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Abstract

The paper deals with some further results concerning the class of two-
Lipschitz operators. We prove first an isometric isomorphism identifica-
tion of two-Lipschitz operators and Lipschitz operators. After defining
and characterizing the adjoint of a two-Lipschitz operator, we prove a
Schauder type theorem on the compactness of the adjoint. We study
the extension of two-Lipschitz operators from the cartesian product of
two complemented subspaces of a Banach space to the cartesian prod-
uct of whole spaces. Also, we show that every two-Lipschitz functional
defined on the cartesian product of two pointed metric spaces admits an
extension with the same two-Lipschitz norm under some requirements
on domaine spaces.
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1. Introduction and notation

Sánchez Pérez in [14] introduced the definition of real two-Lipschitz maps
acting in a cartesian product of two pointed metric spaces (called Lipschitz bi-
forms) which possess a continuous bi-linearization between Banach spaces. A
detailed and systematic study of these mappings with values in a Banach space
is given recently in [10], where the authors introduce the new concept of two-
Lipschitz operator ideals between pointed metric spaces and Banach spaces.
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A number of class of linear operators have been fruitfully generalized to the
Lipschitz setting in recent years by several authors (see [1], [2], [3], [4], [7] and
the references therein). Note that the concept of a two-Lipschitz mapping was
firstly introduced by Dubei et al. [9] as those mappings that are Lipschitz in
each variable.

In the present paper we go further in this direction and prove some results
concerning this class of non-linear mappings. After the introductory one, in Sec-
tion 2, by using the linearization of Lipschitz operators and the bi-linearization
of two-Lipschitz operators, we obtain an important canonical identification of
two-Lipschitz operators and Lipschitz operators. We define the adjoint of a
two-Lipschitz operator which is the key for proving the Schauder type theorem
for compact two-Lipschitz operators. In Section 3, we present some theorems on
the extension of two-Lipschitz operators when they are defined on the cartesian
product of two Banach spaces or the product of two pointed metric spaces.

Throughout the paper we will use standard notation and concepts of Ba-
nach space theory and the theory of Lipschitz functions. From now on, unless
otherwise stated, X and Y will denote pointed metric spaces with base point
0 that is, 0 is any arbitrary fixed point of X and the metric will be denoted
by d. We denote by BX = {x ∈ X : d(x, 0) ≤ 1}. Also, E and F denote Ba-
nach spaces over the same field K (either R or C) with dual spaces E∗ and
F ∗. A Banach space E is a pointed metric space with distinguished point 0
(the null vector) and metric d(x, x′) = ‖x − x′‖. A map T : X −→ E is
called Lipschitz if there is a constant C > 0 such that for any pair of points
x, x′ ∈ X, we have ‖T (x)− T (x′)‖ ≤ Cd(x, x′). We will consider Lipschitz
maps that map 0 to 0, and then the infimum of all constants C > 0 as above
determines a complete norm on the space Lip0(X,E) of all such maps. Note
that the elements of Lip0(X,E) are known as Lipschitz operators. The space
Lip0(X,K) is called the Lipschitz dual of X and it will be denoted by X#. It
is worth mentioning that the Banach space of all linear operators L(E,F ) is a
subspace of Lip0(E,F ) and, so, E∗ is a subspace of E#. A molecule on X is
a finitely supported function m : X −→ R that satisfies

∑
x∈X

m (x) = 0. The

set M(X) of molecules is a vector space. Note that molecules have the form

m =
n∑
j=1

λjmxjx′j
, where mxx′ = χ{x} − χ{x′} with λj ∈ R and xj , x

′
j ∈ X and

χA is the characteristic function of the set A. The completion ofM(X), when
endowed with the norm

‖m‖M(X) = inf


n∑
j=1

|λj | d(xj , x
′
j), m =

n∑
j=1

λjmxjx′j

 ,

where the infimum is taken over all representations of the molecule m, is de-
noted Æ(X) and called Arens–Ells space associated to X (see [5]). Consider the
canonical Lipschitz injection map δX : X −→Æ(X) defined by δX(x) = mx0.
It is well-known that δX isometrically embeds X in Æ(X). If we consider

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 48



The extension of two-Lipschitz operators

T ∈ Lip0(X,E), then T always factors through Æ(X) as

T = TL ◦ δX : X −→ Æ(X) −→ E.

