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a b s t r a c t

This paper presents a novel control strategy that provides active disturbance rejection predictive
control on constrained systems with no nominal identified model. The proposed loop relaxes the
modelling requirement to a fixed discrete-time state–space realisation of a first-order plus integrator
plant despite the nature of the controlled process. A third-order discrete Extended State Observer
(ESO) estimates the model mismatch and assumed plant states. Moreover, the constraints handling is
tackled by incorporating the compensation term related to the total perturbation in the definition of
the optimisation problem constraints. The proposal merges in a new way state–space Model Predictive
Control (MPC) and Active Disturbance Rejection Control (ADRC) into an architecture suitable for the
servo-regulatory operation of linear and non-linear systems, as shown through validation examples.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Model Predictive Control (MPC) is a set of advanced control
echniques whose ability to predict the process behaviour while
perating within active constraints makes it stand out among
ther control methods. To compute future outputs over a pre-
iction horizon, an assumed trajectory of current and unknown
uture inputs is applied to an explicit internal model considered
proper representation of the real system; the goal is then to
hoose the input trajectory such that the output reaches the
esired value at the end of that prediction horizon. The proper
nputs are selected by solving an optimisation problem depen-
ent on predictions, the measured output, and subject to desired
onstraints. Once the input trajectory is obtained, only the first of
ts elements is applied to the plant, and the whole procedure is
epeated at the next instant when a new output measurement is
vailable. This is known as the receding horizon strategy, repre-
ented in Fig. 1. It is argued that MPC is a satisfactory approach
or a variety of problems [1] and an impactful technology in
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practice [2]. However, the need for a precise prediction model is
still considered its main shortcoming [3].

Conversely, Active Disturbance Rejection Control (ADRC) [4,5]
is a control technique that brings to discussion the challenging
idea that a process, whether linear or non-linear, can be con-
trolled without needing a detailed model of its functioning by
approximating its dynamics to an integrator chain, commonly
denoted as the modified plant. To achieve this, ADRC relies on an
Extended State Observer (ESO), which provides information about
the integrator states and the total perturbation (total distur-
bance): the total effect of the multiple disturbances that produce
a difference between the actual plant and the assumed integra-
tor chain [6]. The manipulated variable is then proportional to
the result of adding the estimated total perturbation to a state
feedback control law governing the assumed integrator chain,
as shown in Fig. 2. The ADRC ability to deal with uncertainty
and non-modelled dynamics has been evidenced in successful
industrial applications such as thermal power plants [7], DC–DC
buck converters [8] and robotic systems [9].

The rapid growth of ADRC has inspired works intended to
integrate it with other control methods. This is considered an
open area of research with two identified approaches. On the one
hand, there is the ESO-based control in which a nominal state–
space model of the process to be controlled is used to design a
General ESO (GESO) [10]. For example, in [11], the GESO is dis-
cretised and used to update the dynamics of a prediction model
n open access article under the CC BY-NC-ND license (http://creativecommons.
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Fig. 1. Receding horizon strategy of model predictive control.

Fig. 2. Active disturbance rejection control loop.

o control the system state trajectories. More recently, in [12],
he stability of the predictive ESO-based control is studied when
he discrete GESO is employed as part of a predictive control
roblem that penalises the deviations of state predictions from
ero. The above contributions have exploited the ESO structure
y augmenting the state vector with states corresponding to
isturbances. However, these implementations still require an
dentified nominal model of the process which turns into the
tandard approach of the disturbance observer-based control as
hose also proposed in [13,14], and [15].

On the other hand, there are works where the modified plant
oncept has been combined with the prediction strategy. For
xample, in [16], the output voltage of a DC–DC buck converter
s rearranged as a function of total perturbation and an un-
onstrained continuous-time predictive control is designed. A
educed-order Generalized Proportional Integral Observer (GPIO)
s implemented as the prediction model requires output and total
erturbation derivatives. Even though this continuous configura-
ion is analogous to the discrete-time MPC, some simplification
hould be made to truncate the number of higher-order deriva-
ives and a discretisation of the control algorithm is needed to
pply the input to the plant. In [17], the ESO estimates the exter-
al disturbances and modelling errors that arise from obtaining
lateral vehicle model for the steering control of a two-wheel
ehicle. In this work, a constrained predictive control law is
omputed and modified with the compensation term to calculate
he manipulated variable. However, the upper limit of the control
ction constraint in the optimisation problem is set as the upper
imit of the real manipulated variable. With this definition, the
ontrol action computed during optimisation will likely be within
he constraint band. Still, the manipulated variable applied to the
ctual system could evolve to a value outside the allowed limits
ue to the compensation term.
From another point of view, in [18–20], the discrete transfer
unction of the nth-order integrator is employed as a prediction
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model in a Generalized Predictive Controller (GPC), and the ESO
is in charge of estimating the total perturbation that is further
compensated in the loop. Although these proposals resemble a
combination of the ADRC with an MPC method, none addresses
the definition of constraints and the possible influence of the
compensation term in their handling.

According to the findings presented in previous literature, the
integration of ADRC with MPC methods offers potential perfor-
mance and disturbance rejection benefits. Still, the following are
identified as current research challenges: how to tap the dis-
turbance estimation–rejection mechanism of ADRC to reject the
ignored dynamics actively and thus avoid the modelling effort im-
posed on MPC, how to incorporate the disturbance compensation
term in the MPC optimisation problem definition to ensure that
the manipulated variable satisfies the absolute operating limits in
servo-regulatory operation, and to what extent the integration of
MPC and ADRC frameworks allows obtaining the desired perfor-
mance for different types of systems. In this sense, the significant
contribution of this work is a novel control architecture that
provides predictive control on systems with no nominal identified
model and that are subject to operational constraints in output,
the magnitude of input, and its increment. The above is achieved
by using the disturbance rejection mechanism of the ADRC to
enforce the controlled plant to behave like a first-order plus
integrator model governed by an optimal control law computed
by predicting the output of this assumed plant over a horizon and
according to the allowed constraints. The proposed loop is im-
plemented as a discrete-time algorithm different from previously
published works mainly because of the following highlights.

• The estimation–rejection mechanism of the ADRC as an
internal loop is maintained to enforce the plant dynamics to
behave like a disturbance-free modified plant. Consequently,
the predictive control problem is solved based on a fixed
discrete state space model of second-order resembling a
first-order plus integrator realisation, despite the nature of
the controlled system. Moreover, conditions for the feasibil-
ity of the optimisation problem and the nominal stability are
given.

• The modelling requirements on the controlled plant are
reduced to natural system characteristics such as static gain
and apparent time constant due to the ADRC estimation–
rejection mechanism. Therefore, the model-based feature of
predictive control is relaxed, and the need for the detailed
identification of the system is eliminated.

• The proposed control structure allows the constraints han-
dling. Specifically, the compensation term resulting from the
total perturbation estimation is included in the definition of
the optimisation problem constraints. Thus, the operation
ranges related to the output, the magnitude of input and its
rate of change are directly considered. The above prevents
the violation of the input constraint after the predictive
control law is compensated in the loop.

• The proposed scheme is suitable for the control of processes
with complex dynamics. To study the challenging scenario
of meeting performance requirements when a relaxation in
modelling has been assumed, the servo-regulatory perfor-
mance of the proposed strategy is evaluated when control-
ling constrained linear and non-linear benchmark systems
with uncertainty and external perturbations.

The remaining structure of this paper is organised as follows.
In Section 2, state–space MPC and linear ADRC (LADRC) are briefly
described as preliminaries to Section 3, where the proposed mod-
ified closed loop with active disturbance rejection and output
predictions is explained in detail. The proposal is validated in
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Section 4 with the control of linear benchmark systems. The
validation is then expanded to a non-linear benchmark, consid-
ering as a case study the Continuous Stirred Tank Reactor (CSTR).
Finally, conclusions and future work are drawn in Section 5.

2. State–space MPC and discrete LADRC formulations

MPC is an entirely discrete algorithm, whereas LADRC has its
heoretical formulation in the continuous-time domain. However,
he practical implementation of LADRC requires a discretisation
f its main comprising block: the ESO. Offset-free MPC and dis-
rete LADRC for single-input single-output systems are briefly
ntroduced in the following.

