranking, ordering the
code fragments by similarity to the requirement.

In summary, our CODFREL approach ultimately searches for code frag-
ments that are relevant to the requirement. In order to succeed, the ap-
proach creates/iterates a code fragment population and searches within
that population using a fitness function that evaluates code fragments by

33

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

assigning values that depend on the similarity to the requirement defined
in natural language.

Sections 4, 5, and 6 show how code fragments are encoded in our COD-
FREL approach as well as the genetic operations applied and the criteria
used by the fitness function to assign different values to code fragments
depending on how similar they are to the requirement.

1.4 Code Fragment Encoding of the CODFREL Approach

The code fragments generated by our approach represent the solutions
proposed for the requirement. These solutions need to be encoded, a
task that, in evolutionary algorithms, is usually done by storing possible
solutions as arrays or strings containing binary values such as 0/1 or
true/false.

In our CODFREL approach, where the solutions are the code fragments,
the encoding is as follows: each code fragment is a list of code line el-
ements; and a code line element contains indexing information that is
relative to the file from which the code line was taken, its local position
in that file, and its global position relative to the complete VGSC. There-
fore, the encoding used in our approach to represent code fragments is
not a fixed length structure, but a variable length set of code lines that is
ordered, taking into account the relative positions of each of those lines
in the VGSC.

1.5 Genetic Operations of the CODFREL Approach

Our CODFREL approach generates new code fragments using the ex-
isting ones as parents and making use of two genetic operators: fusion
and guided mutation. We adapted these operators to function with code
fragments, which represent a code line set from the VGSC.

Prior to the application of the genetic operators, the best possible parents
need to be selected from a given code fragment population so that the
genetic operators have data to work with. For that reason, our approach

34

1.5 Genetic Operations of the CODFREL Approach

uses a selection operator that is based on the widely used wheel selection
method [4]: every code fragment in the population has a probability of
being selected to reproduce that is proportional to its fitness value; there-
fore a higher fitness value implies a higher probability of being chosen to
generate new code fragments.

1.5.1 Fusion

The fusion operator works like traditional evolutionary computation meth-
ods, in which a new individual is generated by combining the generic
material of two existing individuals. Depending on the resulting com-
bination and the environmental conditions, the new individual could
outperform their parents or it may not even survive (or, subsequently,
reproduce). In our approach, code fragments act as the reproducing in-
dividuals and the fusion operator is responsible for mixing the lines that
they contain. As a result, the new code fragment contains a code line set
in which the lines are ordered according to their relative position in the
complete VGSC, without repetitions, in the case of lines that are present
in both parents.

The fusion operator receives two code fragments and creates a new one by
combining every code line in the parents, hence, without losing informa-
tion. Most common recombination techniques in genetic algorithms such
as crossover [14] imply inheriting parental content, partially or totally.
The fusion operator could be considered as a special case of crossover
that does not discard code lines from parent code fragments that have
been selected as standing out and contain supposedly valuable informa-
tion that is related to a requirement.

A typical case of fusion application in our CODFREL approach is shown
in Fig. 1.2 with code fragment examples. The fusion operator takes two
code fragments as parents (CF1 and CF2). First, the selection operator
uses the wheel selection method to choose two parents. Then, the fusion
operator generates a new code fragment containing the full code line
sets that are present in its parents. Therefore, the new code fragment
generated contains every code line in the parents, without repetitions
(e.g., code line 145902 is not duplicated). The new individuals obtained

35

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

FILE FILE
LINE

GLOBAL
LINE

0 1 1

0 2 2

1 10 26

1 12 28

1 13 29

391 1 145902

CF 1
FILE FILE

LINE
GLOBAL

LINE

391 0 145901

391 1 145902

CF 2

INITIAL CODE FRAGMENT POPULATION

CF 0 CF 1 … CF 1000

FILE FILE
LINE

GLOBAL
LINE

0 1 1

0 2 2

1 10 26

1 12 28

1 13 29

391 0 145901

391 1 145902

CF 1001

MUTATION?
NO

MUTATION TYPE?

FILE FILE
LINE

GLOBAL
LINE

0 1 1

0 2 2

1 10 26

1 12 28

1 13 29

17 10 641

17 11 642

391 0 145901

391 1 145902

CF 1002
FILE FILE

LINE
GLOBAL

LINE

0 1 1

0 2 2

1 10 26

1 13 29

391 0 145901

1 12 28

391 1 145902

CF 1003

GUIDED ADDITIVE SUBTRACTIVE

GENETIC OPERATIONS
FINISHED

FUSION OPERATOR

SELECTION OPERATOR

Figure 1.2: Genetic Operators: Guided Mutation and Fusion over Code Fragments

36

1.5 Genetic Operations of the CODFREL Approach

with this operator may include a higher number of code lines than their
parents, as shown in Fig. 1.2.

1.5.2 Mutation

The mutation operator makes new individuals show changes in their ge-
netic material that are caused by random factors and are not due to being
inherited from their parents. The (usually) minimal variations modifying
the inherited material may be positive or negative, depending on whether
the mutation produces adaptive advantages or disabilities.

In our CODFREL approach, the mutation operator is applied on newly
generated fragments after they have been produced by the fusion opera-
tor. However, mutations do not always occur and depend on a probability
of a new code fragment being affected by a mutation. After a mutation
takes place, the new code fragment may contain new lines belonging to
the video game code or lose some of the lines that were featured prior
to the mutation. Our approach proposes that, since the search space
is huge, the creation of good starting code fragments should be guided,
since it is difficult to create or improve individuals by adding random
code lines from the VGSC due to its size. However, our CODFREL ap-
proach proposes that the loss of code lines is not guided, so that even
the removal of lines with high similarity with a requirement could lead
to code fragments that are closer to the realization of such a require-
ment. This proposal regarding mutations could be improved or modified
in future works, taking into account the results obtained. In the end,
the mutation operators provide another possible solution for the target
requirement (the unmodified code fragment and its parents are also pos-
sible solutions). The nature of the mutation applied by the operator is
based on random criteria:

• Subtractive Mutation: This type makes the mutation operator
remove lines from the code fragment by randomly selecting them,
as shown in the bottom right section in Fig. 1.2. The number of
lines removed and the selection criteria are random, so there is no
need to ensure that the lines removed are consecutive.

37

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

• Guided Additive Mutation: When the operator performs an ad-
ditive mutation, a random number of lines belonging to the original
VGSC (and not necessarily consecutive) is added to the code frag-
ment, first selecting a starting code line that acts as a reference for
the eventual code line set added. The guidance consists in having
a certain probability of selecting a starting code line in the VGSC
that is not completely random; instead, the operator may select a
starting code line featuring terms that are tagged as keywords in
the requirement (and, eventually, more code lines surrounding that
line). Fig. 1.2 shows an example featuring a new code fragment,
CF 1002, that was created by applying this mutation operation to
CF 1001. The code lines added are 641 and 642, with 642 being the
starting code line featuring a keyword:

– 641: if (units[i]->IsIdle()) {

– 642: units[i]->Reset Armour Interface();

Code line 641, however, is a line that was added for being adjacent
to 642 in the VGSC, like other lines which were not selected (but
could have been) in the example.

1.6 Fitness of the CODFREL Approach

In the context of our CODFREL approach, the fitness step is intended to
determine the value of each code fragment generated. Following the prin-
ciples applied in evolutionary algorithms, the fitness step takes a code
fragment population as input and measures the degree of adaptation of
each code fragment to the environment (the adaptation being the quality
of the code fragment as a solution for the requirement described). Once
the step finishes, it provides a ranking in which every code is placed
according to the fitness value assigned so that the top-ranked code frag-
ments are the most similar to the requirement.

This similarity is evaluated in our approach through Latent Semantic
Indexing (LSI) [28], which is currently the best performing Information
Retrieval (IR) technique in terms of outcomes [34, 30, 32, 21]. In this

38

1.6 Fitness of the CODFREL Approach

step, it is responsible for comparing the code fragments proposed for a
requirement with the requirement specified in natural language. In the
context of LSI, the input for which the solution is searched is denoted
as "query", while the individual elements to be evaluated as possible
solutions for realizing this query are denoted as "documents". For our
approach, this scheme implies that the requirement acts as a query, while
code fragments are documents.

1.6.1 Natural Language Processing

Before applying LSI, the requirement is processed through well-known
Natural Language Processing techniques (Part-of-Speech tagging [11] and
Lemmatizing techniques [35]) so that the gap between the code fragment
texts and the requirement is reduced.

• The requirement is first divided into words or tokens. Depending
on the text complexity, separators such as spaces or semicolons may
work as tokenizers (i.e., elements used to split strings), but descrip-
tions involving in-code elements might require more sophisticated
processing.

• The second stage in the requirement processing consists in removing
articles, conjunctions, and other elements that do not provide useful
information. This task is carried out by applying the POS (Part of
Speech) technique. This tagging technique analyzes the grammat-
ical role of the words in the text and helps remove the undesired
material.

• Through the usage of semantic techniques such as Lemmatizing,
words can be reduced to their semantic roots or lemmas. Thanks
to lemmas, the language used in the requirement is unified, thus
avoiding verb tenses, noun plurals, and strange word forms that
negatively interfere with the fitness.

Fig. 1.3 shows the application of these techniques to a requirement.
The token extraction step involves the use of separators. After the POS
step, tokens like "a", "and", or "it" are removed for not being relevant

39

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

When a human unit gets damage, its armour level decreases
and its interface shows it.

Initial, non-processed requirement.

REQUIREMENT

TOKENIZATION

TOKENS

when, a, human, unit, gets, damage, its, armour, level,
decreases, and, its, interface, shows, it

The separators are used in order to divide the requirement into tokens.

POS TAGGED TOKENS

human, unit, gets, damage, armour, level, decreases,
interface, shows, when, a, its, and, its, it

Those elements that do not provide useful information are removed.

POS TAGGING

LEMMA REDUCED TOKENS

human, unit, get, damage, armour,
level, decrease, interface, show

The tokens are reduced to their semantic roots.

LEMMATIZATION

Figure 1.3: Natural Language Processing Techniques

40

1.6 Fitness of the CODFREL Approach

in terms of substantial information. Lemmatizing analyzes and reduces
words, transforming verb tenses such as "decreases" into "decrease".

The same Natural Language Processing techniques used with require-
ments are applied to code fragments, but include an additional step.
This step involves removing stop words, which are programming lan-
guage reserved words. Once a code fragment is processed, it contains
terms such as variable and method names or words that are present in
comments. The following example shows a set of two code lines as well
as the result once it is processed:

• Code Lines:

– 3107: int Unit::GetNumberOfWeapons() {

– 3108: return moduleWeapons->GetSize();

• Result:

– unit, get, number, weapon,

module, weapon, get, size

The result obtained illustrates the techniques described above. Tokeniz-
ing makes use of separators (e.g., colons or spaces) and other criteria
such as naming conventions (CamelCase, in the example) to extract to-
kens. POS removes elements that are not useful (e.g., "of", a conjunction
that does not provide relevant content). Lemma extraction is shown by
"weapon", which is a reduced, singular form. Finally, the additional step
mentioned above searches for stop words to be filtered. Therefore, terms
such as "int" or "return" will be removed since they are both defined as
reserved words by the programming language used.

It is assumed that the language used in both the requirement and the code
fragment should be similar in order to make the LSI work properly. If
those languages are significantly different, not even the Natural Language
Processing techniques will prevent the fitness from failing unless the user
assists the process manually.

41

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

CODE FRAGMENTS

TERMS CF 0 CF 1 CF 2 CF 3 ... REQUIREMENT

HUMAN 0 1 0 0 ... 1

UNIT 0 2 0 2 ... 1

DAMAGE 0 1 0 0 ... 1

DECREASE 0 2 1 0 ... 1

ARMOUR 0 2 1 0 ... 1

INTERFACE 0 1 1 0 ... 1

SHOW 0 0 0 0 ... 1

...

RANKING

CF 1 0.75

CF 2 0.50

CF 0 0.35

CF 3 0.15

...

CF 1

REQ

CF 2

CF 0

CF 3

LSI RESULTS

Figure 1.4: Fitness Operation via Latent Semantic Indexing (LSI)

42

1.6 Fitness of the CODFREL Approach

1.6.2 Latent Semantic Indexing (LSI) Fitness

After the Natural Language Processing, a co-occurrence matrix is built
in order to represent terms in rows and each code fragment in a column,
thus providing occurrence counters for every term in each code fragment
or in the requirement. In the end, our LSI fitness uses a term set that
defines the rows in the co-occurrence matrix, which is a union of two sub-
sets: the terms in the requirement and the terms in the code fragments.

The top part of Fig. 1.4 shows a schematic view of a co-occurrence
matrix in our running example. The rows represent the terms from both
the code fragments and the requirement. The columns represent the code
fragments and the requirement. The values in the cells are the number
of occurrences for each term in the code fragments and the requirements.

The co-occurrence matrix must be analyzed in order to elaborate the
code-fragment ranking. First, it is normalized and decomposed through
Singular Value Decomposition (SVD) [28], which factorizes the matrix
and provides a vector set that represents the latent semantic value for
every code fragment and the requirement. Similarity is evaluated us-
ing the angles formed by such multidimensional vectors, since cosine is
a measure of similarity that is 1.0 for identical vectors and 0.0 for or-
thogonal vectors[36]. In the end, the cosine between each code fragment
vector and the requirement vector is a value in the interval [-1, 1] that
defines the similarity or proximity to the requirement, which allows a
code-fragment ranking to be established.

Let C1 be a code fragment in the population; let X be the vector repre-
senting the latent semantic value of C1; let Y be the vector representing
the latent semantic value of the requirement; the angle between X and
Y is θ. The following expression defines the fitness function:

fitness(C1) = cos(θ) =
X · Y

∥X∥ · ∥Y ∥
(1.1)

The bottom part of Fig. 1.4 shows a three-dimensional graph of the LSI
results. The graph shows the representation of each one of the vectors,
which are labeled with letters that represent the names of the code frag-

43

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

ments. Finally, after the cosines are calculated, a value for each of the
code fragments is obtained, indicating its similarity with the requirement.

1.7 Evaluation

Table 1.1: Configurations used in our CODFREL approach and Regular-LSI for the differ-
ent research questions

CODFREL Regular-LSI

Research Question 1 Best Code Fragment Best Complete Method

Research Question 2 Best Code Fragment 10 Best Complete Methods

Research Question 3 Best Code Fragment with Method Granularity Best Complete Method

Research Question 4 Best Code Fragment with Method Granularity 10 Best Complete Methods

Research Question 5 Best Code Fragment 10 Best Code Lines

This section presents the evaluation of our approach: the research ques-
tions, the oracle preparation, the experimental setup, the implementation
details and the results obtained.

1.7.1 Research Questions

The following research questions address the evaluation of our approach
considering different configurations and how they affect the results ob-
tained. These questions make reference to a threshold, which is the
number of complete methods (or code lines, depending on the granu-
larity used) selected as a possible solution by Regular-LSI, the baseline
approach. In addition, the research questions take into account the use
of code fragments or method granularity by our approach:

RQ1: Does our CODFREL approach perform better than Regular-LSI
when Regular-LSI uses a threshold value (the number of complete meth-
ods) of 1?

RQ2: Does our CODFREL approach perform better than Regular-LSI if
the threshold value is the most widely used?

RQ3: Does our CODFREL approach perform better than Regular-LSI if
the threshold value is 1 and CODFREL uses method granularity?

44

1.7 Evaluation

RQ4: Does our CODFREL approach perform better than Regular-LSI if
the threshold value is the most widely used and CODFREL uses method
granularity?

RQ5: Does our CODFREL approach perform better than Regular-LSI
when both use code line granularity (Regular-LSI considers each code line
as a document) and the threshold value for Regular-LSI is the most widely
used?

Table 1 shows how the different configurations for our CODFREL ap-
proach and Regular-LSI combine according to each research question.

1.7.2 Oracle

The concept of oracle, in the context of our work, is applied to code line
sets corresponding to the ground truth or full coverage for a requirement.
In other words, this code line set represents the most accurate possible
solution corresponding to a requirement. Twenty requirements, as well as
the corresponding oracles, are provided by the game development com-
pany responsible for the design of Kromaia. Figs. 1.5 and 1.7 show key
data regarding the requirement set, although detailed source code infor-
mation is confidential. The requirements in the set were selected and
provided by the developers for being a representative collection in terms
of maintenance, and such selection criteria did not depend on dispersion
within the VGSC. We perform a fair comparison by configuring the dif-
ferent versions (code line and method granularity) of our approach and
Regular-LSI with the same requirement set mentioned, to ensure that
neither Regular-LSI nor CODFREL are studied for optimized data sets.

1.7.3 Experimental Setup

The evaluation measures the performance achieved by our approach. In
addition, we compare our approach with a baseline approach (Regular-
LSI) that achieves the best results in the literature [10]. Regular-LSI
selects the method that is most relevant to the requirement by means of
LSI. The LSI documents are methods, and the query is the requirement.

45

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

REQUIREMENT
DESCRIPTION

CODE LINES
IN

REALIZATION
(ORACLE)

NUMBER
OF

DIFFERENT
METHODS
INVOLVED

MAXIMUM GAP
LENGTH

BETWEEN
CODE LINES

R5: When the human
controlled unit is
destroyed a fail
notice is sent 4 4 ≈ 70,000

R7: The final boss
Maia is pwned
(defeated) and a
notice is sent 9 8 ≈ 70,000

R9: When every key in
a set is collected a
notice is sent

6 5 ≈ 10,000

R13: The damage amount
inflicted by an
object, the "damager",
must cause and notify
damage to an object
and its modules

40 4 ≈ 10,000

R15: The item added
last is tuned
depending on key
parameters, velocity,
area, colour, bonus
value…

20 6 ≈ 60,000

...

· VGSC Total Number of Methods: 9012
· Requirements Studied: 20
· Average Number of Terms per Requirement: 10.5

Figure 1.5: Sample containing some of the requirements in the case study and data relative
to the methods involved.

46

1.7 Evaluation

The first step involves feeding both our CODFREL approach and Regular-
LSI with each of the requirements. Since CODFREL is not a determin-
istic approach, our approach features 30 runs for each requirement as
suggested in [7], whereas Regular-LSI, which is deterministic, features
one run.

Once our approach and Regular-LSI finish processing a requirement, they
provide the solutions found for this requirement. Our CODFREL ap-
proach supplies a code fragment from various code lines that are present
in the VGSC. Regular-LSI provides a solution consisting of a set of code
lines for a complete method.

The results obtained by our approach and Regular-LSI are compared to
the oracle through a confusion matrix, or error matrix [38]. Confusion
matrices are used to study the performance achieved by a classification
system on a certain test data set. The oracle indicates which data in
that set is true or false. Confusion matrices are useful for evaluating the
results provided by an approach and the ground truth that the oracle
represents.

The confusion matrix arranges the results of the comparison into different
categories:

• True Positives (TP), which refer to the number of code lines in the
code fragment selected as a solution that are also present in the
oracle.

• False Positives (FP), which denote the number of code lines that are
present in the proposed solution but are not present in the oracle.

• False Negatives (FN), which denote the number of code lines present
in the oracle that are not present in the code fragment or complete
method marked as a solution.

Then, performance measurements are derived from the values in the con-
fusion matrix. Specifically, we create a report that includes three perfor-
mance measurements (precision, recall, and the F-measure).

47

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

• Precision is the fraction of correct code lines among the code lines
selected, according to the corresponding oracle in the result pro-
posed as a solution.

Precision =
TP

TP + FP
(1.2)

• Recall measures the number of code lines in the oracle that are
correctly retrieved over the total number of code lines proposed in
that solution.

Recall =
TP

TP + FN
(1.3)

• The F-measure corresponds to the harmonic mean of precision and
recall. It is used to evaluate accuracy and is defined as follows:

F −Measure = 2 ∗ Precision ∗Recall

Precision+Recall
(1.4)

1.7.4 Implementation Details

We have used the following libraries to implement the approach of this
work: the OpenNLP Toolkit for the Processing of Natural Language
Text [6] to develop the Natural Language Processing operations; and the
Efficient Java Matrix Library (EJML) [3] to perform LSI and SVD. The
computer used in the evaluation was a Toshiba Satellite PRo L830 laptop,
with an Intel(R) Core(TM) i5-3317U@1.7GHz processor with 4GB RAM
and Windows 8 64-bit.

The fusion operation is applied with a fusion probability (pf). Through
tuning tests, the value of pf varied changing from preliminary values, like
0.5, to 1 in order to maximize the number of new individuals produced
by fusion in each iteration of the algorithm (e.g., the change mentioned
would involve not only duplicating the individuals created through fu-
sion, but also duplicating the number of candidates to produce additional,

48

1.7 Evaluation

mutated individuals). Additional research could improve parameters like
this. The mutation operation is applied with a probability (pm) of 0.25.
The rest of the settings are detailed in Table 2. The focus of this paper is
not to tune the values to improve the performance of our approach when
applied to a specific problem. As suggested by Arcuri and Fraser [7], de-
fault values are good enough to measure the performance of search-based
techniques in the context of testing. Nevertheless, we plan to evaluate
all of the parameters of our approach in a future work. First, we started
with default values used in the literature regarding software model fea-
ture traceability [22]. However, since the objective in this work is dif-
ferent (fine-grained requirement traceability in source code) and we use
genetic operations to manipulate code fragments, the parameters are the
result of starting with those studied in the literature and then performing
preliminary tuning experiments. With the current configuration, 7 (µ)
parents are combined in pairs to create 21 new code fragments. Apart
from those new code fragments and depending on pm, up to 21 mutated
code fragments could also be created. Therefore, it is necessary to dis-
card code fragments from the population after each iteration in order to
keep the population stable, with 42 (r) being the maximum number of
candidates (those with the lower fitness values) that could be removed.

Table 1.2: CODFREL configuration parameters

Parameter description Value

Size: Population size 1000

µ: Number of parents 7

λ: Number of offspring from µ parents 21

r: Maximum number of solutions replaced

to stabilize population 42

pf : Fusion probability 1

pm: Mutation probability 0.25

In general, there are two atomic performance measures for search al-
gorithms: one regarding solution quality and one regarding algorithm
speed or search effort. In this paper, we focus on the solution quality.

49

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

Therefore, we allocated a fixed amount of wall clock time for each of the
runs of our approach. First, we ran some prior tests to determine the
time needed to converge, and then we selected the budget time based on
those tests. The allocated budget time was 1200 seconds. A prototype
of CODFREL can be found at bitbucket.org/svitusj/SCoFBReL

1.7.5 Results

Table 1.3: Precision, Recall, and F-Measure mean values and standard deviations for the
case study

Precision± (σ) Recall± (σ) F-measure± (σ)

(%) (%) (%)

CODFREL 57±30 27±20 29±13

CODFREL, Method Granularity 28±15 27±20 21±9

Regular-LSI, Best Complete Method 4±19 0.5±2 0.9±4

Regular-LSI, 10 Best Complete Methods 0.7±3 0.5±2 0.6±2

Regular-LSI, 10 Best Code Lines 0.1±0.2 9±11 0.2±0.4

In this subsection, we present the results obtained for the case study in
our approach and for Regular-LSI. Fig. 1.6 shows the charts with the
recall and precision results. For CODFREL, a dot in the graph represents
the average result (after 30 runs and due to random factors) of precision
and recall for each of the 20 requirements. In the case of Regular-LSI,
the solution for a requirement is deterministic, so there are no repetitions
and the dots in the graph represent the results after a single run for each
requirement. Table 3 shows the precision, recall, and F-measure mean
values obtained for the case study by our approach and Regular-LSI.

1.7.6 Research Question 1

To answer the first research question, it is necessary to study our COD-
FREL approach with code fragments and a Regular-LSI configuration
with a threshold value of 1, since it only selects the best complete method.

RQ1 answer. Fig. 1.6 and Table 1.3 show that CODFREL outperforms
Regular-LSI in precision, recall, and F-measure, with average values of

50

1.7 Evaluation

■ ■■

●

●

●

●

●

●

● ●

●

●

● ●
● ● ●

●
●

●

●

0 20 40 60 80 100

0

2
0

4
0

6
0

8
0

1
0
0

● CODFREL (METHOD GRANULARITY)

■ REGULAR-LSI (BEST COMPLETE METHOD)

REGULAR-LSI (10 BEST COMPLETE METHODS)

R
E

C
A

L
L
 (

%
)

0 20 40 60 80 100

0

2
0

4
0

6
0

8
0

1
0
0

● CODFREL (CODE FRAGMENTS, CODE LINE GRANULARITY)

REGULAR-LSI (10 BEST CODE LINES)

R
E

C
A

L
L
 (

%
)

■

●

●

●

● ●

● ● ●

●

●

●
● ● ●

●

●
●

●

PRECISION (%)

PRECISION (%)

■■■
 ■■■

Figure 1.6: Results for our CODFREL approach and Regular-LSI with different configu-
rations

57% in precision, 27% in recall, and 29% in F-measure. Regular-LSI
obtained average values of 4%, 0.5%, and 9% in precision, recall, and

51

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

F-measure, respectively, for the requirement set studied. The deviations
for Regular-LSI, an approach which is deterministic, occur due to perfor-
mance variations that are related to the different requirements and are
not caused by different runs.

1.7.7 Research Question 2

The second research question takes into account that, while human sub-
jects usually do not focus on a single candidate, they tend to consider no
more than 10 candidate trace links [10]. In this case, our CODFREL ap-
proach uses code fragments and Regular-LSI selects the 10 best complete
methods.

RQ2 answer. Fig. 1.6 and Table 1.3 show that CODFREL obtains
better results in recall, precision, and F-measure, with values of 27%,
57%, and 29%, respectively. In comparison, Regular-LSI gets signifi-
cantly lower results for recall (0.5%), precision (0.7%), and F-measure
(0.6%).

1.7.8 Research Question 3

The third research question studies a Regular-LSI configuration that only
selects the best method and our CODFREL approach with method gran-
ularity. This variation implies that CODFREL creates and manipulates
code fragments that include every complete method from which code
lines were selected, instead of using code line granularity.

RQ3 answer. Fig. 1.6 and Table 1.3 show that CODFREL, with method
granularity, outperforms Regular-LSI. Due to the granularity configura-
tion used, precision does not reach 30%, with an average value of 28%,
and recall and F-measure values are 27% and 21%, respectively.

52

1.8 Discussion

1.7.9 Research Question 4

The fourth research question compares the following configurations: our
approach CODFREL, with method granularity and Regular-LSI, with a
threshold of 10 complete methods.

RQ4 answer. Fig. 1.6 and Table 1.3 show that CODFREL, with method
granularity, gets better results than Regular-LSI. Method granularity
does have a remarkable impact on precision for our approach, with a
value of 28%. However, since the values obtained by Regular-LSI are
very low, the difference in the results is high, with this configuration of
Regular-LSI selecting the 10 best complete methods as possible solutions.

1.7.10 Research Question 5

The fifth research question considers these configurations: our approach
CODFREL with code fragments, and Regular-LSI with code line granu-
larity which involves treating each line as a method using a threshold of
10 code lines.

RQ5 answer. Fig. 1.6 and Table 1.3 show that CODFREL, with code
fragments, gets better results than Regular-LSI configured with code line
granularity. The granularity used by Regular-LSI significantly affects
precision, with a value of 0.1%. Regular-LSI obtains values that are low
in recall and in F-measure: 9% and 0.2%, respectively.

1.8 Discussion

The requirements were provided by one of the developers of Kromaia
before we started this research work. The requirement selection criteria
used by the developer did not depend on the requirement implementation
being condensed in just one complete method or featuring a high disper-
sion level. In fact, the criteria involved the selection of requirements
that were relevant in terms of maintenance. Most of the requirements
provided were dispersed, with the average number of methods for a dis-
persed requirement being around 5.3. Fig. 1.5 shows that, even for
requirements that include less than five lines, according to the oracles,

53

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

it is not uncommon to find four or more methods involved. In addition,
Fig. 1.7 shows that, in terms of cohesion, the realizations of the re-
quirements studied include gaps between code lines of up to 70,000 code
lines. This suggests that dispersed requirements should not be neglected
in maintenance tasks.

Regular-LSI, which was selected for currently being the best performing
IR technique, does not work properly for highly dispersed requirements
in the VGSC of the case study, and the average results obtained are not
good in the performance measures studied. The main cause for this is
the fact that Regular-LSI works in terms of complete methods to trace
requirements that are dispersed in various methods. Besides that, in
those cases featuring a method that combines code lines that are relevant
to the requisite with code lines that are not relevant, the irrelevant code
lines prevent the method from getting a higher score. For instance, in
the following requirement:

• R1: When a human unit gets damage, its armour level decreases and its

interface shows it.

There is an event (gets damage) that has a noticeable impact on an
entity known as a human unit in different contexts: the internal logics
and structure in the entity, which need to be modified; and the interface
elements that are directly related to this entity, which provide visual
feedback regarding its internal status. This requisite is dispersed in five
methods, each one of which only features an average of 13% (maximum
33%; minimum 8%) of relevant code lines for R1.

Our CODFREL approach outperforms Regular-LSI thanks to the fact
that it uses code fragments. The total number of possible code frag-
ments (2145,000) makes a thorough exploration and evaluation unfeasible.
The use of an evolutionary algorithm, however, allows our approach to
explore the search space, and it gets better results than Regular-LSI that
is configured to work with code line granularity, due to the size of the
search space and high requirement dispersion. The results show that it
is possible to use the proposed encoding and genetic operations in com-
mercial software products that are similar to Kromaia. In each iteration
of the evolutionary algorithm, the new code fragments created with the

54

1.8 Discussion

fusion operator are progressively larger, but code fragments that are re-
markably large are prone to being discarded if the code lines accumulated
do not contribute to increasing the value given to those code fragments.

