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Abstract

Motivated by Gopal and Vetro, we introduce a symmetric pair of β-
admissible mappings and obtain common fixed point theorems for such
a pair in complete and weak G-complete fuzzy metric spaces. In par-
ticular, we rectify, generalize and improve the common fixed point the-
orem obtained by Turkoglu and Sangurlu for two fuzzy ψ-contractive
mappings. We include non-trivial examples to exhibit the generality
and demonstrate our results.
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1. Introduction

Finding an appropriate analogue for metric spaces in fuzzy setting was a
long standing problem. In 1975, motivated by the idea of Menger spaces [11],
Kramosil and Michalek [10] gave a solution to this problem and introduced
fuzzy metric spaces. Grabiec [5], in 1988, defined Cauchy sequences in such
spaces. However, while modifying the definition of fuzzy metric, George and
Veeramani [3] strengthened Grabiec’s definition of Cauchy sequences which is
now widely accepted as standard for fuzzy metric spaces.

In fact, Grabiec’s original definition of Cauchy sequence (now known as G-
Cauchy sequence [7]) was so weak that even a compact fuzzy metric space fails
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to be complete (now known as G-complete [7]) in the Grabiec’s sense. Due to
this drawback, in [7], Gregori et. al. introduced a new form of completeness. It
is called weak G-completeness for fuzzy metric spaces. Weak G-completeness
has been further studied in [1] and [2]. In this paper, we establish certain fixed
point theorems in weak G-complete fuzzy metric spaces.

It is known that, alike metric spaces, fixed point theory is a rich subfield
of fuzzy metric spaces where contractive and contractive-type mappings play
important roles for obtaining fixed points theorems. The first fuzzy version
of Banach Contraction Principle was established in 1988 by Grabiec for G-
complete fuzzy metric spaces [5]. In 2002, Gregori and Sapena introduced fuzzy
contractive mappings and obtained several fixed point theorems for complete
fuzzy metric spaces [8]. Mihet enlarged this class of contractive mappings
and introduced the notion of fuzzy ψ-contractive mappings. This new class of
mappings was utilized to establish a new version of fuzzy Banach contraction
theorem for complete non-Archimedean fuzzy metric spaces [12] which was
further generalized for weak G-complete fuzzy metric spaces [7].

The above class of contractive mappings, introduced by Mihet, has been
extensively used to obtain fixed point theorems in fuzzy metric spaces. In
2014, Turkoglu and Sangurlu obtained a common fixed point theorem for a
pair of fuzzy ψ-contractive mappings in G-complete fuzzy metric spaces [15].

In this paper, motivated by the work of Gopal and Vetro [4], we introduce a
symmetric pair of β-admissible mappings and a pair of β-ψ-fuzzy contractive
mappings. These new families are utilized here to establish common fixed point
theorems in complete and weak G-complete fuzzy metric spaces, both in the
senses of [3] and [10]. In particular, we rectify the fixed point theorem obtained
by Turkoglu et. al. [15] and substantially generalize and improve it. Our theory
is supported and illustrated by appropriate examples.

2. Preliminaries

In this section, we recall some basic definitions and facts which are referred
subsequently.

Definition 2.1 ([14]). A mapping ∗ : [0, 1] × [0, 1] → [0, 1] is called a contin-
uous t-norm if (i) ∗ is associative and commutative, (ii) ∗ is continuous, (iii)
a∗1 = a, ∀ a ∈ [0, 1], and (iv) for a, b, c, d ∈ [0, 1], a ≤ c, b ≤ d =⇒ a∗b ≤ c∗d.

It is easy to note that, the followings are examples of continuous t-norms:
(i) a ∗ b = min(a, b), and
(ii) a ∗ b = ab
for any a, b ∈ [0, 1].

Definition 2.2 (Kramosil and Michalek [10]). Given a nonempty set X, a con-
tinuous t-norm ∗ and a mapping M : X×X× [0,∞)→ [0, 1], the ordered triple
(X,M, ∗) is called a KM fuzzy metric space if, for all x, y, z ∈ X and s, t > 0,
the following conditions hold:

a) M(x, y, 0) = 0,
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b) M(x, y, t) = 1, ∀ t > 0 ⇐⇒ x = y,
c) M(x, y, t) = M(y, x, t),
d) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
e) M(x, y, .) : [0,∞)→ [0, 1] is left continuous.

Definition 2.3 (George and Veeramani [3]). Given a nonempty set X, a con-
tinuous t-norm ∗ and a mapping M : X×X×(0,∞)→ [0, 1], the ordered triple
(X,M, ∗) is called a GV fuzzy metric space if, for all x, y, z ∈ X and s, t > 0,
the following conditions hold:

a) M(x, y, t) > 0,
b) M(x, y, t) = 1 ⇐⇒ x = y,
c) M(x, y, t) = M(y, x, t),
d) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
e) M(x, y, .) : (0,∞)→ [0, 1] is continuous.
Unless otherwise specified, by a fuzzy metric space we refer to the GV fuzzy

metric space.

Definition 2.4 ([9]). A (KM) fuzzy metric space (X,M, ∗) is said to be non-
Archimedean if M(x, y, t) ∗M(y, z, s) ≤ M(x, z,max{t, s}), for all x, y, z ∈ X
and s, t > 0.

Lemma 2.5 ([3], [5]). Given a (KM) fuzzy metric space (X,M, ∗), M(x, y, ·)
defines a nondecreasing map, ∀ x, y ∈ X.

Let (X,M, ∗) be a (KM) fuzzy metric space. It is well-known ([3], [7]) that,
{B(x, r, t) : x ∈ X, r ∈ (0, 1), t > 0} forms a base for some topology τM on X,
where B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}, ∀ x ∈ X, r ∈ (0, 1), t > 0. The
topological behaviour of (X,M, ∗) is defined with respect to the topology τM .
In particular, given two (KM) fuzzy metric spaces (X,M, ∗) and (Y,N, ?), a
mapping f : X → Y is called continuous if f is continuous as a mapping from
(X, τM ) to (Y, τN ).

Similarly, sequential convergence is defined as follows: A sequence (xn) in
a (KM) fuzzy metric space (X,M, ∗) is said to be convergent to some x ∈ X
(resp. clusters), if it does so in (X, τM ).

It is easy to note that, if f is a continuous mapping from a (KM) fuzzy
metric space (X,M, ∗) to a (KM) fuzzy metric space (Y,N, ?), and (xn) is a
sequence in X converging to x ∈ X, then f(xn)→ f(x) as n→∞.