.1. Offset-free model predictive control

Model Predictive Control refers to a set of advanced con-
rol methods in which the control action is computed based on
redictions of the output behaviour, hence the importance of
ccurate modelling of the process to be controlled [1]. The most
ommonly used models are the step response (in Dynamic Matrix
ontrol, DMC), the transfer function (in GPC), and the discrete
tate–space realisation of order n (1), where xk ∈ Rn×1 is the state
vector, ν ∈ Rn×1 is a state disturbance vector, y is the controlled
variable, u is the manipulated variable, and A ∈ Rn×n, B ∈ Rn×1,
and C ∈ R1×n are the system matrices.

xk+1 = Axk + Buk + νk
yk = Cxk,

(1)

The MPC algorithm solves for each instant k an optimisation
problem that minimises the cost function (2), along a prediction
horizon p, subject to none, some or all of the constraints (3)–
(5). Notation yf ,i|k indicates that future output at instant k + i
is calculated based on conditions at instant k; The same holds
for the reference trajectory yr,i|k and the rate of input ∆ui|k =

i|k−ui−1. It is always assumed that the control horizon c satisfies
≤ p and that ∆ui|k = 0 for i ≥ c. The cost function (2)

onsiders the quadratic forms of the tracking error ∥yr,i|k−yf ,i|k∥2
γ

nd the rate of manipulated variable ∥∆ui|k∥
2
λ with scaling factors

and λ, respectively, and subject to the variables constrained
etween their allowed lower and upper limits represented by the
ar notations w and w, correspondingly.

J =

p∑
i=1

∥yr,i|k − yf ,i|k∥2
γ +

c−1∑
i=0

∥∆ui|k∥
2
λ (2)

∆u ≤ ∆ui|k ≤ ∆u, i = 0, . . . , c − 1, (3)

u ≤ ui|k ≤ u, i = 0, . . . , c − 1, (4)

y ≤ yf ,i|k ≤ y, i = 1, . . . , p. (5)

When the discrete state–space model (1) is used to formulate
the predictive control problem, the objective function (2) can be
written as

J = ∥yr − yf∥2
Γ + ∥∆u∥

2
Λ, (6)

with

yr =
[
yr,1|k, yr,2|k, . . . , yr,p|k

]⊤
, (7)

yf =
[
yf ,1|k, yf ,2|k, . . . , yf ,p|k

]⊤
, (8)

∆u =
[
∆u0|k, ∆u1|k, . . . , ∆uc−1|k

]⊤
, (9)

Γ = diag(γ ) ∈ Rp×p, (10)

Λ = diag(λ) ∈ Rc×c . (11)
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In index (6), the deviation of p future outputs yf from the
reference trajectory yr is penalised through the diagonal weight-
ing matrix Γ . Likewise, penalisation of the actual and c − 1
future control efforts ∆u is introduced using the matrix Λ. The
output predictions are computed based on the current state (or an
estimation of it), the last applied input, and the unknown actual
and future input changes according to

yf = Pxk + VBuk−1 + wk + Vνk  
yfree

+G∆u, (12)

where matrices P ∈ Rp×p, V ∈ Rp×1, and G ∈ Rp×c are obtained
by using model (1) recursively along the prediction horizon. In
addition, the correction term wk ∈ Rp×1 and the state disturbance
prediction model νk ∈ Rp×1 are included in (12) to provide
offset-free control (OF-MPC) [21].

When no constraints are imposed, the minimum of (6) can
be directly calculated as a matrix product. However, when con-
straints are active, there is no explicit solution, and the stan-
dard approach is to treat the new problem as a quadratic one,
which is easily handled by solvers like quadprog from Matlab or
Mosek [22].

2.2. Discrete linear active disturbance rejection control

In contrast to OF-MPC, Linear Active Disturbance Rejection
Control is a control algorithm based on the idea that a detailed
process model is not necessary to control it. Instead, LADRC
relies on input–output information to estimate the existing mis-
match between the real system and an assumed integrator-chain
modified plant used to design a linear state feedback control law.

For example, let (13) be the input–output representation of a
second-order process with y as the controlled variable, u as the
manipulated variable, a0, a1 as modelling coefficients, and b as a
factor of the control action commonly known as critical gain.

ÿ = −a1ẏ − a0y + bu (13)

The model (13) can be rearranged as (14) where it has been as-
sumed that the only model information available is b0, a nominal
(approximated) value of the critical gain, and thus, the unknown
and non-modelled dynamics is lumped in f denoted as total
perturbation. Any external disturbances affecting the system are
also accounted for as part of f .

ÿ = b0u + f (14)

A state–space representation of (14) is obtained by assigning
the unknown total perturbation as a third state such that x =

[x1, x2, x3]⊤ = [y, ẏ, f ]⊤ and, for discrete-time implementations,
a discrete extended state observer must be used to estimate
the state vector, preferably the current-observer configuration
that offers improvement in terms of estimation accuracy and
closed-loop stability compared to the predictive-observer [23].

In the current-ESO implementation, the estimated state vector
x̂k is updated based on the measured output yk according to

x̂k = (AL − ℓCLAL) x̂k−1 + (BL − ℓCLBL) uk−1 + ℓyk, (15)

here AL, BL, and CL are the discrete version of the matrices
rom the continuous extended state–space model of (14) obtained
hrough zero-order hold discretisation with sampling time Ts [24].

The vector ℓ = [ℓ1, ℓ2, ℓ3]⊤ in (15) represents the observer
ains computed by equating the observer characteristic equation
ith the desired characteristic equation for the estimation error,
s in (16). A common approach is to locate the three observer
oles in the same position inside the unit circle zL = exp (−ωoTs),
aking the observer gains only dependent on its bandwidth,
enoted by ωo.

zI − A − ℓC A | = z − z 3 . (16)
( L L L) ( L)
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Finally, the estimated state vector is used to compute the
ontrol law (17), with yr,k as the desired output value and ωc as
he controller bandwidth. Notice that, with an adequate design
or the observer, each instant x̂3,k ≈ f and the total perturbation
s eliminated from the system dynamics (14), allowing the closed-
oop response to be governed by the law dependent on ωc .

k =
ωc

2
[
yr,k − x̂1,k

]
− 2ωc x̂2,k − x̂3,k

b0
(17)

The combined action of estimating the disturbance informa-
ion and compensating it from the loop through the manipulated
ariable is the core concept of LADRC. This disturbance rejection
apability is performed by the disturbance rejector: the mecha-
ism comprised of the ESO and the internal addition operation
here the control law acting on the real plant is computed [25]
see Fig. 2). In this sense, the LADRC enforces the system to
ehave as a modified plant whose dynamics is used to design
he observer and controlled by the state feedback law u0,k =

c
2
[
yr,k − x̂1,k

]
− 2ωc x̂2,k.

. Constrained control loop with active disturbance rejection
nd output predictions

In the previous section, OF-MPC and LADRC were briefly de-
cribed. Let the following comments about both algorithms be the
ntroduction to this section.

On the one hand, if a proper model is available, OF-MPC
ecomes a robust algorithm with an optimal control action that
atisfies the process constraints according to the optimisation
roblem feasibility. However, this model-based feature plays
gainst the system performance when a significant model mis-
atch arises, for example, in processes with complex dynamics
nd different operating points.
On the other hand, LADRC locates itself almost on the opposite

ide of the spectrum by keeping the information required from
odelling to a minimum and relying on its rejector mechanism

o perform the disturbance rejection. Actually, this configura-
ion offers proper control because it actively combines the non-
odelled dynamics in an estimated state without the need for

urther knowledge. Nevertheless, some additional characteristic
nformation about the system behaviour might be beneficial,
esulting in an assumed plant different from the conventional
ntegrator-chain form. What is more, some important control
spects, such as system constraints, mainly handled by limiters
nside the loop, could be incorporated into a more dedicated
ontrol law.
To take advantage of the unique benefits of the mentioned

ontrol schemes whilst enhancing each other, the control archi-
ecture of Fig. 3 is proposed to merge the LADRC disturbance
ejector and the receding horizon feature of MPC. Three main
tructures are identified:

1⃝ The system which corresponds to the real process to be con-
trolled and whose precise mathematical model is unknown.

2⃝ The disturbance rejector representing the active disturbance
rejection component of the loop. It is comprised of a current-
ESO, intended for the proper estimation of system states
and total perturbation, and the sum-gain configuration that
uses the estimated total perturbation to compensate for the
existing differences between the real plant and the modified
plant. A general first-order plus integrator model is assumed
as the modified plant. Therefore, the disturbance rejector is
designed to overcome the possible structural and parametric
mismatch as well as the external disturbances acting on the
loop.
151
Fig. 3. Proposed control architecture. The system dynamics 1⃝ is enforced by the
disturbance rejector 2⃝ into a first-order plus integrator plant (modified plant)
overned by a modified predictive controller 3⃝.

