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Infrared spectroscopy is widely used in viticulture. Spectroscopy correlates spectral

properties with reference data to obtain calibrations later used to predict the analyte

content in new samples with a single spectral measurement. However, the main limitation

lies in generating the reference data required to build robust prediction calibrations. This

study proposes a data generation strategy to obtain reference data for larger spectral

datasets. A reduced sample set was used to develop initial calibrations. These initial cali-

brations were subsequently applied to predict the reference data in larger spectral datasets.

Calibrations for nitrogen, carbon, and hydrogen content were then attempted using the

larger generated datasets. The initial nitrogen calibrations per organ showed coefficients of

determination in validation (R2val) between 80.08 and 89.93%. The root mean square errors

of prediction (RMSEP) ranged from 0.10 to 0.18% dry matter, and the residual predictive

deviations in validation (RPD) were between 2.27 and 3.19. The larger predicted datasets

showed improved prediction accuracy with coefficients of determination in validation

values above 91.79%, root mean square errors of prediction below 0.14% dry matter, and

residual predictive deviations in validation above 3.49. The carbon calibrations showed, on

average, a 20% increase in the coefficient of determination in validation decreased root

mean square errors of prediction and increased residual predictive deviations in validation.

The hydrogen calibrations showed a similar increase in prediction accuracy. The results

showed the suitability of using reduced sample sets to generate the reference data of larger

datasets capable of yielding more accurate prediction calibrations.
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Nomenclature

ANOVA analysis of variance

C carbon

CHNS carbon, hydrogen, nitrogen, sulphur

CO2 carbon dioxide

CV coefficients of variation

DM dry matter

EL Eichhorn-Lorenz

FT-NIR Fourier transform near infrared

H hydrogen

H2O water

HSD honestly significant difference

LOQ limit of quantification

Max maximum

Min minimum

MIR mid infrared

MPA multi-purpose analyser

MSC multiplicative scatter correction

N nitrogen

N2 nitrogen gas

NIR near infrared

NO nitric oxide

O oxygen

PC principal component

PCA principal component analysis

R2 coefficient of determination/R squared

R2cal coefficient of determination for calibration

R2val coefficient of determination for validation

RMSE root mean square error

RMSEE root mean square error of estimation

RMSEP root mean square error of prediction

RPD residual predictive deviation/ratio of prediction

to deviation

RPDcal residual predictive deviation/ratio of prediction

to deviation for calibration

RPDval residual predictive deviation/ratio of prediction

to deviation for validation

S sulphur

SD standard deviation

SNV standard normal variate/vector normalisation

SO2 sulphur dioxide

SO3 sulphur trioxide

WO3 tungsten (vi) oxide
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1. Introduction

Infrared spectroscopy techniques are widely applied in the

agriculture and are proposed as a powerful tool to obtain

relevant information from fresh plant material. However, the

infrared investigations of fresh grapevine organs are still in

their infancy and yield large complex datasets requiring novel

data exploration strategies. The applications of infrared

technologies in the viticultural field with direct measure-

ments are becoming increasingly popular and new ap-

proaches are constantly emerging (Baca-Bocanegra et al.,
2019; Diago et al., 2018; Tardaguila et al., 2017). Infrared

spectroscopy supplies the means for rapid and reliable mea-

surements for quantitative analysis.

Few studies have investigated spectroscopy applications

with measurements taken directly in fresh grapevine organs.

Cuq et al. (2020) investigated the prediction of nitrogen, car-

bon, and hydrogen content in berries at two phenological

stages and leaves at one phenological stage using infrared

spectroscopy. However, despite the ability of the models to

predict these compounds, their translocation within different

organs, as well as the source-sink relationship between them

is still not completely understood.

Furthermore, studies on fresh grapevine organs often

focused on a single organ. Fuentes et al. (2018) investigated

leaves for classification. Another study assessed berries at

three maturation stages and found separation between green,

v�eraison, and ripe berries, although some overlapping

occurred (Dos Santos Costa et al., 2019). Moreover, a study

performed on homogenised berries using mid infrared (MIR)

showed the ability to distinguish between phenological stages

such as pre-v�eraison and v�eraison (Musingarabwi et al., 2016).

Although infrared technologies supply the means to rapidly

measure a large number of samples, obtaining reference data is

often time consuming and reduces the number of samples that

can be analysed and included during model optimisation. In

addition, the analyses used to obtain reference data are often

expensive, again limiting the sample's set size. Therefore, the

cost and time-efficient generation or reference data to produce

large sample sets could be beneficial. Larger datasets could

yield more accurate predictions as increased variability can be

included. In most infrared applications, spectral data from

various cultivars, regions, and organs are often combined

during quantitative analysis (Cuq et al., 2020; Fernandez-

Novales et al., 2012; Schmidtke et al., 2012). However, if larger

datasets are obtained, specialised calibrations per cultivar or

organ could be explored, potentially leading to improved

calibrations.

As stated, infrared studies are often limited by the amount

of reference data that can be analysed. Limited reference data

leads to studies that include limited cultivars, regions, vin-

tages, or phenological stages (Cuq et al., 2020; Diago et al.,

2018; Dos Santos Costa et al., 2019; Fern�andez-Novales et al.,

2019). On the contrary, if a successful data generation strat-

egy is developed, a wider variety of spectral properties, from

different cultivars, regions or vintages, could be explored

simultaneously. More comprehensive studies could also be

performed throughout the growing season at different

phenological stages and climatic conditions. A limited amount

of reference samples containing both spectral properties and

reference data could be used to construct calibrations capable

of predicting the reference data in larger datasets. However,

the selected samples must represent the larger dataset and

include sufficient population variability. This study used the

content of carbon, hydrogen, nitrogen, and sulphur (CHNS) to

explore a novel reference data generation approach.

The CHNS concentration in a vineyard indicates its nutri-

tional status. The nutritional status of grapevines is crucial for

viticulturists and can influence various factors, including

growth, fruit set, and grape yield (Leibar et al., 2017; Moghimi

et al., 2020; Rodriguez-Lovelle & Gaudill�ere, 2002). These
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factors, in turn, affect grape composition and impacting must

and wine quality. Fertilisation is an essential tool for viticul-

turists to manage grapevine nutrition; however, unbalanced

fertilisation adversely affects grape quality (Cuq et al., 2020;

Leibar et al., 2017). Monitoring the CHNS composition of

grapevine organs throughout the growing season could pro-

vide valuable information to aid viticultural decisions

regarding fertilisation.