The following is an easy consequence that has been shown in [3] for GV
fuzzy metric spaces. The case for KM fuzzy metric spaces is similar as stated
next.

Theorem 2.6. A sequence (xn) in a (KM) fuzzy metric space (X,M, ∗) con-
verges to x ∈ X if and only if lim

n→∞
M(xn, x, t) = 1, ∀ t > 0.

Definition 2.7 ([3], [13]). Let (X,M, ∗) be a (KM) fuzzy metric space. A
sequence (xn) in X is called Cauchy if for ε ∈ (0, 1), t > 0, there exists k ∈ N
such that M(xm, xn, t) > 1− ε, ∀ m,n ≥ k. Clearly every convergent sequence
in (X,M, ∗) is Cauchy. (X,M, ∗) is complete if every Cauchy sequence in it
converges.
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Definition 2.8 ([5], [7]). Let (X,M, ∗) be a (KM) fuzzy metric space. A
sequence (xn) in X is called G-Cauchy if lim

n→∞
M(xn, xn+1, t) = 1, ∀ t > 0. If,

in (X,M, ∗), every G-Cauchy sequence converges, then (X,M, ∗) is said to be
G-complete.

Though G-completeness necessarily imply completeness in (KM) fuzzy met-
ric spaces, a compact (KM) fuzzy metric space may not be G-complete. To
overcome this drawback, the following weaker version of completeness has been
introduced in [7] .

A (KM) fuzzy metric space in which every G-Cauchy sequence clusters is
called a weak G-complete (KM) fuzzy metric space.

We finish this section by recalling the definitions of β-ψ-fuzzy contractive
mapping and β-admissible mapping introduced by Gopal and Vetro in [4].

Following [12], we denote by Ψ the family of all mappings ψ : [0, 1]→ [0, 1]
such that,

(i) ψ is non-decreasing and continuous,
(ii) ψ(t) > t, ∀ t ∈ (0, 1).
It is easy to check that ψ(1) = 1 and lim

n→∞
ψn(r) = 1, ∀ ψ ∈ Ψ, r ∈ (0, 1)

(e.g. consult [16]).

Definition 2.9. Let (X,M, ∗) be a (KM) fuzzy metric space and f be a self-
mapping on X. For some ψ ∈ Ψ, and a mapping β : X2 × (0,∞)→ (0,∞), f
is called a β-ψ-fuzzy contractive mapping if ∀ x, y ∈ X with x 6= y and t > 0,

M(x, y, t) > 0 =⇒ β(x, y, t)M(fx, fy, t) ≥ ψ(M(x, y, t)).

Definition 2.10. Let (X,M, ∗) be a (KM) fuzzy metric space and f be a
self-mapping on X. For a mapping β : X2 × (0,∞) → (0,∞), f is called
β-admissible if ∀ x, y ∈ X, t > 0,

β(x, y, t) ≤ 1 =⇒ β(fx, fy, t) ≤ 1.

3. Main Results

We begin this section by introducing a pair of β-ψ-fuzzy contractive map-
pings and a symmetric pair of β-admissible mappings that extend respectively
the class of β-ψ-fuzzy contractive mappings and β-admissible mappings in a
(KM) fuzzy metric space.

Definition 3.1 ([12], [16]). Let (X,M, ∗) be a (KM) fuzzy metric space and
ψ ∈ Ψ.

a) A mapping f : X → X is called fuzzy ψ-contractive if ∀ x, y ∈ X, t > 0,

M(x, y, t) > 0 =⇒ M(fx, fy, t) ≥ ψ(M(x, y, t)).

b) Given a pair of mappings f, g : X → X, (f, g) is called a pair of fuzzy
ψ-contractive mappings if ∀ x, y ∈ X, t > 0,

M(x, y, t) > 0 =⇒ M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}).
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Definition 3.2. Let (X,M, ∗) be a (KM) fuzzy metric space and f, g be self-
mappings on X.

a) For a mapping β : X2 × (0,∞) → (0,∞), the pair (f, g) is called a
symmetric pair of β-admissible mappings if ∀ x, y ∈ X, t > 0,

β(x, y, t) ≤ 1 =⇒ max{β(fx, gy, t), β(gy, fx, t), β(gx, fy, t), β(fy, gx, t)} ≤ 1.

b) For some ψ ∈ Ψ, and a mapping β : X2 × (0,∞) → (0,∞), the pair
(f, g) is called a pair of β-ψ-fuzzy contractive mappings if ∀ x, y ∈ X, t > 0,
M(x, y, t) > 0 =⇒

β(x, y, t)M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}).

We note that if β(x, y, t) ≡ 1, then a pair of β-ψ-fuzzy contractive mappings
is a pair of fuzzy ψ-contractive mappings.

The subsequent discussion explores common fixed point theorems for sym-
metric pairs of β-admissible mappings on weak G-complete (KM) fuzzy metric
spaces. Hereafter, (X,M, ∗) denotes a weak G-complete (KM) fuzzy metric
space, with f and g as self-mappings on X, ψ as a member of Ψ, and β as a
mapping from X2 × (0,∞) to (0,∞) such that (f, g) forms a symmetric pair
of β-admissible mappings, unless specified otherwise.

Theorem 3.3. Let f, g be continuous mappings such that
(i) M(x, fx, t), M(x, gx, t) > 0, ∀ x ∈ X, t > 0,
(ii) (f, g) is a pair of β-ψ-fuzzy contractive mappings,
(iii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 and M(x0, fx0, t) > 0, ∀ t > 0.
Then f and g have a common fixed point in X.
Moreover, if β(x, y, t) ≤ 1, ∀ x, y ∈ X, t > 0 and for x, y (x 6= y) ∈ X,

M(x, y, t) > 0, ∀ t > 0, then the fixed point is unique.

Proof. Define a sequence (xn) as follows: x1 = fx0, x2 = gx1, · · · , x2n+1 =
fx2n, x2n+2 = gx2n+1, · · · .

We have β(x0, x1, t) = β(x0, fx0, t) ≤ 1, ∀ t > 0. Since β(xn−1, xn, t) ≤
1 =⇒ β(xn, xn+1, t) ≤ max{β(fxn−1, gxn, t), β(gxn−1, fxn, t)} ≤ 1, ∀ n ∈
N, t > 0, so by applying induction, we obtain β(xn, xn+1, t) ≤ 1, ∀ n =
0, 1, 2, · · · and t > 0.

