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Abstract

This paper presents some existence and uniqueness results for a solution
of a system of equations. Our results extend and generalize the well-
known and celebrated results of Boyd and Wong [Proc. Amer. Math.
Soc. 20 (1969)], Matkowski [Dissertations Math. (Rozprawy Mat.) 127
(1975)], Proinov [Nonlinear Anal. 64 (2006)], Ri [Indag. Math. (N. S.)
27 (2016)] and many others. We also present some illustrative examples
to validate our results.
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1. Introduction and Preliminaries

Let (Wi, ρi), i = 1, 2, . . . , n, be metric spaces and W := W1 × · · · ×Wn.
Assume that Ti : W → Wi, i = 1, . . . , n, are mappings, N the set of natural
numbers, R the set of real numbers and (ωm) = (ωm1 , . . . , ω

m
n ), m ∈ N, be a

sequence in W . We denote Φ = {ϕ : [0,∞)→ [0,∞) | ϕ(t) < t, lim sup
t→s+

ϕ(t) <

s for all t > 0}.

In 1975, Matkowski [20] obtained an important generalization of the Banach
contraction theorem (BCT) for a system of mappings (T1, . . . , Tn) on the finite
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product of metric spaces and established an existence and uniqueness result to
demonstrate a solution of the following system of equations:

Ti(ω1, . . . , ωn) = ωi, i = 1, 2, . . . , n. (1.1)

Using some slightly different conditions, Czerwik [7] generalized a certain fixed
point result of Eldestein [8] and established the following existence and unique-
ness result for a system of mappings.

Theorem 1.1 ([7]). Let (Wi, ρi), i = 1, 2, . . . , n, be compact metric spaces.
Suppose that Ti : W →Wi, i = 1, 2, . . . , n, fulfill the following conditions:

ρi (Tiω, Tiω̄) <

n∑
k=1

aikρk(ωk, ω̄k) in B = W ×W −4,

|λi| ≤ 1, i = 1, 2, . . . , n

where 4 = {(ω, ω̄) ∈ W × W : ωi = ω̄i, i = 1, 2, . . . , n}, aik > 0, i, k =
1, . . . , n, and λi, i = 1, 2, . . . , n are characteristic roots of the matrix (aik), i, k =
1, . . . , n. Then the system of equations (1.1) has a unique solution.

These types of results are fruitful to study the existence solutions of the
system of functional equations of the following form:

φi (t) = hi (t, φ1 [fi1 (t)] , ..., φn [fin (t)]) for i = 1, 2, ..., n (1.2)

where fik : A → A ⊂ X 6= ∅, hi : X × Rn → R, i, k = 1, 2, . . . , n and
φi : R→ R, i = 1, 2, ..., n are the unknown functions.

In 1981, Reddy and Subrahmanyam [26] generalized Krasnoselski’s fixed
point result [18] for two systems of mappings and applied it to find convex so-
lutions of the system of functional equations (1.2). On the same line, Khantwal
and Gairola [16] generalized the result of Matkowski to provide an existence
result for bounded solutions of the system of functional equations (1.2). Due to
applicability of finding a solution of the system of functional equations (1.2),
many extensions and generalizations of Matkowski’s result [19, 20] have ap-
peared in the literature (see [1], [6], [9], [10], [11], [12], [15], [22], [27], [29], [30],
[31] and references therein).

On the other hand, Proinov [25] generalized the BCT to more general class
of mappings. He introduced a new class of mappings, which includes the con-
traction mappings of Boyd-Wong [3], Matkowski [20] and Meir-Keeler [23] type
and established the following result.

Theorem 1.2 ([25]). Let (Y, ρ) be a complete metric space. Assume that
g : Y → Y is an asymptotically regular and continuous mapping. If there exists
a function φ : [0,∞) → [0,∞) such that for any ε > 0 there exists δ > ε such
that ε < t < δ implies φ(t) ≤ ε and the following conditions hold:

(P1): ρ(g(u), g(v)) ≤ φ(L(u, v)) for all u, v ∈ Y ,
(P2): ρ(g(u), g(v)) < L(u, v), whenever L(u, v) 6= 0,
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where L(u, v) = ρ(u, v) + η[ρ(u, g(u)) + ρ(v, g(v))], η ≥ 0, then g has a fixed
point w ∈ Y .

Moreover, for η = 1, the continuity of g can be dropped if the function φ is
continuous and φ(t) < t for t > 0.