There is another factor to be taken into account regarding the results:
the use of keywords. There are terms featured in requirements, which,
in spite of being relevant for such requirements, are ambiguous. In the
requirement R1, terms like "decrease", "armour", and "level" are relevant
for the requirement. "Level", however, is widely used and accepted as
a video game Domain-Specific Language term with different but equally
valid meanings: "level" could be considered as a stage or zone that should
be cleared by the player, but it could also refer to the current player
status. For that reason, "level" is relevant but ambiguous.

However, terms that are relevant but ambiguous are not discarded in
our approach since they are used (along with the keywords) to calculate
fitness values. In contrast, since keywords are terms that are both rele-
vant and unambiguous, they are given more importance in our approach.
They are not only used in fitness calculations but are also used to pro-
vide guidance in additive mutation. In R1, "decrease" and "armour"
are suitable keywords that comprise the main concepts involved by the
requirement. Additionally, we have considered the effects of guidance
in subtractive mutation, which is an operator that, in our approach, re-
moves code lines by randomly selecting them. We included a modified
operator that takes keywords into account, like additive mutation, and
tends to preserve code lines that include keywords. One possible disad-
vantage of this alternative operator is the low probability of removing
code lines that contain keywords, even if such lines are not relevant;
therefore, solution candidates with such content could not be improved
through random modifications. In comparison to the results obtained
with the first version of the operator, precision and recall increased an
average of 20% in four of the 20 requirements studied. However, for 15%
of the requirements the average results were 16% lower after using the
new operator. This data could be studied in future works to produce a
better subtractive mutation operator.

Even if CODFREL outperforms Regular-LSI, it does not achieve solu-
tions that include every code line that is relevant for the requirements.

55

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

Our analysis of the results suggests that tacit knowledge has a negative
effect on the results.

Tacit knowledge is often assumed to be known by every domain expert.
This assumption leads to a lack of documented presence of that knowl-
edge, and requirements are no exception. The tacit knowledge related to
the domain involved by requirements is usually considered and shared by
the developers, who are responsible for the VGSC as well as for provid-
ing the requirements. In the end, every aspect of the domain knowledge
(including tacit knowledge) that remains unwritten and the information
provided by requirements are present in the VGSC. Therefore, require-
ments that do not feature a detailed description that reflects all relevant
knowledge are incomplete, and the approaches searching for solutions will
experience difficulties trying to find optimal results. The following exam-
ple is a requirement that omits tacit knowledge that is actually present
in the VGSC and the solution to be found:

• R2: Shot input makes the human unit fire projectiles.

This requirement omits relevant information regarding the modular na-
ture of the VGSC featured by many entities. Units contain weaponry
modules, which contain weapons. Besides, weapons internally manage a
variable number of cannons, but only the cannons marked as "valid" are
those responsible for ultimately firing projectiles.

Since tacit knowledge is the main issue to be studied in order to achieve
better results with our approach, we plan to research it in more depth in
our future works. In order to address this subject, we intend to use re-
formulation techniques so as to expand the requirements with elaborated
descriptions provided by domain experts.

1.9 Future Work

The main issues to be addressed in future works are the eventual upgrade
of genetic operators, the re-evaluation of parameters, and research on
tacit knowledge:

56

1.10 Threats to Validity

With regard to genetic operators, it is possible that mutations involving
the removal of code lines from code fragments should be guided, like ad-
ditive mutations. In order to include such an operation, the management
of terms that are not relevant, as opposed to keywords, could be useful.

The use of different values for the collection of parameters used in our
approach could be studied in future works since tuning those values, like
the fusion probability, the mutation probability, or the number of code
fragments selected to be the parents of the next generation, could lead to
configurations having an impact on the results and the time used. Due
to the time required to test different configurations, future works should
focus on this issue in particular.

Tacit knowledge is a key issue that should also be considered in future
works. It would be necessary to expand the requirements available, and
domain experts would be required for that task. The direct participation
of domain experts would play a key role in providing additional explicit
knowledge to be used in the guidance of the evolutionary algorithm in
our CODFREL approach.

1.10 Threats to Validity

The classification for possible threats to validity in [43] reflects the nec-
essary awareness regarding the limitations of our approach. This classi-
fication covers aspects that are related to both the approach itself and
the commercial video game case study:

• Internal Validity refers to eventual issues related to existing causal
relations. There is a possible risk for code line selection to be biased
during the code fragment creation process due to the use of key-
words in the population initialization as well as in guided additive
mutations. That risk is reduced since our approach includes random
deviation measures in these selection processes.

• External Validity is mainly concerned with the actual extent to
which the results found can be generalized to case studies that are
different from Kromaia, which is the commercial video game case

57

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

study presented in this work. Two factors that increase the possibil-
ities of generalization in the VGSC are the extensive use of a strict
coding style and design patterns. These are widely used in real-time
applications that are similar to video games. Nevertheless, our re-
sults should be replicated with other case studies before assuring
their generalization.

• Construct Validity is an aspect worth taking into consideration
since there is a risk that the operations involved in our approach may
not accurately represent the desired functionalities for this research.
The use of widely accepted measures such as precision and recall
minimizes the risk described.

• Reliability deals with the possibility of the researchers influencing
both the analysis process and the data used in the approach. In
order to minimize the knowledge regarding the commercial video
game case study, the VGSC comprehends a vast number of code
lines, thus preventing requirements from being located too easily.

1.11 Related Work

A recent traceability survey [10] has identified the need for more indus-
trial case studies. This work also shows that in spite of being the most
commonly used, algebraic models (LSI and Vector Space Model) search
in solution spaces with sizes below 2500. Our work deals with an indus-
trial case study that features a significantly wide space (2145,000) to be
explored and dispersed requirements, as shown in Fig. 1.7. Therefore, we
work with code fragments instead of complete methods, and we search for
possible solutions by means of an evolutionary algorithm since this type
of algorithm has proven to be useful in large search spaces [Arcega2018].

There are works that use design documents or domain models to support
traceability [13] [27]. However, in the case study in this work, those arti-
facts were not available. Currently, video game developers are pressured
by what is called "the age of crunch" [1] and the ever-increasing high
demand of game content, which is caused by early access releases, post-
launch updated versions, DLC (Downloadable Content), and games as a

58

1.11 Related Work

service. In this context, these artifacts end up not being synchronized
or they are not even created, so approaches like CODFREL, which work
when the artifacts mentioned are not available, are necessary.

The ADAMS document management system by De Lucia et al. [15]
was used as evaluation context in trace recovery empirical experiments
through LSI. Through case studies with students, as well as different
controlled experiments, they have reinforced the empirical basis (De Lu-
cia et al. [16], [18], [17]). Also, various studies by Cleland-Huang and
colleagues, which are focused on Information Retrieval (IR)-based trace
recovery, show the use of PIN-based retrieval as a model that supports
the introduction of probabilistic trace recovery. This model was imple-
mented in their tool, Poirot (Lin et al. [29]). To a great extent, their
work focuses on accuracy improvements for their tool. The enhancements
include the localization of key phrases [45], synonymy management with
a thesaurus, and a glossary that weights the most important terms in the
project with higher values [45].

In comparison to the works mentioned above, our work makes use of LSI
to guide an evolutionary algorithm. LSI does not give values directly
to complete artifacts such as methods but rather guides the exploration
within the solution space.

The use of probabilistic models has been used by several researchers
to support trace recovery. For instance, the probabilistic topic model
Latent Dirichlet Allocation is one of the various IR models combined
by Dekhtyar et al. [19] using a voting scheme. Abadi et al. [2] pro-
posed using Probabilistic Latent Semantic Indexing and two information
theory-based concepts: Jensen-Shannon Divergence and Sufficient Di-
mensionality Reduction. Parvathy et al. [31] suggested the Correlated
Topic Model, while Getters et al. [23] proposed the Relational Topic
Model. The use of a non-centralized set of self-organized agents that
work together to extract conclusions is a swarm-like approach to trace
recovery implementation proposed by Sultanov and Huffman Hayes [39].
Similarity calculations in the Cartesian plane are also possible. Capo-
bianco et al. [12] suggested using B-Splines as Natural Language artifact
representations so that similarity would be given by the distance between
these splines on the Cartesian plane.

59

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

Unlike those works, our work searches for solutions in terms of code
fragments. These solutions could be any code line set in the source code.
Solutions of this kind are necessary in commercial contexts like the AAA
video game industry, where requirements are dispersed across several
methods.

Genetic Algorithms have been used to configure and assemble IR pro-
cesses automatically in order to support different software engineering
tasks [20], thereby positively affecting the time and resources spent on
maintenance. These approaches determine near optimal solutions for the
different IR process stages without training, and they outperform previ-
ous approaches without remarkable differences in comparison to combi-
natorial and supervised approaches. Our work also uses an evolutionary
algorithm, but it explores in a completely different way. Instead of using
the evolutionary algorithm to search for the best IR technique combina-
tion, we use the evolutionary algorithm to search the vast code fragment
solution space, which is the case for AAA commercial video game soft-
ware (2145,000, in our case study).

Other works have studied the extent to which IR techniques can provide
decision support in the context of large, industrial software engineering
tasks in terms of traceability and maintenance [40]. In these works, the
researchers noticed issues regarding the difficulties of scaling IR tech-
niques to industry data, due to latent semantic analysis. The way in
which IR-based traceability recovery tools are used by developers and
how they validate/discard correct information and false positives has
been studied in works that are focused on going beyond the performance
analysis of IR-based traceability methods [9]. The approach used in those
works suggests counting recovered traceability links in order to increase
the quality of the validation process that is carried out by the users that
are working with recovery tools. Our approach not only outperforms
Regular-LSI, but it also finds a new cause behind the inability to ob-
tain better requirement traceability results: tacit knowledge that is not
formalized when the requirements are written.

Recent works [26, 44, 5] propose the use of Neural Networks to address the
challenge of traceability. Guo et al. [26] leverage Word Embedding and
Recurrent Neural Network (RNN) models to generate trace links, which

60

1.11 Related Work

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

1 2 3 4 5 6 7 8 9 10 1112131415

· VGSC Total number of code lines: 145,914

· Horizontal Axis: VGSC, divided in 15 equal regions (10,000
contiguous code lines per region)

· Vertical Axis: Number of code lines in the requirement realization that are located in
each region

R15

Figure 1.7: Dispersion of the requirement realizations in the source code of the case study.

contain the requirements artifact semantics and the domain knowledge.
Zhao et al. [44] propose training deep neural networks to generate text-
based knowledge in software repositories in order to improve the accuracy
of TLR. The work in [5] presents some challenges in traceability and some
of their proposals consider addressing these traceability issues through
neural networks.

61

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

The above works based on Neural Networks require the existence of a
knowledge base for training. For example, in [26], the training set is
composed of 45% of the 769,366 artifacts, so this training set contains
423,151 feature vectors. However, some industrial companies do not store
enough information to create the required knowledge base for Neural Net-
works. Actually, this lack of documented knowledge has been previously
reported as the knowledge vaporization problem [41]. Nevertheless, these
domains also need to recover the traceability links, and our CODFREL
approach as well as the Regular-LSI approach can be applied for trace-
ability recovery even without a knowledge base.

1.12 Conclusions

In comparison to those generated by Regular-LSI, the solutions provided
by our approach are better starting points, assuming, however, that both
approaches need to be refined manually. The use of evolutionary algo-
rithms and code fragments improves the results obtained by Regular-LSI,
since a VGSC like the one featured in the video game case study involves
highly dispersed methods and a huge solution space. However, tacit
knowledge, which is not explicitly present in the requirements, prevents
our approach from achieving better solutions. Getting domain experts
to be more involved could make this implicit knowledge become explicit.
To facilitate the adoption of CODFREL, we have made a reference im-
plementation freely available.

Acknowledgements

This work has been partially supported by the Ministry of Economy and
Competitiveness (MINECO) through the Spanish National R+D+i Plan
and ERDF funds under the Project ALPS (RTI2018-096411-B-I00).

62

Bibliography

Bibliography

[1] IGDA, International Game Developers Association, 2018 (cit. on p. 58).

[2] A. Abadi, M. Nisenson, and Y. Simionovici. “A Traceability Technique for
Specifications”. In: Proc. 16th IEEE Int. Conf. Program Comprehension.
June 2008, pp. 103–112. doi: 10.1109/ICPC.2008.30 (cit. on p. 59).

[3] Peter Abeles. Efficient Java Matrix Library. http://ejml.org/. [Online;
accessed 9-November-2017]. 2017 (cit. on p. 48).

[4] Michael Affenzeller et al. Genetic Algorithms and Genetic Programming:
Modern Concepts and Practical Applications. 1st. Chapman & Hall/CRC,
2009. isbn: 1584886293, 9781584886297 (cit. on p. 35).

[5] Giuliano Antoniol et al. “Challenges of Traceability: The Next Ten Years”.
In: 2017 (cit. on pp. 60, 61).

[6] Apache OpenNLP: Toolkit for the processing of natural language text. https:
//opennlp.apache.org/. [Online; accessed 12-November-2017]. 2017 (cit.
on p. 48).

[7] Andrea Arcuri and Gordon Fraser. “Parameter tuning or default values? An
empirical investigation in search-based software engineering”. In: Empirical
Software Engineering 18.3 (2013), pp. 594–623. issn: 1573-7616. doi: 10.
1007/s10664-013-9249-9 (cit. on pp. 47, 49).

[8] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-
trieval: The Concepts and Technology Behind Search. 2nd. USA: Addison-
Wesley Publishing Company, 2008, pp. 134–144. isbn: 9780321416919 (cit.
on p. 29).

[9] Gabriele Bavota et al. “Enhancing software artefact traceability recovery
processes with link count information”. In: Information and Software Tech-
nology 56.2 (2014), pp. 163–182. issn: 0950-5849. doi: https://doi.org/
10.1016/j.infsof.2013.08.004 (cit. on p. 60).

63

https://doi.org/10.1109/ICPC.2008.30
http://ejml.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/https://doi.org/10.1016/j.infsof.2013.08.004
https://doi.org/https://doi.org/10.1016/j.infsof.2013.08.004

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

[10] Markus Borg, Per Runeson, and Anders Ardö. “Recovering from a decade:
a systematic mapping of information retrieval approaches to software trace-
ability”. In: Empirical Software Engineering 19.6 (Dec. 1, 2014), p. 1565.
issn: 1573-7616. doi: 10.1007/s10664-013-9255-y (cit. on pp. 28, 30, 45,
52, 58).

[11] G. Capobianco et al. “On the role of the nouns in IR-based traceability
recovery”. In: Proc. IEEE 17th Int. Conf. Program Comprehension. May
2009, pp. 148–157. doi: 10.1109/ICPC.2009.5090038 (cit. on p. 39).

[12] G. Capobianco et al. “Traceability Recovery Using Numerical Analysis”. In:
Proc. 16th Working Conf. Reverse Engineering. Oct. 2009, pp. 195–204. doi:
10.1109/WCRE.2009.14 (cit. on p. 59).

[13] Jane Cleland-Huang, Jane Huffman Hayes, and J.M. Domel. “Model-based
traceability”. In: May 2009, pp. 6–10. isbn: 978-1-4244-3741-2. doi: 10.
1109/TEFSE.2009.5069575 (cit. on p. 58).

[14] Lawrence Davis. Handbook of Genetic Algorithms. New York: Van Nostrand
Reinhold, 1991 (cit. on p. 35).

[15] A. De Lucia et al. “ADAMS Re-Trace: A Traceability Recovery Tool”. In:
Proc. Ninth European Conf. Software Maintenance and Reengineering. Mar.
2005, pp. 32–41. doi: 10.1109/CSMR.2005.7 (cit. on p. 59).

[16] A. De Lucia et al. “COCONUT: COde COmprehension Nurturant Using
Traceability”. In: Proc. 22nd IEEE Int. Conf. Software Maintenance. Sept.
2006, pp. 274–275. doi: 10.1109/ICSM.2006.19 (cit. on p. 59).

[17] Andrea De Lucia, Rocco Oliveto, and Genoveffa Tortora. “Assessing IR-
based traceability recovery tools through controlled experiments”. In: Em-
pirical Software Engineering 14.1 (2009), pp. 57–92. issn: 1573-7616. doi:
10.1007/s10664-008-9090-8 (cit. on p. 59).

[18] Andrea De Lucia et al. “Recovering Traceability Links in Software Arti-
fact Management Systems Using Information Retrieval Methods”. In: ACM
Trans. Softw. Eng. Methodol. 16.4 (Sept. 2007). issn: 1049-331X. doi: 10.
1145/1276933.1276934 (cit. on p. 59).

64

https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1109/ICPC.2009.5090038
https://doi.org/10.1109/WCRE.2009.14
https://doi.org/10.1109/TEFSE.2009.5069575
https://doi.org/10.1109/TEFSE.2009.5069575
https://doi.org/10.1109/CSMR.2005.7
https://doi.org/10.1109/ICSM.2006.19
https://doi.org/10.1007/s10664-008-9090-8
https://doi.org/10.1145/1276933.1276934
https://doi.org/10.1145/1276933.1276934

Bibliography

[19] A. Dekhtyar et al. “Technique Integration for Requirements Assessment”.
In: Proc. 15th IEEE Int. Requirements Engineering Conf. (RE 2007). Oct.
2007, pp. 141–150. doi: 10.1109/RE.2007.17 (cit. on p. 59).

[20] B. Dit. “Configuring and Assembling Information Retrieval Based Solutions
for Software Engineering Tasks”. In: Proc. IEEE Int. Conf. Software Main-
tenance and Evolution (ICSME). Oct. 2016, pp. 641–646. doi: 10.1109/
ICSME.2016.85 (cit. on p. 60).

[21] Bogdan Dit et al. “Feature location in source code: a taxonomy and survey”.
In: Journal of Software: Evolution and Process 25.1 (2013), pp. 53–95. issn:
2047-7481. doi: 10.1002/smr.567 (cit. on p. 38).

[22] Jaime Font et al. “Leveraging variability modeling to address metamodel
revisions in Model-based Software Product Lines”. English. In: Computer
Languages, Systems & Structures 48.Complete (2017), pp. 20–38. doi: 10.
1016/j.cl.2016.08.003 (cit. on p. 49).

[23] M. Gethers et al. “On integrating orthogonal information retrieval methods
to improve traceability recovery”. In: Proc. 27th IEEE Int. Conf. Software
Maintenance (ICSM). Sept. 2011, pp. 133–142. doi: 10.1109/ICSM.2011.
6080780 (cit. on p. 59).

[24] Arbi Ghazarian. “A Research Agenda for Software Reliability”. In: IEEE
Reliability Society 2009 Annual Technology Report (2010) (cit. on p. 28).

[25] O. C. Z. Gotel and C. W. Finkelstein. “An analysis of the Requirements
Traceability Problem”. In: Proc. IEEE Int. Conf. Requirements Engineering.
Apr. 1994, pp. 94–101. doi: 10.1109/ICRE.1994.292398 (cit. on p. 28).

[26] Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Semantically Enhanced
Software Traceability Using Deep Learning Techniques”. In: Proceedings
of the 39th International Conference on Software Engineering. ICSE ’17.
Buenos Aires, Argentina: IEEE Press, 2017, pp. 3–14. isbn: 978-1-5386-
3868-2. doi: 10.1109/ICSE.2017.9 (cit. on pp. 60, 62).

[27] Jin Guo et al. “Towards an Intelligent Domain-specific Traceability Solu-
tion”. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ASE ’14. Vasteras, Sweden: ACM, 2014,

65

https://doi.org/10.1109/RE.2007.17
https://doi.org/10.1109/ICSME.2016.85
https://doi.org/10.1109/ICSME.2016.85
https://doi.org/10.1002/smr.567
https://doi.org/10.1016/j.cl.2016.08.003
https://doi.org/10.1016/j.cl.2016.08.003
https://doi.org/10.1109/ICSM.2011.6080780
https://doi.org/10.1109/ICSM.2011.6080780
https://doi.org/10.1109/ICRE.1994.292398
https://doi.org/10.1109/ICSE.2017.9

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

pp. 755–766. isbn: 978-1-4503-3013-8. doi: 10.1145/2642937.2642970 (cit.
on p. 58).

[28] Thomas K Landauer, Peter W Foltz, and Darrell Laham. “An introduction
to latent semantic analysis”. In: Discourse processes 25.2-3 (1998), pp. 259–
284 (cit. on pp. 28, 38, 43).

[29] J. Lin et al. “Poirot: A Distributed Tool Supporting Enterprise-Wide Au-
tomated Traceability”. In: Proc. 14th IEEE Int. Requirements Engineering
Conf. (RE’06). Sept. 2006, pp. 363–364. doi: 10.1109/RE.2006.48 (cit. on
p. 59).

[30] Dapeng Liu et al. “Feature Location via Information Retrieval Based Fil-
tering of a Single Scenario Execution Trace”. In: Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software Engi-
neering. ASE ’07. Atlanta, Georgia, USA: ACM, 2007, pp. 234–243. isbn:
978-1-59593-882-4. doi: 10.1145/1321631.1321667 (cit. on p. 38).

[31] Anju G. Parvathy, Bintu G. Vasudevan, and Rajesh Balakrishnan. “A Com-
parative Study of Document Correlation Techniques for Traceability Analy-
sis”. In: ICEIS 2008 - Proceedings of the Tenth International Conference on
Enterprise Information Systems, Volume ISAS-2, Barcelona, Spain, June
12-16, 2008. 2008, pp. 64–69 (cit. on p. 59).

[32] Denys Poshyvanyk et al. “Feature Location Using Probabilistic Ranking
of Methods Based on Execution Scenarios and Information Retrieval”. In:
IEEE Transactions on Software Engineering 33.6 (June 2007), pp. 420–432.
issn: 0098-5589. doi: 10.1109/TSE.2007.1016 (cit. on p. 38).

[33] P. Rempel and P. Mäder. “Preventing Defects: The Impact of Requirements
Traceability Completeness on Software Quality”. In: IEEE Transactions on
Software Engineering 43.8 (Aug. 2017), pp. 777–797. issn: 0098-5589. doi:
10.1109/TSE.2016.2622264 (cit. on p. 28).

[34] Meghan Revelle, Bogdan Dit, and Denys Poshyvanyk. “Using Data Fusion
and Web Mining to Support Feature Location in Software.” In: ICPC. 2010,
pp. 14–23. isbn: 978-0-7695-4113-6 (cit. on p. 38).

66

https://doi.org/10.1145/2642937.2642970
https://doi.org/10.1109/RE.2006.48
https://doi.org/10.1145/1321631.1321667
https://doi.org/10.1109/TSE.2007.1016
https://doi.org/10.1109/TSE.2016.2622264

Bibliography

[35] Julia Rubin and Marsha Chechik. “A survey of feature location techniques”.
In: Domain Engineering. Springer, 2013, pp. 29–58 (cit. on p. 39).

[36] Amit Singhal et al. “Modern information retrieval: A brief overview”. In:
IEEE Data Eng. Bull. 24.4 (2001), pp. 35–43 (cit. on p. 43).

[37] George Spanoudakis and Andrea Zisman. “Software Traceability: a Roadmap”.
In: Handbook Of Software Engineering And Knowledge Engineering: Vol 3:
Recent Advances. World Scientific, 2005, pp. 395–428 (cit. on p. 28).

[38] Stephen V. Stehman. “Selecting and interpreting measures of thematic clas-
sification accuracy”. In: Remote Sensing of Environment 62.1 (1997), pp. 77–
89. issn: 0034-4257. doi: http://dx.doi.org/10.1016/S0034-4257(97)
00083-7 (cit. on p. 47).

[39] H. Sultanov and J. H. Hayes. “Application of Swarm Techniques to Re-
quirements Engineering: Requirements Tracing”. In: Proc. 18th IEEE Int.
Requirements Engineering Conf. Sept. 2010, pp. 211–220. doi: 10.1109/
RE.2010.33 (cit. on p. 59).

[40] Michael Unterkalmsteiner et al. “Large-scale information retrieval in soft-
ware engineering - an experience report from industrial application”. In:
Empirical Software Engineering 21.6 (Dec. 1, 2016), p. 2324. issn: 1573-
7616. doi: 10.1007/s10664-015-9410-8 (cit. on p. 60).

[41] Jan Salvador van der Ven et al. “Design Decisions : The Bridge between
Rationale and Architecture”. In: 2006 (cit. on p. 62).

[42] R. Watkins and M. Neal. “Why and How of Requirements Tracing”. In:
IEEE Software 11.4 (July 1994), pp. 104–106. issn: 0740-7459. doi: 10.
1109/52.300100 (cit. on p. 28).

[43] Claes Wohlin et al. Experimentation in software engineering. 2012 (cit. on
p. 57).

[44] Yu Zhao et al. “Using Deep Learning to Improve the Accuracy of Require-
ments to Code Traceability”. In: Challenges of Traceability: The Next Ten
Years. 2017, pp. 22–24 (cit. on pp. 60, 61).

67

https://doi.org/http://dx.doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/http://dx.doi.org/10.1016/S0034-4257(97)00083-7
https://doi.org/10.1109/RE.2010.33
https://doi.org/10.1109/RE.2010.33
https://doi.org/10.1007/s10664-015-9410-8
https://doi.org/10.1109/52.300100
https://doi.org/10.1109/52.300100

Chapter 1. A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a
Commercial Video Game Case Study

[45] Xuchang Zou, Raffaella Settimi, and Jane Cleland-Huang. “Improving au-
tomated requirements trace retrieval: a study of term-based enhancement
methods”. In: Empirical Software Engineering 15.2 (2010), pp. 119–146.
issn: 1573-7616. doi: 10.1007/s10664-009-9114-z (cit. on p. 59).

68

https://doi.org/10.1007/s10664-009-9114-z

Chapter 2

An Evolutionary Approach for
Generating Software Models:

The case of Kromaia in Game
Software Engineering

In the context of Model-Driven Engineering applied to video games,
software models are high-level abstractions that represent source code im-
plementations of varied content such as the stages of the game, vehi-
cles, or enemy entities (e.g., final b osses). I n t his work, we p resent our
Evolutionary Model Generation (EMoGen) approach to generate software
models that are comparable in quality to the models created by human de-
velopers. Our approach is based on an evolution (mutation and crossover)
and assessment cycle to generate the software models. We evaluated the
software models generated by EMoGen in the Kromaia video game, which
is a commercial video game released on Steam and PlayStation 4. Each
model generated by EMoGen has more than 1000 model elements. The
results, which compare the software models generated by our approach
and those generated by the developers, show that our approach achieves
results that are comparable to the ones created manually by the developers
in the retail and digital versions of the video game case study. However,
our approach only takes five h ours o f u nattended t ime i n comparison to
ten months of work by the developers. We perform a statistical analysis,
and we make an implementation of EMoGen readily available.

71

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

2.1 Introduction

Game Software Engineering (GSE) is a research area that was compared
with classic Software Engineering for the first time by McShaffry in 2003
[43]. A recent survey, published in 2010, showed an overview of GSE
research works and described the increasing interest in GSE [3]. Until
now, GSE works have focused on issues like Requirement Traceability,
but, due to the newness of this area, there are fields of study that remain
unexplored.

As the survey mentioned above showed, Model-Driven Engineering (MDE)
applied to video games is uncommon and, in general, is focused on gen-
erating source code from pre-existing models [52]. In the following years,
subsequent works have continued focusing on the generation of source
code from models [46, 47, 60, 73].

Some of the above MDE works [52, 73] use UML as the modelling lan-
guage, one MDE work [60] uses process models, while the rest of them
[46, 47] use Domain-Specific Modelling Languages (DSL). The major ad-
vantage of modelling languages is that models use concepts that are much
less bound to the underlying implementation technology, like video game
engines such as Unreal [23] or Unity [65], and are much closer to the
problem domain (the content of the video game) related to most popular
programming languages (e.g., C++) [56]. This notion of "model" should
not be confused with "mesh" or "polygon mesh", which are terms used
in computer graphics and video games for the visual representation of
3D shapes/geometry.

In this work, we present our Evolutionary Model Generation (EMoGen)
approach to generate software models that are comparable in quality
to the models created by human developers. Automatically generating
human-competitive software models is a challenging task. Fully achiev-
ing it spans the creation of model elements, the initialization of their
properties, and their relationships with each other. Moreover, the result-
ing models must be valid, which includes satisfying modeling constraints.
Finally, the human-competitive aspect is only achieved if the resulting
models are comparable to those produced by software engineers for the
same task at hand.

72

2.1 Introduction

To generate the software models, our EMoGen approach takes an initial
population of software models as input. These initial models may be ran-
domly generated or may also be models that were previously generated
by software engineers. Then, the genetic operations of EMoGen, which
are mutation and crossover, evolve the population. Invalid models are
fixed by means of repair operations. The evolved models are assessed by
means of a fitness function. This evolution and assessment cycle is re-
peated until a stop condition is met. The output of EMoGen is a ranking
of generated models.

GAME ELEMENTS

A - ENEMY BOSS (SERPENT)

B - PROJECTILES

C - ASTEROIDS

D - SCENERY / ARCHITECTURE

E - HUMAN PLAYER SPACESHIP

F - DISTANT PLANET

G - BASIC ENEMIES

A

C E D

B

F G

Figure 2.1: Screenshot showing game content in Kromaia.

The case study for our work are the game characters at the end of each
stage of the video game Kromaia: final bosses. This video game was
released worldwide in both physical and digital versions for PC and
PlayStation 4. In the context of video games, bosses are particularly
powerful adversaries that are generally much stronger than the rest of
the enemies in the video game. Usually, the player must overcome them

73

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

at the end of a stage or level. Three-dimensional space simulation titles,
such as the case study, include content like: a spaceship controlled by
a human player; architecture, buildings or celestial bodies; a repertory
of bosses and basic enemies; and projectiles that are fired by both the
human player and the enemies.