Nitrogen content in grapevines affects growth, berry

development, and grape quality. Berry quality is influenced by

amino acid and aromatic precursor content. Additionally, ni-

trogen availability influences grapevine carbon balance

(Rodriguez-Lovelle & Gaudill�ere, 2002). Carbon composition

also plays a vital role in vine growth, berry sugar accumula-

tion, and anthocyanin biosynthesis (Cuq et al., 2020; Pastenes

et al., 2014; Rossouw et al., 2018). The hydrogen content in

grapevines is relevant for various chemical reactions related

to respiration, carbohydrate accumulation, and the formation

ofmultiple compounds, including sugars, starch, amino acids,

and organic acids (Hellman, 2003, pp. 5e19). Sulphur content

in grapes are linked to the production of amino acids and

sulphur containing aromatic compounds that impact grape

must quality (Bruwer et al., 2019; Lacroux et al., 2008). Moni-

toring nitrogen, carbon, hydrogen and sulphur concentrations

throughout the growing season could provide important in-

formation on the source-sink relationship between these

compounds and the grapevine organs (Cuq et al., 2020;

Pastenes et al., 2014; Rodriguez-Lovelle & Gaudill�ere, 2002).

Therefore, the study's main aim was to investigate the use

of a limited set of samples to optimise calibrations with larger

sets of data. This study proposes a reference data generation

strategy using a limited number of samples as starting point.

NIR spectral properties were obtained from direct shoots,

leaves, and berries measurements. The content of carbon,

nitrogen, hydrogen, and sulphur as reference data was ob-

tained. The suitability of the initial sample set was assessed

regarding the representativeness and variability of the more

extensive data set. Themodel prediction accuracy of the large

data set was finally assessed after model optimisation.
2. Materials and methods

2.1. Sample collection

Fresh grapevinematerial was collected from five growing sites

in the Stellenbosch district (South Africa). Twenty vineyard

blocks were sampled over two vintages (2019e2020;

2020e2021), with seven cultivars included (Genus: Vitis; Spe-

cies: Vitis vinifera; Cultivar: Chardonnay, Sauvignon blanc,

Shiraz, Cabernet Sauvignon, Merlot, Malbec, and Pinotage).

The growing season ranged from November to March for both

vintages. One additional shoot sampling was conducted at

dormancy in July 2021. Five intact shoots containing leaves

and berries were collected from each block per month in the

earlymornings (06:00e10:00). The intact grapevine caneswere

carefully transported to the laboratory. The samples were

then separated into shoots, leaves, and berries, and analyses

were performed within 36 h of sampling. Samples were stored

at 4 �C overnight as required (Cuq et al., 2020). Phenological
stages were assigned at sampling based on the modified

Eichhorn-Lorenz system of Coombe (1995). A wide range of

phenological stages was incorporated per grapevine organ,

with shoots ranging from EL15 (8 Leaves present) to the end of

leaf fall (EL47). Berries were sampled between EL29 (Pepper-

corn-size) and EL39 (Over-ripe) and leaves from EL15 (8 Leaves

present) to EL41 (Cane maturity). In total, 3530 samples were

collected for shoots (n ¼ 1514), leaves (n ¼ 1540), and berries

(n ¼ 476).

2.2. Infrared spectroscopy analysis

NIR measurements were obtained using the multi-purpose

analyser (MPA) Fourier transform near infrared (FT-NIR) in-

strument (Bruker Optics, Ettlingen, Germany) fitted with a

fiber-optic solid probe. The spectral range of 12,000 to

4000 cm�1 was used with a resolution of 4 cm�1 at 10 KHz.

Shoot and leaf measurements averaged 16 sample scans, and

the berries averaged 64 scans. Shoots were divided into top,

middle, and bottom, and each shoot section was scanned two

to four times, depending on the length. Shoot sections above

35 cm were measured or scanned at four height points on

alternating sides of the shoot section starting from the bot-

tom. Sections below 35 cmwere scanned twice. Five replicates

were measured per leaf surface in an anti-clockwise direction

corresponding to the leaf lobes. The first measurement was at

the top left basal lobe, the second at the left lateral lobe, the

third at the apical lobe, the fourth at the right lateral, and

finally, at the top right basal lobe. Five berries were randomly

selected for measurement after all berries were removed from

a bunch and homogenised. Berries were measured from the

side in an upright position. The total number of spectral scans

was 13,828 for shoots (n ¼ 3747), leaves (n ¼ 7701), and berries

(n ¼ 2380). Further information about the sample distribution

according to categorical variables can be found in van

Wyngaard et al. (2022).

2.3. Reference analysis (CHNS)

2.3.1. Sample selection
Sample selection had to be carefully considered to represent

the categorical variables and retain the variability seen in the

larger datasets. The available resources determined the initial

sample set size while considering a minimum number of

samples required to attempt calibrations with a 50:50 split

between calibration and validation. First, a representative

number of samples were selected for the categorical variables

vintage (120 � 2 vintages) and organ type (80 � 3 organ types).

Secondly, randomised sample selectionwas performed on the

remaining categorical variables to maintain the original pro-

portions and variability in the dataset. Representative sam-

ples per growing site, cultivar, and phenological stage were

thus selected after randomising the data. The total number of

samples to be analysed for the reference data was 240.

2.3.2. Sample preparation
Shoot, leaf, and berry samples were dried and ground to a

homogenous powder for analysis. Shoots and leaves were

freeze-dried using a BETA 1e8 LDplus/2e8 LDplus freeze-

dryer (Martin Christ, Germany) until a constant weight was

https://doi.org/10.1016/j.biosystemseng.2023.07.008
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achieved (60 h for shoot samples and 12 h for leaf samples).

Two strategies adapted from Cuq et al. (2020) were developed

for the berries. Green berries were oven dried for 48 h at 80 �C.
V�eraison to ripe berries were first freeze-dried for 24 h, fol-

lowed by oven drying for 48 h at 80 �C. After drying, the

samples were milled using an MM400 mixer mill (Retsch,

Germany) to obtain a homogenous powder and stored in

airtight falcon tubes awaiting analysis.

