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Abstract

We study the space H(SO) of all homomorphisms of the vector lattice of
all slowly oscillating functions on the half-line H = [0,∞). In contrast
to the case of homomorphisms of uniformly continuous functions, it
is shown that a homomorphism in H(SO) which maps the unit to
zero must be the zero-homomorphism. Consequently, we show that the
space H(SO) without the zero-homomorphism is homeomorphic to H×
(0,∞). By describing a neighborhood base of the zero-homomorphism,
we show that H(SO) is homeomorphic to the space H × (0,∞) with
one point added.
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1. Introduction

The aim of this note is to describe the real-valued homomorphisms of the
vector lattice of all slowly oscillating functions on the half-line H = [0,∞).

Slowly oscillating functions are used to define Higson compactifications [6]
and are functions that appear frequently in coarse geometry. By analyzing
slowly oscillating functions on H, it follows that its Higson corona νH is a
non-metrizable indecomposable continuum. Although this fact is topologically
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interesting in its own right, in the context of geometric group theory, it is
applied to characterize the number of ends of finitely generated groups by
whether the components of its Higson corona are decomposable or not [5].

Let U be the vector lattice of all uniformly continuous functions on H and
U∗ the sublattice of bounded functions. In [1], Félix Cabello Sánchez ana-
lyzed the space H(U) of all homomorphisms of U and gave a fine description
of it as follows: H(U) is homeomorphic to a quotient space1 obtained from
[1, 2] × βN × (0,∞) with one point added, where βN denotes the Stone-Čech
compactification of natural numbers. Also, by considering H(U∗), he gave a
description of the Samuel-Smirnov compactification of H (cf. [2], [9]).

Inspired by his work, we study the space H(SO) of all homomorphisms of the
vector lattice of slowly oscillating functions on H. In contrast to the case of ho-
momorphisms of uniformly continuous functions, it is shown that a homomor-
phism in H(SO) which maps the unit to zero must be the zero-homomorphism
(Proposition 3.9). Consequently, we show that the space H(SO) without the
zero-homomorphism is homeomorphic to H×(0,∞). By describing a neighbor-
hood base of the zero-homomorphism, we show that H(SO) is homeomorphic
to the space H× (0,∞) with one point added (Theorem 3.10).

2. Preliminaries

Throughout this note, H denotes the half-line [0,∞) with the metric given
by the absolute value |x − y|, x, y ∈ H, and N denotes the space of natural
numbers with the subspace metric. Also, X = (X, dX) is assumed to be a
metric space.

Let L ⊂ C(X) be a unital vector lattice, that is, L contains the unit 1 :
X → R. The sublattice of all bounded functions of L is denoted by L∗. A
function φ : L → R is called a homomorphism if it is a linear map preserving
joins and meets, that is, φ satisfies

(i) φ(f ∨ g) = φ(f) ∨ φ(g), φ(f ∧ g) = φ(f) ∧ φ(g), and
(ii) φ(λ · f + µ · g) = λ · φ(f) + µ · φ(g)

for all f, g ∈ L, λ, µ ∈ R. Note that (i) and (ii) implies

(iii) φ(|f |) = |φ(f)| for all f ∈ L.

Indeed, the formulation
|f | = f ∨ 0− f ∧ 0

implies that

φ(|f |) = φ(f) ∨ φ(0)− φ(f) ∧ φ(0)

= φ(f) ∨ 0− φ(f) ∧ 0

= |φ(f)|.
Recall that join and meet induce a partial order ≤ on H(L), that is,

f ≤ g ⇐⇒ f = f ∧ g

1Detailed equivalence relations in the quotient space are not described here because they

require preparation that is not needed in this note. See [1] for details.
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or equivalently,
f ≤ g ⇐⇒ g = f ∨ g.

Then (i) implies that

(iv) φ(f) ≤ φ(g) whenever f ≤ g.

Besides, (iii) implies that a homomorphism φ is positive, that is,

(v) φ(f) ≥ 0 whenever f ∈ L satisfies f ≥ 0.