The map TL : Æ(X) −→ E is the unique continuous linear operator (referred
to as the linearization of T ) that satisfies T = TL ◦ δX and ‖TL‖ = Lip(T ) and
we get the isometric isomorphism identification

Lip0(X,E) = L(Æ(X), E), (1.1)

through the correspondence T ←→ TL. If we take E = K in (1.1), then the
spaces X# and Æ(X)∗ are isometrically isomorphic (see [16, Theorem 2.2.2]).

Let T : X × Y −→ E be a map from the cartesian product of two pointed
metric spaces X and Y to a Banach space E. We will say that T is a two-
Lipschitz operator if there is a constant C > 0 such that for every pair of
elements x, x′ ∈ X and y, y′ ∈ Y,

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖ ≤ Cd (x, x′) d (y, y′) (1.2)

and T (x, 0) = T (0, y) = 0. The Banach space of all these mappings is denoted
by BLip0 (X,Y ;E). Where the norm of T is given by

BLip (T ) = sup
x 6=x′,y 6=y′

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖
d (x, x′) d (y, y′)

, (1.3)

Let E,F,G be Banach spaces, we will denote by L(E,F ;G) the Banach space
of all bilinear operators from E × F into G. Every bilinear operator T ∈
L(E,F ;G) is two-Lipschitz with BLip (T ) = ‖T‖. In the case E = K, we write
BLip0(X,Y ) for the space of all two-Lipchitz functionals from X × Y.

The main tools that we will use is the bi-linearization theorem for two-
Lipschitz operators which is proved in [10].

Theorem 1.1 ([10, Theorem 2.6]). For every two-Lipschitz operator T ∈
BLip0 (X,Y ;E) there exists a unique bilinear operator TB :Æ(X)×Æ(Y ) −→
E satisfying

TB(mxx′ ,myy′) = T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′) (1.4)

and

T = TB ◦ (δX , δY ) : X × Y (δX ,δY )−→ Æ (X)×Æ (Y )
TB−→ E. (1.5)

Furthermore, BLip (T ) = ‖TB‖ . The bilinear operator TB is called bi-lineariza-
tion of the two-Lipschitz operator T .

2. Further results on two-Lipschitz operators

The next proposition follows immediately from the definition of two-Lipschitz
operators as in the bilinear case.

Proposition 2.1. Let T ∈ BLip0(X,Y ;E). Then,

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖ ≤ BLip(T )d(x, x′)d(y, y′), (2.1)
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for all x, x′ ∈ X and y, y′ ∈ Y . Moreover BLip(T ) can be calculated also by
the formula

BLip(T ) = inf {C > 0 : C satisfies (1.2)} . (2.2)

Example 2.2. (a) Let E and F be Banach spaces. The evaluation mapping
on Lip0(E,F ),

ψ : Lip0(E,F )× E −→ F, ψ(T, x) = T (x)

is a two-Lipschitz operator. In order to see this, for all T, S ∈ Lip0(E,F ) and
x, x′ ∈ E we have ψ(T, 0) = ψ(0, x) = 0 and

‖ψ(T, x)− ψ(T, x′)− ψ(S, x) + ψ(S, x′)‖
= ‖(T − S)(x)− (T − S)(x′)‖ ≤ Lip(T − S) ‖x− x′‖ .

which means that ψ is in BLip0(Lip0(E,F ), E;F ) and BLip(ψ) ≤ 1.
(b) Let X and Y be pointed metric spaces and let E be a Banach space. We

define the mapping K : X × Y −→ (BLip0(X,Y ))
∗

by

K(x, y)(φ) := φ(x, y), φ ∈ BLip0(X,Y ).