3⃝ The modified predictive controller designed to provide a
control law for the disturbance-free modified plant. This
control law results from a constrained optimisation pro-
cess where a cost function involving the tracking error
and changes in input is minimised. By incorporating the
predictive control algorithm into the loop, the receding
horizon characteristic of this advanced control method is
exploited in the servo-regulatory operation and constraints
are directly taken into account.

The following subsections elaborate on the disturbance rejec-
tor and the modified predictive control functionalities.

3.1. Disturbance rejector

Let the first-order plus integrator model (18) represent the dy-
namics of the assumed modified plant into which the disturbance
rejector is expected to enforce the real dynamics. The controlled
variable is y, the manipulated variable is u, K represents the
tatic gain, τ is the apparent time constant, and f is the total
erturbation.

¨ = −
1
τ
ẏ +

K
τ
u + f (18)

Selection of a first-order plus integrator system as modified
lant mainly offers the following advantages: it constitutes a
ixed mathematical representation of known order for the process
o be controlled with a lower complexity involved in the identifi-
ation of its parameters; It models the integral effect commonly
resent in industrial processes and approximate other types of
ominant dynamics through a term with a time constant. Com-
ared to the conventional chain-integrator form of LADRC, the
dditional dynamic information represented by the time constant
nhances the estimation ability of the observer and increases the
SO efficiency [26].
A continuous-time state–space realisation of (18) is[
ẋ1
ẋ2

]
=

[
0 1
0 −1/τ

][
x1
x2

]
+

[
0

K/τ

]
u +

[
0
1

]
f ;

y =
[

1 0
] [

x1
x2

]
.

(19)

f zero-order hold discretisation with sampling time Ts is used

on (19), the discrete state–space model obtained is (20) with
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a = exp (−Ts/τ) and b0 = K/τ as the nominal value of critical
ain.

x1,k+1
x2,k+1

]
=

[
1 τ (1 − a)
0 a

][
x1,k
x2,k

]
+ b0

[
τTs − τ 2(1 − a)

τ (1 − a)

]
uk

+

[
τTs − τ 2(1 − a)

τ (1 − a)

]
fk

yk =
[

1 0
] [

x1,k
x2,k

]
(20)

ssigning fk to a third state, the extended state vector x̂k =

x̂1,k, x̂2,k, x̂3,k
]⊤ is updated according to (21), where the observer

atrices Ao, Bo, and Co are defined as (22).

ˆk = (Ao − ℓoCoAo) x̂k−1 + (Bo − ℓoCoBo) uk−1 + ℓoyk (21)

Ao =

⎡⎣ 1 τ (1 − a) τTs − τ 2(1 − a)
0 a τ (1 − a)
0 0 1

⎤⎦
Bo = b0

⎡⎣ τTs − τ 2(1 − a)
τ (1 − a)

0

⎤⎦
Co =

[
1 0 0

]
(22)

Likewise, the observer gain vector ℓo is determined based
on the desired location of the observer poles inside the unit
circle [24]. By following the same approach used in the design of
conventional current-ESO, the corresponding gains are (23)–(25),
with zo = exp (−ωoTs).

ℓo1 = 1 −
z3o
a

, (23)

o2 =
2a − ℓo1(1 + a) + ℓo3

[
τ 2(1 − a) − aτTs

]
− 3z2o + 1

τ (1 − a)
, (24)

ℓo3 =
(1 − zo)3

τTs(1 − a)
, (25)

Consequently, the design of the current-ESO in the proposed
oop is dependent on the apparent time constant of modified
lant τ , the sampling time Ts, and the desired bandwidth ωo.
Let the control action affecting the system to be

k = u0,k −
x̂3,k
b0

(26)

ith u0,k denoting the value for instant k of a control action
omputed by a predictive control algorithm. If (26) is substituted
n (20), it follows that

x1,k+1
x2,k+1

]
=

[
1 τ (1 − a)
0 a

][
x1,k
x2,k

]
+ b0

[
τTs − τ 2(1 − a)

τ (1 − a)

]
u0,k

− b0

[
τTs − τ 2(1 − a)

τ (1 − a)

]
x̂3,k
b0

+

[
τTs − τ 2(1 − a)

]
fk

(27)
τ (1 − a)

152
nd, under the premise that x̂3,k ≈ fk, the last two terms in the
right-hand side of (27) cancel out, resulting in the disturbance-
free modified plant.[

x1,k+1
x2,k+1

]
=

[
1 τ (1 − a)
0 a

]
  

A

[
x1,k
x2,k

]
  

xk

+ b0

[
τTs − τ 2(1 − a)

τ (1 − a)

]
  

B

u0,k

yk =
[

1 0
]  

C

[
x1,k
x2,k

]
(28)

Up to this point, it has been shown how the current-ESO esti-
mates the modified plant states and the total perturbation. When
the latter is used to compute the manipulated variable acting on
the system, the model mismatch and external disturbances are
compensated, allowing the discrete-time realisation of the first-
order plus integrator system from (28) to be used as a prediction
model to obtain the predictive control law u0,k.

3.2. Modified predictive controller

Let JM be the quadratic cost index associated with the optimi-
sation problem of the modified predictive controller such that

JM =

p∑
i=1

∥yr,i|k − yf ,i|k∥2
γ +

c−1∑
i=0

∥∆u0,i|k∥
2
λ, (29)

which results in

JM = ∥yr − yf∥2
Γ + ∥∆u0∥

2
Λ (30)

with ∆u0 =
[
∆u0,0|k, ∆u0,1|k, . . . , ∆u0,c−1|k

]⊤ and yf as the
vector of p output predictions

yf = P x̂k + VBu0,k−1  
yfree

+G∆u0. (31)

otice that neither the correction term nor the disturbance pre-
iction model are included in (31). This is because the observer
rovides the current estimated state vector x̂k of the modified
lant and consequently, matrices P ∈ Rp×2, V ∈ Rp×1, and
∈ Rp×c are computed using the discrete state–space realisation

rom (28).
In order to incorporate the real system constraints in the

ptimisation problem related to (29), the following formulation
ased on the classical Quadratic Dynamic Matrix Control (QDMC)
pproach is proposed.
Firstly, consider constrains on the manipulated variable spec-

fied as (4). For instant k, it holds that

0|k ≤ u. (32)

ccording to (26), u0|k can be rewritten as u0|k =

∆u0,0|k + u0,k−1
]
− (1/b0)x̂3,k and substituting the latter in (32)

eads to

u0,0|k ≤ u − u0,k−1 +
x̂3,k
b0

. (33)

Thus, the upper limit constraint on input magnitude u has been
used to determine the corresponding upper limit constraint for
the first decision variable of (30), ∆u0,0|k, taking into account
the contribution of the disturbance rejector to the manipulated
variable u .
0|k
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The above procedure is expanded along the control horizon as
ollows.

∆u0,1|k + ∆u0,0|k ≤ u − u0,k−1 +
x̂3,1|k
b0

∆u0,2|k + ∆u0,1|k + ∆u0,0|k ≤ u − u0,k−1 +
x̂3,2|k
b0

...

∆u0,c−1|k + · · · + ∆u0,0|k ≤ u − u0,k−1 +
x̂3,c−1|k

b0

(34)

From Eq. (34) is evident that future values of the estimated to-
tal perturbation are required, which are not available. Still, it can
be assumed that x̂3,k remains constant over the control horizon
and its value is updated by the ESO each time the optimisation
problem needs to be solved. This is, x̂3,k = x̂3,1|k = · · · = x̂3,c−1|k,
and as a result

∆u0,1|k + ∆u0,0|k ≤ u − u0,k−1 +
x̂3,k
b0

∆u0,2|k + ∆u0,1|k + ∆u0,k|k ≤ u − u0,k−1 +
x̂3,k
b0

...

∆u0,c−1|k + · · · + ∆u0,0|k ≤ u − u0,k−1 +
x̂3,k
b0

.

(35)

A similar development is done to determine the lower limit
onstraints on ∆u0 as a function of the allowed lower limit u for
he manipulated variable such that

−∆u0,1|k − ∆u0,0|k ≤ −u + u0,k−1 −
x̂3,k
b0

−∆u0,2|k − ∆u0,1|k − ∆u0,0|k ≤ −u + u0,k−1 −
x̂3,k
b0

...

−∆u0,c−1|k − · · · − ∆u0,0|k ≤ −u + u0,k−1 −
x̂3,k
b0

.