Figure 2.1 shows this game content in the context of a Kromaia playing
session. Each of the stages or levels involves flying from a starting point
to a certain destination, and the player spaceship must reach the goal
before being destroyed. The stage implies exploring floating structures,
avoiding asteroids and finding items along the route, which is protected
by basic enemies (Figure 2.1, G): ships and creatures that try to damage
the player unit by firing projectiles that damage the player spaceship
(Figure 2.1, E). Basic enemies vary in anatomy and weaponry, but are
significantly weaker than the player spaceship, in terms of endurance
and firepower. In case that the player manages to reach the destination,
the final boss (Figure 2.1, A) corresponding that stage appears, and it
must be defeated in order to complete the stage. Bosses differ from basic
enemies in some aspects:

• They are huge in comparison to the player spaceship or basic ene-
mies. An average boss is 50 times larger than the player spaceship.

• Bosses tend to be more complex in terms of anatomical structure.
They include mobile parts, and the nexuses that connect two parts
may behave as joints or even strings.

• They use several powerful weapons that are distributed along the
parts that form their structure or body. In contrast, basic enemies
use one or two frontal weapons.

• Bosses include in their structure special parts, which are the only
damageable elements of their bodies. The player must locate these
parts and destroy them, since it is the only way to defeat a boss.

The final bosses of the video game Kromaia are specified with the Shooter
Definition Model Language (SDML). SDML is a DSL model for the video

74

2.1 Introduction

game domain. Specifically, SDML defines aspects included in video game
entities:

• The anatomical structure, including which parts are used in it, their
physical properties, and how they are connected to each other.

• The amount and distribution of vulnerable parts, weapons, and de-
fenses in the structure/body of the character.

• The movement behaviours associated to the whole body or its parts.

This modeling language has concepts such as hulls, links, weak points,
weapons, and AI components. The top of Figure 3.1 depicts an excerpt of
the SDML that specifies one of the bosses of Kromaia (see the bottom of
Figure 3.1). Each model element (e.g., Hull Head) instantiates a concept
(e.g., Hull) of the modeling language in order to specify the boss. More
can be learned about the SDML model of Figure 3.1 in the following
video: https://youtu.be/Vp3Zt4qXkoY

Our evaluation considers different starting points for our approach (the
initial population of software models), ranging from randomly initialized
models to models generated by software engineers. Models generated by
software engineers are the most promising starting points; however, they
come at a cost for software engineers. In contrast, random models reverse
the pros and cons. The baseline is Random Search, which in the past
[14] has proven to outperform more sophisticated algorithms, and is a
common sanity check practice in the Search-based Software Engineering
[30] community. To evaluate the results, we use measurements studied
in the scientific literature of video games: Completion, Duration, Uncer-
tainty, Killer Moves, Permanence, and Lead Change. We also perform a
statistical analysis to provide evidence of the significance of the results.

The results show that our approach produces human-competitive soft-
ware models for the content (final bosses) of a commercial video game.
On average, these software models have about 1300 model elements.
They can be produced in five hours of unattended time, which is a signifi-
cant reduction in time compared to ten months of work by the video game

75

https://youtu.be/Vp3Zt4qXkoY

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

developers, as the Kromaia’s Version Control System shows 1. What is
specially relevant is that these human-competitive models are achieved in
the most positive scenario for software engineers: the seeds are random
models. This means that software engineers do not have to manually
generate the initial population of software models.

This is a step forward for Genetic Programming [38], where programs
are evolved to fit a specific task, in the context of MDE. This paper
contributes to the rise of what we call Genetic Modeling, and in this
case, models are evolved for video game content in the particular case
of our evaluation. Furthermore, this acceleration of video game content
generation is also relevant for software developers of video games since
they face the challenge of what is called the age of crunch [1]. There is an
ever-increasing high demand for game content that is derived from early
access releases, post-launch updates, downloadable content, and games
as a service.

We make an open-source implementation2 of EMoGen available as well
as two model examples to facilitate the reproduction of the results. Even
though this implementation is adapted to Kromaia, our approach in-
cludes general ideas that could work in other domains, and therefore
make EMoGen useful for encouraging Genetic Modeling.

The structure used in this paper is the following: Section 2.2 summarizes
related works. Section 2.3 presents Model-Driven Engineering for Video
Games. Section 2.4 describes our EMoGen approach. Section 3.5 deals
with evaluation. Section 2.6 presents the discussion. Section 2.7 describes
the threats to validity, and Section 8 presents the conclusion of the paper.

1Confirmed by the developers: two hours per day, including the time spent by real players on
tests.

2https://bitbucket.org/svitusj/EMoGen

76

https://bitbucket.org/svitusj/EMoGen

2.2 Related Work

SERPENT SDML MODEL

SERPENT BOSS

…

VITAL 6

HULL HEAD HULL WEAK 6

…

…
…LINK 5 … WEAPON TAIL

…
CANNON TAIL 1 CANNON TAIL 2

1

3

2

4

Figure 2.2: SDML model of a boss (top) and the boss at run-time (bottom).

2.2 Related Work

This work is about generating software models using our EMoGen ap-
proach. Our evaluation is in the context of the video game content
(bosses) of Kromaia. Therefore, our EMoGen approach generates mod-
els of Kromaia bosses. In this section, we discuss: 1) works that address
game software engineering from the MDE community; and 2) works that
address video game content generation. Video game content generation
is also know as procedural content generation in the literature. Finally,
we present an analysis of the research gap.

2.2.1 MDE and Game Software Engineering

Platform independence is one of the potential benefits of using models as
the main artifact for software development. The diversity of platforms
that video game developers must deal with has motivated most of the
research works that combine software models and the domain of video
games.

77

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

The 2010 survey of Software Engineering Research for Computer Games
[3] identified only one work that applied Model-Driven Development to
video games [52]. That work coined the term “Model-Driven Game De-
velopment" and presented a first approach to 2D platform game 3 proto-
typing through Model-Driven Development. Specifically, they used UML
classes and state diagrams that were extended with stereotypes, and a
model-to-code transformation to generate C++ code.

The research by Núñez et al. [46, 47] presents model-driven approaches
that are intended to minimize errors, time, and cost in multi-platform
video game development. The work in [46] proposes a Domains-Specific
Language, named Gade4all, and focuses on tablet and smartphone-oriented
games. Solís-Martínez et al. [60] suggest the use of business process mod-
els as the modeling language for video games. Specifically, they focus on
the logic behind game loops in mobile games. In another work, Usman
et al. [73] propose a model-driven product-line approach that focuses
on multi-platform (Android and Windows Phone) mobile game develop-
ment and maintenance. They use a feature model to configure the UML
use-case, class, and state machine diagrams.

Although the details are different, the above works share a common as-
sertion: in the domain of video games, automated code generation from
software models has the potential to significantly reduce the development
effort and cost. Paradoxically, platform independence is an issue that is
being addressed by widely used technologies such as Unity [65] and Un-
real Engine [23] and is leading developers to be less concerned with this
issue in this particular domain.

In the intersection between software models and evolutionary computa-
tion, Williams et al. [76] use an evolutionary algorithm to search for de-
sirable game character behaviours in a text-based video game that plays
unattended combats and that outputs an outcome result. The character
behaviour is defined using a Domain-Specific Language. The combats are
managed internally and are only driven by behaviour parameters, with-
out taking into account a spatial environment, real-time representation,
or visual feedback (which takes into consideration the physical interac-

3One of the first genres in video game history. In platform games, the main character climbs and
jumps between suspended platforms while avoiding enemies/obstacles.

78

2.2 Related Work

tion of the characters, variation in the properties, etc.). However, the
case study is a simplified text game. In addition, [76] deals with game
parameter adjustment, that is, the work does not address the generation
of software models.

Another work that focuses on the intersection between software models
and evolutionary computation is Avida-MDE [28], which generates state
machines that describe the behaviour of one of the classes of a software
system (Adaptive Flood Warning System case study). The resulting state
machines comply with developer requirements (scenarios for adaptation).
Instead of generating whole models, Avida-MDE extends already existing
models (object models and state machines) with new state machines that
support new scenarios. The work in [28] does not report the size of the
generated state machines; however, the ones shown in the paper are
around 50 model elements, which is significantly smaller than the more
than 1000 model elements of the models of a commercial video game such
as Kromaia.

2.2.2 Procedural Content Generation

Assessment class

Level layouts

Scenarios Items

Game Rules

Direct InteractiveSimulation-based

[22]

[19]

[31][30]
[27]

[20]

[43]

[28]

[34][33][32]

[21]

[18][17]

[44]

[29][26]

[42][41]

[25]

[40]

[23]

[39][38][37][36]

[24]

[35]

Figure 2.3: Overview of the PCG related work.

Figure 2.3 shows the works of the video game research community that
address procedural content generation (PCG). All of these works generate
part of the content of video games using either evolutionary computation

79

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

(15 of 28) or machine learning (8 of 28). They generate content for the
following parts of games.

Game rules [33, 69, 18, 59, 55]. These are the core of the game and
changing them could result in a new game. To generate game rules,
research works combine rules from existing games, such as Checkers or
Pac-Man. The results of these works are mainly obtained at the scale of
board or grid-based games.

Level Layouts. These are generated by combining different pre-existing
design elements of levels, such as terrain, platforms, items, non-player
characters. Research works achieve results at the scale of games such as
a clone of Super Mario Bros, which is adapted for research, or Quake, a
shooter game. [67, 49, 61, 35, 62, 74, 54, 51, 45, 40]

Scenarios. These cover the structure of both puzzles [48, 9, 58] and
maps/terrains [11, 22, 68, 41, 10]. These research works have been ap-
plied in grid-based puzzles. In the case of maps/terrains, these works
have been applied in grid-based maps and heightmap terrains.

Items [31, 42, 32, 72, 53] include content such as weapons or buildings.
Items are mostly generated by varying the properties of the items them-
selves. Research works create similar, but different, items in order to
enrich players’ experience. These works achieve results at the scale of
games such as Galactic Arms Race, which is an indie development.

Furthermore, in Figure 2.3, we classify the works in relation to their type
of assessment following the Togelius’ classification. Togelius et al. [70]
classified assessment as direct, simulation-based, or interactive. Direct
assessment is depicted as a red square in Figure 2.3 and uses features
from the generated content to obtain a fitness value. Simulation-based
assessment is depicted as a blue triangle and is based on artificial agents
playing part of the game to evaluate the content. Finally, interactive
assessment, which is depicted as an orange circle, involves the participa-
tion of real players scoring their gameplay explicitly or implicitly. The
works with no defined assessment criteria could not be classified because
they are surveys [74, 64] or they are not explained [59, 72]. They are
represented in Figure 2.3 without a geometric classification.

80

2.2 Related Work

2.2.3 Analysis of the research gap

There is a trend at the intersection of MDE and game software engi-
neering (see subsection 2.2.1) where research works focus on achieving
platform independence by means of the abstraction of software models.
These works propose automation to generate the implementation code
for different platforms from the models. However, none of these works
have explored the generation of software models in the context of video
games. In that context, generating software models results in generating
game content.

In the video game research community (see subsection 2.2.2), research
works explicitly address the generation of game content. So far, these
works have succeeded in varying properties (works on items) and recom-
bining pre-existing assets (works on game rules, level layouts, and sce-
narios). However, none of the works have leveraged models to generate
game content.

Our work explores the gap of generating game content by leveraging
software models. Our EMoGen approach evolves models and guides the
evolution with a fitness function that uses the model interpreter for vali-
dation purposes and a game simulation which includes domain knowledge
regarding the rules, the mechanics, and the course of a playing session.
Leveraging a model interpreter to generate content is one of the differ-
ences between our work and the previous works.

Our work achieves successful results at the scale of contemporary video
games such as Kromaia, while none of the previous works address con-
temporary games, and most of them address academic mobile games.
Compared to content generation works, our work addresses a different
part of games: final bosses. Our work is not limited to varying proper-
ties as previous works on item generation. Furthermore, our work could
be applied in settings where previous assets are not available: works on
game rules, level layouts, and scenarios require the existence of previous
assets.

81

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

2.3 Model-Driven Engineering for Video Games: The
Kromaia Case

This section gives background on the role of models in Kromaia. Model-
Driven Engineering (MDE) [37] aims to facilitate the development of
complex systems by using models as the cornerstone of the software de-
velopment process. Models are built in accordance with a metamodel
that embodies the particularities and rules of a specific domain, for-
malizing what is valid and what is not when building a model for that
metamodel. Models are used to formalize a system and capture each of
its particularities. Then, those models can be used to reason about the
system, perform validations, or transform it into different metalanguages,
source code, or even run-time objects.

In the case of Kromaia, models are built against the Shooter Defini-
tion Model Language (SDML), a Domain-Specific Language created by
Kraken Empire, which is the company that developed Kromaia. SDML
allows for the definition of every element that will be present in the game,
including worlds, vehicles, creatures, missions, enemies, etc. SDML is
built using Ecore, the reference implementation of the Essential Meta
Object Facility (EMOF) [44], which is the standard metalanguage pro-
posed by the Object Management Group (OMG) to build metamodels.

Kromaia was developed with a custom video game engine, created by the
company, that acts as a framework in the context of the video game ar-
chitecture, as shown in Figure 2.4. This framework allows the developers
to add new content in two different ways:

• Programming, making use of the Application Programming Inter-
face (API) provided by the framework.

• Software Models, which are created using SDML and translated
to its programming equivalent at run-time by an interpreter that is
used by the engine (shown in Figure 2.4).

The bottom of Figure 3.1 shows a final boss that is included in the video
game case study. Examples of the SDML concepts used in bosses are the
following:

82

2.3 Model-Driven Engineering for Video Games: The Kromaia Case

PROPRIETARY CUSTOM ENGINE

FRAMEWORK

OGRE
RENDERING

https://www.ogre3d.org

BULLET
PHYSICS

https://pybullet.org

 ●●●

C++

PROGRAMMING

INTERPRETER
MODEL TO C++

RUN-TIME OBJECTS

SDML

MODEL LANGUAGE
CONTENT CREATION

EXTERNAL LIBRARIES

VIDEO GAME DOMAIN

Figure 2.4: The different architecture layers in Kromaia, the video game case study.

Hulls and Links: Hulls (see circle 1 of Figure 3.1) are rigid bodies or
solid objects that shape the structure of entities such as bosses. Hulls
are connected via configurable nexuses, called links (circle 2 of Figure
3.1). Hulls and links define both the anatomical hierarchy and physics
for the boss. Through different arrangement and flexibility settings, links
determine whether a boss includes mobile structures, rigid parts, or even
complex limbs that resemble tentacles.

Weak Points: Weak points (circle 3 of Figure 3.1) are concepts that
are characterized by the fact that they can be damaged. Weak points are
attached to hulls and they could optionally be arranged in layers to be
unlocked as the player, who is the opponent of the boss, destroys them.

Weapons: Weapons (circle 4 of Figure 3.1) are objects that could in-
flict damage on direct contact, firing bullets, launching smart homing
projectiles, or tracing rays/beams. These four kinds correspond to the
weapon types used in Kromaia. These weapons automatically aim at
targets (human players) since they involve AI behaviours.

83

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

AI components: The behaviour patterns shown by bosses during a
battle are defined by Artificial Intelligence components. These elements
do not have a graphical representation, so they are not highlighted in
Figure 3.1. An AI module included in a boss may involve one or more of
these concepts, suiting different battle situations or describing flocking
behaviours.

The creation of game content in Kromaia is performed across four differ-
ent stages using the concepts of SDML: Creative Design, Spatial Orga-
nization, Behaviour Specification, and Equipment Balance.

Creative Design: This is out of the scope of this work. Creative Design
considers decisions from an artistic point of view. Therefore, it also in-
volves concept art, texturing, and color palette selection, since the design
must adjust to the art direction. This Creative Design is mostly related
to texture files, which are a few of the properties of some elements of
SDML.

What our work does consider for the case study are the following technical
stages of bosses that are addressed by means of SDML.

1 Spatial Organization: The specification for the anatomy that char-
acterizes a boss is defined at this level. Spatial Organization produces
a hierarchy that makes bosses resemble chains, trees, rings, quadrupeds,
bipeds, and an unlimited range of structures that are similar to those
examples or that are combinations of them. This specification makes the
hierarchy possible since it includes the hull set that is present in the boss
and the links that connect them, which may vary in nature and use (e.g.,
ropes or fixed joints).

2 Behaviour Specification: At this point, it is assumed that the spa-
tial organization for the boss is complete since Behaviour Specification
revolves around the means that the boss will use for moving between
target locations, exploring the environment, chasing enemies, or dodging
attacks. Therefore, anatomical constraints may not be compatible with
certain behaviours. During this stage, the developers assign different ar-
tificial intelligence behaviours in order to match game experience needs
and agility requirements.

84

2.4 Our EMoGen Approach

3 Equipment Balance: The last stage focuses on weak point and
weapon distribution. Both the user experience and the difficulty as-
sociated to the boss are heavily influenced by the inclusion of different
defense/attack items and the hulls to which they are attached. In ad-
dition, the weapon and weak point distribution affects and limits the
possible or even valid strategies that human players could adopt to try
to defeat the boss.

Even without Creative Design, the generation of boss models poses a
challenge that exceeds the capabilities of systematic approaches. A boss
model, without considering Creative Design, requires more than 1000
model elements. In an optimistic scenario where properties are ignored
and model elements can be enabled or disabled, the resulting search space
has 21000 different possibilities. Trying to assess every single model is not
feasible, and, therefore, our EMoGen approach relies on an evolutionary
algorithm to explore the search space.

2.4 Our EMoGen Approach

This section presents our EMoGen approach, which leverages evolution-
ary computation to generate human-competitive software models. Figure
3.2 shows the Evolutionary Algorithm (EA) that evolves a population of
software models (models that follow our encoding) through genetic oper-
ations. First, the initial seeds are used to generate an initial population.
Then, the population is assessed using the fitness function. Next, the
population is evolved by applying genetic operators. This process (as-
sessment + evolution) is repeated until the stop condition is met. Then,
the population is decoded into models that are ready to be used.

When applying EMoGen to the Kromaia case study, we encode the mod-
els for the final bosses that are faced at the end of each level that are
present in the video game. These models include the Spatial Organiza-
tion, the Behaviour Specification, and the Equipment Balance of each of
the final bosses (see Section 2.3).

85

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

POPULATION ASSESSED
POPULATION

INITIAL
SEEDS

MODEL
[STOP]

[NOT STOP]

GENERATE
INITIAL

POPULATION

FITNESS

STOP
CONDITION?

CROSSOVERMUTATION

DECODING

REPAIR

SEED STRATEGY

GENETIC OPERATIONS

Figure 2.5: Overview of the EMoGen Approach.

2.4.1 Fitness of the EMoGen Approach

The objective of the fitness function in our EMoGen approach is to assess
the quality of each individual as a model. This is done by taking into
account the validity of the model and a game simulation that includes
Domain Knowledge:

Validity: First, our approach checks the model in search of inconsisten-
cies that would lead to classifying it as not being valid for use, hence
assigning a fitness value of 0.

Domain Knowledge: Once the models are considered valid, our ap-
proach determines the suitability of the model. This is done by using a
game simulation that takes into account domain knowledge that is re-
lated to the elements present in a battle that involves a human player and
a boss. It considers aspects such as the weaponry used by each of them
and the differences between the two entities in terms of agility, speed,
endurance, or size.

When applying EMoGen to the Kromaia case study, the validity of the
models is performed by a run-time interpreter that is part of the game.
The boss models generated by either human designers or our approach
may not be valid due to inconsistent data that is related to the different
stages (see Section 2.3). For instance, it is not valid to indicate in the
model that a certain hull is connected to another hull that is not even
present in that model. It is also invalid to denote a behaviour leading
role for a hull that does not have at least one weapon attached. In these
cases, the model would be assigned a fitness value of 0.

When no validation errors are found for a certain boss model and it is
confirmed as valid, its fitness value is obtained from a simulation that
reproduces a duel between the boss of the model and a human player.

86

2.4 Our EMoGen Approach

During that simulation, the player faces the boss in order to destroy the
weak points that are available at that moment, whereas the boss acts
according to the anatomy, behaviour, and attack/defense balance that
is included in its model, trying to defeat the player. In that simulation,
both the boss and the human player try to win the match and do not
avoid confrontation, try to prevent draw/tie games, and try to ensure
that there is a winner. The fitness value is calculated once the simulation
process is finished, and our approach collects information on the battle
progress and key events.

The information retrieved from the simulation is the data that the devel-
opers regard as relevant, using their domain knowledge, for determining
whether or not a boss is suitable for a commercial release of the video
game, i.e., the percentage of human player victories (FV ictory) and the per-
centage of human player health left once the player wins a duel (FHealth).
The clamp function is used in the fitness measures:

clamp[0,1](x) = max(0,min(x, 1)) (2.1)

In our approach, FV ictory is calculated as a measure of the difference
between the number of human player victories (VP) and the optimal
number of victories (33%, according to the developers of Kromaia and
their criteria) (VOptimal):

FV ictory = clamp[0,1]

(
1− | VOptimal − VP |

VOptimal

)
(2.2)

The criterion FHealth, which refers to completed duels that end in human
player victories, is the average difference between the human player’s
health percentage once the duel is over (ΘP) and the optimal health
level that the player should have at that point (ΘOptimal, 20%, according
to the developers):

FHealth = clamp[0,1]

1−

VP∑
d=1

|ΘOptimal−ΘP |
ΘOptimal

VP

 (2.3)

87

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

FOverall is an average fitness value for a boss model that includes the
fitness criteria described above and validation information, with V alidity
being a value that determines whether or not a model is valid (1 and 0,
respectively):

FOverall = min(V alidity,

N∑
i=1

Fi

N
) (2.4)

In the end, FOverall is a value in [0, 1] that is used to assess a boss model
when our EMoGen approach is applied to the Kromaia case study.

2.4.2 Model Encoding of the EMoGen Approach

In evolutionary algorithms like the one used by our EMoGen approach,
the models are encoded, and this representation is usually achieved in
evolutionary algorithms with arrays or strings. In this work, we encode
models elements in a way similar to our previous works [21, 4, 5] for
models of the Induction Hob and Train Control domains.

When applying EMoGen to the Kromaia case study, the boss models
contain elements, such as hulls and weapons, that are defined as being
present or absent throughout the different stages in the creation process
as well as properties that are constrained to a range of values. Figure 3.4
shows an excerpt the metamodel which the boss models are produced in
accordance with. This excerpt omits secondary concepts, relationships
and properties that are not as common or relevant as those presented
in the figure. The metamodel contains more than 20 concepts, over
20 relationships and more than 60 properties. A final boss model like
the example in Figure 3.1 and in the example video for this research
(https://youtu.be/Vp3Zt4qXkoY) contains around 1300 elements.

Our approach encodes boss models as bi-dimensional matrices, in which
columns correspond to the hulls that could be used in the model and in
which each row indicates present or absent elements as well as properties:

Elements: Figure 3.3 shows four of the elements represented in our
encoding. The presence or absence of these elements is defined through
binary values (1 and 0, respectively). For instance, in the example shown

88

https://youtu.be/Vp3Zt4qXkoY

2.4 Our EMoGen Approach

Figure 2.6: Excerpt of the Metamodel of the boss models.

89

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

ENCODING
HULLS

H 0 H 1 H 2 H 3 ...

EL
EM

EN
TS

A
N

D
 P

R
O

P
ER

TI
ES

ENABLED HULL 0 1 1 1 ...

LINK PARENT HULL 0 -1 4 2 ...

BEHAVIOUR LEAD 0 1 0 0 ...

GUN TURRET 1 0 1 1 ...

WEAK POINT 0 0 1 1 …

… … ... … … …

Figure 2.7: Example of encoding for boss models.

in Figure 3.3, Hull0 would not be present in the model and Hull2 would
have a turret.

Properties: The second row in Figure 3.3 shows a row with non-binary
values that correspond to link relationships. This property indicates the
parents that the hull is linked to. For instance, H3 of Figure 3.3 means
that Hull2 and Hull3 are linked in a way that Hull2 acts as a parent in
the hierarchy. In addition, the encoding used by our approach represents
hulls that do not depend on other hulls via links (root hulls) with values
of -1 for that property, as shown in Figure 3.3.

2.4.3 Genetic Operations of the EMoGen Approach

Our EMoGen approach generates new models using some of the existing
ones in the population as parents. This process is supported by genetic
operators that are adapted to work with the EMoGen encoding that
represents models.

First, it is necessary to select the parents from the model population
before applying the genetic operators. The fittest of the potential par-
ents are selected using the fitness value calculated for each model in the
population.

Crossover: The crossover operation mixes the content of two models to
create a new one. The new model takes a first random half with size n

90

2.4 Our EMoGen Approach

from the first parent and a second half with size S - n from the second
parent, with S being the total size of the model.

Mutation: This operator is named after the mutations found in biology.
These mutations make individuals show non-inherited modifications in
their genes due to random factors. In our EMoGen approach, the mu-
tation operation is applied on the new models that are created through
crossover operations; however, changes depend on a certain probability,
so they do not always occur. Due to the nature of the encoding used by
our approach, mutations add and remove elements from the model and
change properties.

Question 2:

What is the quality of
the models produced

by developers?

Question 1:

What is the quality of
the models generated

by our approach?

Question 3:

What is the quality of the
models generated when

each seed strategy is applied?

Question 4:

How much time do
developers need to
produce the models?

Question 5:

How much �me does
the approach need to
generate the models?

Metric 1:
Completition

Metric 2:
Duration

Metric 3:
Uncertainty

Metric 4:
Killer Moves

Metric 5:
Permanence

Metric 6:
Lead changes

Metric 7:
Wall clock time

Indicators of game quality from the literature

Goal 2:
Purpose: Determine the
Object: impact of the seed strategy on
the quality of the boss models
generated by EMoGen
Issue: in comparison to each other
Context: Game So�ware Development

Goal 1:
Purpose: Determine if
Object: the quality level of the boss

models produced by EMoGen

Issue: is comparable to the quality of the

boss models produced by developers
Context: Game So�ware Development

Goal 3:
Purpose: Determine if

Object: the �me needed by EMoGen to
generate boss models is reduced
Issue: in comparison to the �me needed
by developers to produce boss models
Context: Game So�ware Development

Figure 2.8: Application of the Goal Question Metric method for the evaluation

Repair: Finally, after crossover and mutation have modified the genetic
material of the individuals, inconsistencies may appear. For instance,
when the crossover operation is applied, a link to a hull can be "bro-
ken", resulting in a new individual that is pointing to a hull that is not
activated. Inconsistencies of this kind will prevent the model from be-
ing loaded into the game since it will fail to pass the model interpreter
validation. The repair operator mitigates inconsistencies, making small
modifications to the individuals, like modifying links that point nowhere.
We do not claim to have a complete catalogue of repairs that guarantees
that the resulting model will be accepted by the model interpreter.

91

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

2.5 Evaluation

This section presents the evaluation performed to determine if EMoGen
can help game developers when creating the models for video games. In
past works, there are four types of studies explained by Basili [12] and
Travassos [71]. They refer to in-silico, in-vivo, in-vitro, and in-virtuo.
More recent works used models as experimentation units [57] within in-
virtuo experiments [6], but in this work we perform an in-silico experi-
ment, in order to minimize the interaction with humans, and, therefore,
favour the replicability of the study [71].

We defined the experimental design of the evaluation following the Goal-
Question-Metric (GQM) [12] method. The GQM method defines a mea-
surement model on three levels: a set of goals (the conceptual level)
defined through a set of questions (the operational level) that can be
answered through a set of metrics (the quantitative level). Following the
template proposed by Basili et al. [13], we set three goals, which are
defined through five questions that can be answered using seven metrics
(see Figure 2.8). Apart from wall clock time, which is necessary to eval-
uate the time needed by our approach and the developers to generate
models, a set of indicators of game quality described and widely used in
the literature of video game research are used to answer the questions.
We use the six indicators that Browne et al. studied and recommended
for being the most relevant [17]. Specifically, Browne et al. correlated
57 different quality indicators with players rankings. At the end, six
of them stand out as the most important: Completion, Duration, Un-
certainty, Killer Moves, Permanence, and Lead Change. Each of those
metrics is measured using the characteristics of the case study. The suit-
ability of a boss model is assessed studying the data obtained from a
duel between the boss and a simulated player. That data provides values
that are used in order to measure the metrics: the duration of a duel,
the player victory percentage, the amount of relevant events in a match,
and the health level of the player after the end of a duel.

Goal 1 is to determine if the quality level of the boss models produced
by EMoGen is comparable to the quality of the boss models produced
by developers. To determine this, we define two questions: Q1–What

92

2.5 Evaluation

is the quality of the models generated by EMoGen?, and Q2–What is
the quality of the models produced by developers?. The quality will be
assessed using a set of six metrics that are widely used in the literature
to assess the quality of games.

Goal 2 is to determine the impact of the seed strategies on the quality of
the boss models generated by EMoGen in comparison to the quality of
the boss models produced by the developers. The seeds are boss models
that the evolutionary algorithm in our approach is fed with as starting
points. To determine this impact, we define a new question: Q3–What is
the quality of the models generated when each seed strategy is applied?.
The quality level will be assessed as with Q1 and Q2, using six metrics
from the literature.

Goal 3 is to determine if the time needed by EMoGen to generate boss
models is reduced in comparison to the time needed by the developers
to produce boss models. To determine this, we define two questions:
Q4–How much time do developers need to produce the models? and Q5–
How much time does EMoGen need to generate the models?. These two
questions will be assessed by measuring the wall clock time.

The following subsections present a description of the experimental setup,
the metrics used to answer the questions, the details of the implementa-
tion, and the results.

2.5.1 Experimental Setup

Figure 2.9 shows an overview of the evaluation process followed. The first
step of the evaluation is the extraction of information from the oracle that
is provided by the developers of Kromaia (see top-left of Figure 2.9). The
developers provided the set of final boss models and a set of seeds that
is used by the approach to generate the initial population. Specifically,
we use two types of seeds:

Final Boss: The type of boss that the player can find at the end of
the level. Each final boss contains around 1300 model elements. The
developers provided five different final bosses.