Consequently, β(xn+1, xn, t) ≤ 1, ∀ n ∈ N, t > 0.
Let n be a positive integer.
If n is odd, then for chosen t > 0,

M(xn−1, xn, t) > 0 =⇒ M(xn, xn+1, t) = M(fxn−1, gxn, t)
≥ β(xn−1, xn, t)M(fxn−1, gxn, t)
≥ ψ(min{M(xn−1, xn, t),M(xn−1, fxn−1, t),M(xn, gxn, t)})
= ψ(M(xn−1, xn, t)) > 0.

Again if n is even, then for chosen t > 0,
M(xn−1, xn, t) > 0 =⇒ M(xn, xn+1, t) = M(gxn−1, fxn, t)
= M(fxn, gxn−1, t)
≥ β(xn, xn−1, t)M(fxn, gxn−1, t)
≥ ψ(min{M(xn, xn−1, t),M(xn, fxn, t),M(xn−1, gxn−1, t)})
= ψ(M(xn−1, xn, t)) > 0.
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Thus, by using induction, we have M(xn, xn+1, t) ≥ ψ(M(xn−1, xn, t)),
∀ n ∈ N, t > 0 and hence, M(xn, xn+1, t) ≥ ψn(M(x0, x1, t)), ∀ n ∈ N, t > 0.

Thus lim
n→∞

M(xn, xn+1, t) = 1, ∀ t > 0. Hence (xn) is a G-Cauchy sequence

in X.
Since (X,M, ∗) is weak G-complete, (xn) has a cluster point x in X.
So there exists a subsequence (xrn) of (xn) such that (xrn) converges to x

where rn’s are either all even or all odd.
Without loss of generality, suppose all the rn’s are even. Then ∀ n ∈ N, t > 0,

M(x, fx, t) ≥M
(
x, xrn ,

t
3

)
∗M

(
xrn , xrn+1,

t
3

)
∗M

(
xrn+1, fx,

t
3

)
= M

(
x, xrn ,

t
3

)
∗M

(
xrn , xrn+1,

t
3

)
∗M

(
fxrn , fx,

t
3

)
.

Taking limit as n → ∞, we have M(x, fx, t) = 1, ∀ t > 0, since f is
continuous and (xn) is G-Cauchy. Hence fx = x.

Again, since ∀ t > 0, M(xrn−1, x, t) ≥ M
(
xrn−1, xrn ,

t
2

)
∗M

(
xrn , x,

t
2

)
→

1 ∗ 1 = 1 as n → ∞, so ∀ t > 0, M(xrn−1, x, t) → 1 as n → ∞, and conse-
quently, ∀ t > 0, M(x, gx, t) ≥M

(
x, xrn ,

t
2

)
∗M

(
xrn , gx,

t
2

)
= M

(
x, xrn ,

t
2

)
∗

M
(
gxrn−1, gx,

t
2

)
→ 1 ∗ 1 = 1 as n→∞, since g is continuous.

Thus M(x, gx, t) = 1, ∀ t > 0, and hence gx = x.
Again, if all the rn’s are odd, it can be similarly shown that fx = gx = x.
Thus, in general, x is a common fixed point of both f and g.
Let us now assume, in addition to condition (i) and (ii), that β(x, y, t) ≤

1, ∀ x, y ∈ X, t > 0 and for x, y (x 6= y) ∈ X, M(x, y, t) > 0, ∀ t > 0.
If possible, let x, y be two common fixed points of f and g such that x 6= y.

Then there exists t0 > 0 such that 0 < M(x, y, t0) < 1.
Now M(x, y, t0)

≥ β(x, y, t0)M(fx, gy, t0)
≥ ψ(min{M(x, y, t0),M(x, fx, t0),M(y, gy, t0)})
= ψ(M(x, y, t0))
> M(x, y, t0), a contradiction.

Hence the common fixed point is unique. �

By putting β ≡ 1 in Theorem 3.3, we obtain the following:

Corollary 3.4. Let f, g be continuous mappings withM(x, fx, t), M(x, gx, t) >
0, ∀ x ∈ X, t > 0. Suppose for some x0 ∈ X, M(x0, fx0, t) > 0, ∀ t > 0 and
M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}), ∀ x, y ∈ X, t > 0.
Then f and g have a common fixed point in X.

Moreover, if for x, y (x 6= y) ∈ X, M(x, y, t) > 0, ∀ t > 0, then the fixed
point is unique.

The last corollary shows that in the following common fixed point result
obtained by Turkoglu and Sangurlu, we do not require to specify the continuous
t-norm ∗ or assume f, g to be fuzzy ψ-contractive mappings.

Theorem 3.5 ([15], Common fixed point theorem by Turkoglu and Sangurlu).
Let (X,M, ∗) be a G-complete KM fuzzy metric space such that a∗b = min{a, b}.
Let there be a x0 ∈ X such that M(x0, fx0, t) > 0, ∀ t > 0. If f and g are
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continuous self-mappings on X satisfying M(x, fx, t),M(x, gx, t) > 0, ∀ x ∈
X, t > 0 such that

(i) f, g are fuzzy ψ-contractive mappings,
(ii) M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}), ∀ x, y ∈ X,

t > 0,
then f and g have a common fixed point in X.

Note 3.6. It should be noted, in [15], Turkoglu et. al. included the following
additional condition in the hypothesis:

(xn) is a sequence in X such that x1 = fx0, x2 = gx1, · · · , x2n+1 = f(x2n),
x2n+2 = g(x2n+1), · · · .

However, noting that such sequence always exists, we remove it from the
statement of Theorem 3.5.

Moreover, we have included the additional condition:
M(x, fx, t),M(x, gx, t) > 0, ∀ x ∈ X, t > 0
in the hypothesis of Theorem 3.5 noting that it is essential even for the proof

provided by Turkoglu et. al. [15].

Note 3.7. In [15], Turkoglu et. al. concluded that under the hypothesis of
Theorem 3.5, f and g have a unique common fixed point. However, this is not
true as is exhibited next.

Consider the KM fuzzy metric space (X,M, ∗), where X = [0, 1], a ∗ b =
min{a, b}, ∀ a, b ∈ [0, 1], and for x, y ∈ X,

M(x, y, t) =


0 if x 6= y, t ≥ 0

0 if x = y, t = 0

1 if x = y, t > 0

Then X is a G-complete KM fuzzy metric space.
Then by setting ψ(t) =

√
t, ∀ t ∈ [0, 1], for f, g : X → X given by f(x) =

g(x) = x, ∀ x ∈ X the hypothesis of Theorem 3.5 gets satisfied. However every
point of X is a common fixed point of f and g and hence the common fixed
point is not unique.