The set of all homomorphisms φ : L → R is denoted by H(L). Note that
H(L) is a subset of RL. We consider the topology on H(L) inherited from RL.
Hence, a basic neighborhood of φ ∈ H(L) is given by

V (φ; f1, . . . , fn; ε) = {ϕ ∈ H(L) : |ϕ(fi)− φ(fi)| < ε, ∀i = 1, . . . , n},
where ε > 0 and fi ∈ L, i = 1, . . . , n. Put

K(L) = {φ ∈ H(L) : φ(1) = 1}.
Then it is easy to see that K(L) ⊂ H(L), and H(L) and K(L) are closed
subspaces of RL. In particular, H(L∗) and K(L∗) are compact spaces. Indeed,
they are closed subspaces of the Cartesian product∏

f∈L∗

[
inf f, sup f

]
.

For each x ∈ X, let δx : L → R be the evaluation homomorphism defined
by δx(f) = f(x) for every f ∈ L. We note that δx(1) = 1 for every x ∈ X, i.e.,
δx ∈ K(L). Then define

δ : X → K(L)

by δ(x) = δx for each x ∈ X. When we treat L∗, consider the map

eL∗ : X →
∏
f∈L∗

[
inf f, sup f

]
,

defined by eL∗(x) = (f(x))f∈L∗ for every x ∈ X. One should note that the
two maps δ : X → K(L∗) ⊂ RL and eL∗ : X →

∏
f∈L∗ [inf f, sup f ] ⊂ RL are

essentially the same correspondence.
A unital vector lattice L ⊂ C(X) is said to separate points and closed sets

in X provided that, for each closed set F ⊂ X and each point p ∈ X \F , there
exists f ∈ L such that f(p) 6∈ clR f(F ).

The following is a fundamental fact concerning K(L) (see [4, pp. 129–130],
[7, 1.7 (j)]).

Proposition 2.1. If L separates points and closed sets in X, then δ : X →
K(L) is a dense topological embedding.

Though K(L) is not compact in general, it can be considered as a real-
compactification of X by Proposition 2.1. See [4] for more information about
realcompactifications.

Let U(X) denote the lattice of all real-valued uniformly continuous functions
on X. We write U (resp. U∗) instead of U(H) (resp. U(H)∗) for notational
simplicity. The family U∗(X) has a ring structure with respect to R, but U(X)
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does not. Therefore, when considering unbounded vector lattices, we need to
consider lattice homomorphisms instead of ring homomorphisms.

Let αX and γX be compactifications of X. We say αX � γX provided that
there is a continuous map f : αX → γX such that f |X = idX . If αX � γX
and αX � γX then we say that αX and γX are equivalent compactifications
of X. Of course, two equivalent compactifications of X are homeomorphic.

It is easy to check that U∗(X) contains all constant maps, separates points
from closed sets, and is a closed subring of C∗(X) with respect to the sup-
metric, i.e., U∗(X) is a complete ring on functions (see [3, 3.12.22(e)]). Hence,
U∗(X) uniquely determines a compactification uX of X (see [3, 3.12.22 (e)],
[7, 4.5]), which is called the Samuel-Smirnov compactification of X (see [1],
[9]). We note that uX is equivalent to K(U∗(X)) = clRU∗(X)δ(X) because
of the equivalence of two maps δ : X → K(U∗(X)) and eU∗(X) : X →∏
f∈U∗(X)

[
inf f, sup f

]
.

Let (X, dX) be a metric space and let BdX (x, r) be the closed ball of radius
r centered at x ∈ X. A metric dX on X is called proper if BdX (x, r) is compact
for every x ∈ X and r > 0.

Let (X, dX) and (Y, dY ) be proper metric spaces. A map f : X → Y is said
to be slowly oscillating provided that, given R > 0 and ε > 0, there exists a
compact subset K ⊂ X such that

diamdY f(BdX (x,R)) < ε

for every x ∈ X \ K, where diamdA = sup{d(x, y) : x, y ∈ A}. Let SO(X)
denote the lattice of all real-valued slowly oscillating continuous functions on
a proper metric space X. The sublattice of all bounded functions of SO(X)
is denoted by SO(X)∗. When X = H we just write SO (resp. SO∗) instead
of SO(H) (resp. SO(H)∗) for notational simplicity. It is easy to check that
SO∗(X) is a closed subring of C∗(X) with respect to the sup-metric, namely,
a complete ring on functions. Hence, SO∗(X) uniquely determines a com-
pactification hX of X, which is called the Higson compactification of X. The
remainder νX = hX \ X is called the Higson corona of X (cf. [8], [6]). We
note that νX is compact and that hX and K(SO∗(X)) are equivalent com-
pactifications of X.

Proposition 2.2. If (X, d) is a proper metric space, then SO(X) ⊂ U(X).

