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ABSTRACT

A topological space X is selectively highly divergent (SHD) if for every
sequence of non-empty open sets {Uy : n € w} of X, we can find points
Zn € Up, for every n < w such that the sequence {x, : n € w} has no
convergent subsequences. In this note we answer four questions related
to this notion that were asked by Jiménez-Flores, Rios-Herrejon, Rojas-
Sdnchez and Tovar-Acosta.
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1. INTRODUCTION

In this note we consider a class of spaces recently studied in [4].

Definition 1.1. A topological space X is selectively highly divergent (SHD
from here for short) if for every sequence of non-empty open subsets {U,, : n <
w} of X, we can find z, € U, such that the sequence {z,, : n < w} has no
convergent subsequence.
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Clearly, if a topological space X has a point of countable character, then it
cannot be SHD, in particular no metrizable space is SHD.

Nice examples of SHD spaces are the compact Hausdorff space w* = fw \ w
and the countable regular maximal space M described in [1]. These spaces
however are strictly stronger than SHD because they do not contain non-trivial
convergent sequences. In general, a selectively higly divergent space may have
plenty of convergent sequences: a compact Hausdorff space of this kind is w* x I,
while a countable regular one is M x Q.

The property of being selectively highly divergent is much stronger than
being not sequentially compact. An easy example of non-sequentially compact
space which is not SHD is the space Z = w* @ I. Note that the space Z has an
open subset which is sequentially compact, and one may suspect that a space
having no non-empty open sequentially compact subspace should be SHD, but
this is not the case.

Example 1.2. A compact Hausdorff space with no non-empty sequentially
compact subspace which is not SHD.

Proof. Let X = (w* x w) U {p}, where w* x w with the product topology is an
open subspace of X, while a local base at p is the collection {(w* x [n,w[) U{p} :
n < w}. O

If in Definition 1.1 we consider only constant sequences of open sets, i.e.
U, = U for each n < w, then we see that a SHD space has the property that
every non-empty open set contains a sequence with no subsequences converg-
ing in X. We may call a space with this property highly divergent (HD for
short). Using this terminology, Example 1.2 provides an example of a compact
Hausdorff HD space which is not SHD.

In [4] the authors formulated various questions about selectively highly di-
vergent spaces. In our paper we will focus on four of them.

Question 1.3 ([4, Question 2]). Is it true that if k is an uncountable cardinal,
then X = {0,1}" is a SHD space?

Question 1.4 ([4, Question 4]). If X is Tychonoff, non-compact and SHD,
does it hold that BX is SHD?

Question 1.5 ([4, Question 5]). Is the SHD property dense hereditary?
Given a space X, let F[X] denote the Pixley-Roy hyperspace of X.
Question 1.6 ([4, Question 7]). Is F[X] SHD whenever X is SHD and Ty ¢

In the present note, we give a complete answer to Questions 1.3, 1.5 and 1.6
and a partial positive answer to Question 1.4.

All spaces are assumed to be T;. For undefined notions, we refer the reader
to [3] and [5].
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2. THE MAIN RESULTS

We begin by presenting a complete answer to Question 1.3.

Recall that a collection S of subsets of w is a splitting family if for every
infinite subset A C w there is an element S € S satisfying [SNA| = |4\ S| = w.
The smallest cardinality of a splitting family on w is the splitting number s. It
turns out that w; <s <c¢.

Theorem 2.1. The space 2" is selectively highly divergent if and only if k > s.

Proof. If k < s, then 2" is sequentially compact (see [2], Theorem 6.1). So, if
2% is SHD, then we should have k > s. To complete the proof, we need to show
that k > s implies that 2" is SHD. Since 2% is homeomorphic to 2° x 2%, taking
into account that any product having a SHD factor is SHD (see Theorem 1 in
[4]), it suffices to prove that 2° is selectively highly divergent.

Let S be a splitting family on w of size s and fix an indexing § = {S, : o < s}
in such a way that every element of S appears in the list s-many times.

Recall that a base for the topology of 2% consists of the sets [o], where
o € Fin(k,2) is a partial function whose domain is a finite subset of x and
[0 = {z € 2¢ : 0 C z}. Let {U, : n < w} be a family of non-empty open
subsets of 2° and for each n choose a partial function o, : s — 2 such that
[on] C U,.

For each n let x,, € 2° be the point defined as follows. If o € dom(c,,), then
let z,(a) = on(a); if a € 5\ dom(o,), then let z,(a) = 1 when n € S, and
Zn(a) = 0 when n ¢ S,. Of course, we have x,, € [0y,] C U,.

We claim that the sequence {z, : n < w} does not have convergent sub-
sequences. Assume by contradiction that the subsequence {z,, : n € A} con-
verges to a point p. Since the family S is splitting, there exists S € S such
that |[AN S| = |[A\ S| = w. Since the set [J{dom(o,) : n < w} is count-
able and S appears in the list {S, : @ < s} s-many times, we may find
v € s\ U{dom(o,) : n € w} such that S, = S. Now, since the sequence
{zn : n € AN S} converges to p and x,(y) = 1 for each n € AN S, we must
have p(y) = 1. But even the sequence {x, : n € A\ S} converges to p and
hence we must also have p(y) = 0. As this is a contradiction, the proof is
complete. O

Theorem 2.1 will help us answer Question 1.5 in the negative.

Example 2.2. A compact Hausdorff SHD space with a dense subspace which
is not SHD.