This result generalizes or extends certain results of Ćirić [5], Jacimiski [14],
Matkowski [21] and others. For recent developments along this direction one
can refer to [2], [17], [24] and [32].

In 2016, Ri [28] obtained a generalization of the BCT and the Boyd and
Wong’s fixed point theorem by relaxing the requirement of upper semi-continuity
of the control function φ used in Boyd and Wong’s result [3].

Theorem 1.3 ([28]). Let (Y, ρ) be a complete metric space and ϕ : [0,∞) →
[0,∞) be a function such that ϕ(t) < t and lim sup

s→t+
ϕ(s) < t for all t > 0.

Assume that f : Y → Y is a mapping such that

ρ(fu, fv) ≤ ϕ(ρ(u, v)) for all u, v ∈ Y. (1.3)

Then f has a unique fixed point.

In this paper, we introduce the notion of a coordinatewise asymptotically
regular mappings and show that the coordinatewise asymptotic regularity is not
a sufficient condition for the existence of a solution for a system of equations
(1.1). Further, motivated by the work of Matkowski [19, 20] and Czerwik [7], we
generalize certain results from [3], [25], [28] to a system of mappings. We also
show that the assumption of continuity of control function used in Theorem
1.2 for η = 1 can be weaken. Moreover, we prove an existence result for a new
class of a system of mappings without using the assumption of continuity and
present a generalization of [24, Theorem 7] to a system of mappings. We also
present some illustrative examples to justify the validity of our results.

2. Main Results

Firstly, we define a new class of a system of mappings on the product of
metric spaces.

Definition 2.1. Let (Wi, ρi), i = 1, 2, . . . , n, be metric spaces and Ti : W →
Wi, i = 1, 2, . . . , n be mappings. Then, the system of mappings (T1, . . . , Tn) is
called coordinatewise asymptotically regular at some point ω0 = (ω0

1 , . . . , ω
0
n) ∈

W , if the sequence of iterations (ωmi ) defined by

ω1
i = Tiω

0 and ωm+1
i = Tiω

m for m ∈ N
satisfies

lim
m→∞

ρi(ω
m
i , ω

m+1
i ) = 0 for i = 1, 2, . . . , n.

If (T1, . . . , Tn) is coordinatewise asymptotically regular at each point of W
then we call the system (T1, . . . , Tn) is coordinatewise asymptotically regular
on W . For n = 1, the above definition coincides with the definition of the
asymptotic regular mapping due to Browder and Petryshyn [4].
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Definition 2.2. Let (Y, ρ) be a metric space. A mapping g : Y → Y is called
asymptotically regular at some u ∈ Y if lim

n→∞
ρ(gnu, gn+1u) = 0. In other

words, the mapping g is asymptotically regular at point u ∈ Y if the sequence
of iterations (gnu) satisfies lim

n→∞
ρ(gnu, gn+1u) = 0. The mapping g is called

asymptotically regular on Y if it is asymptotically regular at each point of Y .

Example 2.3. Let Wi = [0, 1] be equipped with the usual metric ρi for i = 1, 2.
Define T1 : W1 ×W2 →Wi by

T1(ω1, ω2) =

{
1/(r + 1), if ω1 = 1/r, r ∈ N,

1/2, ifω1 6= 1/r, r ∈ N,
and T2 : W1 ×W2 →Wi by

T2(ω1, ω2) =

{
1/(s+ 1), if ω2 = 1/s, s ∈ N,

1/2, if ω2 6= 1/s, s ∈ N.
We consider the following three cases:

Case 1 Let ω1 = 1/s and ω2 = 1/r. Then for ω0 = (ω1, ω2), we have ωm1 =
1/(m+ r), ωm2 = 1/(m+ s) and lim

m→∞
ρi(ω

m
i , ω

m+1
i ) = 0, i = 1, 2.

Case 2 Let ω1 = 1/r and ω2 6= 1/s. Then for ω0 = (ω1, ω2), we have ωm1 =
1/(m+ r), ωm2 = 1/(m+ 1) and lim

m→∞
ρi(ω

m
i , ω

m+1
i ) = 0, i = 1, 2.

Case 3 Let ω1 6= 1/r and ω2 6= 1/s. Then, for ω0 = (ω1, ω2) we have ωm1 =
1/(m+ 1), ωm2 = 1/(m+ 1) and lim

m→∞
ρi(ω

m
i , ω

m+1
i ) = 0, i = 1, 2.