Proof. Let f ∈ SO(X). Given ε > 0, there exists a compact subset K ⊂ X
such that diam f(B(x, 1)) < ε whenever x ∈ X \K. Put K ′ = clB(K, 1). Since
X is a proper metric space, K ′ is compact. Consider a family

U = {f−1(B(f(x), ε/2)) : x ∈ K ′}.

Since K ′ ⊂
⋃

U , we can take a Lebesgue number δ0 > 0 of U , that is,
every δ0-neighborhood of x ∈ K ′ is contained in some element of U . Let
δ = min{δ0, 1}. Then d(x, y) < δ implies that x, y ∈ K ′ or x, y ∈ X \ K.
Hence, d(f(x), f(y)) < ε whenever d(x, y) < δ. �
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3. Homomorphisms of the lattice of slowly oscillating functions
on the half-line

We note that f : H → R is a slowly oscillating function (f ∈ SO) if and
only if for every R > 0 and ε > 0 there exists M > 0 such that

diam f([x, x+R]) < ε for every x > M.

Let τ : H→ R be the map defined by

τ(x) = x+ 1

for every x ∈ H. One should note that τα ∈ SO for every 0 < α < 1.
For each f ∈ SO, we consider the map f∗ : H(SO)→ R defined by

f∗(φ) = φ(f)

for every φ ∈ H(SO). Recall that a basic neighborhood of φ ∈ H(SO) is of
the form

V (φ; f1, . . . , fn; ε) = {ϕ ∈ H(SO) : |ϕ(fi)− φ(fi)| < ε, ∀i = 1, . . . , n},

where ε > 0 and fi ∈ SO, i = 1, . . . , n. Now it is easy to see that f∗ is
continuous.

Proposition 3.1. K(SO) = δ(H).

Proof. It is obvious that δ(H) ⊂ K(SO). We shall show that K(SO) ⊂ δ(H).
Let φ ∈ K(SO). Note that δ(H) is dense in K(SO) by Proposition 2.1. Thus
we can take a net (xα)α in H such that (δxα)α converges to φ. For each f ∈ SO,
the net (f∗(δxα))α = (δxα(f))α = (f(xα))α converges to f∗(φ) = φ(f) because
f∗ is continuous, that is,

φ(f) = lim
α
f(xα).

Taking f =
√
τ ∈ SO, we have

φ(
√
τ) = lim

α

√
xα + 1.

Put xφ = (φ(
√
τ))2 − 1. Then we have xφ = limα xα. Hence, we conclude that

φ = δxφ ∈ δ(H), i.e., K(SO) ⊂ δ(H). �

Corollary 3.2. For each φ ∈ H(SO), φ(1) > 0 if and only if there exist
xφ ∈ H and c > 0 such that φ = c · δxφ . In particular, if φ(1) > 0 then the
point xφ ∈ H is uniquely determined.

Proof. If φ(1) > 0 then φ(1)−1 · φ ∈ K(SO). By Proposition 3.1, there exists
xφ ∈ H such that φ(1)−1 ·φ = δxφ , i.e., φ = φ(1) · δxφ . The reverse implication
is trivial.

Suppose that φ(1) > 0 and φ = φ(1) · δs = φ(1) · δt for some s, t ∈ H then
the equation φ(τ) = φ(1) · (s+ 1) = φ(1) · (t+ 1) implies that s = t. �

The following two lemmas are modifications of those stated in [1, p. 418].
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Lemma 3.3. Let f ∈ SO be a map such that f ≥ 1. If there exits φ ∈
H(SO) such that φ(f) = 1 and φ(1) = 0, then φ is contained in the closure of
{f(n)−1 · δn : n ∈ N} in H(SO).

Proof. Suppose that there exists φ ∈ H(SO) such that φ(f) = 1 and φ(1) =
0 but which is not contained in the closure of {f(n)−1 · δn : n ∈ N} in
H(SO). Then there exist ε > 0 and g1, . . . , gk ∈ SO such that f(n)−1 ·
δn 6∈ V (φ; g1, . . . , gk; ε) for every n ∈ N. So, for each n ∈ N, there exists
i ∈ {1, . . . , k} such that ∣∣φ(gi)− f(n)−1 · gi(n)

∣∣ ≥ ε.
Hence, we have

k∨
i=1

|φ(gi) · f(n)− gi(n)| ≥ ε · f(n)

for every n ∈ N. Let ci = φ(gi) for each i = 1, . . . , k. Put

h = 0 ∧

(
k∨
i=1

|ci · f − gi| − ε · f

)
.