In what follows, we exhibit the applicability of our theorems, namely, The-
orem 3.3 over Theorem 3.5 (due to [15]) in the following aspects:

(a) Theorem 3.3 is applicable even for a weak G-complete (KM) fuzzy metric
space (X,M, ∗) which is not G-complete;

(b) Theorem 3.3 is applicable also for β 6≡ 1;
(c) Theorem 3.3 is applicable even when a ∗ b is not defined as min{a, b}.

Example 3.8. Consider the fuzzy metric space (X,M, ·), whereX =
{

1
2n : n ≥ 2

}⋃[
1
2 , 1
]
, M(x, y, t) = min{x,y}

max{x,y} , ∀ x, y ∈ X, t > 0 and · is the usual product of

reals. It is known that (X,M, ·) is a weak G-complete fuzzy metric space which
is not G-complete [7]. Further, τM defines the usual topology of R restricted
to the set X [6].
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Let f, g be two self-mappings on X such that fx = x, gx = 1, ∀ x ∈ X.
Then f, g are continuous on X.

Now by setting β : X2 × (0,∞)→ (0,∞) as

β(x, y, t) =


1
x if x ≤ y

1+x
2x if y < x < 1

2 if y < x = 1

for all x, y ∈ X, t > 0, we see that (f, g) defines a symmetric pair of β-admissible
mappings and ∀ t > 0, β(x0, fx0, t) ≤ 1,M(x0, fx0, t) > 0 hold for x0 = 1.

Let ψ : [0, 1]→ [0, 1] be defined by ψ(x) = 1+x
2 , ∀ x ∈ [0, 1]. Clearly, ψ ∈ Ψ.

We now show that, (f, g) is a pair of β-ψ-fuzzy contractive mappings.
Choose x, y ∈ X and t > 0.
Case I: x ≤ y. Then β(x, y, t)M(fx, gy, t) = 1

x ×M(x, 1, t) = 1
≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}).

Case II: y < x < 1. Then β(x, y, t)M(fx, gy, t) = 1+x
2 and

ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}) = ψ(min{ yx , 1, y}) = ψ(y) =
1+y

2 .
Since x > y, we obtain
β(x, y, t)M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}).
Case III: y < x = 1. Then β(x, y, t)M(fx, gy, t) = 2×M(x, 1, t) ≥ ψ(min{M(x, y, t),

M(x, fx, t),M(y, gy, t)}).
Thus, in view of Theorem 3.3, f, g have a common fixed point.

In what follows we show that, in Theorem 3.3, the last condition is essential
to ensure the uniqueness of the common fixed point.

Example 3.9. Consider the fuzzy metric space (X,M, ·) of Example 3.8. Let
f, g be self-mappings on X such that

fx = gx =


1
4 if x = 1

4

1 otherwise
.

Clearly, f, g are continuous on X.
If β : X2 × (0,∞)→ (0,∞) is defined by

β(x, y, t) =

1 if x = y = 1

4 otherwise

then (f, g) is a pair of β-ψ-fuzzy contractive mappings, ∀ ψ ∈ Ψ.
It is easy to see that conditions (i) and (ii) of Theorem 3.3 hold immediately.
So, in view of Theorem 3.3, f, g have a common fixed point.
However the fixed point is not unique. Indeed x = 1 and x = 1

4 are two such
points.
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Theorem 3.10. Let f, g be continuous mappings such that
(i) M(x, fx, t), M(x, gx, t) > 0, ∀ x ∈ X, t > 0,
(ii) for some ψ1, ψ2, ψ3 ∈ Ψ, M(x, y, t) > 0 =⇒
β(x, y, t)M(fx, gy, t) ≥ ψ1(M(x, y, t)) + ψ2(M(x, fx, t)) + ψ3(M(y, gy, t)),

∀ x, y ∈ X, t > 0,
(iii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 and M(x0, fx0, t) > 0, ∀ t > 0.
Then f and g have a common fixed point in X.

Proof. Set ψ = min{ψ1, ψ2, ψ3}. Then it is easy to see that ψ ∈ Ψ.
Further ∀ x, y ∈ X, t > 0,
M(x, y, t) > 0 =⇒ β(x, y, t)M(fx, gy, t)

≥ ψ1(M(x, y, t)) + ψ2(M(x, fx, t)) + ψ3(M(y, gy, t))
≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}).

Thus the conclusion follows from Theorem 3.3. �

Corollary 3.11. Let f, g be continuous mappings such that
(i) M(x, fx, t), M(x, gx, t) > 0, ∀ x ∈ X, t > 0,
(ii) for some a, b, c > 1, M(x, y, t) > 0 =⇒

β(x, y, t)M(fx, gy, t) ≥ aM(x, y, t) + bM(x, fx, t) + cM(y, gy, t),

∀ x, y ∈ X, t > 0,
(iii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 and M(x0, fx0, t) > 0, ∀ t > 0.
Then f and g have a common fixed point in X.

Proof. Immediate from Theorem 3.10 by setting

ψ1(x) = min{ax,
√
x},

ψ2(x) = min{bx,
√
x},

ψ3(x) = min{cx,
√
x},

∀ x ∈ [0, 1]. �

In the next theorem, we omit the continuity hypothesis of f, g in Theorem
3.3 for fuzzy metric spaces defined by George and Veeramani [3].

Theorem 3.12. Let (X,M, ∗) be a non-Archimedean weak G-complete fuzzy
metric space and (f, g), a pair of β-ψ-fuzzy contractive mappings such that

(i) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 ∀ t > 0,
(ii) for each sequence (xn) in X with β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0 and

a subsequence (xrn) of (xn) with lim
n→∞

xrn = x, we have β(xrn , x, t) ≤ 1, ∀ n ∈
N, t > 0.

Then f and g have a common fixed point in X.

Proof. Proceeding as in Theorem 3.3, we obtain the G-Cauchy sequence (xn)
in X given by x1 = fx0, x2 = gx1, · · · , x2n+1 = fx2n, x2n+2 = gx2n+1, · · · such
that β(xn, xn+1, t) ≤ 1, ∀ n = 0, 1, 2, · · · and t > 0.

