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Abstract

We present several characterizations of σ-compact Hattori spaces, and
reject some possible characterization candidates of the spaces.
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1. Introduction

Let R be the set of real numbers and A be a subset of R.
In [6] Hattori introduced a topology τ(A) on R defined as follows:

(1) if x ∈ A then {(x− ε, x+ ε) : ε > 0} is a nbd open basis at x,
(2) if x ∈ R \A then {[x, x+ ε) : ε > 0} is a nbd open basis at x.

Note that τ(∅) (respectively, τ(R)) is the Sorgenfrey topology τS (respec-
tively, the Euclidean topology τE) on the reals.

The topological spaces (R, τ(A)), A ⊆ R, are called Hattori spaces and de-
noted by H(A) or H-spaces (if A is unimportant for a discussion). It is easy to
see that the identity mapping of reals is a continuous bijection of any H-space
onto the real line.

Let us recall ([2]) that every H-space is T1, regular, hereditary Lindelöf and
hereditary separable. However there are topological properties as the metriz-
ability or the Cech-completeness which some H-spaces possess and other H-
spaces do not possess. When the H-spaces possess these properties one can
find in [8] and [1].
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Recall ([5]) that each compact subset of the Sorgenfrey line (the space H(∅))
is countable. So the space H(∅) cannot be σ-compact unlike to the space H(R)
(the real line) which is evidently σ-compact.

The following natural problem was posed by F. Lin and J. Li.

Problem 1.1 ([9, Question 3.7]). For what subsets A of R are the spaces H(A)
σ-compact?

F. Lin and J. Li also noted

Proposition 1.2 ([9, Theorem 3.13]). For an arbitrary subset A of R, if H(A)
is σ-compact, then R \A is countable and nowhere dense in H(A).

Proposition 1.3 ([9, Theorem 3.14]). For an arbitrary subset A of R, if R\A
is countable and scattered in H(A), then H(A) is σ-compact.

In this note I present several characterizations of Hattori spaces to be σ-
compact, and show that the implications of Propositions 1.2 and 1.3 are not
invertible. Moreover, Proposition 1.3 (formulated as above) does not hold, its
corrected version is presented in Corollary 2.3. The implication of Corollary
2.3 is also not invertible.

For standard notions we refer to [4].

2. Main results

First of all let us recall the following fact.

Lemma 2.1 ([2, Lemma 2.1]). Let A ⊆ R and B ⊆ A and C ⊆ R \A. Then

(i) τ(A)|B = τE |B, where τE is the Euclidean topology on R, and
(ii) τ(A)|C = τS |C , where τS is the Sorgenfrey topology on R.

Proposition 2.2. For an arbitrary subset A of R, if B = R \ A is countable
and it is a Gδ-subset of the real line (in particular, if B is countable and closed
in the real line), then H(A) is σ-compact.

Proof. Let us note that on the real line our set A is an Fσ-set and hence it
is σ-compact there (i. e. A = ∪∞i=1Ai, where each Ai is a compact subset of
the real line). So by Lemma 2.1 A is σ-compact in H(A) too because for each
positive integer i we have τ(A)|Ai

= τE |Ai
, where τE is the Euclidean topology

on R. Since B is countable we get that H(A) is σ-compact. 2

Since every scattered subset of the real line is a Gδ (see [7, Corollary 4]) we
get the following.

Corollary 2.3. For any subset A of R, if R \ A is countable and scattered in
the real line, then H(A) is σ-compact.

We continue with several characterizations of H-spaces to be σ-compact.

Theorem 2.4. Let A ⊆ R and B = R \ A. Then the following conditions are
equivalent.

(a) There exist a σ-compact subset D and a closed subset C of the space
H(A) such that B ⊆ C ⊆ D.
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(b) There exists a closed σ-compact subset C of the space H(A) such that
B ⊆ C.

(c) The closure ClH(R)(B) of B in the real line is σ-compact in H(A).
(d) The closure ClH(A)(B) of B in the space H(A) is σ-compact in H(A).
(e) the space H(A) is σ-compact.

Proof. The following implications are obvious: (e) => (a), (a) => (b), (c) =>
(b), (b) => (d), (e) => (c).

Let us show (d) => (e). Since B ⊆ ClH(A)(B) each point x ∈ H(A) \
ClH(A)(B) has inside the set H(A) \ClH(A)(B) an open nbd which is an open
interval of the real line. Since the space H(A) is hereditarily Lindelöf the set
H(A) \ClH(A)(B) is a σ-compact subset of H(A) (see Lemma 2.1). Thus even
H(A) is σ-compact. �

Remark 2.5. Note that the set ClH(R)(B) does not need to be σ-compact in
the space H(A) (it is of course closed there) even if it is compact in the real
line, see Proposition 2.11.

Let us consider in the set of reals the standard Cantor set C on the closed
interval [0, 1] which can be defined as follows.

For any closed bounded interval [a, b] of R put

F ([a, b]) = {[a, 2

3
a+

1

3
b], [

1

3
a+

2

3
b, b]}.

Then for each n ≥ 0 by induction define a family Cn of closed intervals:

C0 = {[0, 1]}, Cn = {F ([a, b]) : [a, b] ∈ Cn−1}.

The standard Cantor set C of the closed interval [0, 1] is the intersection
∩∞n=0(∪Cn), where ∪Cn is the union of all closed intervals from the family Cn.

