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Abstract

A topological space X is selectively highly divergent (SHD) if for every
sequence of non-empty open sets {Un : n ∈ ω} of X, we can find points
xn ∈ Un, for every n < ω such that the sequence {xn : n ∈ ω} has no
convergent subsequences. In this note we answer four questions related
to this notion that were asked by Jiménez-Flores, Ŕıos-Herrejón, Rojas-
Sánchez and Tovar-Acosta.
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1. Introduction

In this note we consider a class of spaces recently studied in [4].

Definition 1.1. A topological space X is selectively highly divergent (SHD
from here for short) if for every sequence of non-empty open subsets {Un : n <
ω} of X, we can find xn ∈ Un such that the sequence {xn : n < ω} has no
convergent subsequence.
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Clearly, if a topological space X has a point of countable character, then it
cannot be SHD, in particular no metrizable space is SHD.

Nice examples of SHD spaces are the compact Hausdorff space ω∗ = βω \ ω
and the countable regular maximal space M described in [1]. These spaces
however are strictly stronger than SHD because they do not contain non-trivial
convergent sequences. In general, a selectively higly divergent space may have
plenty of convergent sequences: a compact Hausdorff space of this kind is ω∗×I,
while a countable regular one is M ×Q.

The property of being selectively highly divergent is much stronger than
being not sequentially compact. An easy example of non-sequentially compact
space which is not SHD is the space Z = ω∗⊕ I. Note that the space Z has an
open subset which is sequentially compact, and one may suspect that a space
having no non-empty open sequentially compact subspace should be SHD, but
this is not the case.

Example 1.2. A compact Hausdorff space with no non-empty sequentially
compact subspace which is not SHD.

Proof. Let X = (ω∗ × ω) ∪ {p}, where ω∗ × ω with the product topology is an
open subspace of X, while a local base at p is the collection {(ω∗× [n, ω[)∪{p} :
n < ω}. �

If in Definition 1.1 we consider only constant sequences of open sets, i.e.
Un = U for each n < ω, then we see that a SHD space has the property that
every non-empty open set contains a sequence with no subsequences converg-
ing in X. We may call a space with this property highly divergent (HD for
short). Using this terminology, Example 1.2 provides an example of a compact
Hausdorff HD space which is not SHD.

In [4] the authors formulated various questions about selectively highly di-
vergent spaces. In our paper we will focus on four of them.

Question 1.3 ([4, Question 2]). Is it true that if κ is an uncountable cardinal,
then X = {0, 1}κ is a SHD space?

Question 1.4 ([4, Question 4]). If X is Tychonoff, non-compact and SHD,
does it hold that βX is SHD?

Question 1.5 ([4, Question 5]). Is the SHD property dense hereditary?

Given a space X, let F [X] denote the Pixley-Roy hyperspace of X.

Question 1.6 ([4, Question 7]). Is F [X] SHD whenever X is SHD and T1?

In the present note, we give a complete answer to Questions 1.3, 1.5 and 1.6
and a partial positive answer to Question 1.4.

All spaces are assumed to be T1. For undefined notions, we refer the reader
to [3] and [5].
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2. The main results

We begin by presenting a complete answer to Question 1.3.
Recall that a collection S of subsets of ω is a splitting family if for every

infinite subset A ⊆ ω there is an element S ∈ S satisfying |S∩A| = |A\S| = ω.
The smallest cardinality of a splitting family on ω is the splitting number s. It
turns out that ω1 ≤ s ≤ c.

Theorem 2.1. The space 2κ is selectively highly divergent if and only if κ ≥ s.

Proof. If κ < s, then 2κ is sequentially compact (see [2], Theorem 6.1). So, if
2κ is SHD, then we should have κ ≥ s. To complete the proof, we need to show
that κ ≥ s implies that 2κ is SHD. Since 2κ is homeomorphic to 2s×2κ, taking
into account that any product having a SHD factor is SHD (see Theorem 1 in
[4]), it suffices to prove that 2s is selectively highly divergent.