Thus, the system (T1, T2) is coordinatewise asymptotically regular even though
the system of equations

Ti(ω1, ω2) = ωi for i = 1, 2,

has no solution in W1 ×W2. This implies that the condition of coordinate-
wise asymptotic regularity is not sufficient enough to ensure the existence of a
solution of such types of system of equations.

Now, we prove an existence result for a solution of the system of equations
(1.1) under the certain conditions.

Theorem 2.4. Let (Wi, ρi), i = 1, 2, . . . , n, be complete metric spaces and
Ti : W → Wi, i = 1, 2, . . . , n, be continuous mappings. Assume that the
system of mappings (T1, . . . , Tn) is coordinatewise asymptotically regular on
W . If there exists ϕ ∈ Φ such that for all ω, ω̄ ∈ W and i = 1, 2, . . . , n, the
following conditions hold:

ρi(Tiω, Tiω̄) ≤ ϕ (Di(ω, ω̄)) for all ωk, ω̄k ∈Wk; (2.1)

|λi| ≤ 1 for i = 1, 2, . . . , n, (2.2)

where Di(ω, ω̄) =
n∑
k=1

aikρk(ωk, ω̄k)+η {ρi(ωi, Tiω) + ρi(ω̄i, Tiω̄)} , aik > 0, i, k =

1, . . . , n, and λi, i = 1, 2, . . . , n are characteristics roots of matrix (aik), i, k =
1, 2, . . . , n. Then the system of equations (1.1) has a unique solution (z1, . . . , zn) ∈
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W . Further, for arbitrarily fixed ω1
i ∈ Wi, i = 1, 2, . . . , n, the sequence of suc-

cessive approximations

ωm+1
i = Tiω

m for i = 1, 2, . . . n and m ∈ N
converges such that

zi = lim
n→∞

ωmi for i = 1, 2, . . . n.

Moreover, if η = 1 then the continuities of Ti, i = 1, 2, . . . , n, are not required.

Proof. For each i = 1, 2, . . . , n, pick ω0
i ∈Wi and define

ωm+1
i = Tiω

m for i = 1, 2, . . . , n and m ∈ N ∪ {0}.
Now, by coordinatewise asymptotic regularity of (T1, . . . , Tn), we get

lim
m→∞

ρi(ω
m
i , ω

m+1
i ) = 0 for i = 1, 2, . . . , n. (2.3)

Then for each εi > 0, i = 1, 2, . . . , n, there exists ri ∈ N such that

ρi(ω
mi
i , ωmi+1

i ) < εi for ri ≤ mi ∈ N.
In the above inequalities, taking r = max{ri : i = 1, 2, . . . , n}, we get

ρi(ω
m
i , ω

m+1
i ) < εi for i = 1, 2, . . . , n and m ≥ r ∈ N. (2.4)

Now, we prove that (ωmi ) is a Cauchy sequence for each i = 1, 2, . . . , n. Assume
that sequence (ωmi ) is not a Cauchy in Wi. Then for each i = 1, 2, . . . , n and
r ∈ N, there exist εi > 0 and sequences of positive integers (pi(r)), (qi(r)) with
r ≤ pi(r) < qi(r) such that

ρi(ω
pi(r)
i , ω

qi(r)
i ) ≥ εi. (2.5)

We may assume that qi(r) is the smallest positive integer greater than pi(r)
such that the inequality (2.5) holds with the following inequality

ρi(ω
pi(r)
i , ω

qi(r)−1
i ) < εi for i = 1, 2, . . . , n. (2.6)

Then by the triangle inequality and using (2.6), we have

ρi(ω
pi(r)
i , ω

qi(r)
i ) ≤ ρi(ωpi(r)i , ω

qi(r)−1
i ) + ρ(ω

qi(r)−1
i , ω

qi(r)
i )

< εi + ρi(ω
qi(r)
i , ω

qi(r)−1
i ) for i = 1, 2, . . . , n.