93

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

KROMAIA ORACLE
PROVIDED BY

VIDEO GAME DEVS
(ENGINEERS + VCS)

QUALITY MEASUREMENTS:
COMPLETION
DURATION

UNCERTAINTY
KILLER MOVES
PERMANENCE
LEAD CHANGE

OVERALL (AVERAGE)

BOSS MODELS
FROM

KROMAIA

BOSS MODELS

BOSS MODELS
INITIAL

SEEDS FROM
KROMAIA

RANDOM SEARCH
(BASELINE)

OUR APPROACH WITH
DIFFERENT SEED

STRATEGIES:

100R
1F 1M
5F 5M

95R+5F 95R+5R

AVERAGE AND
COMPARE

STATISTICAL
ANALYSIS

Artifacts from
Video Game Industry

Execution
of Actions

Artifacts
generated

Flow between
actions (automatic)

Flow between
actions (manual)

RESULTS
(TABLE I)

BOXPLOTS
(FIGURE 9)

QUADE & HOLMS
(TABLE II)

Â12

(TABLE III)

Figure 2.9: EMoGen Approach Evaluation Process.

Miniboss: Enemies with less relevance in the game than a final boss but
that are also built following the same stages and language (SDML). Each
Miniboss contains around 500 model elements. The developers provided
five different Minibosses.

Then, we perform a sanity check; we execute a random search to deter-
mine if the search space is large enough to benefit from the application
of an evolutionary algorithm such as the one proposed here or a simple
random search that is able to yield good results. To ensure a fair com-
parison, the random search is allocated with a budget that is similar to
the one used by our approach. Specifically, the budget is in terms of
the number of times the fitness function is executed as suggested in the
literature [36].

Our approach is executed seven times, using a different seed strategy
each time:

100R: The whole initial population is randomly generated so the seeds
from the oracle are not used in this execution.

1F: A single final boss is randomly selected, out of the 5 available, and
provided as initial seed. To generate the initial population, the seed
is encoded as an individual and the rest of the population is obtained
through the application of the mutation operation to the individual.

1M: A single Miniboss is randomly selected, out of the 5 available, and
provided as initial seed. To generate the initial population, the seed

94

2.5 Evaluation

is encoded as an individual and the rest of the population is obtained
through the application of the mutation operation to the individual.

5F: The five final bosses are provided as initial seed. Similarly, the five
final bosses are encoded as five individuals and the rest of the population
is obtained through mutations of those five individuals.

5M: Similarly, the five Minibosses are provided as initial seed, encoded,
and mutated to obtain more individuals and to complete the population.

95R+5F: The five final bosses are provided as initial seed. The five
final bosses are encoded as individuals, but the rest of the population is
randomly generated.

95R+5M: Similarly, the five Minibosses are provided as initial seed and
encoded as individuals. The rest of the population is randomly generated.

As suggested in the literature [8], each execution of the approach is re-
peated 30 times to compensate for the stochastic nature of evolutionary
algorithms. Then, the resulting boss models are measured using the six
Quality measurements [66, 2, 34, 16, 39, 26, 20, 15, 63] (see the middle
part of Figure 2.9). Similarly, the Boss Models obtained from the ora-
cle are also subject to the same quality measurements. Then, all of the
results are compared and statistically analyzed to determine the signifi-
cance of the results.

In order to define the mathematical expressions that represent each of
those quality measurements for the game studied, Kromaia, different
tests and surveys were conducted with more than 30 users who belonged
to the main target audience of the commercial case study.

The company responsible for the development of Kromaia provided data
from their Version Control System with the help of the two engineers
who produced and modified the boss models until the versions included
in the final product were completed. These engineers have worked in the
video game industry for 15 years and were informed of the purpose of the
present work. Additionally, they signed a consent form before the data
was used in this research. The company and these engineers collaborated

95

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

in this work in order to research on possible improvements in the boss
production process.

2.5.2 Quality measurements

Previous research works have formalized fundamental and measurable
indicators of game quality, like Depth and Decisiveness [66], Tension [39],
Interestingness [2], Uncertainty [34], or Interaction [16]. In a more recent
research done by Browne et al., the experimentation with game users
showed that the following criteria stand out as being the most important:
Completion, Duration, Uncertainty, Killer Moves, Permanence, and Lead
Change [17]. Our evaluation measures these criteria with values in the
interval [0,1].

Completion (Viability): A game against a boss unit should end with
more conclusions (victories for either the player or the boss) than draws/ties.
The criterion QCompletion calculates a ratio of conclusions over total duel
count:

QCompletion =
Conclusions

Duels
(2.5)

Duration (Viability): The duration of duels between players and boss
units is expected to be around a certain optimal value. For the video
game case study, through tests and questionnaires with players, the de-
velopers determined that concentration and engagement for an average
boss reach their peak at approximately 10 minutes (TOptimal), whereas the
maximum accepted time was estimated to be 20 minutes (2 ∗ TOptimal).
Significant deviations from that reference value are good design-flaw in-
dicators: short games are probably too easy; and duels that go on a lot
longer than expected tend to make players lose interest. The criterion
QDuration is a measure of the average difference between the duration of
each duel (Td) and the desired, optimal duration (TOptimal):

96

2.5 Evaluation

QDuration = clamp[0,1]

1−

Duels∑
d=1

|TOptimal−Td|
TOptimal

Duels

 (2.6)

Uncertainty (Quality): In order to keep players engaged with a duel,
neither the player nor the boss unit should get extremely close to victory
or defeat too early before the duel is settled, with (Td) being its duration.
Therefore, a duel is considered to be more uncertain the longer the time
until the player’s or the boss unit’s health levels reach a dangerous/criti-
cal status (Pd and Bd, respectively). For each duel, QUncertainty measures
the average deviation between the time at which it is detected that one
of the contenders is on the verge of defeat and the time corresponding to
the duration of the duel.

QUncertainty = clamp[0,1]

1−

Duels∑
d=1

Td−min(Pd,Bd)
Td

Duels

 (2.7)

Killer Moves: QKMoves measures the proportion of killer moves by any
contender (K), taking into account the moves that are considered to be
remarkable highlights (H) but that are less important than killer moves.
In the video game case study, the developers considered that a highlight
move happens when either the boss unit or the player experiences a
decrease in health; killer moves are those that make the difference in
health between the contenders reach 30%.

QKMoves = clamp[0,1]

1−

Duels∑
d=1

Kd

Hd

Duels

 (2.8)

97

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

Permanence: Duels with a high permanence value are games in which
the advantages given by significant actions or moves by one of the con-
tenders are unlikely to be immediately reverted by the opponent in terms
of dominance. In the video game case study, the developers considered
every highlight move and killer move to be meaningful actions, with re-
covery moves (R) being those that quickly cancelled the advantages given
by other previous killer or highlight moves. The criterion QPermanence is
measured as follows:

QPermanence = clamp[0,1]

1−

Duels∑
d=1

Rd

Hd+Kd

Duels

 (2.9)

Lead Change: The lack of lead changes indicates low dramatic value.
In the video game case study, the lead is determined at any given moment
by considering the contender with the highest health level. This criterion
is measured taking into account those highlight or killer moves that cause
the lead to change (L) during the course of a duel:

QLChange = clamp[0,1]

Duels∑
d=1

Ld

Hd+Kd

Duels

 (2.10)

Our approach evaluated these six (N) criteria for each boss unit that is
included in the commercial release of the video game case study in order
to obtain a quality threshold that is useful for verifying whether the
results obtained by our approach reach the same quality levels. QOverall

calculates an average quality value for a model, including all of the quality
criterion studied:

98

2.5 Evaluation

QOverall =

N∑
i=1

Qi

N
(2.11)

The above quality measure is used to determine how many of the models
produced by our approach are comparable in quality to those present in
the case study.

2.5.3 Implementation Details

In order to implement the approach, we used the TinyXML parser to
process SDML models. In addition, the specifications of the computer
used in the evaluation process were the following: Toshiba Satellite Pro
L830 laptop, with an Intel® Core™ i5-3317U processor with 4GB RAM
and Windows 8 64bit.

For the parameters of the EA, since the focus of this work is not the
tuning of parameters, we used values from the literature that have proven
to provide good results with models [21, 4, 5]. The mutation probability
(pm) depends on the number of hulls in the boss: 1/(Hulls Number).

In general, there are two atomic types of performance measures that
are used to evaluate search algorithms: measures regarding speed and
measures regarding quality of the solution. Since the focus of this paper
is on the quality of the solution, we allocated a budget for each execution
of the approach. Specifically, after running some prior tests, we identified
the time of convergence, which is the point where the search reaches the
peak and no further improvements occur, to be around 40 minutes of
execution. To ensure convergence, the amount of wall clock time for
each of the runs was set to one hour. A prototype of EMoGen can be
found at: https://bitbucket.org/svitusj/EMoGen

99

https://bitbucket.org/svitusj/EMoGen

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

10
0R 1
F

1M 5
F

5M
95
R
5F

95
R
5M

0.0

0.2

0.4

0.6

0.8

1.0

COMPLETION DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL

Figure 2.10: The results of the application of EMoGen with seven different seed strategies
to generate final boss models. The results are grouped based on the 6 quality measures; the
horizontal line in each group represents the value obtained by the original final boss models
from Kromaia.

2.5.4 Results:

Figure 2.10 shows the results of the execution of our approach for each of
the seven combinations of seeds and population strategy (100R, 1F, 1M,
5F, 5M, 95R+5F, 95R+5M). The executions are grouped to show the
performance for a specific quality measurement (Completion, Duration,
Uncertainty, Killer Moves, Permanence, Lead Change). The last column,
with shaded background, shows the average of all of the quality measures
for each execution. In addition, each population strategy for a specific
quality is crossed by a horizontal line that indicates the value obtained
by the human-generated final boss models that were obtained from the
Kromaia oracle (see top-left of Figure 2.9).

Each boxplot is generated from the results of 30 executions [8] where
each execution yields 100 individuals as a result. Therefore, each boxplot
represents 3000 values of a specific quality in a final boss model. Figure
2.10 shows in each column how the quality values obtained for each of the
seven strategies studied differ from the values for the models generated
by the developers, which are represented by the horizontal lines that
cross each column. The boxplots that are closer to the horizontal lines

100

2.5 Evaluation

are more similar in quality to the models produced by the developers.
Additionally, the use of boxplots allows for the representation of the
different results for the strategies used.

Similarly, Table 2.1 shows the values obtained by each seed strategy
(rows) and each of the quality measurements (columns). Each value
is reported from 0 to 1, which are the worst and best possible values,
respectively.

In addition, the first row shows the results for the sanity check: a Random
search executed with a budget that is similar to our approach in terms
of fitness executions (i.e., 3 million fitness executions). The purpose of
the sanity check is to determine whether there is a need for a complex
search strategy or the solutions to the problem can be found by mere
chance. In our case, none of the individuals that were generated as part
of the random search were able to be validated by our model interpreter;
therefore, their score is 0.

The answer to Q1, which asks about the quality of the models gen-
erated by our approach, can be seen in the boxplots of Figure 2.10 and
in Table 2.1: they show the values of each of the metrics for the dif-
ferent seed strategies. Similarly, the answer to Q2, which asks about
the quality of the models produced by developers, can be seen as the
horizontal lines of Figure 2.10, which cross each column 2.10, and the
associated values from Table 2.1 (last row, Kromaia Oracle). To address
Goal 1, we compared the results obtained by our approach with those
from the oracle. The values were similar, particularly in terms of the
overall quality, with differences of around 5% at maximum. Therefore,
we can conclude that the approach is able to generate final boss models
that are comparable to those from Kromaia, the video game case study,
whose final boss models were created manually by software engineers.

101

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

Table 2.1: Mean Values and Standard Deviations for each of the quality metrics (columns),
and each of the seed strategies (rows). The seed strategies that achieve the best and worst
results for each metric are highlighted in grey.

COMPLETION DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL

Random Search 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0

100R 1 ± 0 0.21 ± 0.01 0.07 ± 0.08 0.77 ± 0.04 0.95 ± 0.01 0.28 ± 0.13 0.55 ± 0.04
1F 1 ± 0 0.28 ± 0.02 0.36 ± 0.04 0.93 ± 0.01 0.95 ± 0.01 0.10 ± 0.01 0.60 ± 0.01
1M 1 ± 0 0.16 ± 0.02 0.30 ± 0.03 0.88 ± 0.01 0.92 ± 0.01 0.18 ± 0.02 0.57 ± 0.01
5F 1 ± 0 0.53 ± 0.05 0.30 ± 0.07 0.89 ± 0.01 0.94 ± 0.01 0.21 ± 0.03 0.64 ± 0.02
5M 1 ± 0 0.26 ± 0.02 0.28 ± 0.04 0.88 ± 0.01 0.92 ± 0.01 0.18 ± 0.02 0.59 ± 0.01

95R+5F 1 ± 0 0.17 ± 0.02 0.23 ± 0.07 0.79 ± 0.02 0.90 ± 0.02 0.34 ± 0.05 0.57 ± 0.01
95R+5M 1 ± 0 0.13 ± 0.01 0.05 ± 0.03 0.78 ± 0.01 0.93 ± 0.01 0.35 ± 0.04 0.54 ± 0.01

Kromaia Oracle 1 0.41 0.10 0.91 0.97 0.11 0.58

2.5.5 Statistical Analysis

To answer Q3 and to compare the impact of each of the seed strategies
on the quality of the results, the empirical data was analyzed following
the guidelines from the literature [7]. The statistical analysis included a
significance test, the corresponding post-hoc analysis, and an effect size
measure.

Statistical Significance

We applied a statistical test to the results of the seven seed strategies
to determine if there were significant differences among the final boss
models produced in terms of the quality measurements presented (i.e.,
the differences in the results were not obtained by mere chance).

After running the approaches a large enough number of times (30 as
suggested by the literature [7]), we applied the Quade test since our data
does not follow a normal distribution and the Quade test has proven [25]
to be better than the rest of the non-parametric tests when working with
real data.

The Quade test results in a p-V alue between 0 and 1, with 0 indicating
that there are significant differences among the different seeds strate-
gies and 1 indicating that there are no such differences. The threshold
accepted by the research community is 0.05 [7], meaning that p-values
below that number are statistically significant.

102

2.5 Evaluation

The results of the Quade test give a p-V alue below the 0.05 threshold for
all of the measurements (≪ 2.2x10−16), indicating that the differences
observed in the results are significant enough to be caused by the seed
strategy and are not due to mere chance. The test was not applied for
the Completion quality measure since all of the results were 1 and there
was no variance.

Post-hoc analysis

The Quade test only determined that there are differences among all of
the seed strategies. To identify the specific seed strategies yielding signif-
icant differences, we applied a post-hoc analysis. This analysis consists
of pair-wise comparisons of the results of each seed strategy to determine
if there are statistically significant differences among the results of each
pair of strategies.

We applied the Holm’s post-hoc analysis, which is the most common
post-hoc analysis applied after a Quade test [24]. Again to interpret
the results, a value below 0.05 indicates that the differences between the
two strategies are significant enough to be considered to be caused by the
seed strategies. Table 2.2 shows the results of the post-hoc analysis. Each
column shows the p-V alue for a specific quality measurement, while each
row shows one of the pair-wise combinations of two seed strategies (the
order does not matter for this test). Table 2.2 shows only the pairs of seed
strategies that obtained values above 0.5, which cannot be considered
significant enough to determine that the differences are due to the seed
strategy. Pairs of strategies not shown in the table obtained values below
0.5 for all of the measurements, so the differences are due to the seed
strategy applied.

For instance, the differences between 1M and 5M seed strategies cannot
be considered significant enough for some of the measurements like un-
certainty, killer moves, permanence, or lead change (see row labeled as
1M vs 5M in the middle of Table 2.2). It is common to obtain these
results because the differences between some pairs of seed strategies are
subtle.

103

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

Table 2.2: Holm’s Post Hoc p-V alues for each quality metric (columns) and each pair
of seed strategies (rows) whose value is above the threshold (0.05). Missing pairs of seed
strategies obtain values below the threshold and are omitted for legibility.

DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL

100R vs 1F ≪ 2.2x10−16 ≪ 2.2x10−16 ≪ 2.2x10−16 0.116 ≪ 2.2x10−16 ≪ 2.2x10−16

100R vs 95R+5M ≪ 2.2x10−16 0.36651 1.3x10−6 2.3x10−12 0.0033 1
1M vs 5F ≪ 2.2x10−16 0.36651 0.092 ≪ 2.2x10−16 2.1x10−9 ≪ 2.2x10−16

1M vs 5M ≪ 2.2x10−16 0.36651 0.726 0.998 0.8621 5.3x10−6

1M vs 95R+5F 0.367 8.6x10−7 ≪ 2.2x10−16 9.9x10−9 ≪ 2.2x10−16 1
95R+5F vs 95R+5M 1.8x10−15 8.8x10−16 0.187 ≪ 2.2x10−16 0.8621 1.8x10−11

These results partially answer Q3. Taking into account the differences
in the results from Table 2.1 and the fact that they are significant as
shown by the Holm’s post-hoc analysis (see Table 2.2), we can conclude
that the selection of the seed strategy does have an impact on the quality
of the final boss model produced in terms of the quality measurements
included in this study.

Effect Size

It has been proven that statistically significant differences can be ob-
tained even if they are so small as to be of no practical value [7]. To
completely study Goal 2, we analyzed the effect size to determine the
magnitude of the improvement of one seed strategy over the others. To
do this, we measured the Vargha and Delaneyś Â12 non-parametric ef-
fect size [29, 75]. Â12 can be used to measure the probability of one seed
strategy yielding better results than another one in terms of the quality
measurements analyzed.

The Â12 between a pair of seed strategies is expressed as a value between
0 and 1 and indicates the probability of the first seed strategy yielding
better results than the second. Table 2.3 shows the Â12 results for each
pair of seed strategies and measurement (i.e., if the results showed signif-
icant differences in the Holm’s test). Extreme values indicate where the
higher differences reside and are highlighted. The values above 90% are
shown in dark grey, and the values below 10% are highlighted in light
grey.

104

2.5 Evaluation

Table 2.3: The Â12 statistic for each quality metric (columns) and pair of seed strategies
(rows) with significant differences according to the Holms post hoc. Values above 90% are
highlighted in dark grey and values below 10% are highlighted in light grey.

DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE OVERALL

100R vs 1M 98.6 % 1.68 % 0 % 95.09 % 93.88 % 23.04 %
100R vs 5F 0 % 3.16 % 0 % 77.11 % 65.7 % 3.04 %
100R vs 5M 1.38 % 2.74 % 0 % 95.19 % 96.26 % 22.68 %

100R vs 95R+5M 100 % 45.72 % 25.82 % 82.74 % 23.24 % 29.31 %
1F vs 1M 100 % 88.92 % 100 % 99.97 % 0 % 99.72 %
1F vs 5F 0 % 75.90 % 100 % 88.42 % 0 % 2.67 %
1F vs 5M 72.06 % 91.73 % 100 % 99.92 % 0 % 94.35 %

1F vs 95R+5F 100 % 96.79 % 100 % 98.75 % 0 % 98.39 %
1F vs 95R+5M 100 % 100 % 100 % 92.27 % 0 % 99.95 %
1M vs 95R+5M 99.69 % 100 % 100 % 15.29 % 0 % 98.26 %

5F vs 5M 100 % 59.51 % 65.72 % 96.26 % 84.82 % 99.86 %
5F vs 95R+5F 100 % 76.89 % 100 % 96.05 % 0.74 % 99.98 %
5F vs 95R+5M 100 % 100 % 100 % 68.26 % 0.06 % 100 %
5M vs 95R+5F 99.76 % 74.84 % 100 % 82.76 % 0.19 % 82.68 %
5M vs 95R+5M 100 % 100 % 100 % 14.71 % 0.02 % 99.27 %

For instance, the fourth row (Table 2.3) is labeled as 100R vs 5M, so
each of the cells shows the percentage of times that applying the 100R
seed strategy produces better results than applying the 5M seed strategy
for a specific quality measurement. For instance, the value of Duration
(first column) is 1.38%, so 100R yields better Duration values than 5M
only 1.38% of the times. It is important to note that the values can be
read both ways, so the 5M strategy produce better results than the 100R
strategy for the Duration quality measurement 98.62% of the times.

To address Goal 2, which deals with determining the impact of the seed
strategy on the quality of the boss models, we need to answer Q3, which
asks about the quality of the models for each of the strategies studied:
On average, the 5F seed strategy provides the best results (better than
any other strategy 99% of the times), followed by the 1F strategy (around
80% of the times), followed by the 5M strategy (around 60% of the times),
followed by 1M and 95R+5F (around 40% of the times), followed by the
100R (around 20% of the times) and the 95R+5M strategy (only around
12% of the times).

To address Goal 3, which deals with determining if the time needed by
the developers to generate boss models is reduced by our approach, we
need to answer Q4 and Q5, which ask about the time that the develop-
ers and our approach need in order to produce boss models, respectively:
It was necessary to analyze the Version Control System used by the de-

105

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

velopers to determine the time that was originally spent to build the five
final boss models. The sum of the time spent in the three development
stages involved in this study (Spatial Organization, Behaviour Specifica-
tion, and Equipment Balance) that led to the original final bosses that
were commercially released was 10 months. Our approach needed ap-
proximately one hour for the execution of each of the seed strategies.
Therefore, to have a fair comparison, we would need to execute the EA
five different times to generate five different final bosses, as in the orig-
inal game, resulting in five hours. In other words, the approach is able
to yield comparable results in less than a thousandth part of the original
time required.

2.6 Discussion

Before conducting the experiment studied in this work, we thought that
human-competitive results might be achievable by taking one or several
final boss models as the starting point. This coincides with the idea of
Genetic Improvement [50], for which the results are obtained using seeds
that are similar enough to solutions. Paradoxically, the main disadvan-
tage associated to using final boss models as seeds is that it is necessary to
obtain those models in advance, and it is time-consuming for humans to
generate such complete models. A random sample taken from the results
suggested that using final boss models as seeds could lead to final bosses
that are very similar to those seeds, which is another disadvantage if the
final bosses only provide small variations instead of new, varied video
game content that is found to be engaging and not repetitive by users.

We also used miniboss models as seeds. These models include over 500
model elements, whereas a final boss model could involve around 1300
model elements. Using various different miniboss models as seeds shows
that the final boss models obtained include characteristics found in the
seeds. These bosses, which are significantly less complex to design, could
be useful for controlling the characteristics in the final boss models gen-
erated. However, we must study this possibility carefully in future works.

We also tested our approach with an initial population that consisted of
models that were generated randomly. The combination of our fitness

106

2.7 Threats to validity

and repair operations makes it possible for these models to evolve in order
to achieve models that are comparable to those provided by the devel-
opers. This coincides with the idea of Genetic Programming [27], which
generates a complete program using genetic encoding. In our case, this
is Genetic Software Modeling since, in our work, we deal with software
models. The results obtained in our work do not claim that it is possible
to obtain a complete model of a whole video game with our EMoGen
approach. However, our results do show that it is possible to perform
Genetic Software Modeling to achieve results that are comparable to the
bosses in the commercial releases of Kromaia. This is feasible because
we apply our approach to models, which have less noise than source code
because software models abstract from implementation details.

An issue to be addressed in the future is the use of our approach in
other industrial contexts. Commercial engines, like Unity [65] or Unreal,
which uses its own DSL named BluePrints [23], are widely adopted by
development teams, and their architecture is similar to that shown in
Figure 2.4. These DSLs are similar to SDML in terms of level of detail,
and allow for the description of every element present in a game. Since
the ideas proposed in this work are general, their application to different
commercial DSLs is part of our future work.

2.7 Threats to validity

Following the guidelines suggested by De Oliveira et al. [19], we have
identified the following threats to validity:

Not accounting for random variation: We addressed this threat by per-
forming 30 runs for each of the executions of our approach.

Lack of a meaningful comparison baseline: We addressed this threat by
comparing our approach with a random search and also by comparing
the results with the final bosses from the developers of the commercial
release of the video game case study.

Lack of clarity on data collection: We addressed this threat by using
the data provided by the SDML models of the contenders to perform

107

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

the simulation and two main indicators that were obtained from the
developers and used to give value to configurations: victory percentage
and health level.

Lack of real problem instances: The case study used in the evaluation
is an industrial video game, and the problem artifacts were directly ob-
tained from the video game industry.

Lack of assessing the validity of cost measures: We performed a fair com-
parison between the final bosses from Kromaia and the bosses generated
by our approach, studying the time spent by the developers and our
algorithms to obtain the results.

Lack of assessing effective measurements: We addressed this threat by
using quality measures that are presented in the literature of video game
research [17].

2.8 Conclusion

Our EMoGen approach produces content for video games, whole models
of final bosses that could be used in Kromaia, the video game case study.
The production of these models is relevant for the creation of the video
game, and processes like updates or expansions, which are demanding in
terms of quality and release schedule.

The quality of the bosses obtained by our approach is comparable to
that achieved by the professional video game developers that produced
the final bosses that were included in the commercial release of the case
study.

The results show that the seeds used, the final boss models which the
evolutionary algorithm of our approach is fed with as starting points,
have an impact in the quality of the bosses produced: the use of the final
bosses or minibosses included in the commercial video game case study
helps our approach obtain boss models of higher quality in comparison
to those produced when the seeds are random models.

108

Bibliography

EMoGen, which uses DSL models, propose ideas which do not make our
approach depend on the video game studied in this work. Therefore, the
applicability of our approach could be studied in the context of other
commercial frameworks.

Our approach only takes five hours of unattended time in comparison
with ten months of work by the video game developers. Our work
also offers a relevant result for genetic software modeling since human-
competitive software models can even be achieved from randomly gen-
erated models, i.e., without a starting modeling effort from developers.
We have made two model examples and an implementation of EMoGen
freely available in order to facilitate the adoption of our approach.

Acknowledgments

This work has been partially supported by the Ministry of Economy and
Competitiveness (MINECO) through the Spanish National R+D+i Plan
and ERDF funds under the Project ALPS (RTI2018-096411-B-I00).

Bibliography

[1] IGDA, International Game Developers Association, 2018 (cit. on p. 76).

[2] Ingo Althöfer. “Computer-Aided Game Inventing”. In: Technical Report,
Friedrich Schiller Universität Jena (2003) (cit. on pp. 95, 96).

[3] Apostolos Ampatzoglou and Ioannis Stamelos. “Software engineering re-
search for computer games: A systematic review”. In: Information and Soft-
ware Technology 52.9 (2010), pp. 888–901. issn: 0950-5849. doi: https:
//doi.org/10.1016/j.infsof.2010.05.004 (cit. on pp. 72, 78).

[4] Lorena Arcega, Jaime Font, and Carlos Cetina. “Evolutionary Algorithm for
Bug Localization in the Reconfigurations of Models at Runtime”. In: Pro-
ceedings of the 21th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS 2018, Copenhagen, Den-
mark, October 14-19, 2018. 2018, pp. 90–100. doi: 10.1145/3239372.
3239392 (cit. on pp. 88, 99).

109

https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.004
https://doi.org/https://doi.org/10.1016/j.infsof.2010.05.004
https://doi.org/10.1145/3239372.3239392
https://doi.org/10.1145/3239372.3239392

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

[5] Lorena Arcega et al. “An approach for bug localization in models using two
levels: model and metamodel”. In: Software & Systems Modeling (2019).
issn: 1619-1374. doi: 10.1007/s10270-019-00727-y (cit. on pp. 88, 99).

[6] Lorena Arcega et al. “On the Influence of Models at Run-Time Traces in Dy-
namic Feature Location”. In: Modelling Foundations and Applications. Ed.
by Anthony Anjorin and Huáscar Espinoza. Cham: Springer International
Publishing, 2017, pp. 90–105 (cit. on p. 92).

[7] Andrea Arcuri and Lionel Briand. “A Hitchhiker’s Guide to Statistical Tests
for Assessing Randomized Algorithms in Software Engineering”. In: Softw.
Test. Verif. Reliab. 24.3 (May 2014), pp. 219–250. issn: 0960-0833. doi:
10.1002/stvr.1486 (cit. on pp. 102, 104).

[8] Andrea Arcuri and Gordon Fraser. “Parameter tuning or default values? An
empirical investigation in search-based software engineering”. In: Empirical
Software Engineering 18.3 (2013), pp. 594–623. issn: 1573-7616. doi: 10.
1007/s10664-013-9249-9 (cit. on pp. 95, 100).

[9] Daniel Ashlock. “Automatic generation of game elements via evolution”. In:
Proceedings of the 2010 IEEE Conference on Computational Intelligence
and Games. IEEE. 2010, pp. 289–296 (cit. on p. 80).

[10] Daniel Ashlock, Colin Lee, and Cameron McGuinness. “Search-based pro-
cedural generation of maze-like levels”. In: IEEE Transactions on Computa-
tional Intelligence and AI in Games 3.3 (2011), pp. 260–273 (cit. on p. 80).

[11] Daniel A Ashlock, Stephen P Gent, and Kenneth Mark Bryden. “Evolu-
tion of l-systems for compact virtual landscape generation”. In: 2005 IEEE
Congress on Evolutionary Computation. Vol. 3. IEEE. 2005, pp. 2760–2767
(cit. on p. 80).

[12] Victor R. Basili. “The Role of Experimentation in Software Engineering:
Past, Current, and Future”. In: Berlin, Germany, 1996, pp. 442–449. isbn:
0-8186-7246-3 (cit. on p. 92).

[13] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. “The Goal
Question Metric Approach”. In: Encyclopedia of Software Engineering. John
Wiley & Sons, 1994 (cit. on p. 92).

110

https://doi.org/10.1007/s10270-019-00727-y
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/s10664-013-9249-9

Bibliography

[14] James Bergstra and Yoshua Bengio. “Random Search for Hyper-parameter
Optimization”. In: J. Mach. Learn. Res. 13.1 (Feb. 2012), pp. 281–305. issn:
1532-4435 (cit. on p. 75).