Let S be a splitting family on ω of size s and fix an indexing S = {Sα : α < s}
in such a way that every element of S appears in the list s-many times.

Recall that a base for the topology of 2κ consists of the sets [σ], where
σ ∈ Fin(κ, 2) is a partial function whose domain is a finite subset of κ and
[σ] = {x ∈ 2κ : σ ⊆ x}. Let {Un : n < ω} be a family of non-empty open
subsets of 2s and for each n choose a partial function σn : s → 2 such that
[σn] ⊆ Un.

For each n let xn ∈ 2s be the point defined as follows. If α ∈ dom(σn), then
let xn(α) = σn(α); if α ∈ s \ dom(σn), then let xn(α) = 1 when n ∈ Sα and
xn(α) = 0 when n /∈ Sα. Of course, we have xn ∈ [σn] ⊆ Un.

We claim that the sequence {xn : n < ω} does not have convergent sub-
sequences. Assume by contradiction that the subsequence {xn : n ∈ A} con-
verges to a point p. Since the family S is splitting, there exists S ∈ S such
that |A ∩ S| = |A \ S| = ω. Since the set

⋃
{dom(σn) : n < ω} is count-

able and S appears in the list {Sα : α < s} s-many times, we may find
γ ∈ s \

⋃
{dom(σn) : n ∈ ω} such that Sγ = S. Now, since the sequence

{xn : n ∈ A ∩ S} converges to p and xn(γ) = 1 for each n ∈ A ∩ S, we must
have p(γ) = 1. But even the sequence {xn : n ∈ A \ S} converges to p and
hence we must also have p(γ) = 0. As this is a contradiction, the proof is
complete. �

Theorem 2.1 will help us answer Question 1.5 in the negative.

Example 2.2. A compact Hausdorff SHD space with a dense subspace which
is not SHD.

Proof. Let X = 2c. Theorem 2.1 sais that X is selectively highly divergent.
Let Y be the Σ-product of 2c, that is Y = {x ∈ X : |x−1(1)| ≤ ω}, with the
topology induced from X. Then Y is a dense subset of X: Since in Y every
countable set is contained in a copy of the Cantor set, we immediately see that
Y is sequentially compact. Thus, Y is a dense subspace of X which is not
selectively higly divergent. �
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We now give a partial answer to Question 1.4. Recall that a set A ⊆ X is
C∗-embedded in X if every bounded real valued continuous function defined
on A can be continuously extented to the whole of X. The Tietze-Urysohn
theorem implies that every closed subspace of a normal space is C∗-embedded.

Theorem 2.3. Let X be a Tychonoff SHD space. If every closed copy of the
discrete space ω is C∗- embedded, then βX is SHD.

Proof. Let {Un : n < ω} be a sequence of non-empty open sets of βX. Since X
is SHD, we may pick points xn ∈ Un ∩X in such a way that {xn : n < ω} does
not have subsequences which are convergent in X. We claim that {xn : n < ω}
does not have convergent subsequences even in βX.

Assume by contradiction that the sequence {xn : n ∈ A} converges to a point
p ∈ βX. Clearly, we should have p ∈ βX \X. But then, the set {xn : n ∈ A}
is closed and discrete in X. Split A in the union of two infinite subsets B and
C and define f : {xn : n ∈ A} → [0, 1] by letting f(xn) = 0 in n ∈ B and
f(xn) = 1 if n ∈ C. Since the set {xn : n ∈ A} is C∗- embedded, we may
continuously extend f to a function f : X → [0, 1].The next step is to extend f
to a continuous function g : βX → [0, 1]. Since {xn : n ∈ A} converges to p, we

should have g(p) ∈ {g(xn) : n ∈ B} = {f(xn) : n ∈ B} = {0}, i. e. g(p) = 0.

The same argument shows that g(p) ∈ {f(xn) : n ∈ C} = {1}, i. e. g(p) = 1.
As this is a contradiction, the proof is complete. �

We may mention a couple of corollaries.