Proof. Let X = 2°. Theorem 2.1 sais that X is selectively highly divergent.
Let Y be the X-product of 2¢, that is Y = {z € X : [x71(1)] < w}, with the
topology induced from X. Then Y is a dense subset of X: Since in Y every
countable set is contained in a copy of the Cantor set, we immediately see that
Y is sequentially compact. Thus, Y is a dense subspace of X which is not
selectively higly divergent. (Il
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We now give a partial answer to Question 1.4. Recall that a set A C X is
C*-embedded in X if every bounded real valued continuous function defined
on A can be continuously extented to the whole of X. The Tietze-Urysohn
theorem implies that every closed subspace of a normal space is C*-embedded.

Theorem 2.3. Let X be a Tychonoff SHD space. If every closed copy of the
discrete space w is C*- embedded, then 8X is SHD.

Proof. Let {U,, : n < w} be a sequence of non-empty open sets of SX. Since X
is SHD, we may pick points x,, € U,, N X in such a way that {z,, : n < w} does
not have subsequences which are convergent in X. We claim that {z,, : n < w}
does not have convergent subsequences even in SX.

Assume by contradiction that the sequence {z,, : n € A} converges to a point
p € BX. Clearly, we should have p € X \ X. But then, the set {z, : n € A}
is closed and discrete in X. Split A in the union of two infinite subsets B and
C and define f : {z, : n € A} — [0,1] by letting f(z,) = 0in n € B and
f(zn,) = 1if n € C. Since the set {z, : n € A} is C*- embedded, we may
continuously extend f to a function f : X — [0, 1].The next step is to extend f
to a continuous function g : fX — [0,1]. Since {z,, : n € A} converges to p, we
should have g(p) € {g(z,) :n € B} = {f(z,) :n € B} = {0}, i. e. g(p) =0.
The same argument shows that g(p) € {f(z,) :ne C} = {1}, 1. e. g(p) =1.
As this is a contradiction, the proof is complete. ([l

We may mention a couple of corollaries.
Corollary 2.4. If X is a normal SHD space, then X is SHD.
Corollary 2.5. If X is a countable Tychonoff SHD space, then X is SHD.

So, we see that M is SHD.

Example 2.2 already shows that the HD property is not dense hereditary. We
now describe another example which involves the Cech-Stone compactification.
Let us consider the space Q. It is clear that Q is dense and far to be higly
divergent. We check that SQ is HD. To this end, let U be a non-empty open
subset of SQ and take a non-empty open set V such that V' C U. The set VNQ
contains a closed copy A of the discrete space w. Since A is C*-embedded in Q,
we have that A C U is homeomorphic to Sw and so every non-trivial sequence
in A C U has no convergent subsequences in Q.

Notice that SQ is not SHD because it is first countable at each point g € Q.
So, BQ is another compact Hausdorff HD space which is not SHD. However,
the space X given in Example 1.2 is of different nature because every dense
set D of X is higly divergent. To check this, let U be a non-empty open set
in the subspace D and fix an open set V' of X such that U = V N D. There
is some n € w such that VNw* x {n} # @ and so even VNw* x {n}ND =
Unuw* x {n} # @. Since the latter set is infinite, we may fix an infinite set
{zn, :n <w} init. {z, : n < w} is a sequence in U with no subsequences
converging in w* x {n} and so a fortiori in D.
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We finish by giving a complete answer to Question 1.6. Given a space X,
the Pixley-Roy topology on X is the space F[X] = [X]<“ equipped with the
topology generated by sets of the form [F,U] = {G € F(X): F C G C U},
where F' is a finite subset of X and U is an open subset of X.

The authors of [4] proved that if X is an SHD space whose every countable
subset is closed and discrete (this hypothesis is verified, in particular if X is a
P-space), then F[X] is also SHD, and asked whether this is true in general.

Theorem 2.6. Let X be any SHD space. Then F[X] is also SHD.

Proof. Let U be a countable sequence of non-empty open subsets of F[X].
Without loss of generality we can assume that U is made up of basic open sets
and thus we can enumerate U as {[F},,U,] : n < w}, where F,, € F[X] and
U, is a non-empty open subset of X. By the SHD property of X we can pick
a point x,, € Uy, for every n < w such that {z, : n < w} has no converging
subsequence. Define G,, = F,, U {x,,}. Then G,, € [F,,U,], for every n < w.
We claim that {G,, : n < w} has no converging subsequence. Suppose that this
is not the case and let {G,, : k¥ < w} be a subsequence converging to some
point G € F[X]. That induces a subsequence {z,, : k < w} of {z,, : n < w} in
the space X. Moreover, fix an enumeration {y; : 1 <4 < p} of the set G.

Since So = {zn, : k <w} does not converge to y; then there are an infinite
subset S7 of Sy and an open neighbourhood U; of y; such that U; NS; = @.
Now, since S does not converge to y», there are an infinite subset Sy of S7 and
an open neighbourhood Us of y, such that U; N S; = @. Continuing in this
way we can construct a decreasing sequence of infinite sets {S; : 0 < i < p}
and a sequence of open sets {U; : 1 <i < p} such that y; € U; and U;NS; = @,
for every i € {1,...,p}.

Notice that U = |J{U; : 1 < i < p} is an open set which contains G and
is disjoint from S,. It follows that the set [G, U] is an open neighbourhood of
G in the Pixley-Roy topology which does not contain a tail of the sequence
{Gpn, : k < w} and that is a contradiction. O
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