Since (X,M, ∗) is weak G-complete, there exists a subsequence (xrn) of (xn)
such that (xrn) converges to some x ∈ X where rn’s are either all even or all
odd.
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Without loss of generality, suppose all the rn’s are even.
If possible, let gx 6= x. Then 0 < M(x, gx, t0) < 1, for some t0 > 0.
Since X is non-Archimedean, ∀ n ∈ N we have
M(x, gx, t0) ≥M(x, xrn+1, t0) ∗M(xrn+1, gx, t0)

= M(x, xrn+1, t0) ∗M(fxrn , gx, t0)
≥M(x, xrn+1, t0) ∗ (β(xrn , x, t0)M(fxrn , gx, t0))(by (iii))
≥M(x, xrn+1, t0) ∗ ψ(min{M(xrn , x, t0),M(xrn , fxrn , t0),M(x, gx, t0)})
≥M(x, xrn , t0)∗M(xrn , xrn+1, t0)∗ψ(min{M(xrn , x, t0),M(xrn , xrn+1, t0),M(x, gx, t0)})
→ 1 ∗ 1 ∗ ψ(M(x, gx, t0)) = ψ(M(x, gx, t0)) as n → ∞, since ∗ is continuous
and (xn) is G-Cauchy.

Thus M(x, gx, t0) ≥ ψ(M(x, gx, t0)) > M(x, gx, t0), a contradiction.
Consequently gx = x.
Again if fx 6= x, 0 < M(x, fx, t1) < 1, for some t1 > 0.
Since X is non-Archimedean, ∀ n ∈ N we have
M(x, fx, t1) ≥M(x, xrn+2, t1) ∗M(xrn+2, fx, t1)

= M(x, xrn+2, t1) ∗M(fx, gxrn+1, t1)
≥M(x, xrn+1, t1) ∗M(xrn+1, xrn+2, t1) ∗M(fx, gxrn+1, t1).

Since β(xrn , x, t1) ≤ 1, ∀ n ∈ N we have β(x, xrn+1, t1) ≤ 1, ∀ n ∈ N by (i).
Thus ∀ n ∈ N,
M(x, fx, t1) ≥M(x, xrn+1, t1)∗M(xrn+1, xrn+2, t1)∗(β(x, xrn+1, t1)M(fx, gxrn+1, t1))

≥M(x, xrn+1, t1)∗M(xrn+1, xrn+2, t1)∗ψ(min{M(x, xrn+1, t1),M(x, fx, t1),M(xrn+1,
gxrn+1, t1)})
≥M(x, xrn+1, t1)∗M(xrn+1, xrn+2, t1)∗ψ(min{M(x, xrn , t1)∗M(xrn , xrn+1, t1),M(x, fx,
t1),M(xrn+1, gxrn+1, t1)})
≥M(x, xrn+1, t1)∗M(xrn+1, xrn+2, t1)∗ψ(min{M(x, xrn , t1)∗M(xrn , xrn+1, t1),M(x, fx,
t1),M(xrn+1, xrn+2, t1)}) → ψ(M(x, fx, t1)) as n → ∞, since ∗ is continuous
and (xn) is G-Cauchy.

Thus M(x, fx, t1) ≥ ψ(M(x, fx, t1)) > M(x, fx, t1), a contradiction.
Consequently fx = x.
Thus f, g have a common fixed point x.
Again, if all the rn’s are odd, it can be similarly shown that fx = gx = x. �

Example 3.13. Consider the fuzzy metric space (X,M, ·) of Example 3.8. Let
f, g be self-mappings on X such that

fx =

1 if x ∈ Q

1√
2

otherwise

and

gx =


1 if x = 1

1√
2

if x = 1√
2

1
2 otherwise
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If β : X2 × (0,∞)→ (0,∞) is defined by

β(x, y, t) =

1 if x = y = 1

4 otherwise

then (f, g) is a pair of β-ψ-fuzzy contractive mappings, ∀ ψ ∈ Ψ.
It is easy to see that conditions (i)−(ii) of Theorem 3.12 hold immediately.
So, in view of Theorem 3.12, f, g have a common fixed point.
However the fixed point is not unique. Indeed x = 1 and x = 1√

2
are two

such points.

By putting β ≡ 1 in Theorem 3.12 and proceeding as in Theorem 3.3
for uniqueness of fixed point, we see that for a GV fuzzy metric space, non-
Archimedeaness replaces the continuity of f, g in Corollary 3.4:

Corollary 3.14. Let (X,M, ∗) be a non-Archimedean weak G-complete fuzzy
metric space. Suppose

M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),
∀ x, y ∈ X, t > 0. Then f and g have a unique common fixed point in X.

We will later see that the above conclusion of the last corollary holds, in
fact, in a complete GV fuzzy metric space.

In what follows, we show that the additional hypothesis:
for each sequence (xn) in X satisfying β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0,

there exists k0 ∈ N such that β(xm, xn, t) ≤ 1, ∀ m,n ∈ N with m ≥ n > k0

and t > 0
enables the conclusion of Theorem 3.12 to work in a complete GV fuzzy metric
space.

Theorem 3.15. Let (X,M, ∗) be a non-Archimedean complete fuzzy metric
space and (f, g), a pair of β-ψ-fuzzy contractive mappings such that

(i) for some x0 ∈ X, β(x0, fx0, t) ≤ 1, ∀ t > 0,
(ii) for each sequence (xn) in X with β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0 and

lim
n→∞

xn = x, we have β(xn, x, t) ≤ 1, ∀ n ∈ N, t > 0,

(iii) for each sequence (xn) inX satisfying β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0,
there exists k′ ∈ N such that β(xm, xn, t) ≤ 1, ∀ m,n ∈ N with m ≥ n > k′

and t > 0.
Then f and g have a common fixed point in X.

Proof. Consider the G-Cauchy sequence (xn) obtained in Theorem 3.12. Then
by condition (iv), there exists k1 ∈ N such that β(xm, xn, t) ≤ 1, ∀ m,n ∈ N
with m ≥ n > k1 and t > 0.

We show that (xn) is a Cauchy sequence. If not, there exist ε ∈ (0, 1), t > 0
and k0 ∈ N with k0 > k1 such that for k ∈ N with k ≥ k0, we have m′(k), n(k) ∈
N with m′(k) > n(k) ≥ k satisfying M(xm′(k), xn(k), t) ≤ 1− ε.

For each k ≥ k0, we set m(k) to be the smallest positive integer exceeding
n(k) such that M(xm(k), xn(k), t) ≤ 1− ε and M(xm(k)−1, xn(k), t) > 1− ε.
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Therefore ∀ k ≥ k0,
1− ε ≥M(xm(k), xn(k), t)

≥M(xm(k)−1, xn(k), t) ∗M(xm(k)−1, xm(k), t)
≥ (1− ε) ∗M(xm(k)−1, xm(k), t).