(36)

Gathering inequalities from (35) and (36) results in the matrix
orm (37), where IL ∈ Rc×c is an all-ones lower triangular matrix;
u ∈ Rc×1 and u ∈ Rc×1 are vectors of repeated elements u and u,
espectively; 1 ∈ Rc×1 is an all-ones vector, and ur,k = (1/b0)x̂3,k
represents the contribution of the disturbance rejector to the
manipulated variable.

[
IL

−IL

]
  

Au

⎡⎢⎢⎣
∆u0,0|k
∆u0,1|k

...

∆u0,c−1|k

⎤⎥⎥⎦
  

∆u0

≤

[
u

−u

]
−

[
1

−1

]
u0,k−1 +

[
1

−1

]
ur,k  

bu

(37)

Attention is now drawn to the handling of constraints on the
ate of change of input given in the form of (3). Proceeding as
efore, for instant k, it holds that

∆u0|k ≤ ∆u
u0|k − uk−1 ≤ ∆u.

(38)

Using (26) in (38), it follows that[
∆u0,0|k + u0,k−1 −

x̂3,k
]

− uk−1 ≤ ∆u. (39)

b0
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Furthermore, uk−1 = u0,k−1 − (1/b0)x̂3,k−1. Thus, substituting the
latter in (39) and reorganising terms

∆u0,0|k ≤ ∆u − u0,k−1 + u0,k−1 +
x̂3,k
b0

−
x̂3,k−1

b0
∆u0,0|k ≤ ∆u +

x̂3,k
b0

−
x̂3,k−1

b0
∆u0,0|k ≤ ∆u +

∆x̂3,k
b0

.

(40)

Likewise, for future control moves, constraints become

∆u0,1|k ≤ ∆u +
∆x̂3,1|k

b0
∆u0,2|k ≤ ∆u +

∆x̂3,2|k
b0

...

∆u0,c−1|k ≤ ∆u +
∆x̂3,c−1|k

b0
.

(41)

owever, as it was assumed that x3,k remains constant along
the control horizon, ∆x̂3,1|k = ∆x̂3,2|k = · · · = ∆x̂3,c−1|k =

, indicating that the disturbance rejector contribution to the
anipulated variable is only affecting the constraint on the first
ecision variable ∆u0,0|k.
Constraints for the lower bound of ∆u0 based on ∆u are

erived in a similar way than it was performed for the upper
ound. Consequently, constraints on the rate of change of in-
ut are incorporated into the optimisation problem through the
atrix form

[
I

−I

]
  

A∆u

⎡⎢⎢⎣
∆u0,0|k
∆u0,1|k

...

∆u0,c−1|k

⎤⎥⎥⎦
  

∆u0

≤

⎡⎢⎣ ∆u
∆u
−∆u
−∆u

⎤⎥⎦ +

⎡⎢⎣ ∆ur,k
0

−∆ur,k
0

⎤⎥⎦
  

b∆u

(42)

ith I as the identity matrix, ∆u ∈ R(c−1)×1 and ∆u ∈ R(c−1)×1

s vectors of repeated elements ∆u and ∆u respectively, and
∈ R(c−1)×1 as the zero vector.
Lastly, constraints (5) on output are introduced into the op-

timisation problem in the same fashion than the classical QDMC
approach because the prediction vector (31) is dependent only on
the current state vector xk and past input u0,k−1. Hence, defining
y ∈ Rp×1 and y ∈ Rp×1 as vectors of p elements y and y
respectively

[
G

−G

]
  

Ay

⎡⎢⎢⎣
∆u0,0|k
∆u0,1|k

...

∆u0,c−1|k

⎤⎥⎥⎦
  

∆u0

≤

[
y − yfree

−y + yfree

]
  

by

. (43)

In summary, the optimisation problem for the modified pre-
dictive controller of the proposed loop is stated as (44) with
constraints matrices defined in (37), (42), and (43).

min∆u0
{
∥yr − yf∥2

Γ + ∥∆u0∥
2
Λ

}
s.t.

[ A∆u
Au
Ay

]
∆u0 ≤

[ b∆u
bu
by

]
(44)

3.3. Stability and feasibility of the proposed control scheme

The closed-loop stability of the control architecture from Fig. 3
can be addressed based on the separation principle under which
the disturbance rejector and the modified predictive controller
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constitute two cascaded systems that can be independently de-
signed. If the stability of these two comprising structures is as-
sured, then the closed-loop stability is guaranteed [27,28].

To illustrate the above, consider the following class of non-
inear uncertain systems of relative order n, which can describe
arious practical systems.

˙̃x (t) = Ax̃ (t) + Bu (t) + Bf
(
h

(
x̃ (t) , u (t) , t

)
+ d (t)

)
y (t) = C x̃ (t) , t ≥ t0

(45)

here x̃ (t) ∈ Rn is the state vector, y (t) ∈ R is the output,
u (t) ∈ R is the control input, d (t) ∈ Rm are possibly un-
known time-varying and non-linear external disturbances, and
h

(
x̃ (t) , u (t) , t

)
∈ Rm represents an unknown term including

non-modelled dynamics and uncertainty. The matrices A ∈ Rn×n,
B ∈ Rn×1, Bf ∈ Rn×m, and C ∈ R1×n are the nominal system
matrices.

Assumption 1. The non-linear system (45) has bounded domain
Dx̃ ≜

{
x̃ (t) : ∥x̃ (t) ∥ < rx̃

}
∀t > 0, rx̃ > 0.

Assumption 2. The external disturbance is bounded and has a
bounded first-time derivative, i.e. ∥d (t) ∥ < rd, ∥ḋ (t) ∥ < rḋ,
rd, rḋ > 0.

Assumption 3. The function h
(
x̃ (t) , u (t) , t

)
is continuously

differentiable locally Lipschitz.

Under the active disturbance rejection framework, the system
(45) can be reformulated as (46) [6,29], where dependence on
continuous time has been omitted without loss of generality.

ẋ1 = x2

ẋ2 = −
1
τ
x2 + b0u +

1
τ
x2 + g

(
x̃,h, x, ḣ

)
  

f
y = x1

(46)

Notice that, with the formulation (46), the non-linear uncer-
ain system (45) is transformed into a realisation of first-order
lus integrator equivalent to (19) and whose dynamics is de-
cribed only by the nominal value of the critical gain b0 and
he apparent time constant τ . This reformulation is the core of
he ADRC. The remaining unknown terms are lumped in the
otal perturbation f to be estimated and compensated for via
he extended state observer resulting in a disturbance-free linear
odified plant.

emark 1. The total perturbation is the conceptualisation of the
otal effect of multiple disturbances on the controlled variable,
hich combines the mismatch between the actual general non-

inear model and the assumed first-order plus integrator system,
esides the non-modelled or neglected dynamics lumped in the
unction g . The total perturbation is not necessarily a particular
oncrete disturbance. Moreover, under Assumptions 1 − 3, f is
ontinuously differentiable and bounded. A profound analysis of
he conceptualisation of the total perturbation which lead to
ormulation (46) is found in [6].

emark 2. The formulation of the control problem under the
DRC framework has been presented in the literature for different
ypes of non-linear systems (e.g. in [27,30]). From this approach,
he actual plant can be transformed into the assumed modified
lant proposed in this work extending the applicability of the
ontrol scheme from Fig. 3 to a variety of linear and non-linear
ncertain systems.
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The total perturbation is treated as a function of time (re-
gardless of its nature) reflected in the output. This is, the mea-
sured output contains sufficient information to estimate f [27].
s stated in Section 3.1, the estimation and rejection task is
ompleted through the discrete ESO (21) based on the discrete re-
lisation of (46), which is equivalent to the state–space (20) with
k as the discrete measurements of y and uk as the input com-
ining the control action computed by the modified predictive
ontroller and the compensation term.
Let ek = xk − x̂k be the discrete-time estimation error such

that (47) is obtained by subtracting (21) from (20) and after some
mathematical manipulation.

ek+1 = (Ao − ℓoCoAo) ek. (47)

Thus, the discrete ESO from the disturbance rejector is stable
if the gains vector ℓo is designed by assuring that matrix Ao −

ℓoCoAo, representing the observation error dynamics, has all its
eigenvalues inside the unit circle. This principle holds in gains
(23)–(25), which, for a given b0 and τ , depends only on the
sampling time and the observer bandwidth. For a detailed pre-
sentation of the Input-to-State stability properties of the discrete
ESO that establish the ultimate bounds for the estimation error,
the reader is referred to [12]. Notice that the ESO comprising
the proposed loop can be seen as a particular realisation of the
discrete generalised ESO addressed in [12] in which the matrices
are always defined by (22).