2.3.3. CHNS analysis
The total nitrogen, carbon, hydrogen, and sulphur analysis

was performed using the Vario EL Cube Elemental Analyzer

(Elementar, Frankfurt, Germany). An analytical balance was

used to weigh approximately 30 mg of dried, homogenous

sample in an aluminium foil boat along with 5 mg of tungsten

(VI) oxide (WO3) as a catalyst for the combustion reaction. The

sample was introduced at a temperature of 1050 �C into the

combustion column and then dosed with oxygen at 2 bars.

The C, H, N, and S elements bound in the sample combusted

into their gaseous forms producing carbon dioxide (CO2),

water (H2O), nitrogen (N2), nitric oxide (NO), sulphur dioxide

(SO2), and sulphur trioxide (SO3). Argon 5.0 carrier gas at 1 bar

was then used to move the gaseous products through the

reduction column, housing copper wire heated to 850 �C to

reduce the NO to N2 and the SO3 to SO2. Additionally, silver

wool in the reduction column bound any volatile halogen-

bound compounds produced during combustion. Finally, the

pure gasses were transported to the absorption column. The

N2 gas not absorbed by the column reaches the thermal con-

ductivity detector first while the absorption column absorbs

the other gasses (CO2, H2O, SO2) at room temperature. The

absorption column was then sequentially heated to 60 �C to

desorb the products before transferring them to the thermal

conductivity detector with 220 ml/min airflow. All results

were reported in percentage dry matter (%DM) with the limits

of quantification (LOQ) for N, C, H, and S at 0.000, 0.238, 3.257,

and 0.28% DM, respectively.

2.4. Chemometric analysis

PLS regression was performed using OPUS software (OPUS v.

7.2 for Microsoft, Bruker Optics, Ettlingen, Germany). As

mentioned in section 2.2, each leaf was scanned five times,

shoot sections were measured two to four times, and berries

were measured individually. Therefore, several leaves, shoots

or berries were used to obtain a single reference data point.

This led to having multiple spectra that corresponded to a

single reference data point, giving rise to two possible model

optimisation strategies. Under this scenario, the spectral data

contained in the single reference data point could be aver-

aged. On the contrary, the reference data values can be

replicated for each of the spectra included in the sample.

Several modelling strategies were attempted to optimise the

accuracy of the calibrations. First, calibrations for averaged

spectra per reference value, and calibrations where reference

data were repeated based on spectral repeats per sample,

were explored. Moreover, a dataset split 50:50 was used to

include sufficient samples in the validation and calibration

datasets. Different calibration/validation split methods were

explored, including a random split based on the Kennard-
Stone algorithm. Additionally, various manual dataset splits

were explored corresponding to 1-1-1, 2-2-2, and 2-1-1, with

the first number representing the first test sample allocated,

the second number the block length of test samples, and the

third number the gap before the calibration samples. Optimal

calibrations based on the coefficient of determination and root

mean square error were selected based on all the above con-

siderations. Spectral region selection and multiple pre-

processing algorithms, including no spectral data pre-

processing, constant offset elimination, straight-line sub-

traction, standard normal variate (SNV), also known as vector

normalisation, minemax normalisation, multiplicative scat-

tering correction (MSC), first derivative, and second derivative

were also used. Combinations of pre-processing methods

were also investigated, such as first derivative with straight

line subtraction, first derivative with SNV, and first derivative

withMSC. The optimised initial calibrations were then used to

predict the nutrient content of each spectrum in the larger

datasets. Calibrations with spectral pre-processing, wave-

number selection, and several calibration/validation strate-

gies were attempted with the complete set of spectral

properties and reference data.

Calibrations were evaluated using various performance

evaluation indices. The coefficient of determination (R2) was

used to explain the variance in the calibration (R2cal) and

validation (R2val) datasets. Values close to 100% indicate that a

high percentage of the variance is explained by the response

variable (Bureau et al., 2019; Cozzolino et al., 2011; van

Wyngaard et al., 2021). Furthermore, the root mean square

error of estimation (RMSEE) and prediction (RMSEP) show the

model's ability to predict future samples accurately. RMSEE

and RMSEP can be expressed in percentages or units of the

measured compound. Residual predictive deviation (RPD) is

calculated using the ratio of the standard deviation of the

response variable to the RMSEE (RPDcal) and RMSEP (RPDval).

Higher RPD values indicate higher model accuracy and

increased capability of predicting new samples. Rank is also

reported and represents the optimal number of latent vari-

ables or principal components. High rank can indicate over-

fitting, while low rank can lead to underfitting or under-

representing the variability in the dataset (Aleixandre-Tudo

et al., 2019; Cozzolino et al., 2011).

Agricultural applications with RMSE values below 20% for

prediction models are reported as acceptable in the literature

(Aleixandre-Tudo et al., 2019; Torchio et al., 2013). The inter-

pretation of RPD values differs slightly based on the applica-

tion. In general, RPD below 3 shows that discrimination

between low and high predictions is possible, while RPD above

5 indicates very good to excellent predictability for quality and

process control applications (Cozzolino et al., 2011). However,

RPD values above 2.5 are considered acceptable for wine and

grape applications, while values below 2 are mostly suited for

low, medium, and high screening purposes (Aleixandre-Tudo

et al., 2019; Cozzolino et al., 2008; Cuq et al., 2020).
3. Results

The chemical results of the CHNS reference analysis are first

discussed. After that, the initial calibrations with a reduced

https://doi.org/10.1016/j.biosystemseng.2023.07.008
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dataset are examined. The initial calibrations are then used to

predict the levels of the reference compounds in the larger

dataset. Furthermore, the reference data of the reduced data

set obtained with the establishedmethod described in section

2.3.3 and the predicted reference data of the large data set are

compared using various statistical methods. The last section

compares the initial calibrations with those optimised with

the larger dataset.