The following calculations show that K is two-Lipschitz and BLip(K) = 1,

sup
x 6=x′,y 6=y′

‖K (x, y)−K (x, y′)−K (x′, y) +K (x′, y′)‖
dX (x, x′) dY (y, y′)

= sup
x 6=x′,y 6=y′

sup
BLip(φ)≤1

|φ (x, y)− φ (x, y′)− φ (x′, y) + φ (x′, y′)|
dX (x, x′) dY (y, y′)

= sup
BLip(φ)≤1

sup
x 6=x′,y 6=y′

|φ (x, y)− φ (x, y′)− φ (x′, y) + φ (x′, y′)|
dX (x, x′) dY (y, y′)

= 1.

Let E,F,G be Banach spaces. By the following canonical correspondence

ψ : L(E,F ;G) −→ L(E,L(F,G)), ψ(T )(x)(y) := T (x, y),

we obtain the isometric isomorphism identifications

L(E,F ;G) = L(E,L(F,G)). (2.3)

(see [8, Page 11]). This result can be extended to the two-Lipschitz operators.

Proposition 2.3. Let X and Y be pointed metric spaces and let E be a Banach
space. Then we have the isometric isomorphism identification

BLip0(X,Y ;E) = Lip0(X,Lip0(Y,E)). (2.4)

Proof. First, if the Banach spaces E and F are isometrically isomorphic under
the correspondence ϕ, we can write the isometric isomorphism identification

Lip0(X,E) = Lip0(X,F ), (2.5)

through the mapping T 7−→ ϕ ◦ T. Now, by the bi-linearization theorem (The-
orem 1.1) we get the isometric isomorphism identification

BLip0(X,Y ;E) = L(Æ(X),Æ(Y );E), (2.6)
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through the correspondence T ←→ TB . Finally, if we combine the identifica-
tions (1.1), (2.3), (2.5) and (2.6) we get the identification (2.4). �

Remark 2.4. It follows directly from (2.4) that BLip0(X,Y ;E) is a Banach
space under the norm BLip(·), which is a simple proof of the result [10, Theo-
rem 2.5].

Sawashima, in [15], defined the Lipschitz adjoint of a Lipschitz operator
T ∈ Lip0(X,E). Also, the definition of adjoint of a bilinear operator is
due to Ramanujan and Schock [12]. Let E,F,G be Banach spaces and let
S ∈ L(E,F ;G). The linear operator S∗ : G∗ −→ L(E,F ;K) defined as
S∗(g∗)(x, y) := g∗(S(x, y)), for every g∗ ∈ G∗ and (x, y) ∈ E × F is called
the adjoint of S and has the property that ‖S∗‖ = ‖S‖. Combining the two
notions, we get the following definition of the two-Lipschitz transpose.

Definition 2.5. Let X,Y be pointed metric spaces and let E be Banach space.
We define the transpose of a two-Lipschitz operator T ∈ BLip0(X,Y ;E) as a
linear mapping T t : E∗ −→ BLip0(X,Y ) that maps each e∗ ∈ E∗ to e∗ ◦ T
that is

T t(e∗)(x, y) = e∗(T (x, y)), (x, y) ∈ X × Y.
The next result give the important properties of the two-Lipschitz transpose,

though its proof has no difficulty.

Theorem 2.6. The transpose T t : E∗ −→ BLip0(X,Y ) of the two-Lipschitz
operator T ∈ BLip0(X,Y ;E) is linear and bounded with ‖T t‖ = BLip(T ).