Making r →∞ and using (2.3), we get

lim
r→∞

ρi(ω
pi(r)
i , ω

qi(r)
i ) = εi for i = 1, 2, . . . , n. (2.7)

Next, we observe that,

εi ≤ ρi(ωpi(r)i , ω
qi(r)
i )

≤ ρi(ωpi(r)i , ω
pi(r)+1
i ) + ρi(ω

pi(r)+1
i , ω

qi(r)+1
i ) + ρi(ω

qi(r)+1
i , ω

qi(r)
i )

≤ ρi(ωpi(r)i , ω
pi(r)+1
i ) + ρi(Tiω

pi(r), Tiω
qi(r)) + ρi(ω

qi(r)+1
i , ω

qi(r)
i )

≤ ρi(ωpi(r)i , ω
pi(r)+1
i ) + ϕ

(
Di(ω

pi(r), ωqi(r))
)

+ ρi(ω
qi(r)+1
i , ω

qi(r)
i )
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for i = 1, 2, . . . , n. Making r →∞ and using (2.7), we get

εi ≤ ϕ
(
Di(ω

pi(r), ωqi(r))
)

for i = 1, 2, . . . , n.

We note that

lim
r→∞

Di(ω
pi(r), ωqi(r)) =

n∑
k=1

aikεk for i = 1, 2, . . . , n

and let
n∑
k=1

aikεk = hi for i = 1, 2, . . . , n.

Then lim sup
s→t+

ϕ(s) < t for all t > 0 implies

εi ≤ lim
r→+∞

ϕ(Di(ω
pi(r), ωqi(r))) ≤ lim

ε′→+0
sup

s∈(hi, hi+ε
′ )

ϕ(s) < hi

for i = 1, 2, . . . , n. Hence we get

εi <

n∑
k=1

aikεk for i = 1, 2, . . . , n. (2.8)

Then from (2.2) and Peron’s theorem [13, page 53], there exist positive numbers
(t1, . . . , tn) such

n∑
k=1

aiktk ≤ ti for i = 1, 2, . . . , n. (2.9)

Without loss of generality, we may assume that

εi ≤ ti for i = 1, 2, . . . , n.

Then from (2.8) and (2.9), we have

εi <

n∑
k=1

aikεk ≤
n∑
k=1

aiktk ≤ ti for i = 1, 2, . . . , n.

Since these inequalities are strict, there exists h = max

{
ε1
t1
,
ε2
t2
, . . . ,

εn
tn

}
∈

(0, 1) such that

εi ≤ hti for i = 1, 2, . . . , n.

Repeating this process m times, we get

εi ≤ hmti for i = 1, 2, . . . , n.

Making m→∞, we get

εi ≤ 0 for i = 1, 2, . . . , n.

Hence (ωmi ) is a Cauchy sequence for each i = 1, 2, . . . , n. SinceWi is a complete
metric space, there exists zi ∈Wi such that lim

m→∞
ωmi = zi, i = 1, 2, . . . , n and

ωm = (ωm1 , . . . , ω
m
n ) → z = (z1, . . . , zn). If Ti, i = 1, 2, . . . , n, are continuous

then Tiω
m = ωm+1

i → Tiz implies Tiz = zi, i = 1, 2, . . . , n.
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Now suppose that η = 1 then from (2.1), we have

ρi(ω
m+1
i , Tiz) = ρi(Tiω

m, Tiz) ≤ ϕ (Di(ω
m, z)) for i = 1, 2, . . . , n

where Di(ω
m, z) =

n∑
k=1

aikρk(ωmk , zk) + ρi(ω
m
i , ω

m+1
i ) + ρi(zi, Tiz).

Making m→∞, we get

ρi(zi, Tiz) ≤ lim
m→∞

ϕ (Di(zi, Tiz)) for i = 1, 2, . . . , n.

Also

lim
m→∞

Di(ω
m, z) =

n∑
k=1

aikρk(zk, Tkz) for i = 1, 2, . . . , n.

Let ρ∗i =
n∑
k=1

aikρk(zk, Tkz), i = 1, 2, . . . , n. Then by lim sups→t+ ϕ(s) < t for

all t > 0, we obtain

ρi(zi, Tiz) ≤ lim
m→∞

ϕ (Di(ω
m, z)) ≤ lim

ρ→+0
sup

s∈(ρ∗i ,ρ∗i +ρ)
ϕ(s) < ρ∗i for i = 1, 2, . . . , n.

This implies

ρi(zi, Tiz) <

n∑
k=1

aikρk(zk, Tkz) for i = 1, 2, . . . , n. (2.10)

We may assume that

ρi(zi, Tiz) ≤ ti for i = 1, 2, . . . , n.

Then, taking into account of conditions (2.9), (2.10) and by Peron’s theorem
[13], we get

ρi(zi, Tiz) < ti for i = 1, 2, . . . , n.