3.1. Reference analysis results

Using the randomisation approach described (section 2.3.1),

240 samples were selected. The initial reduced sample sub-

sets’ spectral data and the larger datasets were investigated

using principal component analysis (PCA) (Fig. 1). The distri-

bution of the sample set per organ type showed the reduced

sample set (80 samples per organ type) to represent the larger

spectral datasets, with similar distribution and variability

included. The spectral distribution of the smaller datasets (in

red) for berries (Fig. 1A), shoots (Fig. 1B), and leaves (Fig. 1C)

compared to the larger spectral datasets (green) are shown in

Fig. 1.

The descriptive statistics of the initial datasets for nitro-

gen, carbon, and hydrogen content are shown in Table 1. The

minimum (Min) and maximum (Max) values, mean, standard

deviation (SD), and coefficients of variation (CV) are included.

The sulphur analysis proved to be below the limit of quanti-

fication and is therefore not shown. Similar results for sulphur

levels below the limit of detection or quantification have been

reported for fresh grapevine berries and leaves (Cuq et al.,

2020). The nitrogen values in the leaves were the highest

with a mean of 2.04% DM, the berries were second highest at

1.06% DM and the shoots showed the lowest mean percentage

at 0.61% DM. The nitrogen concentrations ranged from 1.32 to

3.71% DM, 0.14e2.55% DM, and 0.34e1.61% DM for the leaves,

berries, and shoots, respectively. These results agree with the

values reported in the literature (Cuq et al., 2020; Leibar et al.,

2017). Cuq et al. (2020) reported nitrogen values ranging from

0.39 to 2.51% DM, with a mean of 1.20% DM, and a standard

deviation (SD) of 0.57. However, these values were for both

berries and leaves. Another study foundmean nitrogen values

of 2.77% DM in leaves (Leibar et al., 2017). The CV values for

nitrogen were high, possibly indicating more variation during

the growing season.

The carbon concentrations were comparable between the

grapevine organs, with the berries showing slightly higher

values between 42.19 and 48.96% DM, the leaves ranging from

40.35 to 46.71% DM, and the shoots from 39.10 to 46.20% DM.

Similar mean and SD values were seen for the three organs,

and comparable carbon values ranging from 34.82 to 49.09%

DMwith a mean of 43.44% DM and SD of 2.98 were reported in

the literature (Cuq et al., 2020). The hydrogen values between

the grapevine organs were alike, with the leaves displaying a

slightly higher mean value of 7.23% DM, while the berries and

the shoots were 6.56 and 6.82% DM, respectively. The leaves

values ranged from 6.00 to 8.03% DM, the berries from 5.56 to

7.95%DM, and the shoots from 5.65 to 7.58%DM. However, the

hydrogen values Cuq et al. (2020) reportedwere lower, ranging

from 3.17 to 6.58% DM with a mean concentration of 5.61%

DM. The CV values for carbon and hydrogen were low,
possibly indicating less variation in their concentrations over

the growing season.

3.2. Initial calibrations for reference data

Calibrations for each grapevine organ and reference com-

pound were compiled using the initial spectral and reference

data. As mentioned in section 2.4, the initial calibrations were

explored with average spectra per reference value and

repeating reference value per spectral repeat. The optimal

calibrations were selected based on the coefficient of deter-

mination and root mean square error. When spectra were

averaged, 80 samples per organ were used, 40 for each cali-

bration and validation, while with repeating reference values,

the spectra per model increased. Overall, the averaged cali-

brations showed greater performance accuracy except for

three calibrations. The shoots nitrogen (n ¼ 228), leaves car-

bon (n ¼ 595), and the leaves hydrogen (n ¼ 595) calibrations

with repeating reference values showed better performance.

The split between calibration and validation datasets and the

performance evaluation indices are reported in Table 2.

The nitrogen calibration for berries showed acceptable

accuracy with the coefficient of determination values (R2) of

89.17% for calibration (R2cal) and 89.93% for validation (R2val).

The root mean square error of the calibration (RMSEE) was

19.30% and 17.18% for validation (RMSEP). The residual pre-

dictive deviation (RPD) for the calibration (RPDcal) and vali-

dation (RPDval) were 3.04 and 3.19, respectively. The leaves

nitrogen calibration showed similar results, with the R2cal at

89.10% and the R2val at 89.93%. However, the RMSEE and

RMSEP values were lower at 8.52 and 7.11%, respectively.

Similar RPD values were seen, with RPDcal of 3.03 and RPDval

of 3.18. Although the nitrogen calibration for shoots showed a

slightly higher R2cal of 91.65%, the R2val was lower at 80.08%.

The RMSEE was 11.33%, the RMSEP 16.46%, the RPDcal at 3.46,

and the RPDval at 2.27. Comparable results were reported by a

similar study conducted on fresh grapevine berries and leaves

with R2val of 91%, RMSEP of 0.17% DM, and RPDval of 3.32 for

nitrogen (Cuq et al., 2020), while the RMSEP reported in this

study as a percentage of drymatter was also between 0.10 and

0.18% DM.

The carbon calibrations overall performed poorer than the

nitrogen calibrations but still yielded moderately accurate

predictions. The berries' carbon calibration showed R2cal of

70.93%, R2val of 67.47%, RMSEE of 1.67%, RMSEP of 2.03%,

RPDcal of 1.85, and RPDval of 1.79. The leaves’ carbon cali-

bration reported a higher R2cal of 80.37%. However, the R2val

was slightly lower at 63.98%. The RPDcal was 2.26, and RPDval

was 1.67. The carbon calibrations for the shoots showed

similar results for the R2cal (80.41%) and the highest R2val

(68.80%). Low RMSE were reported (below 1.6%), with similar

RPDcal and RPDval of 2.26 and 1.86, respectively. Literature

reported a lower R2val of 49% for carbon calibrations of fresh

berries and leaves (Cuq et al., 2020). In this study, the RMSEP

per % DMwas below 1, and RPDval between 1.47 and 2.61 were

seen, while Cuq et al. (2020) found a RMSEP of 2.24% DM and

RPDval of 1.33.

The hydrogen calibrations showed more variation in the

predictability of the organs. Fairly accurate results were yiel-

ded for the hydrogen calibration of the berries, with R2cal of

https://doi.org/10.1016/j.biosystemseng.2023.07.008
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Fig. 1 e Principal component analysis (PCA) of the spectral distribution of the initial dataset (red e solid dot) compared to the

larger dataset (green e transparent dot) for berries (A), shoots (B), and leaves (C).