On the other hand, the asymptotic stability of the modified
predictive controller can be assured by including a terminal con-
straint in the optimisation problem (44), such that the predicted
outputs are forced to converge to the desired reference at the
end of the prediction horizon and to remain at this setpoint
for several desired additional instants. The use of a terminal
equality constraint is one of the ingredients that characterise the
type of predictive controllers that satisfy closed-loop asymptotic
stability, being particularly the most straightforward option if the
system to be controlled is linear, constrained and the problem of
tracking a constant reference is considered [31,32].

For the above, consider the vector of additional n future out-
puts over the prediction horizon p

ỹf =
[
yf ,p+1|k, yf ,p+2|k, . . . , yf ,p+n|k

]⊤
, (48)

which is recursively computed as

ỹf = P̃ x̂k + Ṽ Bu0,k−1  
ỹfree

+G̃∆u0, (49)

with P̃ ∈ Rn×2, Ṽ ∈ Rn×1, and G̃ ∈ Rn×c . Using this formulation,
(44) is additionally subject to the equality constraint

G∆u0 = ỹr − ỹf , (50)

where ỹr ∈ Rn×1 is a vector with all its components equal to the
desired reference value yr,p|k.

The approach in which a constraint in the form of (50) is
included in the MPC optimisation problem is usually referred to
in the literature as the Constrained Receding-Horizon Predictive
Control (CRHPC) [33], and if (50) holds, then yf ,p+i|k = yr,p|k
for i = 1, 2, . . . , n, bringing a monotonically convergent cost
and guaranteeing the closed-loop stability for finite horizons [34].
The number of additional n output predictions for which (50) is
imposed is directly related to the system order. Therefore, for the
modified predictive controller, n = 2 always as the prediction
model is a fixed second-order state space realisation resembling
the assumed modified plant of a first-order plus integrator and
imposing this constraint on the optimisation problem results in
the control horizon being selected according to c ≥ n = 2, setting
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a lower bound for the tuning of c in the proposed constrained
oop.

Notice that (44) can also include constraints on the rate of
hange of the manipulated variable, its magnitude, and the out-
ut. Imposing restrictions on predictive control can lead to fea-
ibility problems. The optimiser may not find a solution that
llows the system to be within the predefined conditions [22].
rom an engineering perspective, a common approach is to soften
he output constraints since they are often desired rather than
equired in contrast to the hard input constraints associated with
hysical limitations of the system, such as actuator ranges and
lew rates [1]. Therefore, to deal with infeasibility, the cost index
29) of the modified predictive controller is reformulated as (51),
here the last two terms penalise with the weight ε1 the slack
ariable ξ1 quantifying the violation of the output constraint, and

through the weight ε2 the slack variable ξ2 associated to the
quality constraint [35].

M =

p∑
i=1

∥yr,i|k − yf ,i|k∥2
γ +

c−1∑
i=0

∥∆u0,i|k∥
2
λ

+

p∑
i=1

∥ξ1,i|k∥
2
ε1

+

p+2∑
i=p+1

∥ξ2,i|k∥
2
ε2

(51)

With the introduction of the slack variables and the stability
onstraint, the optimisation problem (44) is transformed in (52),
here 0 and 1 are all-zeros and all-ones matrices of proper
imensions, respectively.

min∆u0,ξ1,ξ2

{
∥yr − yf∥2

Γ + ∥∆u0∥
2
Λ + pε1ξ 2

1 + 2ε2ξ 2
2

}
s.t.⎡⎢⎢⎢⎣

A∆u 0 0
Au 0 0
Ay −1 0
0 −1 0
0 0 1

⎤⎥⎥⎥⎦
[

∆u0
ξ1
ξ2

]
≤

⎡⎢⎢⎢⎣
b∆u
bu
by
0
∞

⎤⎥⎥⎥⎦ ;

[
G̃ 0 −1

] [
∆u0
ξ1
ξ2

]
= ỹr − ỹf

(52)

In summary, the general design of the proposed scheme of
ig. 3 involves the disturbance rejector (21)–(25) and the mod-
fied predictive controller (52) (cf. (37), (42), (43)) for the control
f linear or non-linear systems. It is claimed that the
roposal procures the active disturbance rejection, feasibility and
losed-loop nominal stability given the following conditions.

ondition 1. Given the nominal value of the critical gain b0
nd the apparent time constant τ , which resembles the desired
ynamics of a first-order with integrator plant, the observer
andwidth ωo > 0 and the sampling time Ts > 0 exist such
hat the observer gains (23)–(25) satisfy Ao − ℓoCoAo has all its
igenvalues inside the unit circle. Then, the estimation error is
ounded and tunable by ωo and Ts.

Condition 2. The weight γ of the prediction error and the weight
λ of the control action rate are set such that γ ≥ 0 and λ ≥ 0.

Condition 3. The number of instants for which the equality con-
straint is imposed is n = 2, given the fixed state–space realisation
of second-order assumed as the prediction model.

Condition 4. The control horizon satisfies the relation c ≥ n.

ondition 5. The prediction horizon satisfies the relation p ≥ c .

Condition 1 is related to the design of the disturbance rejector
o enforce the actual system to behave like the assumed modified
 e
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lant. Conditions 3 − 4 result from the CRHPC adaptation to
he proposed modified predictive controller and they follow the
ostulates and proofs given for Theorem 7 from [34].

emark 3. Formulation (52) seeks a feasible control action for the
odified plant, leading future outputs to stabilise at a computed

eference. It is emphasised that the proposed scheme is intended
or systems with no nominal model or input–output processes
here the output is the only controlled variable, in contrast to
he feedback state MPC based on the control of the complete state
ector.

emark 4. In the assumed prediction model, the first state coin-
ides with the output. Therefore, for the regulation problem (the
eference is set to zero), the modified predictive controller meets
he classical characterisation proposed by [36], which guarantees
tability with a terminal equality constraint and satisfies the
xioms postulated in [31]. In the case of setpoint tracking, the
ork of [34] also demonstrates that with constraint (50), the cost

ndex decreases monotonically with time.

emark 5. The avoidance of equality constraints has been dis-
ussed in the literature due to their possible effects on the opti-
al control problem. However, it is also stated that they are the
implest option in the regulation to a setpoint [32] and continue
o attract the researchers attention, for example, in the develop-
ent of data-driven MPC implementations [37]. Moreover, the
quality and inequality constraints in the proposed scheme are
andled through penalty functions for feasibility.

Finally, it is worth clarifying that the proposed control ar-
hitecture can be implemented using the formulations (44) or
52) for the modified predictive controller. Suppose (44) is the
ne selected. In that case, the design relies on adequately setting
he tuning parameters to obtain a closed-loop stable response
ccording to the desired performance, as is the standard approach
n the classical MPC and ADRC implementations. On the contrary,
he optimisation problem (52) addresses the stability and feasi-
ility challenges, which let the designer test a broader range of
ombinations of the predictive controller parameters, given that
he disturbance rejector adequately compensates for the total
erturbation.

. Validation examples for the modified active disturbance
ejection predictive control

In this section, the control architecture of Fig. 3, referred
o hereafter as Modified Active Disturbance Rejection Predictive
ontrol (MADRPC), is validated with different types of systems.
he modified predictive controller operates under the formu-
ation (52) in all cases. This is, the designs seek the desired
erformance while assuring feasibility and closed-loop stability.

emark 6. As shown in Fig. 3, the proposed control combines the
isturbance rejector mechanism of the ADRC with the receding
orizon strategy of the MPC. This integration is done mainly
y preserving the internal loop of the classical ADRC structure
hat includes the ESO together with the sum-gain configuration,
hrough which the real dynamics is enforced to behave like the
odified plant, and by redefining the optimisation problem con-
traints in the form of (37), (42), and (43) to directly incorporate
he compensation term ur,k. Consequently, with the proposed
ontrol strategy, the discrepancies between the real system and
he assumed plant and the external disturbances are actively
ompensated in the loop relaxing the predictive controller mod-

lling requirement to a second-order general integral system.
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Also, the inclusion of the compensation term in the constraints
definition aims at maintaining the controlled variable, manipu-
lated variable (control action acting on the real plant), and rate of
change of manipulated variable within the real constraints bands.
The name MADRPC is motivated by the these characteristics.