Then h ∈ SO ⊂ U and h(n) = 0 for every n ∈ N. It follows from uniformity
that h is a bounded function. So, there exists c > 0 such that |h| ≤ c ·1. Thus,
we have |φ(h)| = φ(|h|) ≤ c · φ(1) = 0, i.e., φ(h) = 0. We note that

k∨
i=1

|ci · f − gi| ≥ h+ ε · f

and

φ

(
k∨
i=1

|ci · f − gi|

)
=

k∨
i=1

|ci · φ(f)− φ(gi)| = 0.

However, we have φ(h+ ε · f) = φ(h) + ε · φ(f) = ε > 0, a contradiction. �

Let F be an ultrafilter on N0 = N ∪ {0}. Then we define the operation
limF(n) by

lim
F(n)

f(n) =
⋂
F∈F

cl {f(n) : n ∈ F}

for every f ∈ C(H) (cf. [1]). If f ∈ C(H) is a map such that lim
F(n)

f(n) 6= ∅

then the set lim
F(n)

f(n) consists of a single point since F is an ultrafilter.

Recall that the Stone-Čech compactification βN0 of N0 can be considered as
the space of all ultrafilters on N0.

Lemma 3.4. Let f ∈ SO be a map such that f ≥ 1. Suppose that there exists
a homomorphism φ ∈ H(SO) such that φ(f) = 1 and φ(1) = 0. Then there

exists a free ultrafilter F such that the function φfF : SO → R defined by

φfF (g) = lim
F(n)

g(n)

f(n)
, (g ∈ SO)
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is a well-defined homomorphism that fulfils φfF = φ.

Proof. Suppose that there exists a homomorphism φ ∈ H(SO) such that
φ(f) = 1 and φ(1) = 0 for some f ∈ SO with f ≥ 1. For each neighbor-
hood V of φ in H(SO), let NV =

{
n ∈ N : f(n)−1 · δn ∈ V

}
. Then NV 6= ∅

by Lemma 3.3. Put

G = {NV : V is a neighborhood of φ}.

Then G becomes a filter on N. Let F be an ultrafilter on N refining G . We
note that F must be a free ultrafilter since φ(1) = 0. Indeed, if G is a fixed
ultrafilter, say lim G = n0, then φ = f(n0)−1δn0

. Hence, we have φ(1) =
f(n0)−1 6= 0, a contradiction.

Given ε > 0 and g ∈ SO, we consider a neighborhood Vε = V (φ; g; ε) of φ
in H(SO), that is,

Vε = {ϕ ∈ H(SO) : |ϕ(g)− φ(g)| < ε}.

Since
{
n ∈ N : f(n)−1 · δn ∈ Vε

}
∈ G ⊂ F , we have

φfF (g) =
⋂
F∈F

cl

{
g(n)

f(n)
: n ∈ F

}
⊂
⋂
G∈G

cl

{
g(n)

f(n)
: n ∈ G

}
⊂ B(φ(g), ε).

Then φfF (g) is not empty by the compactness of B(φ(g), ε) and it is uniquely
determined because F is an ultrafilter. Since ε is arbitrary, it follows that

φfF (g) = φ(g), that is, φfF is a well-defined homomorphism that fulfils φfF =
φ. �

The following lemma is the key to this note, as it implies that a homomor-
phism in H(SO) which maps the unit to zero must be the zero-homomorphism
(Proposition 3.9). Using this fact, we will derive our main result (Theorem
3.10).

Lemma 3.5 (Vanishing Criterion). Let φ ∈ H(SO). If there are two maps
f, g ∈ SO such that 1 ≤ f ≤ g and lim

n→∞
f(n)−1 · g(n) =∞, then the condition

φ(1) = 0 implies that φ(f) = 0.