*95% confidence ellipse using Hotelling T-squared.
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Fig. 2 e Average pre-processed spectra for berries ( ),

leaves ( ), and shoots ( ) for the initial reference data

with spectral regions used for the calibrations of nitrogen

(a), carbon (b), and hydrogen (c).
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89.82% and R2val of 85.27%. RMSEE of 2.67% was seen with

RMSEP at 2.83%, RPDcal at 3.13, and RPDval at 2.61. The leaves

hydrogen calibrations showed comparable R2cal (85.38%) but

lower R2val (74.36%). The RMSEE and RMSEP were comparable

at 2.59 and 3.33%, respectively. The RPDcal was at 2.62 and the

RPDval below 2. The shoots calibration showed the lowest

accuracy overall for the reference compounds and specifically

for hydrogen. R2cal of 68.45% and R2val of 52.35% were ob-

tained, with RMSE above 3% and RPD values below 2. A similar

study reported R2val of 56%, RMSEP of 0.27% DM, and RPDval

of 1.45 for hydrogen calibrations constructed from fresh

berries and leaves (Cuq et al., 2020). However, the prediction

results for berries and leaves performed much better, and the

shoots’ calibrations were comparable. These results indicated

that specialised calibrations could perform better than global

calibrations combining all possible data.

The spectral pre-processingmethods reported in this study

included SNV, MSC, straight line subtraction, and no spectral

pre-processing in specific calibrations was preferred. Some of

the same pre-processing methods were reported in the liter-

ature, including no spectral pre-processing for fresh grapevine

material (Cuq et al., 2020) as well as dried material (De Bei

et al., 2017; Leibar et al., 2017; Schmidtke et al., 2012).
Table 1 e Descriptive statistics of the nitrogen, carbon, and hy

Min* Max*

Berries Nitrogen (% DM) 0.14 2.55

Shoots Nitrogen (% DM) 0.34 1.61

Leaves Nitrogen (% DM) 1.32 3.71

Berries Carbon (% DM) 42.19 48.96

Shoots Carbon (% DM) 39.10 46.20

Leaves Carbon (% DM) 40.35 46.71

Berries Hydrogen (% DM) 5.56 7.95

Shoots Hydrogen (% DM) 5.65 7.58

Leaves Hydrogen (% DM) 6.00 8.03

*Minimum (Min), maximum (Max), mean, and standard deviation (SD) ar

**Coefficient of variation (CV) is shown in percentage.
The spectral regions used during the development of each

calibration are summarised in Table 2. The average raw

spectra per grapevine organ were calculated, and although

some spectral differences could be seen, pre-processing was

used to highlight relevant bands in the spectra. First-order

SavitzkyeGolay spectral derivatives were applied, which

include an initial smoothing step and lead to spectra where

small bands are emphasised and overlapping peaks are

resolved (Cuq et al., 2020; Rinnan, van den Berg, & Engelsen,

2009). A similar approach has been proposed by Cuq et al.

(2020) to highlight the spectral regions that differ between

grapevine organs. Figure 2 combines the pre-processed

spectra per grapevine organ with the spectral regions used

for the nitrogen, carbon, and hydrogen calibrations. Figure 2

visually shows the spectral regions for the reference com-

pounds and the overlapping areas between them.

The spectral region for the nitrogen calibrations ranged

from 5700 to 9950 cm�1. The carbon calibrations showed some

overlapping regions between 5700 and 6550 cm�1 and 7400 to

9950 cm�1, with an additional region between 10,800 and

11,650 cm�1. Similarly, the hydrogen calibrations overlapped

between 5700 and 6550 cm�1 and 7400 to 9950 cm�1. However,

three unique spectral regions were seen at 4850 to 5700 cm�1,

9950 to 10,800 cm�1, and 11,650 to 12,500 cm�1. The pre-

processed spectra for the shoots, leaves, and berries showed

spectral regions of interest between 4100 and 5700 cm�1, and

6800 to 7400 cm�1, with minor differences seen at 8500 to

9000 cm�1, and 10,200 to 10,500 cm�1. The area showing the

most prominent differences (4100e5500 cm�1) was only

included in the hydrogen calibration. The region with the sec-

ond largest differences (6800e7400 cm�1) was only included in

the nitrogen calibrations.

Similar spectral regions were reported in the literature and

previous studies (Cuq et al., 2020; van Wyngaard et al., 2022).

The investigation of raw spectra showed that the regions be-

tween 4500 and 5300 cm�1 and 6000 to 7300 cm�1 are associ-

ated with shoots, leaves, and berries, while 8000 to 8700 cm�1

and 9500 to 10,500 cm�1 relate only to berries. This corre-

sponds to the regions seen in Fig. 2, with the additional bands

shown for berries on the left side of the graph. A similar study

reported comparable regions (6900e7400, 8300e9100, and

10,250e10,950 cm�1) for fresh berries and leaves and associ-

ated them with the first vibrational overtones of OH, CH, and

NH (Cuq et al., 2020). The investigation of dried trunk and leaf
drogen reference analysis for the initial dataset.

Mean* SD* CV (%)**

1.06 0.57 53.69

0.61 0.23 37.44

2.04 0.47 23.26

45.33 1.49 3.28

44.78 1.27 2.85

43.92 1.21 2.76

6.56 0.49 7.47

6.82 0.35 5.13

7.23 0.47 6.46

e shown in % dry matter (DM).
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samples identified three mutual absorption bands (4300, 5200,

and 7000 cm�1) and various additional bands for leaves (4900,

5900, 6600, and 8300 cm�1) (De Bei et al., 2017). The mutual

bands were associated with starch (CH, OH related bands),

while the additional leaf bands corresponded to protein and

nitrogen.