Taking limit as k →∞, we obtain lim
k→∞

M(xm(k), xn(k), t) = 1− ε.
Now for each k ∈ N with k ≥ k0, we set
u(k) = M(xm(k), xm(k)+2, t) ∗M(xm(k)+2, xn(k)+2, t) ∗M(xn(k), xn(k)+2, t),

if m(k) = odd, n(k) = even
= M(xm(k), xm(k)+2, t) ∗M(xm(k)+2, xn(k)+1, t) ∗M(xn(k), xn(k)+1, t),
if m(k) = odd, n(k) = odd
= M(xm(k), xm(k)+1, t) ∗M(xm(k)+1, xn(k)+2, t) ∗M(xn(k), xn(k)+2, t),
if m(k) = even, n(k) = even
= M(xm(k), xm(k)+1, t) ∗M(xm(k)+1, xn(k)+1, t) ∗M(xn(k), xn(k)+1, t),
if m(k) = even, n(k) = odd
and
v(k) = M(xm(k), xm(k)+2, t) ∗ β(xm(k)+1, xn(k)+1, t)M(xm(k)+2, xn(k)+2, t) ∗

M(xn(k), xn(k)+2, t), if m(k) = odd, n(k) = even
= M(xm(k), xm(k)+2, t) ∗ β(xm(k)+1, xn(k), t)M(xm(k)+2, xn(k)+1, t) ∗M(xn(k),
xn(k)+1, t), if m(k) = odd, n(k) = odd
= M(xm(k), xm(k)+1, t) ∗ β(xm(k), xn(k)+1, t)M(xm(k)+1, xn(k)+2, t) ∗M(xn(k),
xn(k)+2, t), if m(k) = even, n(k) = even
= M(xm(k), xm(k)+1, t)∗β(xm(k), xn(k), t)M(xm(k)+1, xn(k)+1, t)∗M(xn(k), xn(k)+1,
t), if m(k) = even, n(k) = odd

Since β(xm, xn, t) ≤ 1, ∀ m,n ∈ N with m ≥ n > k0, we have ∀ k ≥ k0,
1− ε ≥M(xm(k), xn(k), t) ≥ u(k) ≥ v(k) · · · (∗).

Now for each k ∈ N with k ≥ k0, we also set
w(k) = ψ(min{M(xm(k)+1, xn(k)+1, t),M(xm(k)+1, xm(k)+2, t),M(xn(k)+1, xn(k)+2, t)}),

if m(k) = odd, n(k) = even
= ψ(min{M(xm(k)+1, xn(k), t),M(xm(k)+1, xm(k)+2, t),M(xn(k), xn(k)+1, t)}),
if m(k) = odd, n(k) = odd
= ψ(min{M(xm(k), xn(k)+1, t),M(xm(k), xm(k)+1, t),M(xn(k)+1, xn(k)+2, t)}),
if m(k) = even, n(k) = even
= ψ(min{M(xm(k), xn(k), t),M(xm(k), xm(k)+1, t),M(xn(k), xn(k)+1, t)}),
if m(k) = even, n(k) = odd
and
w′(k) = ψ(min{M(xm(k), xm(k)+1, t)∗M(xm(k), xn(k), t)∗M(xn(k), xn(k)+1, t),

M(xm(k)+1, xm(k)+2, t),M(xn(k)+1, xn(k)+2, t)}), if m(k) = odd, n(k) = even
= ψ(min{M(xm(k), xm(k)+1, t) ∗M(xm(k), xn(k), t),M(xm(k)+1, xm(k)+2, t),
M(xn(k), xn(k)+1, t)}), if m(k) = odd, n(k) = odd
= ψ(min{M(xm(k), xn(k), t) ∗M(xn(k), xn(k)+1, t),M(xm(k), xm(k)+1, t),
M(xn(k)+1, xn(k)+2, t)}), if m(k) = even, n(k) = even
= ψ(min{M(xm(k), xn(k), t),M(xm(k), xm(k)+1, t),M(xn(k), xn(k)+1, t)}),
if m(k) = even, n(k) = odd.

For each k ∈ N with k ≥ k0, we further set
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r(k) = M(xm(k), xm(k)+2, t)∗w(k)∗M(xn(k), xn(k)+2, t), if m(k) = odd, n(k) = even
= M(xm(k), xm(k)+2, t)∗w(k)∗M(xn(k), xn(k)+1, t), if m(k) = odd, n(k) = odd
= M(xm(k), xm(k)+1, t)∗w(k)∗M(xn(k), xn(k)+2, t), if m(k) = even, n(k) = even
= M(xm(k), xm(k)+1, t)∗w(k)∗M(xn(k), xn(k)+1, t), if m(k) = even, n(k) = odd
and
r′(k) = M(xm(k), xm(k)+2, t)∗w′(k)∗M(xn(k), xn(k)+2, t), if m(k) = odd, n(k) = even

= M(xm(k), xm(k)+2, t)∗w′(k)∗M(xn(k), xn(k)+1, t), if m(k) = odd, n(k) = odd
= M(xm(k), xm(k)+1, t)∗w′(k)∗M(xn(k), xn(k)+2, t), if m(k) = even, n(k) = even
= M(xm(k), xm(k)+1, t)∗w′(k)∗M(xn(k), xn(k)+1, t), if m(k) = even, n(k) = odd.

Since lim
k→∞

w′(k) = ψ(1− ε), we have lim
k→∞

r′(k) = ψ(1− ε).
Using (∗), we have 1 − ε ≥ M(xm(k), xn(k), t) ≥ u(k) ≥ v(k) ≥ r(k) ≥

r′(k), ∀ k ≥ k0. Thus by taking limit as k →∞, we have 1−ε ≥ ψ(1−ε) > 1−ε,
which leads to a contradiction.

Thus (xn) is a Cauchy sequence and hence converges to some x ∈ X.
We now show that fx = gx = x.
If gx 6= x, then there exists t0 > 0 such that 0 < M(x, gx, t0) < 1.
Since M(x, gx, t0) ≥M(x, x2n+1, t0) ∗M(fx2n, gx, t0)

≥M(x, x2n+1, t0) ∗ β(x2n, x, t0)M(fx2n, gx, t0)
≥M(x, x2n+1, t0) ∗ ψ(min{M(x, x2n, t0),M(x, gx, t0),M(x2n+1, x2n, t0)})

so by taking limit as n → ∞, we have M(x, gx, t0) ≥ ψ(M(x, gx, t0) >
M(x, gx, t0), which leads to a contradiction.