Remark 7. From a practical application perspective, the MADRPC
ffers advantages in the control of systems with no identified
odel because the only modelling required information is the
pproximation of the control gain b0 and the desired apparent

time constant τ . As a result, the future outputs (31) are ob-
tained with a fixed second-order state–space prediction model,
and the size of the optimisation problem (44) (or (52)) is only
dependent on the horizon lengths. Additionally, the control and
system constraints can be included, and the closed-loop stability
can be imposed through constraint (50). On the other hand,
the MADRPC design requires selecting the classical parameters
involved in the MPC design (prediction horizon, control horizon,
cost function weightings) besides the ESO bandwidth ω0 and the
modified plant parameters (b0, τ ). These parameters should be
appropriately selected for the trade-off among the performance
requirements.

4.1. A classical problem of motion control

As first example, the MADRPC is implemented to control a DC
motor. The design is described in detail, recalling the structures
of the proposed control architecture.

Regarding Fig. 3, consider:
System: It is desired to control the shaft angle of a DC motor

modelled as (53) [38] with parametric uncertainty for the static
gain K = 2.5 − 20(%), and for the apparent time constant
τ = 0.9 + 20(%) (s). The goal is to produce shaft movements
of about 15 (◦) with no overshoot in approximately two seconds
by manipulating the input voltage in the range |u| ≤ 24 (V)
nd allowing input changes of |∆u| ≤ 5 (V). A sampling time
f Ts = 0.05 (s) is chosen.

M (s) =
2.5

s (0.9s + 1)
(53)

Disturbance rejector: As the loop sampling frequency is ωs =

π/Ts = 40π (rad/s), an ESO bandwidth of ωo = 20 (rad/s) is
elected, following that the observer bandwidth should be five to
en times lower than the sampling frequency [39]. From (53), the
ominal static gain is K = 2.5 and the nominal apparent time
onstant is τ = 0.9. Therefore, b0 ≈ K/τ ≈ 2.8. As a remark,
pproximate values for τ and b0 can be deduced from the open
oop response because they represent natural characteristics of
he plant. Indeed, a retuning of b0 might be further needed [40].

Predictive controller: There are no specific rules for the com-
utation of the horizons or the weighting matrices associated
ith the optimisation problem. However, some general guide-

ines based on practical experience have been suggested in the
iterature. For example, in [41] it is reported that a proper starting
oint for prediction horizon is p = Tset/Ts, with Tset as the open-
oop settling time. In case of no self-regulatory plants, Tset could
e roughly approximated as five times the time constant. On the
ther hand, it is well known that weighting factors should be
elected according to the robustness or aggressiveness desired.
or example, for a fixed γ , small values for λ lead to faster
esponses but with possible overshoot. Conversely, if λ increases,
moother inputs are achieved. For the problem at hand, p = 40,
= 9, γ = 1, λ = 0.1, ε1 = ε2 = 105.
As shown in Fig. 4, the MADRPC drives the shaft angle to the

esired setpoints satisfying both the performance requirements
nd constraints. Furthermore, in the presence of model uncer-
ainty (K , τ ), the disturbance rejector succeeds in compensating
156
Table 1
Linear benchmark systems and its nominal values.
Benchmark system Parameters

GF (s) =
K

(s+1)(βs+1)(β2s+1)(β3s+1)
K = 1 β = 0.5

GR(s) =
1−βs

(τ s+1)3
β = 1 τ = 1

for the total perturbation allowing the MADRPC to produce an
output response very similar to that of the nominal case (K , τ ).
The same is not true if the system is controlled by a constrained
OF-MPC designed with the same parameters and full access to the
states; the closed-loop response deteriorates because overshoot
appears. A PID controller (KC = 1.6, TI = 1, TD = 0.9) tuned
with the SIMC rules [42] has been included in Fig. 4 as an
alternative comparative controller. The MADRPC outperforms the
PID in the presence of uncertainty while keeping the changes in
input within the desired limits.

The functioning of the disturbance rejector can be validated
through the step response of the modified plant [43]. This is, an
input step applied instead of the governing control input u0 in
Fig. 3 should produce the open-loop response of the modified
plant, which is expected to asymptotically change at a constant
rate following the step response of the assumed first-order plus
integrator system.

The above behaviour is presented in Fig. 5 for different values
of the ESO bandwidth. The estimation of the first state x̂1 of the
modified plant is plotted in Fig. 5(a) and its second state x̂2 is
illustrated in Fig. 5(b). Notice that x̂1 and x̂2 are the estimations
of the output and its rate of change. Consequently, x̂1 starts to
follow a quadratic growth and then exhibits a linear tendency
after approximately two times the time constant. This monotonic
response drives x̂2 to a steady-state equal to the desired static
gain.

On the other hand, the disturbance rejector accuracy is de-
pendent on the ESO bandwidth. For a low observer bandwidth,
for example, ωo = 5 (rad/s), there is a slight difference between
the desired first-order plus integrator response and the modified
plant output. However, as the bandwidth increases, the modified
plant responses tend to be indistinguishable. With the selected
ESO bandwidth ωo = 20 (rad/s), the MADRPC actively compen-
sates for the real system uncertainty and the closed-loop output
satisfies the desired performance.

Finally, Fig. 6 shows that the MADRPC satisfies the closed-
loop stability constraint imposed while controlling the uncertain
DC motor. Fig. 6(a) plots the sequences of p + n future outputs
computed at three different instants in the time window t ∈

[0, 4]. The predicted outputs settle at the desired setpoint of 15 (◦)
at the end of the prediction horizon of p = 40 instants and remain
unchanged for the imposed n = 2 consequent instants. Moreover,
the cost function exhibits a monotonic convergence to zero along
the said time window, as seen in Fig. 6(b).

4.2. Linear benchmark systems: high-order systems

The proposed MADRPC is now validated through the control
of two different linear examples resembling varied dynamics
of common interest in literature, which are considered bench-
mark systems [44]. These are a fourth-order system with its
pole spacing dependent on a parameter and a third-order plant
with a right-hand plane zero or non-minimum phase behaviour.
The case-study systems are listed in Table 1, together with the
nominal values adopted here.

For comparison purposes, the OF-MPC and LADRC algorithms
were also designed to control the aforementioned benchmark
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Fig. 4. Closed-loop response of the DC motor subject to PID-control, OF-MPC and MADRPC for different reference steps. Nominal system: K , τ ; System with uncertainty:
, τ . System constraints: |u| ≤ 24 (V), |∆u| ≤ 5 (V), yf ,p+i|k = yr,p|k, i ∈ [1, 2].
Fig. 5. Open-loop response of the modified plant of DC motor with uncertainty K , τ under variations in the ESO bandwidth compared to the desired modified plant
FOPI, first-order plus integrator). (a) Estimated output. (b) Estimated rate of output.
Fig. 6. Closed-loop stability validation of MADRPC when controlling the DC motor. (a). Equality constraint satisfaction yf ,p+i|k = yr,p|k, i ∈ [1, 2]. (b). Monotonic
onvergence of the cost function.
ystems. The OF-MPC, when no model mismatch exists, is con-
idered a performance reference scheme because a complete,
.e. full-state model was used for its design. Therefore, the first
alidation objective was to test the MADRPC capability to emulate
he OF-MPC performance with the advantage of a relaxation in
he modelling requirement because of the disturbance rejector.
n the other hand, it was expected that the MADRPC would out-
erform the conventional LADRC due to the modified prediction
ontrol law acting on the assumed modified plant.
157
As the MADRPC and LADRC algorithms use their correspond-
ing ESO configurations, a current-type Luenberger observer of
complete order was used to estimate the OF-MPC model states re-
quired for output predictions. To assign the same observer band-
width of the ESO from MADRPC, the OF-MPC observer poles si
were designed by solving the characteristic equation (54), which
is only dependent on the system order n and desired bandwidth
ω , and then mapped as z to the unit circle through (55) with
o i
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Fig. 7. Open-loop response of the modified plants GFm(s) and GRm(s) of the nominal linear benchmark systems from Table 1. (a) Estimated output. (b) Estimated rate
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Table 2
Control parameters for linear benchmark systems: p, prediction horizon; c ,
ontrol horizon; γ , weighting for error; λ, weighting for rate of input; b0 ,
nominal critical gain; τ , apparent time constant; ωo , ESO bandwidth; ωc ,
controller bandwidth.

GF (s) GR(s)

LADRC OF-MPC MADRPC LADRC OF-MPC MADRPC

p – 50 50 – 85 85
c – 10 5 – 20 20
γ – 0.2 1 – 0.08 0.001
λ – 1 0.1 – 1 5.5
b0 25.68 – 2.4 10.37 – 4.5
τ – – 1 – – 1.62
ωo 23.20 5 5 9.6 12 12
ωc 2.32 – – 0.96 – –

sampling time Ts.

s
ωo

)2n

= (−1)n+1 (54)

zi = exp (siTs) (55)

The remaining parameters of the OF-MPC and MADRPC were
selected as discussed in the previous example and according to
the guidelines from [41]. In the case of the LADRC, the tuning
rules from [45] were used to compute the main three design
variables under the premise that first-order plus dead time mod-
els properly approximate the benchmark systems from Table 1,
and thus, the parameters computed with the rules from [45]
offers a stable closed-loop response with a medium robustness
specification.