3.3. Predictions of the large datasets using the initial
calibrations

The initial calibrations in the previous section were used to

predict the larger dataset’ nitrogen, carbon, and hydrogen

content. The predicted results were compared to the initial

reference analysis and investigated further for accuracy and

validation. The descriptive statistics of the initial reference

analysis are shown in Table 1, and the predicted values are

summarised in Table 3. However, prior to calculating the

descriptive statistics for the predicted values, outlier removal

was implemented. Outlier removal for the predicted values

was based on the minimum (Min) and maximum (Max) range

of values seen for the reference analysis. They were removed

when the predicted values for the nitrogen, carbon, and

hydrogen were more than 0.1e0.2% DM below or above the

minimum and maximum reference values. However, the

outliers removed per dataset were very limited, and the per-

centage of outliers removed (%OR) was never higher than

4.1%. As expected, outlier removal led to comparable mini-

mum and maximum results, as shown in Tables 1 and 3

Furthermore, the mean, SD, and CV were similar for the

reference and predicted values. The CV values for the

nitrogenwere once again higher, as was seen for the reference

values, while the carbon and hydrogen CV values were low.

The CV values could indicate variation over the growing sea-

son, with nitrogen showing more variability than carbon and

hydrogen.

The nitrogen, carbon, and hydrogen concentrations over

the growing season were also explored for the initial refer-

ence and predicted data. This was done to assess if the pre-

dicted data behaved similarly to the reference data and to

validate the predicted results from the initial calibrations.

The nitrogen reference data in the berries showed the most

noticeable change over the growing season (Fig. 3). However,

the carbon and hydrogen reference data overall remained

constant across progressing phenological stages. The pre-

dicted values showed the same trend for nitrogen in Fig. 4,

with the most prominent decrease observed in berries.

Literature has reported a similar reduction in nitrogen con-

centration in leaves and berries over the growing season

(Cancela et al., 2018; Ferrara et al., 2018; Romero et al., 2010;

Rossouw et al., 2017).

The reference data of the initial dataset and the predicted

values showed the most prominent trend for the berries' ni-
trogen. The nitrogen content in berries per phenological stage

was further investigated and compared to determine whether

significant differences occurred during the growing season.

One-way analysis of variance (ANOVA) and post-hoc analysis

using Tukey's honestly significant difference (HSD) test was

employed. Significant p-values were reported using one-way

ANOVA for both the reference and predicted datasets below

the significance level of 0.1% (p < 0.001), showing that

https://doi.org/10.1016/j.biosystemseng.2023.07.008
https://doi.org/10.1016/j.biosystemseng.2023.07.008


Fig. 3 e Nitrogen trends for the initial reference data at

progressing phenological stages over the growing season

for shoots ( ), leaves ( ), and berries ( ) (240 samples).

Phenological stages are EL29.31 e Peppercorn-size to Pea-

size, EL32 e Bunch closure, EL33 e Hard-green, EL35 e

V�eraison, EL37.39 e Almost-ripe, Harvest, and Over-ripe

(Coombe, 1995).

Fig. 4 e Nitrogen trends for the predicted data at

progressing phenological stages over the growing season

for shoots ( ), leaves ( ), and berries ( ) (13,828 samples).

Phenological stages are EL29.31 e Peppercorn-size to Pea-

size, EL32 e Bunch closure, EL33 e Hard-green, EL35 e

V�eraison, EL37.39 e Almost-ripe, Harvest, and Over-ripe

(Coombe, 1995).

Fig. 5 e Box plot representing nitrogen distribution per

phenological stage for the berries' initial reference data.

*Different letters indicate significant differences at 5%

significance level (p < 0.05).

**EL29.31 e Peppercorn-size to Pea-size (a), EL32 e Bunch

closure (a), EL33 e Hard-green (b), EL35 e V�eraison (c),

EL37.39 e Almost-ripe, Harvest, and Over-ripe (d) (Coombe,

1995).

Table 3 e Descriptive statistics for the nitrogen, carbon,
and hydrogen reference analysis for the predicted
dataset.

Min* Max* Mean* SD* CV (%)**

Berries Nitrogen (% DM) 0.04 2.32 1.13 0.53 46.74

Shoots Nitrogen (% DM) 0.17 1.54 0.63 0.21 32.82

Leaves Nitrogen (% DM) 1.10 3.89 2.08 0.43 20.67

Berries Carbon (% DM) 42.11 48.73 45.36 1.02 2.25

Shoots Carbon (% DM) 40.44 46.41 44.62 1.15 2.57

Leaves Carbon (% DM) 40.08 46.83 43.98 0.87 1.98

Berries Hydrogen (% DM) 5.30 8.12 6.56 0.49 7.52

Shoots Hydrogen (% DM) 5.81 7.61 6.83 0.25 3.67

Leaves Hydrogen (% DM) 5.92 8.13 7.18 0.37 5.17

*Minimum (Min), maximum (Max), mean, and standard deviation

(SD) are shown in % dry matter (DM).

**Coefficient of variation (CV) is shown in percentage.

b i o s y s t em s e ng i n e e r i n g 2 3 2 ( 2 0 2 3 ) 1 4 1e1 5 4 149
differences between the phenological stages could be detec-

ted. Post-hoc analyses were further used to determine which

phenological stages differed, and box plots of the data distri-

bution were used with significant letters corresponding to a

5% significance level (p < 0.05).

The boxplot representing the reference data (Fig. 5)

showed significant differences between all the phenological

stages except EL29-31 (Peppercorn-size to Pea-size) and EL32

(Bunch-closure). These phenological stages are very close

together, and the smaller number of samples per stage for

the reference data could also have led to these results.

Furthermore, the box plot for the predicted values (Fig. 6)

showed significant differences between all the stages. Once

again, the decreasing trend of nitrogen was seen over the

growing season, and the post-hoc test additionally showed
Fig. 6 e Box plot representing nitrogen distribution per

phenological stage for the berries' predicted data.

*Different letters indicate significant differences at 5%

significance level (p < 0.05).

**EL29.31 e Peppercorn-size to Pea-size (e), EL32 e Bunch

closure (a), EL33 e Hard-green (b), EL35 e V�eraison (c),

EL37.39 e Almost-ripe, Harvest, and Over-ripe (d) (Coombe,

1995).
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the decreases to be significant between each phenological

stage.

The descriptive statistics (Tables 1 and 3), trend graphs

(Figs. 3 and 4), and box plots (Figs. 5 and 6) all showed that the

predicted data behaved similarly to the reference data and

could therefore be used for further calibration development.