Put now B1 = {a : [a, b] ∈ Cn, n ≥ 0}, B2 = {b : [a, b] ∈ Cn, n ≥ 0} and
A1 = R \B1, A2 = R \B2. We will use the notations below.

Remark 2.6. Let us note that on the real line (i.e. on the reals with the
Euclidean topology) the set C is compact, the sets B1 and B2 (which are
subsets of C) are homeomorphic to the space of rational numbers Q, the sets
C \ B1 and C \ B2 are homeomorphic to the space of irrational numbers P.
Moreover, B1 and B2 are nowhere dense in the real line.

Remark 2.7. Let us note that a set Y ⊂ R is nowhere dense in the real line iff
Y is nowhere dense in any H-space (see for example, [3, Lemma 3.3]).

Proposition 2.8. For the space H(A1) the following is valid.

(a) The subspace B1 of H(A1) is nowhere dense in H(A1) and it is home-
omorphic to the space of rational numbers Q.

(b) The subspace ClH(A1)(B1) of H(A1) is homeomorphic to the standard
Cantor set C on the real line, and the subspace ClH(A1)(B1) \ B1 of
H(A1) is homeomorphic to the space of irrational numbers P.

(c) The space H(A1) is σ-compact.
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Proof. (a) and (b) are obvious. Theorem 2.4 and (b) prove (c). �

Corollary 2.9. Proposition 1.3 is not invertible.

Proof. Let us note that H(A1) is σ-compact but the subspace B1 of H(A1) is
not scattered. �

Corollary 2.10. Proposition 2.2 is not invertible as well as Corollary 2.3.

Proof. Let us note that H(A1) is σ-compact but B1 is not a Gδ-subset of the
Cantor set C in the real line and hence it is not a Gδ in the real line. �

Proposition 2.11. For the space H(A2) the following is valid.

(a) The subspace B2 of H(A2) is nowhere dense in H(A2) and it is home-
omorphic to the space of natural numbers N.

(b) The subspace ClH(A2)(B2) of H(A2) is equal to the standard Cantor
set C of R, and it is not σ-compact. The subspace ClH(A2)(B2) \B2 of
H(A2) is homeomorphic to the space of irrational numbers P,

(c) The space H(A2) is not σ-compact.

Proof. (a) is obvious.
In (b) let us show that the subspace ClH(A2)(B2) of H(A2) is not σ-compact.

Assume that the subspace ClH(A2)(B2) ofH(A2) is σ-compact, i.e. ClH(A2)(B2) =
∪∞i=1Ki, where Ki is compact in H(A2). Note that for each i the set Ki is com-
pact in the real line and the Cantor set C with the topology from the real line is
the union ∪∞i=1Ki. Hence there is an open interval (c, d) of the reals and some
i such that (c, d) ∩ C ⊆ Ki. Moreover, there exist points b0, b1, . . . of B2 such
that b1 < b2 < · · · < b0 and the sequence {bj}∞j=1 tends to b0 in the real line.
Since at the points of B2 the topology of H(A2) is the Sorgenfrey topology we
get a contradiction with the compactness of Ki in the space H(A2).

Theorem 2.4 and (b) prove (c). �

Corollary 2.12. Proposition 1.2 is not invertible.

Proof. Let us note that B2 is nowhere dense in H(A2) (see Remark 2.7) but
the space H(A2) is not σ-compact. �

Corollary 2.13. Proposition 1.3 does not hold.

Proof. Let us note that B2 is scattered in H(A2) and the space H(A2) is not
σ-compact. �

3. Additional questions

The following is obvious.

(a) If a space X is σ-compact then a subset Y of X is σ-compact iff it is
an Fσ-subset of X. In particular, a subset of the real line is σ-compact
iff it is an Fσ-set.

(b) A subset of the Sorgenfrey line is σ-compact iff it is countable,
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(c) A subset of the space P of irrational numbers is σ-compact iff it is
homeomorphic to an Fσ-subset of the standard Cantor set C on the
real line.

One can pose the following problem.

Problem 3.1. Let A ⊆ R. Describe the σ-compact subsets of H(A).

Let us note in advance that according to (a) if H(A) is σ-compact then a
subset of H(A) is σ-compact iff it is an Fσ-subset of H(A)

Below we present some other answers to Problem 3.1 by the use of observa-
tions (b) and (c) and some known facts.

Proposition 3.2 ([8, Theorem 6] and [1, Theorem 2.8]). H(A) is homeomor-
phic to the Sorgenfrey line iff A is scattered.

Corollary 3.3. If A is scattered then a subset of H(A) is σ-compact iff it is
countable.

Proposition 3.4 ([1, Proposition 3.6]). H(A) is homeomorphic to the space
P of irrational numbers iff R \A is dense in the real line and countable.

Corollary 3.5. If R \ A is dense in the real line and countable then a subset
of H(A) is σ-compact iff it is homeomorphic to an Fσ-subset of the standard
Cantor set C on the real line.

Since the space H(A2) from Proposition 2.11 is not σ-compact (as well as
any subset of H(A2) containing some [a, b] from Cn, n = 0, 1, 2, . . . ) one can
pose the following problem.

Problem 3.6. What subsets of H(A2) are σ-compact?
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