Table 2 gathers the design parameters for the three control
algorithms. These control parameters were tuned considering
that the main goal in servo operation, when possible, is to drive
the system to the desired setpoint with an overshoot OS ≤ 2 %
and a settling time t98% lower than the natural pace of the system
while constraints are satisfied. For this purpose, the control loops
were designed with sampling time Ts = 0.1 (s).

As mentioned in Section 4.1, the open-loop response of the
odified plant is an indicator of the ESO convergence and the
ADRPC disturbance rejector capability to enforce the real plant

o behave like the assumed dynamics. Therefore, a unit step
nput was applied to the modified plants corresponding to the
ominal linear benchmark systems from Table 1. As can be seen
n Fig. 7(a), the output of each modified plant resembles the
esired dynamics of a first-order plus integrator model with the
 i
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constant rate of change plotted in Fig. 7(b). The above shows
that the disturbance rejector compensates for the ignored high-
order dynamics; thus, the modified predictive controller can be
designed to govern the assumed process.

Two scenarios were considered for validation. In the first
one, the real plants to be controlled correspond to the nomi-
nal systems, and in the second one, the nominal parameters of
each benchmark process were varied to test the designed control
algorithms against uncertainty. Moreover, a step-type input dis-
turbance was added to the manipulated variable in both scenarios
at an instant when the output had reached the steady-state.

Quantification of performance was done through the indices
reported in Table 3. For servo operation, settling time t98% (s),
percentage of overshoot OS (or absolute value of undershoot |US|
in case of GR(s)), and total variation of control action TVs were
omputed. In contrast, the percentage of maximum deviation
D, ITAE, and total variation TVd were calculated in regulatory
peration.
The closed-loop responses of system GF (s) when controlled

y LADRC, OF-MPC, and MADRPC are presented in Fig. 8. The
ADRPC algorithm meets the required setpoint tracking per-

ormance and satisfy the constraints similarly to the OF-MPC.
owever, notice that in the first scenario, the OF-MPC has no
odel mismatch and complete state estimation. In contrast, the
ADRPC manages to control the process assuming a fixed state–
pace realisation computed based on the values of the nominal
ritical gain and the apparent time constant. The MADRPC over-
ome the non-modelled dynamics and drives the output to the
eference in a similar settling time to OF-MPC and with an over-
hoot within the desired band. Besides, the MADRPC reaches the
etpoint in half of the time than the conventional LADRC.
During the second scenario, where the model mismatch is

ntroduced, the OF-MPC holds the tracking performance at the
ost of an increase in the total variation of the input, which
s also reflected in the disturbance rejection response. Although
he maximum deviations from the reference produced by the
ADRPC are comparable with those produced for the OF-MPC,
bout 25%, the MADRPC returns the output to the steady state
n less time and with a smoother variation in the control signal
han the OF-MPC as reflected in the ITAE index. The disturbance
ejection capability of the MADRPC also outperforms that of the
ADRC.
On the other hand, Fig. 9 shows the closed-loop responses of

ystem GR(s). In this case, the non-minimum zero produces an
nverse response in the output. The OF-MPC leads the controlled
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Table 3
Performance indexes for the linear benchmark systems. The uncertainties a(b%)
and a(b%) indicate that the parameter a was increased or decreased by b % of
its nominal value, respectively.
Uncertainty Controller GF (s)

t98% (s) OS (%) TVs MD (%) ITAE TVd

none
LADRC 6.4 8.2 1.25 46.13 3.30 1.32
OF-MPC 3.2 0 0.91 27.86 0.68 1.70
MADRPC 2.9 0.8 1.04 26.64 0.68 2.82

β(20%)
LADRC 6.3 5.1 1.09 43.22 2.49 1.14
OF-MPC 3.4 0.5 2.35 25.24 0.74 4.20
MADRPC 2.9 1.2 0.90 24.02 0.49 2.11

GR(s)

Uncertainty Controller t98% (s) |US| TVs MD (%) ITAE TVd

none
LADRC 12.6 0.03 0.92 74.03 28.49 1.22
OF-MPC 5.3 0.16 2.08 48.54 3.61 6.25
MADRPC 7.7 0.05 1.23 69.95 13.43 1.71

β(20%)
τ (2%)

LADRC 12.1 0.05 0.92 78.89 28.58 1.30
OF-MPC 5.7 0.35 8.93 95.18 3.78 30.16
MADRPC 9.4 0.08 1.28 79.85 14.50 2.10

variable to the reference in a time that results lower than the
open-loop settling time of the process, even when there is a
model mismatch. The MADRPC satisfies the desired overshoot,
but the output is about 2 (s) slower than the response produced
by the OF-MPC, although the MADRPC loop settles 5 (s) faster
than LADRC in the nominal case.

The complete model information used within the OF-MPC aids
his algorithm in the disturbance rejection performance resulting
n lower deviations and ITAE indexes than those produced by
he MADRPC and LADRC schemes in the absence of uncertainty.
owever, the MADRPC and LADRC offer a higher level of ro-
ustness in contrast to OF-MPC, which, for the model mismatch
ntroduced, produces oscillations in the manipulated variable that
orsen the inverse response and deteriorate both the servo and
egulatory operation. The MADRPC offers better setpoint follow-
ng and disturbance rejection than conventional LADRC, with the
dvantage that all constraints are directly taken into account in
he computation of the control law.
159
4.3. Nonlinear benchmark system: The continuous stirred tank reac-
tor

The Continuous Stirred Tank Reactor (CSTR) is considered a
benchmark system in process control because it constitutes a vital
unit operation, particularly in the chemical industry. The CSTR is
often treated as a perfectly mixed module in which a first-order
exothermic irreversible reaction occurs. This is, a fluid stream
of reactant A is fed to the tank to be converted into product
B with the same concentration and temperature as the reactor
fluid [46]. As the reaction occurs, heat is generated and then must
be removed with the aid of a coolant flowing through a jacket
surrounding the reactor walls. According to the formulation of
the mass and energy balance equations, the concentration can be
controlled through the inlet flow rate. This scenario is analysed to
validate the proposed MADRPC algorithm in the following. Addi-
tionally, the closed-loop performance is compared to OF-MPC and
LADRC schemes.

A CSTR governed by the differential equations (56)–(57) [47]
is considered. In this configuration, the controlled variable is the
concentration of reactant A, CA, and the manipulated variable is
he coolant flow rate, q. The steady-state solution of the non-
inear equations for a specific value of q leads to the operating
oints of the system. For example, with a coolant flow rate q0 =

03 (L/min), the concentration and temperature of reactor are
orrespondingly, CAo = 0.09 (mol/L) and To = 438.77 (K), which
ndicates states of high conversion and high release of energy.
escription of variables and their corresponding nominal values
or this example are listed in Table 4.

˙A =
F
V

(CAF − CA) − k0CA exp
(

−E
RT

)
(56)

Ṫ =
F
V

(
Tf − T

)
−

∆Hk0CA

ρCp
exp

(
−E
RT

)
+ q

ρcCpc

ρCpV

[
1 − exp

(
−UA
qρCp

)]
(Tc − T ) (57)

The system is open-loop stable around the selected operating
oint, as shown in Fig. 10. However, the non-linear dynamics
ecome more evident as the coolant flow rate varies from its
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Fig. 9. Closed-loop response of GR(s) with LADRC, OF-MPC, and MADRPC. A step-type input disturbance is applied to the system at steady-state. System constraints:
|u| ≤ 5; |∆u| ≤ 1; y ≤ 2, yf ,p+i|k = yr,p|k, i ∈ [1, n].
Fig. 10. Open-loop evolution of the concentration in product A, CA , when the coolant flow rate q varies from its nominal value qo = 103 (L/min). The highly nonlinear
ehaviour becomes more evident as the concentration reaches values far from the operating point CAo = 0.09 (mol/L).
.
a
Table 4

Description of variables and nominal values for control of the CSTR concentration
Variable Description Nominal value

CAF Feed concentration 1 mol/L
V CSTR volume 100 L
k0 Reaction rate constant 7.2 × 1010 min−1

E/R Activation energy 1 × 104 K
∆H Heat of reaction −2 × 105 Cal/mol
ρ, ρc Liquid densities 1 × 103 g/L
Cp , Cpc Specific heats 1 Cal/gK
UA Heat transfer term 7 × 105 Cal/minK
F Feed flow rate 100 L/min
Tf Feed temperature 350 K
Tc Coolant temperature 350 K
qo Coolant flow rate at the operating point 103 L/min
To Reactor temperature at the operating point 438.77 K
CAo Reactor concentration at the operating point 0.09 mol/L

nominal value producing an underdamped-type response in the
reactor concentration. Therefore, the control goal is to drive the
system such that the reactant concentration CA follows the de-
ired setpoint with no overshoot, allowing the coolant flow rate
o operate in the range 80 ≤ q ≤ 115 with changes |∆q| ≤ 1.