3.4. Comparison of initial calibrations to larger dataset
calibrations

The calibrations per organ were investigated using the larger

dataset with the predicted reference data. The calibration

statistics are summarised in Table 4. The number of spectra

included in the calibration and validation split, with the per-

centage outliers removed (%OR) for each model is shown in

Table 4. The total spectra were 2380, 7701, 3747 for berries,

leaves and shoots, respectively. The berries nitrogen calibra-

tion reported R2cal of 93.64% and R2val of 92.66%, with RMSEE

of 11.60% and RMSEP of 12.86%. The RPD values were 3.97 and

3.70 for calibration and validation, respectively. The leaves

nitrogen calibration showed similarly accurate results with

R2cal of 91.92%, R2val of 91.79%, RMSEE of 5.95%, RMSEP of

5.85%, RPDcal of 3.52, and RPDval of 3.49%. The shoots nitro-

gen calibration showed slightly better results, with R2cal and

R2val 93.98% and 92.85%, respectively, while the RMSEE was at

8.06% and the RMSEP at 8.77%. The RPD values for the cali-

bration were above 4, with the RPDval reported at 3.74. Over-

all, extremely accurate prediction results were observed for

nitrogen for all three organs.

The berries' carbon calibration showed the highest pre-

diction accuracy with R2cal of 94.60%, R2val of 90.65%, RMSEE

of 0.50%, and RMSEP of 0.71%. The RPDcal value was 4.30, and

the RPDval was 3.27. The carbon calibration for the leaves

showed a slight decrease in predictability compared to the

berries' calibration. R2cal of 86.39% and R2val of 84.99% were

observed for the leaves' carbon calibration with RMSE below

0.8% and RPD values above 2.5. The shoots’ carbon calibration

showed R2cal and R2val of 91.26% and 90.06%, respectively.

RMSE values were also close to 0.8%, RPDcal at 3.38, and

RPDval at 3.17. Overall, all three organs showed very good to

excellent accuracy for carbon prediction.

The hydrogen calibration for the berries showed improved

results with R2cal of 92.72%, R2val of 89.01%, RMSEE of 1.97%,

RMSEP of 2.54%, RPDcal of 3.71, and RPDval of 3.02. Further

improvements were seen for the leaves’ hydrogen calibration

with R2cal and R2val at 95.22% and 94.83%, respectively, RMSE

below 1.2%, and RPD values above 4.4. The hydrogen calibra-

tion for the shoots displayed the slightest improvement. The

shoots hydrogen calibration showed R2cal of 80.53% and R2val

of 75.22%, with RMSEE of 1.60%, RMSEP of 1.84%, RPDcal at

2.27, and RPDval at 2.01.

The calibrations per grapevine organ for nitrogen, carbon,

and hydrogen showed more accurate predictability than re-

ported in the literature for fresh grapevinematerial (Cuq et al.,

2020). Cuq et al. (2020) found R2cal, R2val, RPDcal, and RPDval

values of 90%, 84%, 3.14, and 2.41 for nitrogen, respectively.

The carbon prediction results were R2cal of 67%, R2val of 57%,

RPDcal at 1.74, and RPDval at 1.49. Hydrogen was poorly pre-

dicted at R2cal of 54%, R2val of 50%, RPDcal at 1.46, and RPDval

at 1.38 (Cuq et al., 2020). The results found in this study

https://doi.org/10.1016/j.biosystemseng.2023.07.008
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Fig. 7 e Average pre-processed spectra for berries ( ),

leaves ( ), and shoots ( ) for the predicted data with

spectral regions used for the calibrations of nitrogen (a),

carbon (b), and hydrogen (c).
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showed significant improvement from the reported results.

The pre-processing methods reported per calibration were

similar for nitrogen and carbon including straight line sub-

traction and first derivative. The hydrogen calibration re-

ported using the first derivative with SNV and MSC, and

straight-line subtraction. Similar studies have also reported

using the first derivative andMSC (Cuq et al., 2020; Dos Santos

Costa et al., 2019).

The calibrations developed per grapevine organ from the

larger dataset with predicted values showed substantially

improved accuracy compared to the initial calibrations using a

reduced sample set (Tables 2 and 4). The initial nitrogen cali-

brations reported R2 values ranging from 80.08 to 91.65%,

RMSE from 7.11 to 19.30%, and RPDs between 2.27 and 3.46

across all organs. The predicted datasets for nitrogen cali-

brations of all organs reported increased R2 values

(91.79e93.98%), lower RMSE (5.85e12.86%), and higher RPDs

(3.49e4.08). Similar improved results were seen for the carbon

calibrations with the initial R2 values between 63.98 and

80.41%, and those with the larger predicted datasets from

84.99 to 94.60%. The RMSE values decreased from the initial

calibrations (1.20e2.03%) to the predicted dataset calibrations

(0.50e0.82%). Increases in the RPD were also seen from the

initial (1.67e2.26) to the predicted (2.58e4.30) calibrations. The

predicted reference data calibrations for hydrogen showed

considerable improvement in R2 values between 75.22 and

95.22% from the initial values (52.35e89.82%). Decreased RMSE

values were seen for the predicted calibrations (1.12e2.54%)

compared to the initial calibrations (2.59e3.60%). The RPD

values also increased from the initial calibrations (1.47e3.13)

to the predicted (2.01e4.58).

The raw spectra per grapevine organs were averaged and

pre-processed using the SavitzkyeGolay algorithm with first-

order derivative, as discussed in section 3.2 (Fig. 7). The

spectral graph obtained was very similar to Fig. 2, and the

same absorption bands of interest were seen (4100e5700,

6800e7400, 8500e9000, and 10,200e10,500 cm�1). In our pre-

vious studies, three spectral regions of interest were identified

(5115e5240, 8830e9800, and 10,600e11,300 cm�1) (van

Wyngaard et al., 2022) and similar regions have been re-

ported in the literature for fresh grapevine leaves and berries

(Cuq et al., 2020). These regions can be observed in Fig. 7, with

more distinct differences between 5115 and 5240 cm�1 and

subtle differences in the other regions (8830e9800,

10,600e11,300 cm�1).