Thus gx = x. Similarly, fx = x. Hence fx = gx = x. �

By putting β ≡ 1 in Theorem 3.15 and proceeding as in Theorem 3.3 for
uniqueness of fixed point, we have the following:

Corollary 3.16. Let (X,M, ∗) be a non-Archimedean complete fuzzy metric
space. Suppose

M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}), ∀ x, y ∈ X, t > 0.

Then f and g have a unique common fixed point in X.

We encourage the readers to compare the above result with Corollary 3.4
and Theorem 3.5.

Theorem 3.17. Let f, g be continuous mappings such that
(i) M(x, y, t) > 0 =⇒
β(x, y, t)M(gfx, fgy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),

∀ x, y ∈ X, t > 0,
(ii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 andM(fx0, gfx0, t),M(gfx0, fgfx0, t)

> 0, ∀ t > 0.
Then f and g have a common fixed point in X.

Proof. Define a sequence (xn) as follows: x1 = fx0, x2 = gx1, · · · , x2n+1 =
fx2n, x2n+2 = gx2n+1, · · · .

Then proceeding as Theorem 3.3, we obtain

β(xn, xn+1, t), β(xn+1, xn, t) ≤ 1, ∀ n ∈ N, t > 0.
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Let n be a positive integer bigger than 1.
If n is odd, then for chosen t > 0, M(xn−1, xn, t) > 0 =⇒
M(xn+1, xn+2, t) = M(gfxn−1, fgxn, t)
≥ β(xn−1, xn, t)M(gfxn−1, fgxn, t)
≥ ψ(min{M(xn−1, xn, t),M(xn−1, fxn−1, t),M(xn, gxn, t)})
= ψ(min{M(xn−1, xn, t),M(xn, xn+1, t)})
If n is even, then for chosen t > 0, M(xn−1, xn, t) > 0 =⇒
M(xn+1, xn+2, t) = M(gfxn, fgxn−1, t)
≥ β(xn, xn−1, t)M(gfxn, fgxn−1, t)
≥ ψ(min{M(xn, xn−1, t),M(xn, fxn, t),M(xn−1, gxn−1, t)})
= ψ(min{M(xn−1, xn, t),M(xn, xn+1, t)}).
Consequently, ∀ n ≥ 2, t > 0, M(xn−1, xn, t) > 0 =⇒ either M(xn+1, xn+2, t)

≥ ψ(M(xn−1, xn, t) or M(xn+1, xn+2, t) ≥ ψ(M(xn, xn+1, t)).
Since M(x1, x2, t),M(x2, x3, t) > 0, we conclude M(xn−1, xn, t) > 0, ∀ n ≥

2, t > 0.
Let us set St = min{M(x1, x2, t),M(x2, x3, t)}, ∀ t > 0.
Then M(x2n−1, x2n, t) ≥ ψn−1(St) and M(x2n, x2n+1, t) ≥ ψn−1(St), ∀ n ≥

2, t > 0.
Now ∀ t > 0, St > 0 =⇒ lim

n→∞
ψn−1(St) = 1.

Thus ∀ t > 0, lim
n→∞

M(x2n−1, x2n, t) = lim
n→∞

M(x2n, x2n+1, t) = 1, and con-

sequently, lim
n→∞

M(xn, xn+1, t) = 1.

So (xn) is a G-Cauchy sequence in X.
Hence the result follows. �

Example 3.18. We note that Example 3.8 satisfies the hypothesis of Theorem
3.17.

Let us now replace the value of β, in Example 3.8, with 1. It is clear that
the modified example satisfies the hypothesis of Theorem 3.17 as well.

We now show that the modified example does not satisfy the hypothesis of
Theorem 3.3.

Suppose otherwise. Then by putting x = 1
2 , y = 1, t = 1 in

β(x, y, t)M(fx, gy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),
we obtain M

(
1
2 , 1, 1

)
≥ ψ

(
M
(

1
2 , 1, 1

))
, which is a contradiction since ψ(x) >

x, ∀ x ∈ (0, 1).

Corollary 3.19. Let f be a continuous mapping such that
(i) M(x, y, t) > 0 =⇒

β(x, y, t)M(fx, fy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t)},
∀ x, y ∈ X, t > 0,

(ii) (f, I) is a symmetric pair of β-admissible mappings (I being the identity
self-mapping on X),

(iii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 and M(fx0, f
2x0, t) > 0, ∀ t > 0.

Then f has a fixed point in X.

Proof. Immediate by setting g = I in Theorem 3.17. �
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In the next theorem, we omit the continuity hypothesis of one of f, g in
Theorem 3.17.

Theorem 3.20. Suppose that f or g is continuous and
(i) M(x, y, t) > 0 =⇒
β(x, y, t)M(gfx, fgy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),

∀ x, y ∈ X, t > 0,
(ii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 andM(fx0, gfx0, t),M(gfx0, fgfx0, t)

> 0, ∀ t > 0,
(iii) for each sequence (xn) in X with β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0 and a

subsequence (xrn) of (xn) with lim
n→∞

xrn = x, we have β(xrn , x, t), β(x, xrn , t) ≤
1, ∀ n ∈ N, t > 0.

Then f and g have a common fixed point in X.

Proof. Proceeding as in Theorem 3.17, we obtain the G-Cauchy sequence (xn)
in X given by x1 = fx0, x2 = gx1, · · · , x2n+1 = fx2n, x2n+2 = gx2n+1, · · · such
that β(xn, xn+1, t), β(xn+1, xn, t) ≤ 1, ∀ n ∈ N, t > 0.

Since (X,M, ∗) is weak G-complete, there exists a subsequence (xrn) of (xn)
such that (xrn) converges to some x ∈ X where rn’s are either all even or all
odd.

Without loss of generality, suppose all the rn’s are even.
Case I: Let f be continuous. Then ∀ t > 0, n ∈ N,
M(x, fx, t) ≥M

(
x, xrn+1,

t
2

)
∗M

(
xrn+1, fx,

t
2

)
= M

(
x, xrn+1,

t
2

)
∗M

(
fxrn , fx,

t
2

)
= M

(
x, xrn ,

t
4

)
∗M

(
xrn , xrn+1,

t
4

)
∗M

(
fxrn , fx,

t
2

)
.