Proof. Let f, g ∈ SO be such that 1 ≤ f ≤ g and limn→∞ f(n)−1 · g(n) =∞.
Let φ ∈ H(SO) be such that φ(1) = 0. Suppose that φ(f) 6= 0. Replacing φ by
φ(f)−1 · φ, we may assume that φ(f) = 1. Then, by Lemma 3.4, there exists a

free ultrafilter F such that φ = φfF . However, since F is a free ultrafilter, we
have

φ(g) = φfF (g) = lim
F(n)

g(n)

f(n)
=∞,

a contradiction. �

Definition 3.6. A sequence a = (an) ⊂ N is called a strictly increasing se-
quence provided that an < an+1 for every n ∈ N. Note that if a = (an) is a
strictly increasing sequence then lim

n→∞
an =∞ since a ⊂ N.
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Let a be a strictly increasing sequence. Let η0a = τ : H → R. Suppose that
ηn−1a has been defined for n ≥ 1. Then we define ηna : H→ R by

ηna (x) =

{
ηn−1a (x), 0 ≤ x < an,

ηn−1a (an) + (x− an) /n, an ≤ x,

for every x ∈ H (see Figure 1). Note that ηn−1a ≥ ηna ≥ 1 for every n ∈ N.

0

1

η0a = τ

a1 a2

η1a

η2a

Figure 1. The graphs of η0a, η1a and η2a.

We define ηa : H→ R by

ηa(x) = lim
n→∞

ηna (x)

for every x ∈ H. We note that if x ≤ an then

ηa(x) = ηna (x) = ηn−1a (x).

It is easy to see that ηa : H→ R is a well-defined slowly oscillating continuous
function such that ηa ≥ 1. We call ηa the slowly oscillating function with
respect to a.

Proposition 3.7. For each f ∈ SO, there exists a strictly increasing sequence
a ⊂ N and L > 0 such that |f | ≤ L · ηa.

Proof. Since f ∈ SO, we can take a strictly increasing sequence a = (an) ⊂ N
such that

(1) diam f(B(x, 1)) < (n+ 1)−4 for every x ≥ an.

Let L = 1 + sup{|f(x)| : x ≤ a1}. Then we have

|f(x)|+ 1 ≤ L ≤ L · τ(x) = L · η0a(x)

for every x ≤ a1. Suppose that we have shown that
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(2)n |f(x)|+ n−2 ≤ L · ηn−1a (x) for every x ≤ an.

If x ≤ an then (2)n+1 follows from (2)n since |f(x)|+ (n+ 1)−2 ≤ |f(x)|+n−2

and ηna (x) = ηn−1a (x). Now suppose that an ≤ x ≤ an+1. Then we have

|f(x)|+ 1

(n+ 1)2
≤ |f(an)|+ x− an

(n+ 1)4
+

1

(n+ 1)4
+

1

(n+ 1)2
(by (1))

< |f(an)|+ x− an
n+ 1

+
1

n2

≤ L · ηna (an) +
x− an
n+ 1

(by (2)n)

≤ L · ηn−1a (an) +
x− an
n

(∵ ηna (an) = ηn−1a (an))

≤ L ·
(
ηn−1a (an) +

x− an
n

)
(∵ L ≥ 1)

= L · ηna (x).

Thus (2)n+1 holds. Consequently, we have |f | ≤ L · ηa since lim
n→∞

ηna = ηa and

lim
n→∞

an =∞. �

Proposition 3.8. For each strictly increasing sequence a ⊂ N, there exists a
strictly increasing sequence b ⊂ N such that ηa ≤ ηb and lim

n→∞
ηa(n)−1 ·ηb(n) =

∞.

Proof. Let a = (an) ⊂ N be a strictly increasing sequence. Let b = (bn) be a
strictly increasing sequence such that

(1) b0 = a1 and
(2) bn ≥ n2 · ηa(bn−1) + bn−1 + a(n+1)3 for each n ∈ N.

We shall show that ηb(x) ≥ n · ηa(x) for every x ∈ [bn, bn+1].
Since bi > ai for i = 1, 2, we have ηb(x) ≥ 1 · ηa(x) for every x ∈ [b1, b2].

Suppose that we have shown that

(3) ηb(x) ≥ (n− 1) · ηa(x) whenever x ∈ [bn−1, bn] for n ≥ 2.