The spectral regions reported in Table 4 for the per organ

calibrations developed with the predicted datasets (Fig. 7)

showed similarities to those seen for the calibrations using

reference data (Fig. 2). However, it seems that more extensive

regions of the spectra were incorporated for each reference

compound with overlapping regions between 5700 and

6550 cm�1 and 7400 to 11,650 cm�1. The larger regions could

indicate that more comprehensive spectral regions are

needed during the calibration development of larger datasets

with more variability. An additional region (4000e4850 cm�1)

was seen for the global nitrogen calibration and was previ-

ously reported in the literature to correspond to nitrogen in a

wide range of plant leaves (Johnson, 2001). Interestingly, once

again, the spectral region showing the most prominent dif-

ferences (4100e5500 cm�1) between the organs was only used
in the hydrogen calibration for berries. Literature has sug-

gested that the 5200 cm�1 absorption band could be linked to

the OH first overtones and OeH stretching/HOH deformation

of water (De Bei et al., 2017; Fern�andez-Novales et al., 2019;

Gonz�alez-Caballero et al., 2012). The possible association with

water could explain why the large peak shows differences

between the organs but was not included in the calibrations,

except for hydrogen.
4. Discussion

The nitrogen, carbon, and hydrogen concentrations reported

in fresh grapevine shoots, leaves, and berries were compara-

ble with the literature (Cuq et al., 2020; Leibar et al., 2017).

However, these studies did not report the levels of these

compounds throughout the growing season. This study

showed that carbon and hydrogen concentrations remained

constant, but nitrogen concentrations decreased in leaves and

berries (Figs. 3 and 4). This behaviour can be attributed to the

source-sink relationship and how nitrogen translocation

changes between organs at different phenological stages. The

decrease in nitrogen concentration in the leaves could indi-

cate remobilisation towards the berries that acts as a stronger

sink during early ripening before v�eraison. Later in the season,

the leaves could also translocate nitrogen to the permanent

grapevine organs for storage (Ferrara et al., 2018). These

changes are in line with the results observed in Fig. 3, which

shows the nitrogen concentration in the berries remaining

constant during early ripening and then decreasing towards

the final stages of ripening.

Infrared spectroscopy can efficiently analyse numerous

heterogeneous viticultural samples leading to large datasets

containing thousands of samples. However, there will always

be a restricted capacity when performing reference analyses

on large datasets due to resource constraints. Although the

initial calibrations per organ and reference compound

demonstrated good to moderate prediction ability, they were

used to predict the reference data in large datasets and led to

https://doi.org/10.1016/j.biosystemseng.2023.07.008
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accurate calibrations being developed. The increased accu-

racy of the calibrations validates the data generation strategy

and demonstrates that a reduced sample set could be used to

upgrade the calibrations. In addition, most viticultural and

oenological infrared applications report small sample sets

(below 100) for calibration development (Dambergs et al.,

2015). The considerably large sample numbers of up to 7701

in our predicted datasets could have influenced the calibra-

tion's accuracy (Porep et al., 2015). However, the literature

reports that sample variability has a more significant impact

than sample numbers (Bureau et al., 2019; Porep et al., 2015).

Selecting samples that are representative and include suffi-

cient variability could improve calibrations. Thus, especially

for agricultural and viticulture samples, various cultivars,

growing sites, vintages, grapevine organs, and phenological

stages should be included (Bureau et al., 2019). Although initial

reference samples were selected represent all the categorical

variables, the variability in the predicted datasets, with

thousands of samples, could have still been increased. The

updated calibrations for nitrogen, carbon, and hydrogen were

also more accurate than those reported in the literature for

fresh grapevine organs (Cuq et al., 2020).

The application of these calibrations could supply infor-

mation on nutritional content per organ during the growing

season (Cuq et al., 2020; Pastenes et al., 2014; Rodriguez-

Lovelle & Gaudill�ere, 2002; Rossouw et al., 2017). The accu-

mulation and mobilisation of nitrogen and carbon constantly

change during the growing cycle. Furthermore, respiration

reactions linked to hydrogen can change rapidly (Hellman,

2003, pp. 5e19). The ability to measure and monitor these

changes could supply relevant knowledge on the growth dy-

namics and nutritional status of a vineyard and facilitate

fertilisation decisions (Rodriguez-Lovelle & Gaudill�ere, 2002;

Schmidtke et al., 2012). For example, lower nitrogen concen-

trations before v�eraison could aid berry development, while

enlargement could be inhibited. The nitrogen content could

also influence the amount of amino acid and aromatic pre-

cursors in grapes and thus affect grape quality (Rodriguez-

Lovelle & Gaudill�ere, 2002). Fertilisation applications per

organ, such as foliar or bunch treatments, could be considered

if nutritional content is decreased.

The measurement of nutritional content could also lead to

a better understanding of the source (leaves and shoots) sink

(berries) relationship (Cuq et al., 2020; Leibar et al., 2017;

Pastenes et al., 2014; Rodriguez-Lovelle & Gaudill�ere, 2002)

leading to specialised decisions regarding fertilisation. Viti-

culturists are under increasing pressure to use fewer re-

sources while achieving optimal grape quality (Leibar et al.,

2017). Improved resource management, in turn, could opti-

mise berry development and lead to better grape and must

quality (Moghimi et al., 2020; Rodriguez-Lovelle & Gaudill�ere,

2002).
5. Conclusion

The possibility to use a reduced set of samples to generate

reference data in larger datasets was the main finding of this

study. This might lead to studies being able to explore larger

sample sets with expanded variability containing data from
multiple cultivars, regions, and vintages simultaneously.

Previous infrared and viticultural studies have been limited in

the number of samples and reference compounds analysed.

This strategy could supply the means to do more holistic

viticultural monitoring throughout the growing season. For

example, studies exploring various climatic conditions on a

larger scale could be implemented. Various growth parame-

ters could be explored with the prediction of chemical com-

ponents to better understand the plant and grape

development during the season. In addition, the data gener-

ation strategy presented here is not only applicable to grape-

vines and could therefore be implemented for broader

agricultural uses. Furthermore, the ability to generate larger

datasets could lead to novel model optimisation strategies. In

previous spectroscopy studies, data from various cultivars,

regions, organs, and phenological stages are often combined

to obtain sufficient samples for calibration optimisation.

However, if larger datasets were generated, specialised cali-

brations per, for example, cultivar, organ or phenological

stage could be explored. These calibrations could lead to

improved prediction accuracy and calibrations capable of

more specific and targeted predictions.
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