[15] George D. Birkhoff. Aesthetic Measure. Cambridge, Massachussetts: Har-
vard University Press, 1933. isbn: 9780674734470 (cit. on p. 95).

[16] Cameron Browne. Connection Games: Variations on a Theme. Natick, Mas-
sachussetts: AK Peters, 2005. isbn: 1568812248 (cit. on pp. 95, 96).

[17] Cameron Browne and Frédéric Maire. “Evolutionary Game Design”. In:
IEEE Trans. Comput. Intellig. and AI in Games 2.1 (2010), pp. 1–16. doi:
10.1109/TCIAIG.2010.2041928 (cit. on pp. 92, 96, 108).

[18] Cameron Bolitho Browne. “Automatic generation and evaluation of recom-
bination games”. PhD thesis. Queensland University of Technology, 2008
(cit. on p. 80).

[19] Márcio De Oliveira Barros and Arilo Cláudio Dias-Neto. “0006/2011-Threats
to Validity in Search-based Software Engineering Empirical Studies”. In:
RelaTe-DIA 5.1 (2011) (cit. on p. 107).

[20] Havelock Ellis. Impressions and Comments. Boston, Massachussetts: Houghton
Mifflin, 1914 (cit. on p. 95).

[21] Jaime Font et al. “Feature Location in Models Through a Genetic Algo-
rithm Driven by Information Retrieval Techniques”. In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems. MODELS ’16. Saint-malo, France: ACM, 2016,
pp. 272–282. isbn: 978-1-4503-4321-3. doi: 10.1145/2976767.2976789
(cit. on pp. 88, 99).

[22] Miguel Frade, Francisco Fernandez de Vega, and Carlos Cotta. “Evolution of
artificial terrains for video games based on accessibility”. In: European Con-
ference on the Applications of Evolutionary Computation. Springer. 2010,
pp. 90–99 (cit. on p. 80).

[23] Epic Games. Unreal Engine, Version 2018.3.9. Cary, North Carolina, 1998
(cit. on pp. 72, 78, 107).

111

https://doi.org/10.1109/TCIAIG.2010.2041928
https://doi.org/10.1145/2976767.2976789

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

[24] Salvador García et al. “Advanced Nonparametric Tests for Multiple Com-
parisons in the Design of Experiments in Computational Intelligence and
Data Mining: Experimental Analysis of Power”. In: Inf. Sci. 180.10 (May
2010), pp. 2044–2064. issn: 0020-0255. doi: 10.1016/j.ins.2009.12.010
(cit. on p. 103).

[25] Salvador García et al. “Advanced nonparametric tests for multiple com-
parisons in the design of experiments in computational intelligence and
data mining: Experimental analysis of power”. In: Information Sciences
180.10 (2010). Special Issue on Intelligent Distributed Information Systems,
pp. 2044–2064. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.
2009.12.010 (cit. on p. 102).

[26] Martin Gardner. “Theory of Everything”. In: The New Criterion 23.2 (2004)
(cit. on p. 95).

[27] David E. Goldberg. “Computer-aided gas pipeline operation using genetic
algorithms”. In: Ph.D. dissertation (1983) (cit. on p. 107).

[28] Heather J. Goldsby and Betty H. C. Cheng. “Automatically Generating
Behavioral Models of Adaptive Systems to Address Uncertainty”. In: Model
Driven Engineering Languages and Systems. Ed. by Krzysztof Czarnecki et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 568–583. isbn:
978-3-540-87875-9 (cit. on p. 79).

[29] R. J. Grissom and J. J. Kim. "Effect sizes for research: A broad practical
approach. Mahwah, NJ: Earlbaum, 2005 (cit. on p. 104).

[30] M. Harman and B.F. Jones. “Search-Based Software Engineering”. In: In-
formation Software Technology 43 (2001), pp. 833–839 (cit. on p. 75).

[31] Erin J Hastings, Ratan K Guha, and Kenneth O Stanley. “Evolving con-
tent in the galactic arms race video game”. In: 2009 IEEE Symposium on
Computational Intelligence and Games. IEEE. 2009, pp. 241–248 (cit. on
p. 80).

[32] Erin J Hastings and Kenneth O Stanley. “Interactive genetic engineering
of evolved video game content”. In: Proceedings of the 2010 Workshop on
Procedural Content Generation in Games. ACM. 2010, p. 8 (cit. on p. 80).

112

https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/https://doi.org/10.1016/j.ins.2009.12.010

Bibliography

[33] Vincent Hom and Joe Marks. “Automatic design of balanced board games”.
In: Proceedings of the AAAI Conference on Artificial Intelligence and In-
teractive Digital Entertainment (AIIDE). 2007, pp. 25–30 (cit. on p. 80).

[34] Hiroyuki Iida et al. “An Application of Game-Refinement Theory to Mah
Jong”. In: Entertainment Computing - ICEC 2004, Third International Con-
ference, Eindhoven, The Netherlands, September 1-3, 2004, Proceedings.
2004, pp. 333–338. doi: 10 . 1007 / 978 - 3 - 540 - 28643 - 1 \ _41 (cit. on
pp. 95, 96).

[35] Martin Jennings-Teats, Gillian Smith, and Noah Wardrip-Fruin. “Polymorph:
A model for dynamic level generation”. In: Sixth Artificial Intelligence and
Interactive Digital Entertainment Conference. 2010 (cit. on p. 80).

[36] David S Johnson. “A theoretician’s guide to the experimental analysis of
algorithms”. In: Data structures, near neighbor searches, and methodology:
fifth and sixth DIMACS implementation challenges 59 (2002), pp. 215–250
(cit. on p. 94).

[37] Stuart Kent. “Model Driven Engineering”. In: Integrated Formal Methods.
Ed. by Michael Butler, Luigia Petre, and Kaisa Sere. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 286–298. isbn: 978-3-540-47884-3 (cit.
on p. 82).

[38] J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA: MIT Press, 1992 (cit. on p. 76).

[39] Wolfgang Kramer. “What Makes a Game Good?” In: The Games Journal
(2000) (cit. on pp. 95, 96).

[40] Levi HS Lelis, Willian MP Reis, and Ya’akov Gal. “Procedural Generation of
Game Maps With Human-in-the-Loop Algorithms”. In: IEEE Transactions
on Games 10.3 (2017), pp. 271–280 (cit. on p. 80).

[41] Daniele Loiacono, Luigi Cardamone, and Pier Luca Lanzi. “Automatic track
generation for high-end racing games using evolutionary computation”. In:
IEEE Transactions on computational intelligence and AI in games 3.3 (2011),
pp. 245–259 (cit. on p. 80).

113

https://doi.org/10.1007/978-3-540-28643-1_41

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

[42] Andrew Martin et al. “Evolving 3d buildings for the prototype video game
subversion”. In: European Conference on the Applications of Evolutionary
Computation. Springer. 2010, pp. 111–120 (cit. on p. 80).

[43] Michael McShaffry. Game Coding Complete. Paraglyph Publishing, 2003.
isbn: 1932111751 (cit. on p. 72).

[44] Meta Object Facility (MOF) Version 2.4.1. Object Management Group
(OMG) Specification. 2013 (cit. on p. 82).

[45] Mariela Nogueira-Collazo, Carlos Cotta Porras, and Antonio J Fernández-
Leiva. “Competitive algorithms for coevolving both game content and AI.
A case study: Planet wars”. In: IEEE Transactions on Computational Intel-
ligence and AI in Games 8.4 (2015), pp. 325–337 (cit. on p. 80).

[46] Edward Rolando Núñez-Valdéz et al. “A model-driven approach to generate
and deploy videogames on multiple platforms”. In: J. Ambient Intelligence
and Humanized Computing 8.3 (2017), pp. 435–447. doi: 10.1007/s12652-
016-0404-1 (cit. on pp. 72, 78).

[47] Edward Rolando Núñez-Valdéz et al. “Gade4all: Developing Multi-platform
Videogames based on Domain Specific Languages and Model Driven Engi-
neering”. In: IJIMAI 2.2 (2013), pp. 33–42. doi: 10.9781/ijimai.2013.224
(cit. on pp. 72, 78).

[48] David Oranchak. “Evolutionary algorithm for generation of entertaining
shinro logic puzzles”. In: European Conference on the Applications of Evo-
lutionary Computation. Springer. 2010, pp. 181–190 (cit. on p. 80).

[49] Chris Pedersen, Julian Togelius, and Georgios N Yannakakis. “Modeling
player experience in super mario bros”. In: 2009 IEEE Symposium on Com-
putational Intelligence and Games. IEEE. 2009, pp. 132–139 (cit. on p. 80).

[50] J. Petke et al. “Genetic Improvement of Software: A Comprehensive Survey”.
In: IEEE Transactions on Evolutionary Computation 22.3 (2018), pp. 415–
432. issn: 1089-778X. doi: 10.1109/TEVC.2017.2693219 (cit. on p. 106).

[51] William L Raffe et al. “Integrated approach to personalized procedural map
generation using evolutionary algorithms”. In: IEEE Transactions on Com-

114

https://doi.org/10.1007/s12652-016-0404-1
https://doi.org/10.1007/s12652-016-0404-1
https://doi.org/10.9781/ijimai.2013.224
https://doi.org/10.1109/TEVC.2017.2693219

Bibliography

putational Intelligence and AI in Games 7.2 (2014), pp. 139–155 (cit. on
p. 80).

[52] Emanuel Montero Reyno and José Á Carsí Cubel. “Automatic Prototyp-
ing in Model-driven Game Development”. In: Comput. Entertain. 7.2 (June
2009), 29:1–29:9. issn: 1544-3574. doi: 10.1145/1541895.1541909 (cit. on
pp. 72, 78).

[53] Sebastian Risi et al. “Petalz: Search-based procedural content generation
for the casual gamer”. In: IEEE Transactions on Computational Intelligence
and AI in Games 8.3 (2015), pp. 244–255 (cit. on p. 80).

[54] Jonathan Roberts and Ke Chen. “Learning-based procedural content gen-
eration”. In: IEEE Transactions on Computational Intelligence and AI in
Games 7.1 (2014), pp. 88–101 (cit. on p. 80).

[55] Christoph Salge and Tobias Mahlmann. “Relevant information as a for-
malised approach to evaluate game mechanics”. In: Proceedings of the 2010
IEEE Conference on Computational Intelligence and Games. IEEE. 2010,
pp. 281–288 (cit. on p. 80).

[56] B. Selic. “The pragmatics of model-driven development”. In: IEEE Software
20.5 (2003), pp. 19–25 (cit. on p. 72).

[57] Forrest Shull, Janice Singer, and Dag I. K. Sjberg. Guide to Advanced Em-
pirical Software Engineering. 1st. Springer Publishing Company, Incorpo-
rated, 2010. isbn: 1849967121 (cit. on p. 92).

[58] Adam M Smith and Michael Mateas. “Answer set programming for proce-
dural content generation: A design space approach”. In: IEEE Transactions
on Computational Intelligence and AI in Games 3.3 (2011), pp. 187–200
(cit. on p. 80).

[59] Adam M Smith and Michael Mateas. “Variations forever: Flexibly generat-
ing rulesets from a sculptable design space of mini-games”. In: Proceedings
of the 2010 IEEE Conference on Computational Intelligence and Games.
IEEE. 2010, pp. 273–280 (cit. on p. 80).

115

https://doi.org/10.1145/1541895.1541909

Chapter 2. An Evolutionary Approach for Generating Software Models: The case of Kromaia in
Game Software Engineering

[60] Jaime Solís-Martínez et al. “VGPM: Using Business Process Modeling for
Videogame Modeling and Code Generation in Multiple Platforms”. In: Com-
puter Standards & Interfaces 42 (2015), pp. 42–52. doi: 10.1016/j.csi.
2015.04.009 (cit. on pp. 72, 78).

[61] Nathan Sorenson and Philippe Pasquier. “Towards a generic framework for
automated video game level creation”. In: European conference on the ap-
plications of evolutionary computation. Springer. 2010, pp. 131–140 (cit. on
p. 80).

[62] Nathan Sorenson, Philippe Pasquier, and Steve DiPaola. “A generic ap-
proach to challenge modeling for the procedural creation of video game lev-
els”. In: IEEE Transactions on Computational Intelligence and AI in Games
3.3 (2011), pp. 229–244 (cit. on p. 80).

[63] George Stiny and James Gips. Algorithmic Aesthetics: Computer Models
for Criticism and Design in the Arts. Berkeley, California: University of
California Press, 1978. isbn: 0520034678 (cit. on p. 95).

[64] Adam Summerville et al. “Procedural content generation via machine learn-
ing (PCGML)”. In: IEEE Transactions on Games 10.3 (2018), pp. 257–270
(cit. on p. 80).

[65] Unity Technologies. Unity, Version 2018.3.9. San Francisco, California, 2005
(cit. on pp. 72, 78, 107).

[66] J. Mark Thompson. “Defining the Abstract”. In: The Games Journal (2000)
(cit. on pp. 95, 96).

[67] Julian Togelius, Renzo De Nardi, and Simon M Lucas. “Making racing fun
through player modeling and track evolution”. In: (2006) (cit. on p. 80).

[68] Julian Togelius, Mike Preuss, and Georgios N Yannakakis. “Towards multi-
objective procedural map generation”. In: Proceedings of the 2010 workshop
on procedural content generation in games. ACM. 2010, p. 3 (cit. on p. 80).

[69] Julian Togelius and Jurgen Schmidhuber. “An experiment in automatic
game design”. In: 2008 IEEE Symposium On Computational Intelligence
and Games. IEEE. 2008, pp. 111–118 (cit. on p. 80).

116

https://doi.org/10.1016/j.csi.2015.04.009
https://doi.org/10.1016/j.csi.2015.04.009

Bibliography

[70] Julian Togelius et al. “Search-based procedural content generation: A tax-
onomy and survey”. In: IEEE Transactions on Computational Intelligence
and AI in Games 3.3 (2011), pp. 172–186 (cit. on p. 80).

[71] Guilherme Horta Travassos and Márcio de Oliveira Barros. “Contributions
of in virtuo and in silico experiments for the future of empirical studies
in software engineering”. In: Proceedings of the ESEIW 2003 Workshop on
Empirical Studies in Software Engineering (WSESE ’03). Roman Castles,
Italy: IEEE Computer Society, 2003 (cit. on p. 92).

[72] Tim Tutenel et al. “Generating consistent buildings: a semantic approach
for integrating procedural techniques”. In: IEEE Transactions on Computa-
tional Intelligence and AI in Games 3.3 (2011), pp. 274–288 (cit. on p. 80).

[73] Muhammad Usman, Muhammad Zohaib Iqbal, and Muhammad Uzair Khan.
“A product-line model-driven engineering approach for generating feature-
based mobile applications”. In: Journal of Systems and Software 123 (2017),
pp. 1–32. doi: 10.1016/j.jss.2016.09.049 (cit. on pp. 72, 78).

[74] Roland Van Der Linden, Ricardo Lopes, and Rafael Bidarra. “Procedural
generation of dungeons”. In: IEEE Transactions on Computational Intelli-
gence and AI in Games 6.1 (2013), pp. 78–89 (cit. on p. 80).

[75] András Vargha and Harold D. Delaney. “A Critique and Improvement of
the CL Common Language Effect Size Statistics of McGraw and Wong”. In:
Journal of Educational and Behavioral Statistics 25.2 (2000), pp. 101–132.
doi: 10.3102/10769986025002101. eprint: http://jeb.sagepub.com/
content/25/2/101.full.pdf+html (cit. on p. 104).

[76] James R. Williams et al. “Identifying Desirable Game Character Behaviours
through the Application of Evolutionary Algorithms to Model-Driven En-
gineering Metamodels”. In: Search Based Software Engineering - Third In-
ternational Symposium, SSBSE 2011, Szeged, Hungary, September 10-12,
2011. Proceedings. 2011, pp. 112–126. doi: 10.1007/978-3-642-23716-
4_13 (cit. on pp. 78, 79).

117

https://doi.org/10.1016/j.jss.2016.09.049
https://doi.org/10.3102/10769986025002101
http://jeb.sagepub.com/content/25/2/101.full.pdf+html
http://jeb.sagepub.com/content/25/2/101.full.pdf+html
https://doi.org/10.1007/978-3-642-23716-4_13
https://doi.org/10.1007/978-3-642-23716-4_13

Chapter 3

Procedural Content
Improvement of Game Bosses

with an Evolutionary
Algorithm

We present our Evolutionary Boss Improvement (EBI) approach,
which receives partially complete bosses as input and generates fully
equipped bosses that are complete. Additionally, the evolutionary al-
gorithm and the new genetic operations included in EBI favor genetic
improvement, which affects the initial partial content of the incomplete
bosses originally provided. We evaluate our approach using Kromaia, a
commercial video game released on PlayStation 4 and PC. EBI uses an
evolutionary algorithm to evolve a population of bosses guided by duels
between the bosses being generated and a simulated player. Our approach
evaluates the quality, in terms of game experience, of both the bosses
generated and those included in Kromaia using six metrics (Completion,
Duration, Uncertainty, Killer Moves, Permanence, and Lead Change)
from the literature. The results show that the quality of the bosses cre-
ated by EBI is comparable to the quality of the original bosses that were
manually created by the developers of Kromaia. However, the EBI ap-
proach reduces the time required to build the bosses from five months (of
elapsed time as opposed to dedicated time) to just 100 minutes of unat-
tended run. EBI enables developers to accelerate the creation of content,
such as bosses, which is essential to ensure player engagement.

119

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.1 Introduction

Procedural Content Generation (PCG) is a topic that has become in-
creasingly prominent within the Video Game community [57]. PCG is
defined as the automated creation of video game content by means of
algorithms [57].

Within the Software Engineering community, Genetic Programming (GP)
[27] tackles the automated generation of software. GP and PCG share
the idea of generation (software and video game content, respectively).
In the last decade, the Software Engineering community has experienced
a surge of interest in a subfield of GP known as Genetic Improvement
(GI) [29]. GI improves existing software through an automated search,
evolutionary algorithms, and search-based optimization. A recent sur-
vey [44] points out the main difference between GP and GI: GP builds
a working program from scratch and GI uses an existing program as the
starting point. Surveys on PCG [57, 21, 54] do not identify works that
focus on addressing content improvement.

Because the establishment of GI as a subfield of GP has brought novel
and positive contributions [29], the goal of our work is to simply recognize
the content improvement work in PCG and give that subfield a name:
Procedural Content Improvement (PCI). We consider that PCI might
be as positive for the Video Game community as GI has been for the
Software Engineering community.

In this work, we focus on game boss improvement. It consists in taking
partially generated bosses as the starting point and generating complete
bosses which are comparable or even better than the bosses completed
by human developers in terms of game experience quality, i.e., how inter-
esting the bosses are to players. Bosses are particularly powerful enemies
that the player must overcome at the end of a stage or level. In order
to help video game developers when they create game bosses, we present
our Evolutionary Boss Improvement (EBI) approach. The EBI approach
relies on an evolutionary algorithm that is guided by a simulated duel
between the boss and the player.

120

3.1 Introduction

We evaluate our approach using a commercial video game, Kromaia.
This video game has been released worldwide in both physical and dig-
ital versions for PC and PlayStation 4. To create a boss, the Kromaia
development team must perform the following steps: Creative Design,
Spatial Organization, Behavior Specification, and Equipment Configura-
tion.

When we apply our EBI approach to Kromaia, it first obtains a partially
created boss enemy as input (i.e., Creative Design, Spatial Organization,
and Behavior Specification have already been performed) and then per-
forms the last step, Equipment Configuration. The output obtained from
our approach is a complete boss.

In the evaluation, we compare the bosses generated by our approach with
the five bosses that have been manually created by the development
team of Kromaia, using six different indicators of the level of quality
achieved by the game. These quality measures, which are taken from
the video game research literature [12], are the following: Completion,
Duration, Uncertainty, Killer Moves, Permanence, and Lead Change.
The results show that the bosses generated by our approach outperformed
those designed by the developers.

Additionally, the EBI approach generated those bosses after running
unattended for 100 minutes, which is a significant advance in terms of
time. The version control system used by the company that created the
video game shows that the developers needed five months1 to perform the
last step (Equipment Configuration) before the final release of Kromaia.

Our approach helps developers to accelerate the creation of content. Con-
tent is often released as Downloadable Content (DLC), which is essential
to reinforce player engagement and retention. Furthermore, content is
also used to refresh existing products when they are released on new
platforms.

The contribution of the present work could be summarized in this way:

• This work focuses on addressing the improvement of content, instead
of software, and applies the ideas of PCG and GI to the production of

1This includes testing with real players.

121

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

complete content, taking as an input incomplete, partially generated
content.

• In contrast with other previous works, our approach uses Evolu-
tionary Computation instead of Machine Learning in order not to
depend on knowledge bases, since such approaches may require
datasets with thousands of examples [35], and those knowledge bases
are not always available in the case of industrial products. Further-
more, even if there also exist previous works which generate content
from a single sketch or draft of the complete content as a start-
ing point, our work studies the improvement of a content which is
received incomplete.

• Our work does not focus on game content such as levels, maps or
sprites, which are typically represented by 2D images. In addition,
the recent literature calls for works who address more diverse types
of content, like characters and their skills. Our work focuses on the
generation of final bosses, which are complex entities which are not
internally represented as images, and belong to a type of content
which has been less studied in comparison.

The paper is organized as follows. Section 3.2 summarizes related works.
Section 3.3 provides the background. Section 3.4 presents an overview
of our EBI approach. Section 3.5 presents the evaluation, comparing the
results obtained by our approach with the content in the video game case
study. Section 3.6 describes the threats to validity. Finally, Section 3.7
presents our conclusions.

3.2 Related Work

Several approaches focus on the generation of new content while others
are more focused on the balance of existing content. Both types of ap-
proaches use similar methods for assessing and guiding the process [57]
(direct fitness, simulations based on intelligent agents, or interactive eval-
uation with real users). Next, we describe the works belonging to these
two categories.

122

3.2 Related Work

3.2.1 Generation of new content

Our work leverages search to improve a specific type of non-playable
character (NPC): the game boss. The previous surveys [57, 21] that
cover search-based procedural content generation are about ten years
old. To cover the years from these surveys, we ran a new search using
the following query on Scopus: TITLE-ABS-KEY ((pcg OR "auto-
matic generation" OR procedural) AND (videogame OR game) AND (
"search-based" OR evolutionary OR genetic OR "local search" OR "tabu
search" OR "Monte Carlo Tree Search" OR mcts)). The query returned
237 works. After manual inspection, we identified two works that tackle
NPC and consequently are relevant to our work. We considered only
those works that tackle NPC building, excluding works that are related
to NPC but do not build NPCs (e.g., NPC placement [10] was excluded).

We classified the identified works following the distinction between Pro-
cedural Content Generation (PCG) and Procedural content Improvement
(PCI) introduced in Section 3.1: PCG builds content from scratch and
PCI uses existing content as the starting point. Two of the identified
works belong to PCG as we show below.

Siqueira and Gadelha [47] tackle the generation of NPCs for massive
multiplayer online real-time strategy games. They focus on generating
heroes, which are the NPCs that manage soldiers in battle formations.
Even though their approach takes as input a team of heroes for the
defender side, it evolves the heroes of the attacker side. The latter are
generated randomly according to a uniform distribution. In other words,
the input heroes are not used as a starting point for creating heroes; the
input heroes are used to assess the battle performance of the created
heroes.

Ashley et al. [4] tackle the mating facet of NPCs in the context of artificial
life. More specifically, they focus on a wolf-sheep predation model where
they encode the mating partner preferences of each NPC. Their main idea
is that a more effective mate selection increases the extinction time of
the population. Their results show that NPCs evolve to favor mates who
have survival traits. The implementation of their proposed approach in

123

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

a video game remains as future work. In their work, NPCs are randomly
initialized, that is, there is no other NPC used as a starting point.

In contrast, we tackle a different subtype of NPC (game boss) and we
follow a PCI approach in which we take partially generated bosses as
starting points. Our PCI approach enables developers to significantly
accelerate the creation of NPCs (i.e., game bosses).

Even if a systematic literature review of PCI work is out of the scope of
this study (actually, it is our future work), we also identify works that
tackle the creation of shooter maps in the results of our search query.
We focus on this type of content because the our video game case study
is commonly described as a shooter game. Four of the identified works
qualify as PCG, whereas one qualifies as PCI. Below, we present these
works and why they belong to each category.

The work of Cardamone et al. [13] is the first to generate playable maps
for an FPS (First Person Shooter). The authors propose four different
representations for the levels and use the average fighting time of artificial
agent simulations as the fitness function. Then, Lanzi et al. [30] go one
step further by applying a similar approach to evolve shooter maps for
match balancing. In other words, while Cardamone et al. aimed to evolve
interesting maps (i.e., maps that allow the emergence of interesting game
dynamics), Lanzi et al. focus on evolving a map that can improve the
match balancing. Loiacono et al. [36][37] were the first to leverage multi-
objective evolution for generating shooter maps. All of these works used
the same encoding proposed by Cardamone et al. [13], the same static
simulation through bots to guide the search, and the same case study
(Cube 2). Furthermore, neither of these works reported that they use
existing shooter maps as the starting point.

The work of Olsted et al. [64] also tackles the generation of shooter
maps using the encoding by Cardamone et al. [13] and the Cube 2
case study. The novelty of this work is that it allows a group of human
players to interactively and collectively evolve the shooter maps through
voting. The human players guide the evolutionary search towards the
map content that they prefer. The approach does not build shooter
maps from scratch; their approach builds shooter maps from existing

124

3.2 Related Work

shooter maps that are considered to meet a minimum level of quality,
thus preventing human players from receiving particularly bad maps.

It is worth mentioning that all of the above works on shooter maps use
a significantly simplified version of Cube 2 maps. This might favor the
use of PCG approaches, whereas tackling Cube 2 maps which are not
simplified might benefit from PCI approaches. In the case of our work
(which tackles game bosses instead of shooter maps), we did not simplify
the content in any sense, and PCI enabled us to achieve a significant
reduction in development time. Finally, in the manner of interactive
approach of Olsted et al. [64], other interactive approaches for other
types of content might also use PCI to avoid presenting content to human
players if it is not good enough to be considered by them.

In our previous work [8], we tackled the PCG of game bosses of Kromaia.
To do this, we leveraged the ideas of Model-Driven Engineering [25],
which include the genetic operation of model repair and the use of the
model interpreter to guide the evolution of bosses. In this work, we focus
on improvement instead of generation from scratch. This work shows
that improvement is beneficial in accelerating video game development.
In addition, we achieve the positive results of improvement without the
model repair operation and the model interpreter. This means that im-
provement can be used in video games for which the repair operation
and the interpreter used as fitness are not available. Improvement allows
developers to keep control of some steps of the creation process while
they delegate other steps to automation (improvement). The developers
of Kromaia acknowledge that some content requires that they keep some
level of control, while other content may be completely generated from
scratch. This suggests that PCG and PCI approaches can complement
each other. In another previous work, we also used Kromaia as a case
study for requirement traceability [7]. Traceability is important for video
game developers since they are often asked to show how functionality has
been implemented. For instance, Nintendo might ask developers to im-
plement game saves in a specific way. Even though our previous work
also uses Kromaia as a case study, the goals are completely different:
traceability and improvement, respectively.

125

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

In addition and, in the context of PCG, there is an increasing inter-
est in the application of Machine Learning (ML) and, specifically, Deep
Learning (DL) to PCG in video games, as shown by a recent work which
explores the evolution of this field of knowledge in the last years [34].
The paper surveys the techniques applied to content generation, and dis-
cusses both the limitations of the methods used and potential future re-
search directions. For instance, this work exposes how systems which are
autonomous, or merely receive initial parameters from human subjects,
have difficulties to create quality content, and, therefore, mixed initia-
tive generation [61], which include initial drafts or specifications given
by humans for design assistance purposes [20], is gaining acceptance [34].
Such techniques are mainly used for the generation of platform game
stages [19], and maps or 2D stages based on tiles [31][15] [34]. Our work
uses an approach which does not receive a draft or sketch of the content
generated, but incomplete content, resulting from previous design stages
which are not directly related with the step that is necessary to complete
the final bosses (Equipment Configuration).

The same survey shows how DL/ML works need datasets with thousands
of examples [35], which is something that could be unavailable, for de-
velopment teams who lack extensive knowledge databases. In the case of
the company responsible for the video game case study, Kromaia, it was
their first title and, even considering the possibility of generating content
for a sequel, the original, finished video game includes few examples of
final bosses. Additionally, companies often do not store the data neces-
sary to create proper knowledge bases, a problem which was reported as
knowledge vaporization [59], which is a reason for which, in our work, we
use evolutionary computation instead of ML in order not to depend on
knowledge bases.

The survey also discusses how some works managed to generate content
as maps or sprites with DL approaches based on an single draft or sketch
[34][63][32][50], or combining stages and levels from games [53][48][49].
However, in contrast with 2D sketches for final image content, our work
studies the improvement of bosses, which are received incomplete and
without a direct connection between such partial content, related to pre-
vious design stages, and the content pending. In addition, for the video

126

3.2 Related Work

game case study, the mix of content from different games is not possible,
due to the lack of sequels and prequels, and the unique nature of the the
bosses and the game at the time of its original release.

Finally, the survey explains that most of the works focus on the gen-
eration of content such as 2D game levels, stages or maps, and sprites,
with such content being internally represented by 2D images [41]. Ad-
ditionally, the article by Liu et al. calls for works who focus on more
diverse types of content, such as characters in fighting games, and their
skills and characteristics [34]. Our work is focused on the generation of
less explored content in comparison with other types, according to the
review: bosses, complex entities which are defined by means of a DSL
and not represented as image content; these bosses behave as antago-
nist characters, and they are characterized by traits like their Equipment
Configuration, which is the design stage studied by our approach.