Let x ∈ [bn, bn+1]. We write x = bn−1 + t, t > 0 for some technical reason.
Then we have

t

n2
> ηa(bn−1) (4)

Indeed, since x = bn−1 + t ≥ bn, we have

t ≥ bn − bn−1
> n2 · ηa(bn−1) + a(n+1)3 (by (2))

> n2 · ηa(bn−1).
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Then we have

ηb(x) = ηnb (x) = ηn−1b (bn) +
1

n
(x− bn)

= ηn−2b (bn−1) +
1

n− 1
(bn − bn−1) +

1

n
(x− bn)

≥ ηn−2b (bn−1) +
1

n
(bn − bn−1 + x− bn)

= ηn−2b (bn−1) +
1

n
(x− bn−1)

= ηn−2b (bn−1) +
t

n

= ηb(bn−1) +
t

n

≥ (n− 1) · ηa(bn−1) +
t

n
. (5)

The last inequality follows from (3). Since bn−1 > an3 , there exists k ≥ n3

such that ak ≤ bn−1 < ak+1. Then we have

ηa(x) ≤ ηka(x) = ηk−1a (ak) +
1

k
(x− ak)

= ηk−1a (ak) +
1

k
(bn−1 − ak) +

1

k
(x− bn−1)

= ηka(bn−1) +
1

k
(x− bn−1)

= ηka(bn−1) +
t

k

≤ ηa(bn−1) +
t

n3
. (6)

Hence, we have

ηb(x)− n · ηa(x) ≥ (n− 1) · ηa(bn−1) +
t

n
− n · ηa(x) (by (5))

≥ (n− 1) · ηa(bn−1) +
t

n
− n ·

(
ηa(bn−1) +

t

n3

)
(by (6))

= (n− 1) · t
n2
− ηa(bn−1)

> (n− 1) · ηa(bn−1)− ηa(bn−1) (by (4))

= (n− 2) · ηa(bn−1)

≥ 0.

Thus we conclude that

lim
n→∞

ηb(n)

ηa(n)
≥ lim
n→∞

n =∞.

�

Proposition 3.9. If φ ∈ H(SO) satisfies φ(1) = 0 then φ = 0.
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Proof. Let f ∈ SO. Suppose that φ(1) = 0. By Proposition 3.7, there exists a
strictly increasing sequence a ∈ N and L > 0 such that |f | ≤ L ·ηa. Recall that
ηa ≥ 1. By Proposition 3.8, there exists a strictly increasing sequence b ∈ N
so that 1 ≤ ηa ≤ ηb and

lim
n→∞

ηb(n)

ηa(n)
=∞.

Thus, the condition φ(1) = 0 implies that φ(ηa) = 0 by the Vanishing Criterion
(Lemma 3.5). Hence, we have

|φ(f)| = φ(|f |) ≤ L · φ(ηa) = 0,

i.e., φ(f) = 0. Since f can be taken arbitrary, φmust be the zero-homomorphism.
�

By Proposition 3.9, it follows that the structure of H(SO) is very simple in
contrast to the case of uniformly continuous functions [1] (see also [2]).

Theorem 3.10. The space H(SO) of all homomorphisms of the vector lattice
of all slowly oscillating functions on the half-line H is homeomorphic to the
space (H× (0,∞)) ∪ {0} where a neighborhood base of the point 0 consists of
sets of the form:

{(x, y) ∈ H× (0,∞) : y ≤ ε · ηa(x)−1} ∪ {0}

for some ε > 0 and the slowly oscillating function ηa with respect to some
strictly increasing sequence a.

Proof. By Proposition 3.9, every non-zero homomorphism φ ∈ H(SO) satisfies
φ(1) > 0 since φ is positive. Hence, every φ ∈ H(SO) \ {0} is uniquely
expressed as φ = φ(1) · δxφ for some xφ ∈ H by Corollary 3.2. Therefore, the
function Φ : H(SO) \ {0} → H× (0,∞) defined by

Φ(φ) = (xφ, φ(1))

is a well-defined bijection.
The function Φ is continuous. To see this, fix φ ∈ H(SO) and let ε > 0. We

consider following two neighborhoods of φ:

V (φ; 1; ε1) = {ϕ ∈ H(SO) : |ϕ(1)− φ(1)| < ε1},
V (φ; τ ; ε2) = {ϕ ∈ H(SO) : |ϕ(τ)− φ(τ)| < ε2},

where

(1) ε1 < min
{
ε/2, φ(1)·ε

2(xφ+1)

}
and

(2) ε2 <
φ(1)·ε

2 − ε1(xφ + 1).
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Then for each ϕ ∈ V (φ; 1; ε1) ∩ V (φ; τ ; ε2), we have

φ(1)|xφ − xϕ| = |φ(1)(xφ + 1)− φ(1)(xϕ + 1)|
≤ |φ(1)(xφ + 1)− ϕ(1)(xφ + 1)|

+ |ϕ(1)(xφ + 1)− φ(1)(xϕ + 1)|
= |φ(1)− ϕ(1)|(xϕ + 1) + |ϕ(τ)− φ(τ)|
< ε1(xϕ + 1) + ε2.