Proof. The linearity is clear. From the inequalities∣∣T t(e∗) (x, y)− T t(e∗) (x, y′)− T t(e∗) (x′, y) + T t(e∗) (x′, y′)
∣∣

≤ ‖e∗‖ ‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖
≤ ‖e∗‖BLip(T )d (x, x′) d (y, y′) ,

it follows that BLip(T t(e∗)) ≤ BLip(T ) ‖e∗‖ , for each e∗ ∈ E∗. Which implies
that the linear mapping T t is bounded and ‖T t‖ ≤ BLip(T ). To have the
reverse inequality, let x, x′ ∈ X and y, y′ ∈ Y . Then,

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖
= sup

‖e∗‖≤1
|e∗ (T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′))|

≤ sup
‖e∗‖≤1

BLip(T t(e∗))d (x, x′) d (y, y′)

=
∥∥T t∥∥ d (x, x′) d (y, y′) ,

from which we conclude that BLip(T ) ≤ ‖T t‖ . �

Recall the notion of compact two-Lipschitz operators. Let X and Y be pointed
metric spaces and let E be a Banach space. For every T ∈ BLip0(X,Y ; E)
consider ImBLip(T ) the bounded subset of E formed by all vectors of the form

T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)

d(x, x′)d(y, y′)
,

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 51



E. Dahia

where x, x′ ∈ X, y, y′ ∈ Y with x 6= x′ and y 6= y′. The mapping T is called
compact if ImBLip(T ) is relatively compact in E. (see [10, Definition 4.1]).

Example 2.7. Let non-zero Lipschitz functions f ∈ X#, g ∈ Y # and e ∈ E.
The mapping T : X×Y −→ E defined by T (x, y) = f(x)g(y)e is two-Lipschitz
and BLip(T ) = Lip(f)Lip(g) ‖e‖. (see the paragraph after [10, Remark 2.7]).
An easy computation shows that ImBLip(T ) consists of all elements v ∈ E of
the form

v =
(f(x)− f(x′))

d(x, x′)

(g(y)− g(y′))

d(y, y′)
e,

where x 6= x′ ∈ X and y 6= y′ ∈ Y. It is a bounded set in the one-dimensional
subspace generated by e and so, ImBLip(T ) is relatively compact in E and
then T is compact.

As a consequence of the bi-linearization theorem and [13, Proposition 8], we
obtain the following characterization of compact two-Lipschitz operators into
the Banach space c0 of all null sequences in K.

Theorem 2.8. Let X and Y be pointed metric spaces and let T ∈ BLip0(X,Y ; c0).
Then T is compact if and only if T can be written as T (x, y) = (an(x, y))n for
a sequence (an)n of two-Lipschitz functionals on X × Y with BLip(an) −→ 0.

Proof. By [10, Theorem 4.3] we have that T is compact if and only if TB :Æ(X)
×Æ(Y ) −→ c0 is bilinear compact and by [13, Proposition 8] this is equivalent
to TB has the form TB(m,m′) = (bn(m,m′))n with (bn)n ⊂ L(Æ(X),Æ(Y );K)
and ‖bn‖ −→ 0. In the other hand, by Theorem 1.1 there exists (an)n ⊂
BLip0(X,Y ) such that (an)B = bn and

T (x, y) = TB(mx0,my0) = ((an)B (mx0,my0))
n

= (an(x, y))n ,

for every x ∈ X and y ∈ Y. Then we have that T is compact if and only if
T (x, y) = (an(x, y))n with BLip(an) = ‖bn‖ −→ 0. �

In the following result we present a Schauder type theorem for compact
two-Lipschitz operators. In order to prove this result we need the following
lemma.

Lemma 2.9. Let X and Y be pointed metric spaces and let E be a Ba-
nach space. For every T ∈ BLip0(X,Y ;E), we have R ◦ T t = (TB)∗ where
R : BLip0(X,Y ) −→ L(Æ(X),Æ(Y );K) is the isomorphic isometry given by
R(φ) = φB (by taking E = K in (2.6)).
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Proof. For any m1 =
n∑
i=1

αimxix′i
∈ M(X), m2 =

r∑
j=1

βjmyjy′j
∈ M(Y ) and

e∗ ∈ E∗ we have

R ◦ T t(e∗)(m1,m2)

=

n∑
i=1

αi

r∑
j=1

βj
(
T t(e∗)

)
B

(
mxix′i

,myjy′j

)
=

n∑
i=1

αi

r∑
j=1

βje
∗ (T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′))

= e∗ (TB(m1,m2))

= (TB)∗(e∗)(m1,m2),

and the result follows. �

Theorem 2.10. The two-Lipschitz operator T ∈ BLip0(X,Y ;E) is compact
if and only if its transpose T t is a compact linear operator.