3.2.2 Balance of content

Some approaches are designed as a companion for the development team
in order to be used to gain insights about game balance by gathering
information from simulation-based plays of artificial agents. In [23], the
authors present an approach for balancing games through the use of re-
stricted play agents. In [60], the authors make use of a multi-objective
optimization algorithm to demonstrate the feasibility of an approach for
automatic game balancing in the context of the Top Trumps card game.
In [5], the authors propose a semi-automatic process for the game bal-
ancing of a prototype of a commercial video game (Zombie Village Game
by Blue Byte GmbH). In [38], the authors create two different AI agents
that are able to play a commercial board game (ticket to ride), generating
information that can be used to balance the game.

These approaches are similar to the one presented in this work in the
sense that they use artificial agents to gather information about the per-
formance of the individuals being evolved. However, they do not focus
on the creation of new content, and the resulting balanced content is not
compared with content that has been balanced manually by developers,
as our work does.

127

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

Other approaches gather the information for balance from the actions
and knowledge of real users, and sometimes they adapt the content for
those types of users. In [40], an evolutionary algorithm is given an initial
population of pre-crafted and random Role-Playing Game (RPG) skills
that are then assessed based on how often each skill is used by the play-
ers and evolved into new sets of skills. In [45], the approach focuses
on informing game development about possible imbalances by means of
agents that are trained using a dataset containing six months of plays
of 213 human players of the game Aion, a Massive Multiplayer Online
RPG. In [24], the authors use a deep-learning surrogate model to gener-
ate character classes of an FPS game that is tailored for a specific map.
The approach uses a fitness function that takes into account the desired
match duration and score and compares them to the values predicted by
the surrogate model. The work in [6] applies an evolutionary strategy
to generate playing card game decks by using a subset of the cards that
are available in Hearthstone using artificial agent matches to evaluate
the decks. Another work on the balance of the cards in Hearthstone [39]
quantifies the impact of a change in a card on all of the sets of existing
decks and game strategies. That work uses search strategies to determine
which changes should be selected to balance the game.

These approaches benefit from the knowledge of several users, which can
be used to guide the balancing process and even tailor the results for
specific users or styles of play. However, in our work, we only use an arti-
ficial agent to guide the process and then compare the resulting content
to the (supposedly good) content created originally by the developers.
Nevertheless, tailoring the process of boss generation to specific types
of players or play styles is something that we will explore in the future
(e.g., in Kromaia, since there are different types of ships controlled by
the player in the game, suggesting that different archetypes of players
are playing the game).

128

3.3 Background

3.3 Background

In this work, we focus on bosses, which are created in different steps using
a Domain-Specific Language (DSL). This section presents the creation
steps and the DSL.

3.3.1 Steps for Creating Bosses

The creation of bosses in video games involves several steps. In our video
game case study (Kromaia), the development team followed a four-step
process. First, in the creative design step, a general specification of the
bosses is provided, determining its structure, anatomical constraints, and
visual appearance. Then, in the spatial organization step, the anatomical
specification of the bosses is performed, arranging a set of hulls into a
specific disposition and specifying relationships and hierarchies among
the hulls. The third step is the behavior specification, which determines
the artificial intelligence that will drive the boss.

The final step is the Equipment Configuration, which deals with weak
point and weapon configuration. Determining the presence of different
attack/defense items and the hulls that they are attached to has a sig-
nificant impact on both the difficulty associated with the unit and the
user’s experience. This delimits the power assigned to the boss as well
as the valid strategies that the players can use to defeat that boss.

In this work, we focus on the Equipment Configuration step to improve
the bosses of Kromaia, the video game case study. This step does not
refer to the task of tuning parameters that represent modifications of
fixed content: it refers to the addition of procedurally generated content
that is classified as Necessary in PCG taxonomy research works [57, 62].
This is because, before the Equipment Configuration step, the bosses
lack weapons and weaknesses, and, therefore, they are not suitable for
the game.

129

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.3.2 Domain-Specific Language for Shooters

This section presents SDML (Shooter Definition Model Language), which
is a DSL created by Kraken Empire, the company responsible for the
development of the video game Kromaia. SDML covers the definition
of every mission, vehicle, creature, and landscape of the game. The left
part of Fig. 3.1 shows different bosses that are included in the video game
case study; the right section of Fig. 3.1 shows part of the SDML content
in Boss 1: Serpent. The main SDML concepts that are relevant to the
bosses are:

Figure 3.1: Bosses in Kromaia, defined with SDML. The content included in this commer-
cial video game (e.g., vehicles, creatures, worlds, and missions) is described in SDML. These
include a wide range of data covering geometry, physics, contraptions, and AI, and follow a
modular structure.

• Hulls and Links: The Hull Module is a collection of solid bodies
that are connected through configurable joints or links. This hier-
archy defines the anatomy and physics of the boss. Depending on
the arrangement and the flexibility of the links used, bosses may

130

3.3 Background

have rigid structures, mobile parts, or even segmented tentacles.
Fig.3.1 shows how visual appearance, geometry, and physics-related
attributes are defined for hulls (see A) and the varied link types (see
B).

• Weak Points: These are damageable objects that are attached to
certain hulls. They can be organized in layers that are progressively
unlocked as an enemy player destroys them. Any opponent trying to
defeat a boss must first destroy these weak points. In the beginning,
they are the only damageable objects. However, once every weak
point has disappeared, the normal hulls become damageable, and,
therefore, it is possible to destroy the boss. Fig. 3.1 includes an
example of a weak point (marked as HullVitalData) that belongs to a
specific layer.

• Weapons: These are objects that are capable of inflicting dam-
age by using bullets, launching homing missiles, tracing rays, or
affecting the target on direct contact. The bosses included in the
commercial releases of Kromaia use these four weapon types. These
weapons involve AI automatic gun turret behaviors that make them
aim at targets (players). An example of an AI weaponry module
and possible parameters for a weapon is shown in Fig. 3.1(C).

• AI components: These concepts define the way that bosses act
during a game in terms of artificial intelligence. An AI module can
include several AI components for different situations, as shown in
Fig. 3.1(D), and they also can describe flocking behaviors.

In the video game case study, an average boss unit has 64 hulls. Each hull
might have, simultaneously, one of the four possible weapon types and a
weak point. This is a design feature that was included by the developers,
not a decision made during this research study. This turns out to be
264∗(4+1) = 2320 possibilities for equipment configuration, which shows
that testing every single possibility is not feasible. Our EBI approach
explores this search space using an evolutionary algorithm.

131

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.4 Overview of our EBI Approach

This section presents our EBI approach, the goal of which is to improve
bosses. It receives a partially configured boss as input that is used to en-
code the population of an evolutionary algorithm. Then, the individuals
are assessed by a fitness function and evolved through the Improvement
Crossover and Improvement Mutation operations. This is repeated un-
til the stop condition is met. Finally, EBI decodes the best individual
generated into a completely configured boss.

In the following subsections, we present the evolutionary algorithm, the
encoding, the genetic operations, and the fitness for the EBI approach.

3.4.1 EBI Algorithm Summary

PARTIALLY
GENERATED

BOSS
ENCODING POPULATION FITNESS

ASSESSED
AND RANKED
POPULATION

MUTATE?

STOP

CONTINUE POPULATION
FITTEST

INDIVIDUALS
ICROSSOVER

NO

BEST
CANDIDATE
DECODING

COMPLETE
BOSS

IMUTATION

STOP CONDITION?

YES

START

FINISH

A B C D E

F G

I J H

Figure 3.2: EBI Approach Overview.

The evolutionary algorithm used by EBI iterates an Equipment Config-
uration configuration population and makes that population evolve by
means of our genetic operations. A fitness operation guides the evo-
lutionary algorithm, which tries to maximize the fitness values of the
individuals included in the population. The fittest individuals reproduce
and the population size is controlled and remains stable by discarding the

132

3.4 Overview of our EBI Approach

lesser promising configurations. Fig. 3.2 shows the main steps included
in our EBI approach.

• Input - Partially Configured Boss (Fig. 3.2, A): This is a boss,
defined by means of SDML that has gone through three of the four
creation steps (Creative Design, Spatial Organization and Behavior
Specification).

• The Encoding of the possible realizations of the Equipment Config-
uration (Fig. 3.2, B) is necessary before creating the initial popula-
tion which will be evolved by the evolutionary algorithm (Fig. 3.2,
C). These encoded, randomly generated configurations represent the
last step in the boss creation process.

• The Fitness step (Fig. 3.2, D) evaluates the Equipment Configu-
rations by assigning values to them and sorting the population as
a ranking (Fig. 3.2, E). These fitness values depend on the results
obtained from the simulation of duels between a human player and
the bosses included in the population, which use their Equipment
Configurations. The process is over when an Equipment Configu-
ration with a fitness value that is high enough is found or when a
time limit is reached.

• Assuming that the process is not over yet, the next step uses im-
provement focused genetic operations to create a new generation of
Equipment Configurations (Fig. 3.2, G, H). Those configurations
with the highest fitness values in the population are selected and
allowed to reproduce by means of pairing (Fig. 3.2, F). Then, new
Equipment Configurations are obtained crossing the genetic mate-
rial of the possible combinations of two potential parents from the
selected group. Finally, this step also introduces changes in the new
configurations using Mutation, an operation that could make the
new Equipment Configurations surpass the fitness values achieved
by their parents or get worse than them.

• Output - Completely Configured Boss: This is a complete boss (in-
cluding the Equipment Configuration) which has been decoded back
to SDML (Fig. 3.2, I, J).

133

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.4.2 Boss Equipment Configuration Encoding of the EBI Approach

The Equipment Configurations obtained by our approach are the can-
didates that are generated for the last configuration stage in the boss
creation process. Nevertheless, these configurations must be encoded. In
evolutionary algorithms, this is usually done by representing candidates
as binary strings or arrays containing values such as true/false or 0/1.

In the EBI approach, the encoding for the Equipment Configurations
is as follows: each Equipment Configuration is a binary, bi-dimensional
matrix in which columns correspond to the hull collection for the boss
studied, and each row represents weak points and the four weapon types
used by the bosses. The values in each cell indicate the presence (1)
or absence (0) of a certain item type in a hull. The encoding used to
represent Equipment Configurations is shown in Fig. 3.3.

ENCODING
HULLS

H 0 H 1 H 2 H 3 ...

IT
EM

S

MELEE SPIKE 0 1 1 0 ...

GUN TURRET 1 0 0 1 ...

HOMING MISSILE 0 1 0 0 ...

LASER 0 0 1 0 ...

WEAK POINT 0 0 0 1 ...

OCTOPUS . SDML
 ●●●
 <HULLS Number="32">
 ●●●
 <Hull HullType="1">●●●<HullVitalData VitalHullLayer="1"●●●
 ●●●
 </HULLS>
 ●●●
 <WEAPONRYWEAPONSAI Number=«10">
 ●●●
 <Weapon WeaponType="3">●●● <ComponentData HullIndex="3"●●●
 ●●●
 </WEAPONRYWEAPONSAI>
 ●●●

Figure 3.3: Example showing the relation between data present in SDML and Equipment
Configuration encoding.

134

3.4 Overview of our EBI Approach

Figure 3.4: Fragment of the metamodel which describes the rules for creating bosses in
Kromaia. The elements marked with stars indicate the parts of such excerpt which are
involved in the Equipment Configuration step. The series of marks M1-M7 and W1-W2
are examples which show the elements involved in terms of support for missiles (a type of
weapon) and weak points, respectively, beyond Equipment Configuration.

135

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.4.3 Genetic Operations of the EBI Approach

Our work focuses on improvement, and this means that our approach
deals with content which has been partially generated previously. In such
circumstances, manipulating content by means of evolutionary computa-
tion and, therefore, using operations which mix and modify individuals of
a given population, imply considerations beyond the changes or additions
provided by traditional genetic operations.

Taking into consideration that the complete creation process of a specific
content would involve a set of elements, properties, and rules which con-
nect them, our work deals with improvement as the addition, removal, or
modification of specific fragments of such set. However, if such modifica-
tions only consider those specific fragments, the new or updated content
could be invalid and, therefore, not usable, due to the fact that the frag-
ments are not isolated and independent.

In the context of the case study with which our approach is applied, an
example of the aforementioned issue would be weak point designation
within final bosses. Fig. 3.3 shows that the encoding used by our ap-
proach, which represents elements and properties corresponding to the
last step, Equipment Configuration, includes information relative to weak
points. In terms of properties and internal definition, weak points are
different from the rest of hulls or solid bodies, but the inclusion of hulls in
the structure of a final boss corresponds with one of the first stages (Spa-
tial Organization). Therefore, the changes introduced during Equipment
Configuration are not independent and isolated.

Recent works have surveyed a compendium of Search-Based approaches,
which were developed in the last decades and made use of crossover
and mutation operations [43][9]. These works show how methods like
single-point crossover and random mutation are the dominant choices.
In addition, the literature describes how, within the community of gen-
eral evolutionary computation research, there exists a significantly high
number of different genetic operations, more than 20 and 50 mutation
and crossover operations, respectively [33][42][42]. However, the recent
surveys do not describe genetic operators which are designed in order to
focus on improvement and its implications. Instead of that, the scope of

136

3.4 Overview of our EBI Approach

the operators surveyed is not a specific part of the individuals manipu-
lated, and they cross or mutate complete solution candidates.

In this work, we propose new genetic operations which take into account
the particularities implied by the notion of improvement. In order to de-
fine such improvement-focused operations, we take into account Model-
Driven Engineering (MDE) [26] and consider the abstract representation
of knowledge, like the content improved by our approach. More specif-
ically, in the context of MDE a metamodel represents the formalization
of the characteristics and particularities of the models which will be cre-
ated in accordance to it [26].The metamodel expresses the relationship
between the different elements involved in the definition of an entity,
the nature, and cardinality (if applicable) of such relationships, and the
properties included. In the case of video games, the content may be for-
malized, for instance, by means of tools like Blueprints, in the case of the
commercial engine Unreal [17], or the DSL used by the developers in the
video game case study of this work. Models may formalize content such
as objects, characters, or behaviors [46][55]. Our new operations make
use of metamodels in order to focus on the fragments which complete
the partially generated content and the binary encoding of such content.
The metamodel is also used in order to modify, if it is necessary, the
fragment of the partially complete content originally provided, which is
not encoded, to keep the complete content coherent and valid.

In Kromaia, the video game case study, it is necessary to take into ac-
count and use certain rules and constraints which must be observed in
order to create a suitable final boss. Every step in the production of
a boss, in addition to Equipment Configuration, must be completed in
accordance to those specifications. The compliance of the bosses gener-
ated with them is relevant with regard to the idea of improvement used
in our work, and how such improvement affects a complete boss, even if
our EBI approach focuses on one of the steps involved in the creation of
a boss. This is relevant to the application of the genetic operations of
our approach, since the concepts managed and added to the bosses by
EBI, which are related to the Equipment Configuration step, could imply
changes which affect the concepts corresponding the previous steps. Our
approach takes advantage on the fact that the developers of the video

137

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

game case study used SDML not only to define bosses, but also to formal-
ize the characteristics which the bosses themselves should met in order
to be considered as valid. Such formalization is shown in Fig. 3.4, which
includes a fragment of the metamodel used to define the bosses included
in the video game case study. This metamodel is used by our approach
to correctly conduct improvement, which is driven by the modifications
done by the evolutionary algorithm and our genetic operations, which
focus on Equipment Configuration.

Our EBI approach generates new Equipment Configurations using some
of the existing ones as parents. This process is supported by the new oper-
ators which we propose in this work: ICrossover (Improvement Crossover)
and IMutation (Improvement Mutation). These genetic operations are
based on crossover and mutation, two operators which are widely present
in the evolutionary computation research literature [16] and they are used
in order to expand populations and introduce variability into them. We
created operators based on them in order to work in favor of improve-
ment in the context of our work. The genetic operations are used to add
diversity to the population and, eventually, to lead to individuals which
are fitter than their ancestors.

First, the operators are adjusted to work with Equipment Configurations
which represent possible weak point and weapon distributions in a boss.
This configuration is the last step involved in the creation of a complete
boss, while the previous steps provide the partially generated bosses to
which our approach applies an EA.

The fittest Equipment Configurations within the population are selected
as parents for the new offspring. The fitness value calculation process is
described in Subsection 3.4.4. Once the population is sorted, the best
10% of the Equipment Configurations are selected and pairwise combined
to generate the new offspring. Each pair of parents is used to generate a
new Equipment Configuration by applying the ICrossover operator. The
newly created Equipment Configuration could be randomly designated
to undergo mutation, by means of the IMutation operator. An elitism
of 55% is applied, so the best individuals remain unchanged for the next
generation.

138

3.4 Overview of our EBI Approach

B 17

H0 H1

GUN

ENCODING
HULLS

H 0 H 1 H 2 H 3 ...

IT
EM

S

SPIKE 1 0 0 0 ...

GUN 0 0 0 0 ...

MISSILE 0 0 0 0 ...

LASER 0 0 1 0 ...
WEAK
POINT 0 0 0 1 ...

ENCODING
HULLS

H 0 H 1 H 2 H 3 ...

IT
EM

S

SPIKE 1 0 0 0 ...

GUN 0 0 0 0 ...

MISSILE 0 0 0 0 ...

LASER 0 0 1 0 ...
WEAK
POINT 0 0 0 0 ...

ENCODING
HULLS

H 0 H 1 H 2 H 3 ...

IT
EM

S

SPIKE 0 0 0 0 ...

GUN 1 0 0 0 ...

MISSILE 0 1 0 0 ...

LASER 0 0 1 0 ...
WEAK
POINT 0 0 0 0 ...

ENCODING
HULLS

H 0 H 1 H 2 H 3 ...

IT
EM

S

SPIKE 1 0 0 0 ...

GUN 0 0 0 0 ...

MISSILE 0 0 0 0 ...

LASER 0 0 0 0 ...
WEAK
POINT 0 0 0 0 ...

B 4 B 17

POPULATION

B 1 B 2 … B 100

B 101

MUTATION?

NO

YES

GENETIC OPERATIONS
FINISHED

ICROSSOVER
OPERATOR

PAIR SELECTED FROM
FITTEST INDIVIDUALS

B 102

B 4

H0 H1

SPIKE

H2

MISSILE LASER

VISIBLE TO ENCODING

SPIKE LASER

ENCODING OF NEW INDIVIDUAL

B 101

H0

SPIKE

H2

LASER

FRAGMENT BUILT USING
BOSS METAMODEL

EQUIVALENT
DECODED,
COMPLETE
BOSS

IMUTATION
OPERATOR

SPIKE LASER

ENCODING
AFTER
MUTATION

WEAK

B 102

H0

SPIKE

H2

LASER

H3

WEAK

EQUIVALENT
DECODED,
COMPLETE
BOSS

FRAGMENT BUILT USING
BOSS METAMODEL

Figure 3.5: Genetic Operations overview. The examples show how improvement is driven
by the genetic operations, which give priority to Equipment Configuration but influence the
partial completion fragment originally provided, taking advantage on the metamodel.

139

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

• ICrossover: The ICrossover operation mixes the content of two
individuals to create a third, new one. Like the methods used
traditionally in evolutionary computation, it is used to increase a
population through the combination of the genetic material of two
existing individuals. In the context of our approach and the video
game case study, the encoding is a bi-dimensional matrix, but the
crossover operation processes an Equipment Configuration as if it
were a one-dimension array that contains a consecutive collection of
rows of binary elements. Therefore, the first element corresponds
to the value placed in the first row and the first column, and the
last element in the configuration refers to the value present in the
last column and the last row. The improvement crossover opera-
tion used by our approach gives priority to the concepts introduced
by the last step, Equipment Configuration. Those concepts reflect
the part of the metamodel related to the use of weak points and
weaponry, as shown by the sections highlighted and marked with
stars the fragment of the metamodel included in Fig. 3.4. These
are the steps necessary to perform the ICrossover operation:

– First, the genetic material of both parents is combined follow-
ing the method known as single-point crossover. Assuming that
the encodings of the two parents have the same size, a random
position is selected and it marks a reference point for the new
individual: the genetic material within the region previous to
such point is taken from the first parent, while the rest is in-
herited from the second parent. The resulting individual could
eventually be superior to its progenitors.

In the case of the application of our approach to Kromaia, the
weaponry and weak point elements, which are represented in the
binary encoding and correspond with the Equipment Configura-
tion step for both parents, are combined. First, a random value
n in the interval [0, S -1] is selected (S is the size of the configu-
ration, interpreted as a one-dimension array). Then, since every
Equipment Configuration for a certain boss has the same size
S, the new configuration takes its first n array elements from
the first parent and the last S - n elements from the second

140

3.4 Overview of our EBI Approach

parent. Depending on the fitness value given to a new configu-
ration, it could outperform its parents or be selected among the
best in the population to generate new configurations in a later
iteration of the evolutionary algorithm.

The top right part of Fig. 3.5 shows how the encoded config-
urations for both the parents and the new individual produced
by means of ICrossover only contain information relative to the
Equipment Configuration step.

– Once the new individual has been created, the impact of the
mixed genetic material encoded is studied. This study is done
in order to determine possible changes required with regard to
the fragment not encoded (but included in the partially com-
pleted content which is provided to our approach) of the indi-
vidual. Such modifications done on decoding are necessary to
keep the complete content valid and usable. Therefore, even
if the operation is focused on the fragment which would com-
plete the individual, it implicitly drives the improvement since
it could lead to necessary modifications on the partially com-
pleted fragment of the content which is received as an input by
our approach.

In the case of the video game case study, once the genetic ma-
terial corresponding to the Equipment Configuration step has
been mixed, the impact of the elements for such step is cal-
culated making use of the metamodel. The elements included
in the encoding for the new individual created determine what
other elements, which are necessary to make the complete boss
feasible and are not explicitly present in the encoding, are re-
quired too. Those elements can be taken from the parents in-
directly, thank to the information available in the metamodel.
Therefore, the improvement process, which can involve the ele-
ments corresponding to different steps of the creation of a boss,
is actually driven by the last step, the Equipment Configura-
tion, since the encoding is focused on the elements related with
that step. The center right part of Fig. 3.5 shows how the im-

141

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

provement process could lead to an improved boss in terms of
other aspects, like internal structure.

• IMutation: The improvement mutation operation is inspired by
the mutations found in biology. These mutations make modifica-
tions in the genes of individuals that are caused by random factors.
The IMutation operation is first focused on producing modifications
related to the completion of content which is provided partially. In
the context our EBI approach and the video game case study, and
similarly to the ICrossover operation, this means that IMutation
gives priority to the elements corresponding to the Equipment Con-
figuration step:

– First, the operation traverses all the elements which belong to
the encoding and determines if each of them is mutated accord-
ing to a certain probability.

In the case of the bosses from Kromaia a bit string mutation is
applied on the new Equipment Configurations, which are cre-
ated through ICrossover operations.

– The resulting individual may include changes that would make
it not usable or valid unless the part not encoded is redefined.

With regard to the bosses for Kromaia, the metamodel is used in
order to identify the elements which are not included in the en-
coding and have been indirectly affected by the mutation. The
bottom right part of Fig. 3.5 shows that, for instance, adding
weak points could imply structural changes which are not taken
into account in the Equipment Configuration step. The right
part of Fig. 3.5 provides a general overview of the implications
of crossing and mutating for partially generated bosses in Kro-
maia. In addition, Fig. 3.4 shows how, for example, the ability
to launch missiles (Mark series M1-M7), or adding a weak point
(W1-W2) implies the presence of certain elements which must
be included in order to support those characteristics.

142

3.4 Overview of our EBI Approach

3.4.4 Fitness of the EBI Approach

The fitness step in our EBI approach determines the value of each Equip-
ment Configuration that is generated. This stage takes an Equipment
Configuration population as input and then measures the suitability of
each configuration for the problem studied. Once this step is finished, it
generates a ranking that sorts the Equipment Configurations according
to the fitness values obtained so that the configuration with the best fit-
ness value is ranked first. The evolutionary algorithm in our approach
uses this fitness value to select parents for the next generation of configu-
rations and to obtain the highest ranked Equipment Configuration once
the search is over.

To obtain the fitness value for an Equipment Configuration, the EBI ap-
proach simulates a duel between a boss that uses that configuration and
a player. It is an unattended duel in which both contenders are simu-
lated. In that simulation, the player visits the different regions in the
boss and tries to destroy the weak points that are available, while the
boss uses the weapons in that configuration, which are different in power
and range, to try to defeat the player. The simulation uses the informa-
tion considered to be relevant by the developers to perform a simulated
confrontation and includes statistical values regarding weapon accuracy,
damage probability, and average player precision. The duel simulation is
not deterministic, and it uses player and boss AI simulated agents that
are handled in terms of actions, attacks, and damage by a state machine-
based system. State machines have been used to describe boss behaviors
in previous works [52]. The player agent performs a cyclic itinerary that
successively focuses on each of the hulls included in the boss. When
the player agent is focused on a hull that contains weak points, it tries
to destroy them. The boss agent attacks the player using the weapons
present in the different hulls. The weapons that are present in the hull
on which the player is currently focused have a higher probability of hit-
ting the player, which decreases with distance. The inherent accuracy
and probability of success for the different types of weapons vary as well:
Melee weapons that are present in distant hulls are not effective, but
distant lasers or missiles have a reduced, yet non-zero probability of suc-
cess. Both the player and the boss actively try to win the match and do

143

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

not run away. This avoids draws and ensures that one of the contenders
wins. The objective of the player is to destroy the weak points included
in the boss, while the attacks performed by the boss aim for the player
unit as a whole. Since the duel is not deterministic, it is run 30 times,
following the suggestion in [3]. Once the simulation is over, our approach
has enough information on relevant events and the progress of the duel
to calculate a fitness value.

The developers provided two main measures that the bosses in the video
game should maximize in order to prove their suitability for commercial
releases: the player victory percentage (FV ictory), and the player optimal
health percentage after a victory (FHealth). The fitness measures in this
work (and the quality measures described in Section 3.5) use the following
function:

clamp[0,1](x) = max(0,min(x, 1)) (3.1)

Our approach calculates the FV ictory criterion as a measure of the differ-
ence between the number of victories achieved by the player (VP) and
the desired, optimal number of victories (VOptimal) (33%, according to
the criteria used by the developers):

FV ictory = clamp[0,1](1−
|VOptimal − VP |

VOptimal

) (3.2)

The FHealth criterion (for duels won by the player) is the average differ-
ence between the health percentage of the player at the end of the duel
(ΘP) and the optimal life level that the player should ideally keep at
that point (ΘOptimal, 20%, according to the developers). This criterion
focuses on how adequate the victories achieved by the player are, and
it considers the health level of the player after defeating a boss in those
duels:

FHealth = clamp[0,1](1−

VP∑
d=1

|ΘOptimal −ΘP |
ΘOptimal

VP

) (3.3)

144

3.4 Overview of our EBI Approach

FOverall is a direct measure (as intended by the developers) that calculates
an average fitness value for an Equipment Configuration, including every
specific fitness criterion studied:

FOverall =
FV ictory + FHealth

2
(3.4)

In the end, FOverall is a value in the interval [0, 1] that allows the EBI
approach to create an Equipment Configuration ranking.

3.4.5 Situating the approach

The present work applies an EA to partially completed game bosses in
order to automatically produce complete bosses that have equal or bet-
ter quality (in terms of six metrics) than the bosses that were originally
completed by the developers. According to available taxonomies for pro-
cedural content generation [57, 21, 51, 62], our work can be classified
as follows. The content type generated is the equipment configuration
of boss enemies, and the method of PCG used is an Evolutionary Al-
gorithm that manipulates SDML (Shooter Definition Model Language)
models. With regard to the nature of the content, the multiplicity is
single instance, since the case study is a single player game; the content
generated is necessary and the type of derivation is built-in (since the
elements generated are part of the game). With regard to the generation
process, the mode is offline since it is performed as part of the devel-
opment of the game. The degree of parameterization can be classified
as parameter vectors (the input provided is a partially built boss). The
nature of the process is stochastic and the EA follows a ’generate and
test’ constructiveness. The generation is non-personalized for different
players; the generation is not controlled by the player. Finally, with re-
gard to the game dependence, Kromaia belongs to the 3D space shooter
genre, within the entertainment industry of commercial video games.

145

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.5 Evaluation

This section presents the evaluation of our approach: the research ques-
tions, the quality measurement, the experimental setup, the implemen-
tation details, and the results obtained.

3.5.1 Research Questions

The following questions address the evaluation of our EBI approach tak-
ing into account its results and the time necessary to obtain them:

RQ1: Does our EBI approach provide completely configured bosses that
are comparable (or even better) in quality to those designed by the devel-
opers of the video game case study?

RQ2: Does our EBI approach reduce the time necessary to configure good
quality bosses in the video game case study?

3.5.2 Quality Measures for the Configurations

The bosses included in the commercial release of the video game case
study use Equipment Configurations that were approved after study-
ing, adjusting, or even discarding several alternatives. The development
company provided information regarding the version control system to
measure the time invested in the bosses. The revision log showed that,
after completing the Creative Design, Spatial Organization, and Behav-
ior Specification steps, the Equipment Configuration step for each of the
bosses required a month before the results were satisfactory. Thanks to
the feedback given by the players, the developers determined that the
users liked these boss units and found them to be enjoyable.

In order to compare the results obtained by the developers and our ap-
proach, we use criteria that measure the quality of the bosses. As pre-
vious works describe, in the context of video game development, quality
refers to the probability of a game experience being considered interest-
ing by users [12] in terms of intellectually challenging content. These
works also state that, in general, players can express whether or not they

146

3.5 Evaluation

consider a game experience to be enjoyable; however, they usually find
it difficult to express the reasons precisely.

There are measurable indicators that have been studied in the past and
are considered to be relevant. Tension [28], Decisiveness [56], Interesting-
ness [1], Interaction [11], and Uncertainty [22] were described in previous
research works as being fundamental game quality indicators. More re-
cently, Browne et al. showed through experiments with users that there is
a set of criteria that stand out and are the most important: Lead Change,
Permanence, Killer Moves, Uncertainty, Duration, and Completion [12].
The evaluation included in our approach gives each of these criteria a
value in the interval [0, 1]. In our approach, the quality measures are
calculated using data that is retrieved from a simulation, which involves
30 non-deterministic confrontations (Duels). For the video game case
study, the developers determined through tests and questionnaires with
players that concentration and engagement for an average boss reach
their peak at approximately 10 minutes (TOptimal), whereas the maxi-
mum accepted time was estimated to be 2 ∗ TOptimal (20 minutes).