Corollary 2.4. If X is a normal SHD space, then βX is SHD.

Corollary 2.5. If X is a countable Tychonoff SHD space, then βX is SHD.

So, we see that βM is SHD.

Example 2.2 already shows that the HD property is not dense hereditary. We
now describe another example which involves the Čech-Stone compactification.
Let us consider the space βQ. It is clear that Q is dense and far to be higly
divergent. We check that βQ is HD. To this end, let U be a non-empty open
subset of βQ and take a non-empty open set V such that V ⊆ U . The set V ∩Q
contains a closed copy A of the discrete space ω. Since A is C∗-embedded in Q,
we have that A ⊆ U is homeomorphic to βω and so every non-trivial sequence
in A ⊆ U has no convergent subsequences in βQ.

Notice that βQ is not SHD because it is first countable at each point q ∈ Q.
So, βQ is another compact Hausdorff HD space which is not SHD. However,
the space X given in Example 1.2 is of different nature because every dense
set D of X is higly divergent. To check this, let U be a non-empty open set
in the subspace D and fix an open set V of X such that U = V ∩ D. There
is some n ∈ ω such that V ∩ ω∗ × {n} 6= ∅ and so even V ∩ ω∗ × {n} ∩D =
U ∩ ω∗ × {n} 6= ∅. Since the latter set is infinite, we may fix an infinite set
{xn : n < ω} in it. {xn : n < ω} is a sequence in U with no subsequences
converging in ω∗ × {n} and so a fortiori in D.
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We finish by giving a complete answer to Question 1.6. Given a space X,
the Pixley-Roy topology on X is the space F [X] = [X]<ω equipped with the
topology generated by sets of the form [F,U ] = {G ∈ F(X) : F ⊂ G ⊂ U},
where F is a finite subset of X and U is an open subset of X.

The authors of [4] proved that if X is an SHD space whose every countable
subset is closed and discrete (this hypothesis is verified, in particular if X is a
P -space), then F [X] is also SHD, and asked whether this is true in general.

Theorem 2.6. Let X be any SHD space. Then F [X] is also SHD.

Proof. Let U be a countable sequence of non-empty open subsets of F [X].
Without loss of generality we can assume that U is made up of basic open sets
and thus we can enumerate U as {[Fn, Un] : n < ω}, where Fn ∈ F [X] and
Un is a non-empty open subset of X. By the SHD property of X we can pick
a point xn ∈ Un, for every n < ω such that {xn : n < ω} has no converging
subsequence. Define Gn = Fn ∪ {xn}. Then Gn ∈ [Fn, Un], for every n < ω.
We claim that {Gn : n < ω} has no converging subsequence. Suppose that this
is not the case and let {Gnk

: k < ω} be a subsequence converging to some
point G ∈ F [X]. That induces a subsequence {xnk

: k < ω} of {xn : n < ω} in
the space X. Moreover, fix an enumeration {yi : 1 ≤ i ≤ p} of the set G.

Since S0 = {xnk
: k < ω} does not converge to y1 then there are an infinite

subset S1 of S0 and an open neighbourhood U1 of y1 such that U1 ∩ S1 = ∅.
Now, since S1 does not converge to y2, there are an infinite subset S2 of S1 and
an open neighbourhood U2 of y2 such that U2 ∩ S2 = ∅. Continuing in this
way we can construct a decreasing sequence of infinite sets {Si : 0 ≤ i ≤ p}
and a sequence of open sets {Ui : 1 ≤ i ≤ p} such that yi ∈ Ui and Ui∩Si = ∅,
for every i ∈ {1, . . . , p}.

Notice that U =
⋃
{Ui : 1 ≤ i ≤ p} is an open set which contains G and

is disjoint from Sp. It follows that the set [G,U ] is an open neighbourhood of
G in the Pixley-Roy topology which does not contain a tail of the sequence
{Gnk

: k < ω} and that is a contradiction. �
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