Proof. By [10, Theorem 4.3], T is two-Lipschitz compact if and only if its bi-
linearization TB :Æ(X)×Æ(Y ) −→ E is compact bilinear operator. This is
equivalent to (TB)∗ : E∗ −→ L(Æ(X),Æ(Y );K) is linear compact (see [12,
Theorem 2.6]). On the other hand, by the previous lemma we have R ◦ T t =
(TB)∗ (then T t = R−1 ◦ (TB)∗). By the ideal property concerning the class of
linear compact operators, we have that (TB)∗ is compact if and only if T t is
too. �

3. The extension of two-Lipschitz operators

In the following we give a condition for a two-Lipschitz mapping to be ex-
tended from the cartesian product M ×N of two closed subspaces of Banach
spaces E and F to the cartesian product E × F.

Recall that a closed subspace F of a Banach space E is complemented in E
if there exists another closed subspace G such that E = F ⊕G. This definition
is equivalent to say that F is the range of a continuous projection P on E. If
λ ≥ 1, we say that F is λ-complemented in E if ‖P‖ ≤ λ.

Theorem 3.1. Let E,F and G be Banach spaces. If M is an α-complemented
subspace in E and N is an β-complemented subspace in F , then every two-
Lipschitz operator T : M × N −→ G has a two-Lipschitz operator extension

T̃ : E × F −→ G with

BLip(T ) ≤ BLip(T̃ ) ≤ BLip(T )αβ.

Proof. Let P : E −→ E and P ′ : F −→ F be the continuous projections
having range M and N respectively, with ‖P‖ ≤ α and ‖P ′‖ ≤ β. Consider
the linear operators Q : E −→ M and Q′ : F −→ N defined by Q(x) = P (x)
and Q′(y) = P ′(y) for all x ∈ E, y ∈ F . It follow that ‖Q‖ = ‖P‖ ≤ α

and ‖Q′‖ = ‖P ′‖ ≤ β. Let us consider the mapping T̃ = T ◦ (Q,Q′) where
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(Q,Q′)(x, y) := (Q(x), Q′(y)), x ∈ E, y ∈ F . Then, using [10, Proposition 2.3]
and taking into account that every linear operators is a Lipschitz mapping, we

obtain T̃ ∈ BLip0(E,F ;G) with BLip(T̃ ) ≤ BLip(T )αβ. Let us check that T̃
is an extension of T to E × F. If x ∈ M,y ∈ N then Q(x) = P (x) = x and

Q′(y) = P ′(y) = y, this implies that T̃ (x, y) = T (x, y). Finally,

BLip(T̃ ) = sup
x 6=x′∈E,y 6=y′∈F

∥∥∥T̃ (x, y)− T̃ (x, y′)− T̃ (x′, y) + T̃ (x′, y′)
∥∥∥

d(x, x′)d(y, y′)

≥ sup
x 6=x′∈M,y 6=y′∈N

‖T (x, y)− T (x, y′)− T (x′, y) + T (x′, y′)‖
d(x, x′)d(y, y′)

= BLip(T ).

�

The next corollary is a natural generalization of the bilinear extension result
[11, Corollary 2] to the two-Lipschitz settings. Its proof is an easy consequence
of the above theorem.

Corollary 3.2. If M and N are complemented subspaces in the Banach spaces
E and F respectively with projections of norm one, then every T ∈ BLip0(M,N ;

G) admits an extension T̃ ∈ BLip0(E,F ;G) with BLip(T̃ ) = BLip(T ).