By (2), we have

|xφ − xϕ| <
ε1(xφ + 1) + ε2

φ(1)
< ε/2.

Thus we have

d(Φ(φ),Φ(ϕ)) ≤ d((xφ, φ(1)), (xφ, ϕ(1))) + d((xφ, ϕ(1)), (xϕ, ϕ(1)))

= |ϕ(1)− φ(1)|+ |xϕ − xφ|
< ε/2 + ε/2 = ε.

Next we shall show that Φ−1 : H × (0,∞) 3 (x, s) 7→ s · δx ∈ H(SO) \ {0}
is continuous. Given (x, s) ∈ H× (0,∞) and ε > 0, let f ∈ SO and consider a
basic neighborhood

V (s · δx; f ; ε) = {ϕ ∈ H(SO) : |ϕ(f)− s · f(x)| < ε}
of Φ−1(x, s) = s · δx. We take λ1 > 0, λ2 > 0 and λ0 > 0 so that

(3) λ1 · |f(x)| < ε/2,
(4) (s+ λ1) · λ2 < ε/2,
(5) λ0 < min{λ1, λ2} and
(6) |f(x)− f(y)| < λ2 whenever |x− y| < λ0.

Suppose that (y, t) ∈ H×(0,∞) satisfies d((x, s), (y, t)) < λ0. Then |x−y| < λ0
and |s− t| < λ0 ≤ λ1, in particular, t ≤ s+ λ1. Hence, we have

|Φ−1(x, s)(f)− Φ−1(y, t)(f)| = |s · f(x)− t · f(y)|
≤ |s · f(x)− t · f(x)|+ |t · f(x)− t · f(y)|
= |s− t| · |f(x)|+ t · |f(x)− f(y)|
≤ λ1 · |f(x)|+ (s+ λ1) · λ2
≤ ε/2 + ε/2 = ε.

Therefore, Φ−1(y, t) ∈ V (s · δx; f ; ε). Consequently, Φ is a homeomorphism.
Finally, we shall consider neighborhoods of 0 ∈ H(SO). We can take a

subbase of neighborhoods of 0 in H(SO) as a family which consists of sets of
the form:

V (0; f ; ε) = {ϕ ∈ H(SO) : |ϕ(f)− 0(f)| < ε}
= {ϕ ∈ H(SO) : |ϕ(1) · δxϕ(f)| < ε}
= {ϕ ∈ H(SO) : |ϕ(1) · f(xϕ)| < ε}

for some f ∈ SO and ε > 0.
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Let f ∈ SO and ε > 0. By Proposition 3.7, there exists L > 0 and a strictly
increasing sequence a such that |f | ≤ L · ηa. So, if ϕ ∈ V (0;L · ηa; ε) then
|ϕ(1) · f(xϕ)| < |ϕ(1) · L · ηa(xϕ)| < ε, that is,

V (0;L · ηa; ε) ⊂ V (0; f ; ε).

Since V (0;L ·ηa; ε) = V (0; ηa; ε ·L−1), we can take a subbase of neighborhoods
of 0 in H(SO) as a family which consists of sets of the form:

V (0; ηa; ε) = {ϕ ∈ H(SO) : ϕ(1) · ηa(xϕ) < ε}

for some ε > 0 and a strictly increasing sequence a ⊂ N. Note that for any
two strictly increasing sequences a = (an) and b = (bn), if we take a strictly
increasing sequence c = (cn) such that cn ≥ max{an, bn} then we have ηc ≥
ηa ∨ ηb, i.e.,

V (0; ηc; ε) ⊂ V (0; ηa, ηb; ε).

Thus, we can take a base of neighborhoods of 0 in H(SO) as a family which
consists of sets of the form V (0; ηa; ε) for some ε > 0 and a strictly increasing
sequence a ⊂ N. Consequently, we can take a base of neighborhoods of 0 in
H× (0,∞) ∪ {0} as a family which consists of sets of the form

Φ(V (0; ηa; ε)) ∪ {0} = {(xϕ, ϕ(1)) ∈ H× (0,∞) : ϕ(1) · ηa(xϕ) < ε} ∪ {0}
= {(x, y) ∈ H× (0,∞) : y ≤ ε · ηa(x)−1} ∪ {0}

for some ε > 0 and an increasing sequence a ⊂ N. �
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