• Completion (Viability): The criterion QCompletion calculates a
ratio of conclusions over total duel count:

QCompletion =
Conclusions

Duels
(3.5)

Duels = Total number of duels
Conclusions = Number of duels won by either side

A game against a boss unit should end with more conclusions (vic-
tories for either the player or the boss) than draws. It is necessary
to explain that the concept of draw in Kromaia refers to a situation
in which the game exceeds the maximum acceptable duration with-
out concluding since with enough time one of the contenders will
eventually win.

• Duration (Viability): Our approach calculates the criterion QDuration

as a measure of the average difference between the duration of each
duel and the desired, optimal duration:

147

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

QDuration = clamp[0,1](1−

Duels∑
d=1

|TOptimal − Td|
TOptimal

Duels
) (3.6)

QDuration is close to 1 when the duration of the duels is similar
to an optimal value
Td = Duration of the d-th Duel
TOptimal = Optimal duration of a duel

The duration of duels between players and boss units is expected
to be around a certain optimal value. Significant deviations from
that reference value are good design-flaw indicators: remarkably
short games are probably too easy, thus minimizing the challenge
offered by the game experience; duels that go on a lot longer than
expected tend to make players lose interest. Duration is a simple and
consistent criterion that is effective at determining essential game
design proficiency and is one of the criteria used by Cardamone [13].

• Uncertainty (Quality): For each duel, QUncertainty measures the
average deviation between the time at which it is detected that one
of the contenders is on the verge of defeat and the time correspond-
ing to the duration of the duel.

QUncertainty = clamp[0,1](1−

Duels∑
d=1

Td −min (Pd, Bd)

Td

Duels
) (3.7)

QUncertainty is high when the contenders keep safe in terms of
health as long as possible during the duels
Pd = Time until Player health is critical in the d-th duel
Bd = Time until Boss health is critical in the d-th duel

In order to keep players engaged with a duel, neither the player
nor the boss unit should get extremely close to victory or defeat

148

3.5 Evaluation

too early before the duel is settled, with (Td) being its duration.
Therefore, a duel is considered to be more uncertain the longer the
time until the health levels of the player or the boss unit reach a
dangerous/critical status (Pd and Bd, respectively).

• Killer Moves: QKMoves measures the proportion of killer moves
by any contender, taking into account the moves done by both the
player and the boss unit that are considered remarkable highlights
but that are less important than killer moves.

QKMoves = clamp[0,1](1−

Duels∑
d=1

Kd

Hd

Duels
) (3.8)

QKMoves reaches a high value when the percentage of highlights
of duels with contenders that are not close is low
Kd = Number of killer moves detected in the d-th duel
Hd = Number of highlights detected in the d-th duel

This criterion is related to the fact that some events allow one of the
contenders in a duel to make a remarkable impact in terms of power
balance. They are the result of actions carried out on purpose that
cause such an important effect, but that is not decisive enough to
end the duel. In this video game, the developers considered that
a highlight move occurs when either the boss unit or the player
experiences a health decrease, but that killer moves are those that
make the health difference between the contenders reach 30%. The
health level of a boss depends on the number of weak points left in
a specific unit, whereas a player can absorb five impacts.

• Permanence: The criterion QPermanence is measured as follows:

149

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

QPermanence = clamp[0,1](1−

Duels∑
d=1

Rd

Hd +Kd

Duels
) (3.9)

QPermanence is higher when the advantages provided by killer
moves or highlights are not canceled often
Rd = Number of recovery moves detected in the d-th duel

Duels with a high permanence value are games in which the advan-
tage given by significant actions or moves by one of the contenders
are unlikely to be immediately reverted by the opponent in terms of
dominance. In the video game case study, the developers considered
every highlight move and killer move to be meaningful actions. An-
other move considered by the developers is the recovery move (R).
This move quickly cancels the advantage given by other previous
killer or highlight moves.

• Lead Change: This criterion is measured taking into account those
highlights or killer moves that cause the lead to change during the
course of a duel:

QLChange = clamp[0,1](

Duels∑
d=1

Ld

Hd +Kd

Duels
) (3.10)

QLChange gets closer to 1 as the number of relevant events which
cause lead changes is higher in the duels
Ld = Number of lead changes detected in the d-th duel

In the video game case study, the lead is defined at any given mo-
ment by determining the contender with the highest health level,
and a low number of lead changes indicates low dramatic value.

Our approach evaluated these six criteria for each boss unit included in
the commercial release of the video game case study in order to obtain a

150

3.5 Evaluation

quality threshold that is useful for verifying whether the results obtained
by our approach reach the same quality levels.

3.5.3 Experimental Setup

The main goal of the evaluation was to measure the performance achieved
by our EBI approach compared to the completely configured bossed in-
cluded in the commercial release of Kromaia in terms of the six quality
metrics proposed. To do this, we follow four steps:

The first step is the extraction of bosses from Kromaia, the video game
case study. Using their version control system, the developers provided
the following: the five partially configured bosses that will be used as
input for the EBI approach; the five completely configured versions of
the bosses that will be used in the comparison in terms of quality; the
time spent in the configuration of the five original bosses.

The second step is the execution of the EBI approach. It receives a par-
tially configured boss and produces one completely configured boss. This
is repeated for the five partially configured bosses previously extracted
from Kromaia. Given the stochastic nature of the approach, we perform
30 independent runs of the approach for each boss (as suggested in [3]),
to homogenize the results and ensure that the evolutionary algorithm
produces results that are consistent and repeatable.

The third step is the comparison of the completely configured bosses
produced by the EBI approach and the bosses obtained from Kromaia.
Therefore, the six quality measures are calculated for both sets of bosses.
To do this, 30 duel simulations between the AI player and each of the
bosses are performed and the quality measures are calculated. The results
are gathered, averaged, and compared using box plots.

The fourth step is the statistical analysis of the results (following the
guidelines in [2]), which provides quantitative evidence of the impact of
the results and shows whether this impact is significant. Since our data
does not follow a normal distribution, our analysis requires the use of
non-parametric techniques. We carry out a Quade Test [18] followed
by a Holm’s post hoc to determine if the differences between pairs of

151

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

bosses (one from EBI and one from Kromaia) are significant enough to
be considered different. Then, we apply Vargha and Delaney’s effect size
[58] to determine to what degree the generated boss is better than the
original boss for each of the six quality measures applied.

3.5.4 Implementation Details

To implement the approach of this work, we used the TinyXML parser
to process SDML models. In addition, the specifications of the computer
used in the evaluation process are the following: Toshiba Satellite Pro
L830 laptop, with a processor Intel® Core™ i5-3317U with 4GB RAM
and Windows 8 64bit.

The parameter settings used in our approach are detailed in Table I. The
size of the population is limited to 100 individuals. Each generation,
an elitism of 55 individuals is applied. The best 10 parents (µ) are
selected by truncation to generate offspring of 45 new individuals through
crossover and mutation of pairwise combinations of the parents. The
probability of mutation (pm) depends on the size of the individual (
1/(Number of Hulls)

All of the parameters displayed in Table 3.1 were obtained from differ-
ent tests. These tests showed that the settings currently applied reached
better solutions in less time. In this work, we do not focus on tuning the
parameters to achieve higher performance numbers for specific problems.
In the context of testing, the default values used to measure the per-
formance of search-based techniques are good enough, as suggested by
Arcuri and Fraser [3]. Nevertheless, we intend to evaluate the parameters
of our EBI approach in future works.

Table 3.1: EBI Approach Parameters

Parameter description Value

Size: Population size 100

µ: Number of parents 10

λ: Number of offspring from µ parents 45

pm: Mutation probability 1 / (Number of Hulls)

152

3.5 Evaluation

In general, there are two (atomic) performance measures used in search
algorithms: a measure for speed or search effort, and a quality measure.
In this paper, after running some prior convergence tests, we established
a certain amount of wall clock time for each of the runs of our EBI
approach (1200 seconds). Then, we focused on the solution quality.

For replication purposes, the CSV files used as input to report the re-
sults and the statistical analysis are available at: https://svit.usj.
es/bosses-kromaia-vs-ebi/. There is a CSV file per boss in Kromaia
where each file includes the results of each quality measure. There is
also a CSV per boss configured in EBI where each file includes the mean
results of the 30 runs from the best Size (100) configurations for each
quality measure.

3.5.5 Results

This subsection presents five completely configured bosses obtained from
our approach and compares them to the five bosses included in the com-
mercial release of Kromaia using six quality measures studied in the video
game research literature [12] and statistical methods.

Fig. 3.6 shows the results in different box plot groups representing the
study of each quality measure. For every quality measure, the values
belong to the interval [0,1] and the box plots represent the average re-
sults obtained (after 30 runs, due to non-deterministic factors) by each of
the completely configured bosses generated by our approach (Boss1..5).
In addition, every box plot includes a red diamond showing the aver-
age quality results achieved by the corresponding boss included in the
commercial release of Kromaia for each quality measure.

Table 3.2 shows the p-V alues of Holm’s post hoc analysis for each boss
and measure. A p-V alue under 0.05 is statistically significant as accepted
by the research community [2]. Each row of the table shows the results of
each pair-wise comparison between a boss from Kromaia and a boss from
our EBI approach, whereas the columns of the table show the Holm’s post
hoc p-V alues. For example, the row "K1 vs E1" shows the p-V alues of
Holm’s post hoc analysis for each measure that correspond to the pair-
wise comparison between Boss 1 of Kromaia (K1) and Boss 1 of our EBI

153

https://svit.usj.es/bosses-kromaia-vs-ebi/
https://svit.usj.es/bosses-kromaia-vs-ebi/

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

●

●
●

●

●
●

●
●
●

● ●
● ●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

B
o

s
s
 1

B
o

s
s
 2

B
o

s
s
 3

B
o

s
s
 4

B
o

s
s
 5

B
o

s
s
 1

B
o

s
s
 2

B
o

s
s
 3

B
o

s
s
 4

B
o

s
s
 5

B
o

s
s
 1

B
o

s
s
 2

B
o

s
s
 3

B
o

s
s
 4

B
o

s
s
 5

B
o

s
s
 1

B
o

s
s
 2

B
o

s
s
 3

B
o

s
s
 4

B
o

s
s
 5

B
o

s
s
 1

B
o

s
s
 2

B
o

s
s
 3

B
o

s
s
 4

B
o

s
s
 5

B
o

s
s
 1

B
o

s
s
 2

B
o

s
s
 3

B
o

s
s
 4

B
o

s
s
 5

0.0

0.2

0.4

0.6

0.8

1.0

COMPLETION DURATION UNCERTAINTY KILLER MOVES PERMANENCE LEAD CHANGE

◆

◆ ◆ ◆ ◆ ◆

◆

◆

◆

◆

◆

◆

◆
◆

◆

◆

◆

◆
◆

◆

◆

◆

◆ ◆

◆

◆

◆

◆
◆

◆

Figure 3.6: Results for the bosses generated by our approach for each quality measure.
The columns show red diamonds representing the values obtained by the bosses originally
included in the video game case study.

approach (E1). Table 3.3 shows Â12 values for each boss and measure.
For example, the row "K1 vs E1" shows Â12 values for each measure that
correspond to the pair-wise comparison between K1 and E1.

Table 3.2: Holm’s post hoc p-V alues for each boss and measure

Holm’s post hoc p-V alues

Completion Duration Uncertainty Killer Moves Permanence Lead Change

K1 vs E1 - 0.53 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16

K2 vs E2 - 0.21 0.36 ≪ 2× 10−16 2.8× 10−11 ≪ 2× 10−16

K3 vs E3 - ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16

K4 vs E4 - ≪ 2× 10−16 1.3× 10−9 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16

K5 vs E5 - ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16 ≪ 2× 10−16

Table 3.4 shows the results per quality measure by taking into account
the mean for that quality measure in all bosses. Each row of the table
corresponds to a quality measure. Column 2 shows the standard devia-
tions of the mean results of Kromaia bosses for each measure, whereas
Column 3 shows the standard deviations of the mean result of the bosses

154

3.5 Evaluation

Table 3.3: Â12 effect size for each boss and measure

Completion Duration Uncertainty Killer Moves Permanence Lead Change

K1 vs E1 0.5 0.48 0.01 0 0.04 0
K2 vs E2 0.5 0.52 0.59 1 0.76 0.02
K3 vs E3 0.5 0 0.91 1 1 0
K4 vs E4 0.5 0 0.77 1 1 0
K5 vs E5 0.5 0 0.06 1 1 0

of our EBI approach. Column 4 (Holm’s post hoc p-V alues) and Column
5 (Â12) show the results of the pair-wise comparison between the mean of
the Kromaia bosses and the mean of the EBI bosses for each quality mea-
sure. Each of the bosses produced by our approach is obtained by using
the partially generated version of one of the original bosses included in
Kromaia as a starting point. This partial generation initially constrains
the characteristics of the bosses produced by our approach to a certain
extent. For example, it determines the number of hulls used, which is not
modified via encoding during the Equipment Configuration stage. The
restrictions resulting from the partial generation do not determine the
quality of the bosses, but characteristics like anatomy or behavior are
affected. Therefore, the pair-wise comparison is used in order to study
the differences between bosses in terms of the Equipment Configuration
stage. The mean quality values for both the bosses included in Kromaia
and those produced by our approach are also summarized in the radar
chart included in Fig. 3.7.

3.5.6 Research Question 1

Does our EBI approach provide completely configured bosses that are com-
parable (or even better) in quality to those designed by the developers of
the video game case study?

To answer the first research question, we compared the quality values
achieved by the completely configured bosses obtained from our approach
and the original bosses in the commercial release of the video game case
study:

155

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

Table 3.4: For each measure, mean results and standard deviations, Holm’s post hoc
p-V alues and Â12 effect size

Mean ± (σ) Kromaia vs EBI Bosses

Kromaia
Bosses

EBI Bosses Holm’s post
hoc

p-V alues

Â12

Completion 1 ± 0 1 ± 0 - 0.5
Duration 0.41 ± 0.25 0.64 ± 0.02 ≪ 2× 10−16 0
Uncertainty 0.10 ± 0.07 0.11 ± 0.02 1.2× 10−10 0.26
Killer Moves 0.91 ± 0.07 0.83 ± 0.01 ≪ 2× 10−16 1
Permanence 0.97 ± 0.02 0.93 ± 0.01 ≪ 2× 10−16 1
Lead Change 0.11 ± 0.07 0.27 ± 0.02 ≪ 2× 10−16 0

For Completion (the first column in Fig. 3.6), both the bosses from our
approach and the original bosses obtained good values close to the max-
imum. These high values for QCompletion come from the characteristics of
the battles between players and bosses in Kromaia: the effectiveness of
the weapons used and the difficulty for an average player to avoid combat
maximize the duel conclusions within acceptable duration limits.

For Duration, the more similar the duration of duels between players
and bosses to the optimal value estimated, the higher the quality. The
second column in Fig. 3.6 shows that the bosses generated by our ap-
proach outperformed the bosses in the case study. Monitoring the evolu-
tion of the Equipment Configuration population showed that it took few
generations for the EA in our EBI approach to obtain QDuration values
that surpassed those achieved by the original bosses. The Version Con-
trol System used by the development company shows that the different
Equipment Configurations tested varied little in terms of weapon/weak
point sizes. This shows that, for QDuration, it is necessary to explore a
larger Equipment Configuration search space than the one provided by
the developers in order to obtain weapon and weak point distributions
that achieve high values.

For Uncertainty (the third column in Fig. 3.6), four of the bosses gen-
erated by our approach achieved mean values similar to those obtained
by the original bosses. High QUncertainty values would denote duels for

156

3.5 Evaluation

COMPLETION

LEAD CHANGE DURATION

PERMANENCE UNCERTAINTY

KILLER MOVES

KROMAIA BOSSES EBI BOSSES

1.0 0.6 0.8 0.4 0.2 0.0

Figure 3.7: Quality measure mean values obtained by the bosses originally included in
Kromaia, the video game case study, and those produced by our EBI approach.

which the time between when one of the contenders is about to be de-
feated and the conclusion is very low. In comparison to other video
games, the design of Kromaia does not favor high uncertainty values.
As duels advance, the bosses become more damaged and the weak point
set is reduced. The distance in time between hits also progressively in-
creases. For players, each time a health level decrease occurs, there is
a safety time period during which the player is immune. The column
displaying data related to Uncertainty in Fig. 3.6 shows that the fifth
boss generated by our approach (Boss5) achieved a higher value than its
corresponding boss. The most remarkable restriction in that fifth boss
for both the commercial release of the video game case study and our
approach is the fact that it is the boss that has the simplest geometry in

157

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

terms of hull size (11) in comparison to the rest of the bosses, which have
an average of 47 hulls. Therefore, considering the search spaces for the
corresponding encoding sizes (211∗5 = 255 and 247∗5 = 2235, respectively),
our algorithm managed to obtain a significantly higher value for Boss5

with the time budget assigned.

For Killer Moves (QKMoves), the average values obtained by four of the
bosses generated with our approach (Boss1..4) are comparable to those
achieved by the five original bosses, as shown in Fig. 3.6. However, the
fifth boss obtained by our approach (Boss5) achieved a lower mean value
than the original boss. Due to the anatomical restrictions on hull size for
both our approach and the original bosses, the version of the fifth boss
generated by our approach obtained a higher percentage of uncertain
duels, as described above. As shown in Fig. 3.6, there is an inverse
relationship between Uncertainty and Killer moves: bosses with higher
QUncertainty values obtain lower values for QKMoves. This is because a
high number of killer moves (highlighted events that mean a significant
health gap between contenders) is incompatible with high uncertainty.

For Permanence (QPermanence), the fifth column in Fig. 3.6 shows that
the average values obtained from the bosses provided by our approach
and those in the video game case study are comparable (even more so
when Boss5 is not considered). The reason behind that specific case is that
Permanence measures the persistence in time of an advantage achieved
in terms of health level gaps, so there is an inverse relationship between
QKMoves and QPermanence.

For Lead Change (QLChange), the sixth column in Fig. 3.6 shows that
the bosses generated by our EBI approach obtained better values than
the original bosses included in Kromaia. Due to the specific design of
the video game case study, it is difficult to achieve a high proportion of
lead-change events in relation to highlights (health decrease events) or
killer moves (highlights resulting in a considerable health gap between
contenders). In Kromaia, a player can absorb up to five impacts before
being defeated. However, the bosses generated by our approach and those
included in the commercial release of Kromaia include a considerably
higher number of weak points in order to reach acceptable values in the
rest of the quality measures. Therefore, an impact received by a player

158

3.5 Evaluation

is likely to take several weak points in the boss (each of which involves
a highlight event) in order to revert the lead status. Since our approach
obtains bosses with better QDuration values, those bosses favor duels that
are closer to the optimal duration and that have more lead changes.
This minimizes the possibility of duels that are too long or too short,
which occur due to passiveness or a significant skill difference between
the contenders, respectively.

The p-V alues of Holm’s post hoc analysis of Table 3.2 show that the
differences in the bosses from Kromaia and the bosses from our EBI ap-
proach are statistically significant (under 0.05), except for the following:
for Completion, the results are equivalent in all pair-wise comparisons
of bosses; for Duration, the results are not significant when Bosses 1
and 2 are compared; and for Uncertainty, the results are not is not sig-
nificant when Bosses 2 are compared. With regard to the Â12 values
of Table 3.3, Boss 1 from our EBI approach outperforms Boss 1 from
Kromaia in all quality measures (except for Completion, which is equiv-
alent), as row "K1 vs E1" of the table shows. The highest differences
correspond to Uncertainty, Killer Moves, and Lead Change where Boss
1 of our EBI approach outperforms Boss 1 of Kromaia in almost all of
the runs, respectively. This is especially relevant because Kromaia devel-
opers acknowledged that Boss 1 is the boss that they have devoted the
most development effort to since Boss 1 is the most played and defeated
boss in the video game (up to 6 times more than Boss 5 according to the
global gameplay statistics of Steam).

When the data of bosses is aggregated by quality measure, the p-V alues
of Holm’s post hoc analysis of Table 3.4 show that the differences are
statistically significant (under 0.05), except for Completion where the
results are equivalent. The Â12 values of Table 3.4 show that EBI bosses
outperform Kromaia bosses in the majority of the runs for Duration,
Uncertainty, and Lead Change. In Killer Moves and Permanence, Kro-
maia bosses outperform EBI bosses in all of the runs. Although it may
appear that EBI bosses do not achieve good results for Killer Moves
and Permanence, these results are comparable to the results achieved by
the original Kromaia bosses. The difference between the mean of Killer
Moves in Kromaia and Killer Moves in EBI is only 0.08; the difference

159

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

between the mean of Permanence in Kromaia and Permanence in EBI is
only 0.04. We showed these results to two Kromaia developers and they
confirmed that the results obtained by our EBI approach are comparable
(or even better) in quality to the results in Kromaia, so they will use our
EBI approach to produce new, completely configured bosses in Kromaia
through downloadable content.

3.5.7 Research Question 2

Does our EBI approach reduce the time necessary to configure good quality
bosses in the video game case study?

This research question takes into account the time spent by the develop-
ers and our approach to perform the last configuration stage (Equipment
Configuration) to obtain completely configured bosses that achieve good
quality values.

To evaluate this last configuration stage, it was necessary to study the
Version Control System of Kromaia used by the developers. The log his-
tory registry shows that the sum of the Equipment Configuration stages
that led to the original bosses that were commercially released was five
months. For our approach, the stop condition for the evolutionary algo-
rithm in EBI was restricted only by time (20 minutes). Therefore, since
it was necessary to generate five completely configured bosses, this task
was completed in 1 hour and 40 minutes.

These results show that our approach generated good-quality, completely
configured bosses about 99% faster than the developers. In addition, both
the evolutionary algorithm and the duels that guide it and confront simu-
lated contenders allow our approach to run unattended. Therefore, with
better equipment, it would be possible to launch five separate instances
of EBI (one per boss and CPU) in order to divide the time required by
5.

160

3.5 Evaluation

3.5.8 Fitness Progress in the Evolutionary Algorithm

With regard to the progress shown by the evolutionary algorithm used
by EBI, Table 3.5 shows the average fitness values obtained by the best
candidate of each of the five bosses generated by EBI at the end of the
evolution. The fitness values of the five bosses from Kromaia (depicted
as red diamonds in Fig. 3.6) are also included for comparison. The five
EBI bosses reached mean fitness values of around 0.9. The fitness values
shown by the original bosses included in Kromaia are low in comparison.
Only the original K2 obtained values of 0.6 for both FV ictory and FHealth.
With regard to the convergence of the search performed by EBI, the
fourth column in Table 3.5 shows the percentage of the time budget
needed to find the best boss candidate. Interestingly, the improvement
of the randomly-equipped original population used by the evolutionary
algorithm is an average of 20% for three of the bosses and 10% for two of
them. The last column of Table 3.5 shows the number of bosses explored
during the time budget allocated (20 minutes). Additionally, doubling
the time budget from 20 to 40 minutes did not affect the maximum fitness
value reached).

Table 3.5: Average fitness values of the best candidate at the end of each evolution, per-
centage of the time budget required and number of bosses explored. Kromaia bosses are also
included for comparison.

Fitness Time budget

FV ictory FHealth FOverall % needed Bosses explored

E1 0.91 0.86 0.88 10% 305,650
K1 0.08 0.1 0.09

E2 0.99 0.86 0.92 35% 566,640
K2 0.6 0.6 0.6

E3 0.99 0.83 0.91 11% 523,855
K3 0.09 0.11 0.10

E4 0.98 0.83 0.91 3% 311,140
K4 0.08 0.08 0.08

E5 0.99 0.86 0.93 0.1% 1,420,165
K5 0.08 0.09 0.08

161

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

3.6 Threats to Validity

In this section, we present how we addressed or mitigated the possible
threats to validity regarding our approach. To identify the threats to be
considered in this work, we use the guidelines described by De Oliveira
et al. [14] and classify the threats into different groups.

Conclusion validity threats are concerned with the statistical rela-
tionships between data treatment and outcome. We have identified the
following two threats in this category. The first one is not accounting for
random variation. We addressed this threat by performing 30 runs for
each of the bosses to be configured with our approach. The second one
is the lack of a meaningful comparison baseline. To address this threat,
we compared the results obtained from our approach with those gener-
ated by the developers for the commercial release of the video game case
study.

Internal validity threats involve non-causal relationships between treat-
ment and outcome. We have identified the following two threats in this
category. The first one is the lack of clarity of data collection tools and
procedures. Since it is difficult to calculate fitness values based on tests
with players (due to their considerable time length), our approach sim-
ulates duels between the bosses and an AI player. We used the data
provided by the SDMLs of the contenders to perform the simulation,
and we used two main indicators provided by the developers to value
configurations: victory percentage and health level. The second threat is
the lack of real problem instances. To address this, the evaluation per-
formed in our work was applied to an industrial video game case study,
and the problem artifacts (partially and completely configured bosses)
were directly obtained from the video game industry.

Construct validity threats are concerned with the relations between
observations and theory. We have identified the following threats in this
category. The first one is not assessing the validity of cost measures.
In order to perform a fair comparison between the completely configured
bosses included in Kromaia and the bosses generated by our approach, we
studied the time spent by the developers and our algorithm to obtain the
results (see Section 3.5.7). The second threat is not assessing the validity

162

3.7 Conclusion

of effectiveness measures. We addressed this by using quality measures
presented in the video game research literature [12] and performing a
statistical analysis of the results (see Sections 3.5.2 and 3.5.5).

External validity threats deal with the generalization of the results
obtained in a larger population, which is outside the experiment. We
have identified one threat in this category, the lack of a clear definition
of target instances. To address this threat, we have provided as much
detail as possible regarding the DSL used by the video game case study
(SDML, see Section 3.3.2). Nevertheless, EBI should be applied to other
video games before assuring its generalization.

3.7 Conclusion

The creation of video game content is relevant to user retention and en-
gagement. Our work shows that it is possible to accelerate video game
content creation by means of Procedural Content Improvement. In this
work, we focus on game bosses and the improvement of their quality
through procedural content generation using our EBI approach. It works
with an evolutionary algorithm that is guided by the simulation of du-
els between a player and the game bosses produced. The evolutionary
algorithm and the genetic operations which we propose in our approach
give priority to the content fragment which must be added to the initial
fragment in order to consider such content complete. However, the im-
provement is not limited to that last fragment of the content, and these
algorithm and operations drive a genetic improvement of the complete
content, including the fragment that is provided originally as partially
complete content.

We evaluate our approach in the context of Kromaia, a commercial PC
and PlayStation 4 video game. In the application of the EBI to this game,
our approach receives partially created bosses and produces complete
bosses by automatically performing the last step in the creation process
followed by human developers: the Equipment Configuration stage. This
stage adds weapon and weak point content and defines the characteristics
of a boss in terms of attack/defense items and weak point distribution.
In the evaluation of our approach, we use six quality indicators from

163

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

the video game research literature in order to give the game bosses a
quality level value: Completion, Duration, Uncertainty, Killer Moves,
Permanence, and Lead Change. We use these measures to evaluate the
quality of both the bosses produced by our approach and those originally
created by the developers of Kromaia.

The results show that our EBI approach provides completely configured
bosses that are comparable (or even better) in quality to those designed
by the developers of Kromaia. Our EBI approach improves video game
content in less time than the developers of a commercial video game.
The improvement of this content is an essential issue that concerns de-
velopers due to the nature of life cycles in commercial video games. This
includes renovating products through downloadable content. For future
work, we are planning to explore the potential benefits of EBI for level
improvement.

Declarations

Funding. This work was supported in part by the Ministry of Economy
and Competitiveness (MINECO) through the Spanish National R+D+i
Plan and ERDF funds under the Project VARIATIVA under Grant
PID2021-128695OB-I00, and in part by the Gobierno de Aragon (Spain)
(Research Group S05_20D).

Competing interests. The authors have no competing interests to
declare that are relevant to the content of this article.

Bibliography

[1] Ingo Althöfer. “Computer-Aided Game Inventing”. In: Technical Report,
Friedrich Schiller Universität Jena (2003) (cit. on p. 147).

[2] Andrea Arcuri and Lionel Briand. “A Hitchhiker’s Guide to Statistical Tests
for Assessing Randomized Algorithms in Software Engineering”. In: Softw.
Test. Verif. Reliab. 24.3 (May 2014), pp. 219–250. issn: 0960-0833. doi:
10.1002/stvr.1486 (cit. on pp. 151, 153).

164

https://doi.org/10.1002/stvr.1486

Bibliography

[3] Andrea Arcuri and Gordon Fraser. “Parameter tuning or default values? An
empirical investigation in search-based software engineering”. In: Empirical
Software Engineering 18.3 (2013), pp. 594–623. issn: 1573-7616. doi: 10.
1007/s10664-013-9249-9 (cit. on pp. 144, 151, 152).

[4] D. R. Ashley et al. “Learning to Select Mates in Evolving Non-playable
Characters”. In: 2019 IEEE Conference on Games (CoG). 2019, pp. 1–8
(cit. on p. 123).

[5] Marlene Beyer et al. “An integrated process for game balancing”. In: 2016
IEEE Conference on Computational Intelligence and Games (CIG). IEEE.
2016, pp. 1–8 (cit. on p. 127).

[6] Aditya Bhatt et al. “Exploring the hearthstone deck space”. In: Proceedings
of the 13th International Conference on the Foundations of Digital Games.
2018, pp. 1–10 (cit. on p. 128).