The system was simulated with the three control algorithms:
F-MPC, the proposed MADRPC, and LADRC. For the OF-MPC
esign, (56)–(57) were linearised around the selected operating

oint (CAo = 0.09; To = 438.77; qo = 103) and discretised with
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sampling time Ts = 0.083 (min) [48]. The corresponding state–
space model is (58) with [x1, x2]⊤ = [CA, T ]

⊤, u = q, and y = CA.[
x1,k+1
x2,k+1

]
=

[
0.2248 −0.00342
133.3 1.501

][
x1,k
x2,k

]
+

[
1.3071 × 10−4

−0.0926

]
uk

yk =
[

1 0
] [

x1,k
x2,k

] (58)

As the sampling rate is ωs = 75.7 (rad/min), a current observer
with bandwidth ωo = 15 (rad/min) was designed to estimate
the states of (58). These estimated states are used within the OF-
MPC algorithm to predict the output along a prediction horizon
p = 29 with a control horizon c = 10 and weighting coefficients
γ = 2.22 and λ = 0.05. As in the previous validation exam-
ples, the OF-MPC algorithm was implemented with the operating
constraints, the equality constraint to assure stability and their
corresponding slack variables with weights ε1 = ε2 = 105.

On the other hand, the disturbance rejector of the MADRPC
was designed as follows: the values of the apparent time constant
τ and nominal critical gain b0 were deduced from the open-loop
response. As shown in Fig. 10, for input changes of 2 (min/L), the
reactant concentration varies approximately in 0.01 (mol/L) with
a mean settling time of 5 (min). Therefore, the modified plant

parameters were set as τ = 1 (min) and b0 = 0.03 (mol/minL).
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Fig. 11. Closed-loop response of the CSTR with LADRC, OF-MPC, and MADRPC. System constraints: 80 ≤ q ≤ 115; |∆q| ≤ 1; CAf ,p+i|k = CAr,p|k, i ∈ [1, 2].
5

d
a
c
M
d
i
b
m
v
o
r
s
f

e
p
M
B
t
t
c

t
s
c
t
o
t
t
v
r
r

t
f
c
i

he ESO bandwidth was chosen as ωo = 15 (rad/min), and the
odified predictive controller parameters were designed as p =

9, c = 15, γ = 10, λ = 0.001, and ε1 = ε2 = 105.
Finally, for the LADRC design, the same bandwidth ωo =

5 (rad/min) was selected for the ESO, the controller bandwidth
as set as ωc = 10 (rad/min), and the nominal value of control
ain had to be tuned to b0 = 3 (mol/minL) for the system to be
losed-loop stable.
The closed-loop response of the CSTR is presented in Fig. 11.
multi-step reference was applied to the system to test the

ynamic behaviour when the concentration CA is required to
ncrease or decrease from its nominal value. What is more, un-
ertainty was included in the process at t = 125 (min), reducing
he concentration feed and increasing the reaction rate constant
y 2% of its corresponding nominal values, and at t = 270 (min)
hen the coolant temperature was increased from 350 (K) to
52 (K).
According to the performance indices from Table 5, the

ADRPC follows the desired setpoints with no overshoot and a
ettling time inferior to 3 (min) when the reference values are
ver the nominal concentration. The loop becomes slower for
etpoints under CAo, but the MADRPC algorithm is still the fastest.
Notice that the OF-MPC and LADRC produce an oscillating

ehaviour (referred to as Osc. in Table 5) when the reference is
ncreased from 0.12 to 0.135, as seen in the inset of the concen-
ration from Fig. 11. Although the OF-MPC manages to settle the
utput in the desired value, the detriment in the response is also
resent at the beginning of the next transient when CA decreases
o 0.125 causing that the system reaches the steady state with
vershoot. The above exhibits the dependence of the OF-MPC on
n accurate model, especially in the operating regions where the
on-linear behaviour is more prominent, and the limitations of
he LADRC to overcome such difficult dynamics.

With the selected tuning parameters, the MADRPC algorithm
s also superior in terms of disturbance rejection. For example,
he inset from Fig. 11 also shows the response of the three
lgorithms to the first alteration in the operating conditions at
= 125 (min). The MADRPC returns the concentration to the

eference level producing the lowest deviation and the fastest
esponse, as evidenced by the ITAE index. This rapid disturbance
ejection increases the total variation of the coolant flow rate.
owever, the algorithm computes control actions that satisfy the
iven operation constraints.
 t
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. Conclusions

In this paper, the Modified Active Disturbance Rejection Pre-
ictive Control (MADRPC) has been developed. The MADRPC is
discrete-time algorithm that merges the estimation–rejection
apability of the ADRC with the receding horizon feature of the
PC. A current-type ESO is designed such that the real plant
ynamics is enforced into a modified plant of first-order plus
ntegrator. As a result, a predictive control law is computed
ased on a state-space realisation of second order with only two
odel parameters: the apparent time constant and the nominal
alue of control gain. Likewise, the control law results from an
ptimisation problem where constraints on decision variables are
edefined to include the contribution of the perturbation compen-
ation term to the manipulated variable, and the conditions for
easibility and nominal closed-loop stability has been established.

One significant advantage of the MADRPC is that the mod-
lling requirement is relaxed because only information of two
arameters is required, in contrast to conventional state–space
PC, which is highly dependent on a properly-identified model.
y assuming a first-order plus integrator as the modified plant,
he prediction model order is fixed. Therefore, the size of the op-
imisation problem related to the computation of the predictive
ontrol law exclusively depends on the horizons lengths.
Based on the validation results obtained, it can be concluded

hat the disturbance rejector of the MADRPC actively compen-
ates for the total perturbation. Therefore, with the proposed
ontrol scheme is possible to achieve similar performance to
hat obtained with the MPC that uses a known linearised model
f complete-order, a correction term, and constant state dis-
urbance predictions to provide offset-free control. Furthermore,
he MADRPC showed to be more robust than OF-MPC and con-
entional LADRC when it was used to operate a CSTR unit in
egions of prominent non-linear dynamics offering proper servo-
egulatory performance while satisfying constraints.

The MADRPC parameters selection was briefly discussed in
his paper and the general guidelines presented were sufficient
or the tuning of the reported case studies. Still, future work
an be directed towards the MADRPC parameter tuning taking
nto account the trade-off between different performance objec-

ives. Another research line goes with the direct extension of the
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Table 5
Performance indexes for control of CSTR concentration.
Setpoint Settling time (min) Overshoot (%) Total variation

LADRC OF-MPC MADRPC LADRC OF-MPC MADRPC LADRC OF-MPC MADRPC

0.09 to 0.11 12.53 3.24 2.74 0 0 0 3.93 2.80 2.87
0.11 to 0.12 11.29 3.15 2.66 0 1.18 0 3.23 2.22 2.60
0.12 to 0.135 Osc. 13.20 2.57 Osc. 16.10 0 Osc. 5.41 4.08
0.135 to 0.125 12.45 5.81 2.66 0.53 11.62 0 2.86 2.14 3.23
0.125 to 0.11 11.45 3.07 2.74 0 0.13 0 4.71 3.11 4.48
0.11 to 0.08 16.27 3.90 3.07 0 0 0 11.92 8.84 8.97
0.08 to 0.05 25.23 5.98 3.65 0 0 0 16.70 13.75 13.75

Time (min) Max. deviation (%) ITAE Total variation

125 to 150 22.24 12.81 5.40 0.18 0.03 0.01 5.96 7.35 9.33
270 to 300 9.69 6.78 2.86 0.11 0.01 0.003 2.47 2.48 4.04
/

MADRPC to MIMO systems. In this case, each manipulated chan-
nel could be treated as the first order plus integrator modified
plant fixing the assumed dynamics for each channel.
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