Taking limit as n→∞, we see that the right hand side tends to 1.
Thus we have M(x, fx, t) = 1, ∀ t > 0 and consequently, fx = x.
We now show that gx = x. Choose t1 > 0.
Then for sufficiently large values of n, M(x, gx, t1)

≥M(x, xrn ,
t1
5 )∗M(xrn , xrn+1,

t1
5 )∗M(xrn+1, xrn+2,

t1
5 )∗M(xrn+2, xrn+3,

t1
5 )∗

M(xrn+3, gx,
t1
5 )

≥M(x, xrn ,
t1
5 )∗M(xrn , xrn+1,

t1
5 )∗M(xrn+1, xrn+2,

t1
5 )∗M(xrn+2, xrn+3,

t1
5 )∗

M(fgxrn+1, gfx,
t1
5 )

≥M(x, xrn ,
t1
5 )∗M(xrn , xrn+1,

t1
5 )∗M(xrn+1, xrn+2,

t1
5 )∗M(xrn+2, xrn+3,

t1
5 )∗

(β(x, xrn+1,
t1
5 )M(gfx, fgxrn+1,

t1
5 )) (since lim

n→∞
xrn+1 = x, β(x, xrn+1, t) ≤

1, ∀ n ∈ N, t > 0)
≥M(x, xrn ,

t1
5 )∗M(xrn , xrn+1,

t1
5 )∗M(xrn+1, xrn+2,

t1
5 )∗M(xrn+2, xrn+3,

t1
5 )∗

ψ(min{M(xrn+1, x,
t1
5 ),M(xrn+1, gxrn+1,

t1
5 ),M(x, fx, t15 )})

≥M(x, xrn ,
t1
5 )∗M(xrn , xrn+1,

t1
5 )∗M(xrn+1, xrn+2,

t1
5 )∗M(xrn+2, xrn+3,

t1
5 )∗

ψ(min{M(xrn+1, x,
t1
5 ),M(xrn+1, xrn+2,

t1
5 ),M(x, fx, t15 )}).

Taking limit as n→∞, we see that the right hand side tends to 1.
Thus M(x, gx, t1) = 1, ∀ t1 > 0 =⇒ x = gx.

Case II: Let g be continuous. Then we can similiarly show that x is a common
fixed point of f, g.
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Again, if all the rn’s are odd, it can be similarly shown that fx = gx = x. �

By putting β ≡ 1 in Theorem 3.20 we have the following:

Corollary 3.21. Let one of f, g is continuous such that
(i) M(x, y, t) > 0 =⇒

M(gfx, fgy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),
∀ x, y ∈ X, t > 0,

(ii) for some x0 ∈ X, M(fx0, gfx0, t),M(gfx0, fgfx0, t) > 0, ∀ t > 0.
Then f and g have a common fixed point in X.

We encourage the readers to compare the last result with Corollary 3.4 and
Theorem 3.5.

Example 3.22. Consider the fuzzy metric space (X,M, ·) of Example 3.8. Let
f, g be self-mappings on X such that

fx =

1 if x ∈ Q

1
2 otherwise

and gx = 1, ∀ x ∈ X.
Clearly, g is continuous on X but f is not.
Since gfx = fgy = 1, ∀ x, y ∈ X we have

M(gfx, fgy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),
∀ x, y ∈ X, t > 0 and ψ ∈ Ψ.

Thus by setting β ≡ 1 we see that f, g satisfy the hypothesis of Theorem
3.20.

Here 1 is a common fixed point of f and g which is clearly unique.

The following question is open:

Question 3.23. Can the continuity hypothesis of both f and g in Theorem
3.20 be omitted?

In what follows, we show that the additional hypothesis:
for each sequence (xn) in X satisfying β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0,

there exists k0 ∈ N such that β(xm, xn, t) ≤ 1, ∀ m,n ∈ N with m ≥ n > k0

and t > 0
enables the conclusion of Theorem 3.20 to work in a non-Archimedean complete
(KM) fuzzy metric space.

Theorem 3.24. Let (X,M, ∗) be a non-Archimedean complete (KM) fuzzy
metric space and one of f, g is continuous such that

(i) M(x, y, t) > 0 =⇒
β(x, y, t)M(gfx, fgy, t) ≥ ψ(min{M(x, y, t),M(x, fx, t),M(y, gy, t)}),

∀ x, y ∈ X, t > 0,
(ii) for some x0 ∈ X, β(x0, fx0, t) ≤ 1 andM(fx0, gfx0, t),M(gfx0, fgfx0, t)

> 0, ∀ t > 0,
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(iii) for each sequence (xn) in X with β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0 and a
subsequence (xrn) of (xn) with lim

n→∞
xrn = x, we have β(xrn , x, t), β(x, xrn , t) ≤

1, ∀ n ∈ N, t > 0,
(iv) for each sequence (xn) inX satisfying β(xn, xn+1, t) ≤ 1, ∀ n ∈ N, t > 0,

there exists k0 ∈ N such that β(xm, xn, t) ≤ 1, ∀ m,n ∈ N with m ≥ n > k0

and t > 0.
Then f and g have a common fixed point in X.

Proof. Proceeding as in Theorem 3.17, we obtain the G-Cauchy sequence (xn)
in X given by x1 = fx0, x2 = gx1, · · · , x2n+1 = fx2n, x2n+2 = gx2n+1, · · · that
will turn out to be Cauchy following an argument similar to Theorem 3.15.
Since X is complete, there exists x ∈ X such that lim

n→∞
xn = x. Similar to

Theorem 3.20, we can show that fx = gx = x. �

Remark 3.25. By substituting g = f into the aforementioned results, we obtain
related fixed point theorems for self-mappings f on (X,M, ∗).
Remark 3.26. Proceeding as in Theorem 3.3, it can be shown that the addi-
tional hypothesis: β(x, y, t) ≤ 1, ∀ x, y ∈ X, t > 0 and for x, y (x 6= y) ∈ X,
M(x, y, t) > 0, ∀ t > 0, leads to the uniqueness of the corresponding fixed
points in all the aforementioned results.

Remark 3.27. We note that Example 3.9 satisfies the hypothesis of Theorem
3.17. Since f, g in the said Example have more than one common fixed points,
the additional condition mentioned in Remark 3.26 is essential to ensure the
uniqueness of the common fixed point in Theorem 3.17.

Acknowledgements. We express our appreciation to the reviewer for pro-
viding valuable suggestions.
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