[7] Daniel Blasco, Carlos Cetina, and Oscar Pastor. “A fine-grained requirement
traceability evolutionary algorithm: Kromaia, a commercial video game case
study”. In: Information and Software Technology 119 (2020). issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2019.106235 (cit. on
p. 125).

[8] Daniel Blasco et al. “An evolutionary approach for generating software mod-
els: The case of Kromaia in Game Software Engineering”. In: Journal of
Systems and Software 171 (2021), p. 110804. issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2020.110804 (cit. on p. 125).

[9] Ilhem Boussaïd, Patrick Siarry, and Mohamed Ahmed-Nacer. “A survey on
search-based model-driven engineering”. In: Automated Software Engineer-
ing 24.2 (2017), pp. 233–294 (cit. on p. 136).

[10] Joseph Alexander Brown et al. “Evolutionary Graph Compression and Dif-
fusion Methods for City Discovery in Role Playing Games”. In: 2020 IEEE
Congress on Evolutionary Computation (CEC). 2020, pp. 1–8. doi: 10.
1109/CEC48606.2020.9185601 (cit. on p. 123).

[11] Cameron Browne. Connection Games: Variations on a Theme. Natick, Mas-
sachussetts: AK Peters, 2005. isbn: 1568812248 (cit. on p. 147).

165

https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/10.1109/CEC48606.2020.9185601
https://doi.org/10.1109/CEC48606.2020.9185601

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

[12] Cameron Browne and Frédéric Maire. “Evolutionary Game Design”. In:
IEEE Trans. Comput. Intellig. and AI in Games 2.1 (2010), pp. 1–16. doi:
10.1109/TCIAIG.2010.2041928 (cit. on pp. 121, 146, 147, 153, 163).

[13] Luigi Cardamone et al. “Evolving interesting maps for a first person shooter”.
In: European Conference on the Applications of Evolutionary Computation.
Springer. 2011, pp. 63–72 (cit. on pp. 124, 148).

[14] Márcio De Oliveira Barros and Arilo Cláudio Dias-Neto. “0006/2011-Threats
to Validity in Search-based Software Engineering Empirical Studies”. In:
RelaTe-DIA 5.1 (2011) (cit. on p. 162).

[15] Omar Delarosa et al. “Mixed-initiative level design with rl brush”. In: In-
ternational Conference on Computational Intelligence in Music, Sound, Art
and Design (Part of EvoStar). Springer. 2021, pp. 412–426 (cit. on p. 126).

[16] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary com-
puting. Vol. 53. Springer, 2003 (cit. on p. 138).

[17] Epic Games. Unreal Engine, Version 2018.3.9. Cary, North Carolina, 1998
(cit. on p. 137).

[18] Salvador García et al. “Advanced nonparametric tests for multiple com-
parisons in the design of experiments in computational intelligence and
data mining: Experimental analysis of power”. In: Information Sciences
180.10 (2010). Special Issue on Intelligent Distributed Information Systems,
pp. 2044–2064. issn: 0020-0255. doi: https://doi.org/10.1016/j.ins.
2009.12.010 (cit. on p. 151).

[19] Matthew Guzdial, Nicholas Liao, and Mark Riedl. “Co-creative level design
via machine learning”. In: arXiv preprint arXiv:1809.09420 (2018) (cit. on
p. 126).

[20] David Ha and Douglas Eck. “A neural representation of sketch drawings”.
In: arXiv preprint arXiv:1704.03477 (2017) (cit. on p. 126).

[21] Mark Hendrikx et al. “Procedural Content Generation for Games: A Sur-
vey”. In: ACM Trans. Multimedia Comput. Commun. Appl. 9.1 (Feb. 2013).

166

https://doi.org/10.1109/TCIAIG.2010.2041928
https://doi.org/https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/https://doi.org/10.1016/j.ins.2009.12.010

Bibliography

issn: 1551-6857. doi: 10.1145/2422956.2422957 (cit. on pp. 120, 123,
145).

[22] Hiroyuki Iida et al. “An Application of Game-Refinement Theory to Mah
Jong”. In: Entertainment Computing - ICEC 2004, Third International Con-
ference, Eindhoven, The Netherlands, September 1-3, 2004, Proceedings.
2004, pp. 333–338. doi: 10 . 1007 / 978 - 3 - 540 - 28643 - 1 \ _41 (cit. on
p. 147).

[23] Alexander Jaffe et al. “Evaluating competitive game balance with restricted
play”. In: Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment. Vol. 8. 1. 2012 (cit. on p. 127).

[24] Daniel Karavolos, Antonios Liapis, and Georgios N Yannakakis. “Pairing
character classes in a deathmatch shooter game via a deep-learning sur-
rogate model”. In: Proceedings of the 13th international conference on the
Foundations of digital games. 2018, pp. 1–10 (cit. on p. 128).

[25] Stuart Kent. “Model Driven Engineering”. In: Integrated Formal Methods.
Ed. by Michael Butler, Luigia Petre, and Kaisa Sere. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 286–298. isbn: 978-3-540-47884-3 (cit.
on p. 125).

[26] Stuart Kent. “Model driven engineering”. In: International conference on
integrated formal methods. Springer. 2002, pp. 286–298 (cit. on p. 137).

[27] John R Koza. “Genetic programming as a means for programming comput-
ers by natural selection”. In: Statistics and computing 4.2 (1994), pp. 87–112
(cit. on p. 120).

[28] Wolfgang Kramer. “What Makes a Game Good?” In: The Games Journal
(2000) (cit. on p. 147).

[29] W. B. Langdon and M. Harman. “Optimizing Existing Software With Ge-
netic Programming”. In: IEEE Transactions on Evolutionary Computation
19.1 (2015), pp. 118–135. issn: 1089-778X. doi: 10.1109/TEVC.2013.
2281544 (cit. on p. 120).

167

https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1007/978-3-540-28643-1_41
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1109/TEVC.2013.2281544

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

[30] Pier Luca Lanzi, Daniele Loiacono, and Riccardo Stucchi. “Evolving maps
for match balancing in first person shooters”. In: 2014 IEEE Conference on
Computational Intelligence and Games. IEEE. 2014, pp. 1–8 (cit. on p. 124).

[31] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. “Sentient
sketchbook: Computer-aided game level authoring”. In: In Proceedings of
ACM Conference on Foundations of Digital Games, 2013. In Print (cit. on
p. 126).

[32] Antonios Liapis, Georgios N Yannakakis, and Julian Togelius. “Sentient
world: Human-based procedural cartography”. In: International Conference
on Evolutionary and Biologically Inspired Music and Art. Springer. 2013,
pp. 180–191 (cit. on p. 126).

[33] Siew Mooi Lim et al. “Crossover and mutation operators of genetic algo-
rithms”. In: International journal of machine learning and computing 7.1
(2017), pp. 9–12 (cit. on p. 136).

[34] Jialin Liu et al. “Deep learning for procedural content generation”. In: Neural
Computing and Applications 33.1 (2021), pp. 19–37 (cit. on pp. 126, 127).

[35] Ziwei Liu et al. “Deep learning face attributes in the wild”. In: Proceedings of
the IEEE international conference on computer vision. 2015, pp. 3730–3738
(cit. on pp. 122, 126).

[36] Daniele Loiacono and Luca Arnaboldi. “Fight or flight: Evolving maps for
cube 2 to foster a fleeing behavior”. In: 2017 IEEE Conference on Compu-
tational Intelligence and Games (CIG). 2017, pp. 199–206. doi: 10.1109/
CIG.2017.8080436 (cit. on p. 124).

[37] Daniele Loiacono and Luca Arnaboldi. “Multiobjective Evolutionary Map
Design for Cube 2: Sauerbraten”. In: IEEE Transactions on Games 11.1
(2019), pp. 36–47. doi: 10.1109/TG.2018.2830746 (cit. on p. 124).

[38] Fernando de Mesentier Silva et al. “AI as Evaluator: Search Driven Playtest-
ing of Modern Board Games.” In: AAAI Workshops. 2017 (cit. on p. 127).

[39] Fernando de Mesentier Silva et al. “Evolving the hearthstone meta”. In: 2019
IEEE Conference on Games (CoG). IEEE. 2019, pp. 1–8 (cit. on p. 128).

168

https://doi.org/10.1109/CIG.2017.8080436
https://doi.org/10.1109/CIG.2017.8080436
https://doi.org/10.1109/TG.2018.2830746

Bibliography

[40] Alex Pantaleev. “In search of patterns: Disrupting rpg classes through pro-
cedural content generation”. In: Proceedings of the The third workshop on
Procedural Content Generation in Games. 2012, pp. 1–5 (cit. on p. 128).

[41] Kyungjin Park et al. “Generating educational game levels with multistep
deep convolutional generative adversarial networks”. In: 2019 IEEE Con-
ference on Games (CoG). IEEE. 2019, pp. 1–8 (cit. on p. 127).

[42] G Pavai and TV Geetha. “A survey on crossover operators”. In: ACM Com-
puting Surveys (CSUR) 49.4 (2016), pp. 1–43 (cit. on p. 136).

[43] Francisca Pérez, Tewfik Ziadi, and Carlos Cetina. “Utilizing automatic query
reformulations as genetic operations to improve feature location in software
models”. In: IEEE Transactions on Software Engineering (2020) (cit. on
p. 136).

[44] Justyna Petke et al. “Genetic Improvement of Software: A Comprehensive
Survey”. In: IEEE Trans. Evol. Comput. 22.3 (2018), pp. 415–432. doi:
10.1109/TEVC.2017.2693219 (cit. on p. 120).

[45] Johannes Pfau et al. “Dungeons & replicants: automated game balancing
via deep player behavior modeling”. In: 2020 IEEE Conference on Games
(CoG). IEEE. 2020, pp. 431–438 (cit. on p. 128).

[46] Emanuel Montero Reyno and José Á Carsí Cubel. “Automatic prototyping
in model-driven game development”. In: Computers in Entertainment (CIE)
7.2 (2009), pp. 1–9 (cit. on p. 137).

[47] AndréSiqueira Ruela and Frederico Gadelha Guimarães. “Procedural gen-
eration of non-player characters in massively multiplayer online strategy
games”. In: Soft Computing 21.23 (2017), pp. 7005–7020. doi: 10.1007/
s00500-016-2238-3 (cit. on p. 123).

[48] Anurag Sarkar and Seth Cooper. “Blending Levels from Different Games
using LSTMs.” In: AIIDE Workshops. 2018 (cit. on p. 126).

[49] Anurag Sarkar, Zhihan Yang, and Seth Cooper. “Controllable level blending
between games using variational autoencoders”. In: arXiv preprint arXiv:2002.11869
(2020) (cit. on p. 126).

169

https://doi.org/10.1109/TEVC.2017.2693219
https://doi.org/10.1007/s00500-016-2238-3
https://doi.org/10.1007/s00500-016-2238-3

Chapter 3. Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

[50] Ygor Rebouças Serpa and Maria Andréia Formico Rodrigues. “Towards
machine-learning assisted asset generation for games: A study on pixel art
sprite sheets”. In: 2019 18th Brazilian Symposium on Computer Games and
Digital Entertainment (SBGames). IEEE. 2019, pp. 182–191 (cit. on p. 126).

[51] Noor Shaker, Julian Togelius, and Mark J Nelson. Procedural content gen-
eration in games. Springer, 2016 (cit. on p. 145).

[52] Kristin Siu, Eric Butler, and Alexander Zook. “A programming model for
boss encounters in 2d action games”. In: Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment. Vol. 12. 1.
2016 (cit. on p. 143).

[53] Sam Snodgrass and Anurag Sarkar. “Multi-domain level generation and
blending with sketches via example-driven BSP and variational autoen-
coders”. In: International Conference on the Foundations of Digital Games.
2020, pp. 1–11 (cit. on p. 126).

[54] Adam Summerville et al. “Procedural Content Generation via Machine
Learning (PCGML)”. In: IEEE Trans. Games 10.3 (2018), pp. 257–270.
doi: 10.1109/TG.2018.2846639 (cit. on p. 120).

[55] Stephen Tang and Martin Hanneghan. “A model-driven framework to sup-
port development of serious games for game-based learning”. In: 2010 Devel-
opments in E-systems Engineering. IEEE. 2010, pp. 95–100 (cit. on p. 137).

[56] J. Mark Thompson. “Defining the Abstract”. In: The Games Journal (2000)
(cit. on p. 147).

[57] Julian Togelius et al. “Search-Based Procedural Content Generation: A Tax-
onomy and Survey.” In: IEEE Trans. Comput. Intellig. and AI in Games
3.3 (2011), pp. 172–186 (cit. on pp. 120, 122, 123, 129, 145).

[58] András Vargha and Harold D. Delaney. “A Critique and Improvement of
the CL Common Language Effect Size Statistics of McGraw and Wong”. In:
Journal of Educational and Behavioral Statistics 25.2 (2000), pp. 101–132.
doi: 10.3102/10769986025002101. eprint: http://jeb.sagepub.com/
content/25/2/101.full.pdf+html (cit. on p. 152).

170

https://doi.org/10.1109/TG.2018.2846639
https://doi.org/10.3102/10769986025002101
http://jeb.sagepub.com/content/25/2/101.full.pdf+html
http://jeb.sagepub.com/content/25/2/101.full.pdf+html

Bibliography

[59] Jan Salvador van der Ven et al. “Design Decisions : The Bridge between
Rationale and Architecture”. In: 2006 (cit. on p. 126).

[60] Vanessa Volz, Günter Rudolph, and Boris Naujoks. “Demonstrating the
feasibility of automatic game balancing”. In: Proceedings of the Genetic
and Evolutionary Computation Conference 2016. 2016, pp. 269–276 (cit.
on p. 127).

[61] Georgios N Yannakakis, Antonios Liapis, and Constantine Alexopoulos.
“Mixed-initiative co-creativity”. In: (2014) (cit. on p. 126).

[62] Georgios N Yannakakis and Julian Togelius. Artificial intelligence and games.
Vol. 2. Springer, 2018 (cit. on pp. 129, 145).

[63] Byungho Yoo and Kyung-Joong Kim. “Changing video game graphic styles
using neural algorithms”. In: 2016 IEEE Conference on Computational In-
telligence and Games (CIG). IEEE. 2016, pp. 1–2 (cit. on p. 126).

[64] Peter Thorup Ølsted, Benjamin Ma, and Sebastian Risi. “Interactive evolu-
tion of levels for a competitive multiplayer FPS”. In: 2015 IEEE Congress
on Evolutionary Computation (CEC). 2015, pp. 1527–1534. doi: 10.1109/
CEC.2015.7257069 (cit. on pp. 124, 125).

171

https://doi.org/10.1109/CEC.2015.7257069
https://doi.org/10.1109/CEC.2015.7257069

Part III

Discussion

Discussion

The present part discusses this work, taking into consideration the
motivation, research questions, and results of the thesis, given the out-
comes of the research articles presented in chapters 1, 2, and 3 of Part
II. Additionally, the discussion introduces the research lines of the new
works started as a continuation of this research.

175

Research Questions

CONTRIBUTIONS
TO GSE

SBSE
APPROACHES

EMOGEN

SIMULATION/INTERPRETER-BASED OPERATIONS

VIDEO GAME OBJECTIVE QUALITY METRICS

CODFREL

FINE-GRAINED ENCODING AND MANAGEMENT

TERM RELEVANCE-AWARE OPERATIONS

EBI

COMPLEX CHARACTER GENETIC IMPROVEMENT

METAMODEL-LEVERAGED OPERATIONS

TLR

PCG

PCI

IST’20

JSS’21

MTA’22

YEAR 1

YEAR 2

YEAR 3

VIDEO GAME
DOMAIN

CHARACTERISTICS

RQ1 RQ2

JISBD·JF’21

ASE·JF’21
HUM’21
CEV’22

PAT’22

Figura 8: Thesis work progress summary.

As stated in the articles included in this thesis, there is a strong demand
for approaches that increase the productivity with regard to maintenance
and content production in the context of video game development. The
growth of both the industry and the distribution platforms has led to a
need for higher competitiveness, too. This thesis aims to contribute to
industrial development through GSE by answering the following research
questions:

RQ1: How can specific video game characteristics be used in order to
develop SBSE approaches that address GSE problems?

After studying the current status of the research communities of GSE,
Game Software in general, and the possible benefits of leveraging SBSE in
video games, TLR, and more specifically, Requirement Traceability, was
selected as the starting research field, due to its importance. In addition,
Kromaia, a commercial video game case study, was selected, due to its
complexity, and the possibility of accessing the source code of both the
game itself and the proprietary game engine used in its development,
which includes a DSL that allows for the definition of characteristics
such as characters, stages, or missions.

The first work addressed video game requirement traceability, taking into
consideration the size of the source code in commercial video games and

176

the level of dispersion of the requirements in such source codes, as well as
the influence of the developers’ domain knowledge with regard to term
importance in natural language requirement descriptions. The evolu-
tionary computation-based approach presented (CODFREL), produced
results that were compared with those obtained by a baseline that did
not take into account the video game specific aspects that were consid-
ered by CODFREL in the encoding and the genetic operations used, as
shown in the top left part of Figure 8. The interest of the community
made the publication of this work in a journal (IST’20 [2]) possible.

The second work kept the use of evolutionary computation in order to
search a large solution space, but the focus was another prominent area
of interest for the Game Research community: PCG. More specifically,
the goal was the generation of game boss software models that could be
interpreted at run-time and translated into their source code equivalents.
The EMoGen approach presented in the work included the use of game
simulations with fitness purposes, as shown in the center part of Figure
8. These simulations consist in duels between two artificial agents (a
human player and the boss evaluated) whose displacement, offensive, and
health control actions are controlled by means of a state machine-based
system. Additionally, the bosses produced were measured with widely
accepted quality metrics from the Game Research literature. This work
was accepted for its publication in a journal (JSS’21 [3]).

The third work focused on the exploration, in more depth, of the issues
studied in the second research work. The EBI approach that was de-
veloped in this work addressed PCI to generate complete game bosses,
taking partially generated bosses as starting points. This third work was
published in a journal (MTA’22 [4]).

Thus, these works show that leveraging video game characteristics in
order to develop SBSE approaches is beneficial for GSE topics.

RQ2: In case that video game focused SBSE approaches are successfully
developed, what advances or improvements do they bring to GSE?

With regard to the advances achieved, the outcomes of the research works
of this thesis can be summarized as follows:

177

• In IST’20 [2], the results produced by CODFREL outperformed the
requirement realization solution candidates provided by a baseline
that did not make use of the video game idiosyncrasy aspects con-
sidered by the approach proposed. The influence of tacit knowledge
prevented the results achieved by CODFREL from being optimal.

• JSS’21 [3] showed that the EMoGen approach managed to produce
game boss software models that were comparable in quality with
those created by the developers manually, and reduced the time
required from months to hours. The results suggest that using char-
acters that are not bosses as seeds could be useful in order to control
the characteristics of the solution candidates and prevent them from
being too similar to the existing game bosses included in the original
game case study.

• In MTA’22 [4], the EBI approach used PCI in order to produce
complete content after receiving partially complete content as in-
put. The results showed that EBI produced bosses with a quality
comparable to that of the bosses entirely created by human devel-
opers. In addition, the time required was reduced from months to
less than two hours.

TOWARDS SEARCH-BASED GAME SOFTWARE ENGINEERING

RQ1

How can specific video game
domain characteristics be used
in order to develop SBSE
approaches that address GSE
problems?

RQ1

SBSE MAIN INGREDIENTS

· FITNESS FUNCTION

· ENCODING

· OPERATIONS

VIDEO GAME SIMULATIONS

FINE-GRAINED ENCODING

IMPROVEMENT OPERATIONS

RQ1

In case that video game
focused SBSE approaches are
successfully developed, what
advances or improvements do
they bring to GSE?

RQ2

FIELDS RESEARCHED

· TLR

· PCG & PCI

MORE PRECISE AND EXHAUSTIVE
REQUIREMENT REALIZATIONS

HUMAN-COMPETITIVE QUALITY
CONTENT FAST GENERATION

Figura 9: Research question outcome overview.

Figure 9 summarizes the outcomes of this thesis with regard to each of
the research questions formulated. RQ1 addresses SBSE design and de-

178

velopment, which involves three core ingredients: a fitness function (the
main ingredient), an encoding, and operations. The advances of this
thesis in relation to those ingredients are, respectively: the use of video
game simulations for measuring the value of solution candidates; fine-
grained encoding as a response to highly disperse solution realizations
in huge search spaces; and improvement operations which have an im-
pact on non-encoded aspects of solution candidates. RQ2 refers to the
improvements achieved after using video game characteristics in SBSE,
and the advances shown in the fields researched —TLR and PCG/PCI—
are, respectively: solution candidates with higher levels of precision and
thoroughness; and the generation of video game content that can be
compared in quality with the creations of developers, but requiring a
significantly lower time than that used by human domain experts.

Future Lines of Research

Video Game Simulation Evolution

In JSS’21 [3] and MTA’22 [4] video game simulations proved to be useful
for generating video game content (specifically, video game characters)
in order to obtain their different quality aspect values. A prominent
attribute of simulations is the fact that they do not only represent actions
taken by video game entities and their consequences, but also the way a
certain game experience develops. From a video game design perspective,
a successful game experience would be a compelling session that could
be qualified as “entertaining” or “fun”. Such properties are not easy to
formalize through numerical data or textual descriptions and, due to
that, simulations could be used in order to be more than fixed or static
measurement methods, and evolve in order to search for interesting game
experience traits or even locate bugs that are difficult to find due to
their connection with the facets that make a experience good or bad
for game designers and players. With purposes like those described,
the simulations should be encoded to be the individuals that conform
the population evolved, and therefore, representations such as parameter
collections should be studied and discussed as potential valid encoding

179

proposals, due to the complexity of a simulation in terms of character
behaviour, among other main aspects.

Biological Systematics: Phylogenetics

In MTA’22 [4], it was possible to observe a fast convergence of potential
solution candidates to high fitness values, which could prevent the evolu-
tionary algorithm from visiting certain “areas” within the solution space.
The works included in this thesis showed how the knowledge that is not
explicitly available could lead to possible solutions that would otherwise
remain unexplored. Such knowledge could be obtained from human de-
velopers, or formalized representations, like models, or by techniques that
search for latent information, like LSI in IST’20 [2].

In line with the last of the options mentioned, an additional objective for
my next works is the application of Biological Systematics, which studies
the diversification of lifeforms [6, 5], to SBSE in GSE. More specifically,
Phylogenetics [1] could be used in order to classify a population as if
each individual represented a taxon (e.g., a species) and promote those
potential solutions which belong to a desirable lineage. Phylogenetics
could be applied in order to study the whole encoded genetic material
of the individuals or just focus on aspects that are difficult to assess or
classify, like the appearance or aesthetics of the game characters evolved.
The use of techniques like Phylogenetic Tree Inference would extract
the latent relationships of the population from the individuals and no
additional knowledge bases or previous classification training would be
required.

In the context of commercial video game development, a possible ap-
plication scope could be the production of sequels within video game
franchises: In video game series it is common to find characters, stages,
or other game content items that are aligned with the content shown in
previous installments, even if the new items introduce substantial novel-
ties. The plan for the future includes studying the acceptance by domain
experts of the game content generated using Phylogenetics.

180

Bibliography

Bibliography

[1] D.A. Baum and S.D. Smith. Tree Thinking: An Introduction to Phylogenetic
Biology. Macmillan Learning, 2012. isbn: 9781936221165 (cit. on p. 180).

[2] Daniel Blasco, Carlos Cetina, and Oscar Pastor. “A fine-grained requirement
traceability evolutionary algorithm: Kromaia, a commercial video game case
study”. In: Information and Software Technology 119 (2020). issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2019.106235 (cit. on
pp. 177, 178, 180).

[3] Daniel Blasco et al. “An evolutionary approach for generating software mod-
els: The case of Kromaia in Game Software Engineering”. In: Journal of
Systems and Software 171 (2021), p. 110804. issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2020.110804 (cit. on pp. 177–179).

[4] Daniel Blasco et al. “Procedural content improvement of game bosses with
an evolutionary algorithm”. In: Multimedia Tools and Applications 82 (2022),
pp. 1–33. issn: 1573-7721. doi: https://doi.org/10.1007/s11042-022-
13674-6 (cit. on pp. 177–180).

[5] Andrew VZ Brower and Randall T Schuh. Biological systematics: principles
and applications. Cornell University Press, 2021 (cit. on p. 180).

[6] Charles Duncan Michener, National Research Council, et al. Systematics in
support of biological research. National Academies, 1970 (cit. on p. 180).

181

https://doi.org/https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/https://doi.org/10.1007/s11042-022-13674-6
https://doi.org/https://doi.org/10.1007/s11042-022-13674-6

Part IV

Conclusions

Conclusions

The last chapter describes the final conclusions of this thesis with
regard to the objectives, results, and impact achieved by the research in
the context studied through the development of the work.

185

Game Software Engineering (GSE) consists in the study and application
of Software Engineering in the context of video game development. In
the past literature, Game Software Research addressed topics like Main-
tenance and Content Generation, which are especially relevant due to
the characteristics of the project life cycles associated to the video game
industry. The work presented in this thesis aims to study such Game Soft-
ware topics from a Software Engineering perspective in order to improve
and accelerate game development. More specifically, this work studies
Software Engineering optimization problems for which the generation of
solutions requires the exploration of large search spaces. In addition, the
literature shows how documentation or knowledge bases that could be
used with training purposes are often not available. For those reasons,
the research presented focuses on GSE through a field that has proven
to be successful in problems like those studied: Search-based Software
Engineering (SBSE).

In the past, the aforementioned relevant Game Software topics (Mainte-
nance and Content Generation) were first studied outside GSE, but they
are present in later GSE researches, too. However, GSE tended not to
take into account video game domain knowledge in SBSE approaches to
GSE for those issues: Video game source code architecture, requirement
dispersion, or requirement description relevant terms, in the case of Re-
quirement Traceability; and, in Content Generation, the characteristics
of certain content, like complex game characters, the use of simulations
in order to measure the value of such content, and the inclusion of video
game domain quality indicators. This thesis explores those aspects that
were neglected in the past GSE researches and, additionally, makes use
of fields like Model-Driven Engineering in order to study the application
of SBSE to GSE in areas that remained unexplored.

The surveys and the past works corresponding the fields covered by this
thesis show that the researches usually involved video games that were
small or academic projects, instead of medium or large scale commercial
titles. This research focuses on industrial case study evaluations in order
to better illustrate the potential benefits of the knowledge acquired for
such a growing sector.

186

The research developed in this thesis has produced results that have
been published as three articles in specialized and relevant journals with
positive outcomes:

• The first work [1] focused on Requirement Traceability. The results
showed that using a fine-grained approach and term relevance-aware
guidance in genetic operations outperformed the techniques that
were usually applied. Additionally, the results obtained evinced
the importance of non-formalized tacit knowledge in the search for
optimal solutions.

• The second work [2] studied Procedural Content Generation (PCG).
The bosses obtained were comparable in quality to those manually
created by the human developers, and the time required was signif-
icantly reduced. The results also showed how seeds which do not
differ much from the original bosses of the case study were impor-
tant for the production of higher quality results, in comparison with
the use of random or non-boss character seeds.

• The third work [3] continued the exploration of PCG and, more
specifically, Procedural Content Improvement (PCI) in cases in which
a content partially generated is received and the final, complete
content must be produced without the support of interpreters or
reparation tools that could be used in order to guide the search in
the solution space. The results produced showed that the complete
bosses generated were produced with a significantly lower time bud-
get and were comparable in quality to the bosses manually created,
through all the different stages involved, by the human developers.

The results obtained in this research allow for presenting the following
conclusions:

1. It is possible to improve Game Software Engineering by means of
Search-based Software Engineering approaches that leverage video
game characteristics. Such characteristics can be used in order to
successfully guide searches in large solution spaces.

2. The successful application of Search-based Game Software Engi-
neering approaches that take advantage of video game character-

187

istics leads to human-competitive results in terms of quality, and
substantially reduces the time required to produce those results.

The research presented in this thesis reflects that there are still many
questions to answer with regard to what knowledge could maximize the
quality of the results obtained through Search-based GSE, and where
that knowledge lies. The advances provided by this thesis contribute to
the GSE research community with positive results and also introduce
paths that could lead to answers to those open questions. In the end,
the purpose of this work is not the promotion of automated searches over
human developers, but helping developers with results that they could
directly try, or use as starting points that might inspire them with new,
interesting ideas to explore.

Bibliography

[1] Daniel Blasco, Carlos Cetina, and Oscar Pastor. “A fine-grained requirement
traceability evolutionary algorithm: Kromaia, a commercial video game case
study”. In: Information and Software Technology 119 (2020). issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2019.106235 (cit. on
p. 187).

[2] Daniel Blasco et al. “An evolutionary approach for generating software mod-
els: The case of Kromaia in Game Software Engineering”. In: Journal of
Systems and Software 171 (2021), p. 110804. issn: 0164-1212. doi: https:
//doi.org/10.1016/j.jss.2020.110804 (cit. on p. 187).

[3] Daniel Blasco et al. “Procedural content improvement of game bosses with
an evolutionary algorithm”. In: Multimedia Tools and Applications 82 (2022),
pp. 1–33. issn: 1573-7721. doi: https://doi.org/10.1007/s11042-022-
13674-6 (cit. on p. 187).

188

https://doi.org/https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/https://doi.org/10.1007/s11042-022-13674-6
https://doi.org/https://doi.org/10.1007/s11042-022-13674-6

	Cover
	Title
	Dedication
	Acknowledgments
	Abstract - Resumen - Resum
	Contents
	I Introduction
	II Compendium of Articles
	1 A Fine-Grained Requirement Traceability Evolutionary Algorithm: Kromaia, a Commercial Video Game Case Study
	2 An Evolutionary Approach for Generating Software Models: The Case of Kromaia in Game Software Engineering
	3 Procedural Content Improvement of Game Bosses with an Evolutionary Algorithm

	III Discussion
	IV Conclusions