Let X,Y be pointed metric spaces and let X0, Y0 be subset of X and Y
respectively. Suppose that the base point of X,Y belongs to X0, Y0 respec-
tively. The following results deals with the extension of two-Lipschitz function-
als T : X0 × Y0 −→ K under some requirements on the pointed metric spaces
X,Y,X0, Y0.

Recall that a metric space X is said to be 1-injective (or absolute Lipschitz
retract in the terminology of [6]) if for every metric space Y and for every
subset Z ⊂ Y , every Lipschitz function f : Z −→ X can be extended to a

Lipschitz function f̃ : Y −→ X with Lip(f) = Lip(f̃).

Theorem 3.3. Suppose that X# and Y #
0 are 1-injective. Then every two-

Lipschitz functional T on X0 × Y0 can be extended to X × Y with the same
norm.

Proof. Let T ∈ BLip0(X0, Y0). For fixed s ∈ X0 consider As ∈ Y #
0 defined by

As(t) = T (s, t) for every t ∈ Y0 (see [10, Proposition 2.2]). Define the mapping

ϕ : X0 −→ Y #
0 by ϕ(s) = As, then the following computation shows that

ϕ ∈ Lip0(X0, Y
#
0 ) and Lip(ϕ) = BLip(T ),

sup
s6=s′

Lip(ϕ(s)− ϕ(s′))

d(s, s′)

= sup
s6=s′

(
sup
t6=t′

|(ϕ(s)− ϕ(s′))(t)− (ϕ(s)− ϕ(s′))(t′)|
d(s, s′)d(t, t′)

)

= sup
s6=s′,t6=t′

|T (s, t)− T (s′, t)− T (s, t′) + T (s′, t′)|
d(s, s′)d(t, t′)

.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 54



The extension of two-Lipschitz operators

Since Y #
0 is a Lipschitz 1-injective metric space, there exists ϕ̃ ∈ Lip0(X,Y #

0 )
that extends ϕ to X with Lip(ϕ) = Lip(ϕ̃). Let us consider the mapping
T1 : X × Y0 −→ K with T1(x, t) = ϕ̃(x)(t) for every x ∈ X, t ∈ Y0. This
mapping is two-Lipschitz since ϕ̃(x)(0) = ϕ̃(0)(t) = 0 and

BLip(T1) = sup
x 6=x′,t6=t′

|T1(x, t)− T1(x′, t)− T1(x, t′) + T1(x′, t′)|
d(x, x′)d(t, t′)

= sup
x 6=x′,t6=t′

|(ϕ̃(x)− ϕ̃(x′))(t)− (ϕ̃(x)− ϕ̃(x′))(t′)|
d(x, x′)d(t, t′)

= sup
x 6=x′

Lip(ϕ̃(x)− ϕ̃(x′))

d(x, x′)
= Lip(ϕ̃).

It is easy to see that T1 is an extension of T to X × Y0. Using a similar

procedure for the spaces X# and Y0 we obtain the desired extension T̃ of the
two-Lipschitz T to X × Y . Moreover, we have

BLip(T̃ ) = BLip(T1) = Lip(ϕ̃) = Lip(ϕ) = BLip(T ).

�

Acknowledgements. We would like to express my gratitude to the referee
for his/her very careful reading of the manuscript, many valuable comments,
suggestions which have improved the final version of the paper. Also, I acknowl-
edge with thanks the support of the General Direction of Scientific Research
and Technological Development (DGRSDT), Algeria.

References

[1] D. Achour, E. Dahia, and M. A. S. Saleh. Multilinear mixing operators and Lipschitz
mixing operator ideals, Operators and Matrices 12, no. 4 (2018), 903–931.

[2] D. Achour, E. Dahia, and P. Turco, The Lipschitz injective hull of Lipschitz operator
ideals and applications, Banach J. Math. Anal. 14 (2020), 1241–1257.

[3] D. Achour, E. Dahia, and P. Turco, Lipschitz p-compact mappings, Monatshefte für

Mathematik 189 (2019), 595–609.
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