Since these inequalities are strict, there exists an ` = max{ρi(zi, Tiz)/ti : i =
1, 2, . . . , n} ∈ (0, 1) such that

ρi(zi, Tiz) ≤ `ti for i = 1, 2, . . . , n.

Repeating the above process m times, we get

ρi(zi, Tiz) ≤ `mti for i = 1, 2, . . . , n.

Making m→∞, we get

ρi(zi, Tiz) = 0 or Tiz = zi for i = 1, 2, . . . , n.

Hence the system of equations (1.1) has a solution in W .
For uniqueness of a solution of the system of equations (1.1), assume that

w = (w1, . . . , wn) is another solution of the system (1.1) such that

ρi(zi, wi) 6= 0 for i = 1, 2, . . . , n.

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 165



D. Khantwal and R. Pant

Then from (2.1), we have

ρi(zi, wi) ≤ ϕ

(
n∑
k=1

aikρk(zk, wk) + η {ρi(zi, Tiz) + ρi(wi, Tiw)}

)

<

n∑
k=1

aikρk(zk, wk) for i = 1, 2, . . . , n. (2.11)

We may assume that

ρi(zi, wi) ≤ ti for i = 1, 2, . . . , n.

Then in view of Peron’s theorem [13, page 53 ] and conditions (2.9), (2.11), we
get

ρi(zi, wi) < ti for i = 1, 2, . . . , n.

As the above inequalities are strict so there exists τ = max{ρi(zi, wi)/ti : i =
1, 2, . . . , n} ∈ (0, 1) such that

ρi(zi, wi) ≤ τti for i = 1, 2, . . . , n.

Following this process m times, we get

ρi(zi, wi) ≤ τmti for i = 1, 2, . . . , n.

Making m→∞, we get

ρi(zi, wi) = 0 or zi = wi for i = 1, 2, . . . , n.

This completes the proof. �

The following example illustrates the utility of our result.

Example 2.5. Let Wi = {0, 1, 2}, i = 1, 2 and (Wi, ρi), i = 1, 2, be usual
metric spaces. Define T1 : W1 ×W2 →W1 by

T1(ω1, ω2) = 4ω1 − 2ω2
1

and T2 : W1 ×W2 →W2 by

T2(ω1, ω2) = 4ω2 − 2ω2
2

for all (ω1, ω2) ∈W1 ×W2.
Then, it is easy to see that (Wi, ρi), i = 1, 2 are complete metric spaces and
Ti, i = 1, 2 are continuous mappings. Also, the system (T1, T2) is coordinate-
wise asymptotically regular on W1 ×W2. Now, if we take

a11 = a12 = a21 = a22 = 1/2, ϕ(t) = t/2 and η = 4

then for all ω, ω̄ ∈W1 ×W2, we have

ρi(Tiω, Tiω̄) ≤ 2 ≤ ϕ(Di(ω, ω̄)) for i = 1, 2.
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Hence, all the assumptions of Theorem 2.4 are verified and the system of equa-
tions (1.1) for n = 2, has a unique solution at (0, 0). However for ω = (0, 0)
and ω̄ = (1, 1), we have

ρi(Tiω, Tiω̄) >

2∑
k=1

aikρk(ωk, ω̄k) for i = 1, 2.

Thus, we cannot apply Theorem 1.1 and result of [20, Theorem 1.4].

Remark 2.6. By definition of φ, we know that for every ε > 0 there exists δ > ε
such that ε < t < ε + δ implies φ(t) ≤ ε. In other word, we can say φ(t) < t
for all t ∈ (ε, ε + δ). This implies φ(t) < t for t > 0 and lim

δ→0
sup

s∈(ε,ε+δ)
φ(s) < s.

Hence φ ∈ Φ.

If we take n = 1, Ti = g, a11 = 1,Wi = Y, ρi = ρ in Theorem 2.4, we get
a generalized version of Theorem 1.2 which shows in case when η = 1, the
assumption of continuity on the control function is weaken.

Corollary 2.7. Let (Y, ρ) be a complete metric space. Assume that g : Y →
Y is a continuous asymptotically regular mapping on Y which satisfies the
following condition:

ρ(gu, gv) ≤ ϕ (D(u, v))

where D(u, v) = ρ(u, v) + η {ρ(u, gu) + ρ(v, gv)} , η ≥ 0 and ϕ ∈ Φ. Then the
mapping g has a unique fixed point in Y . Moreover, if we take η = 1 then
continuity of g is not required.

Corollary 2.8. Let (Z, ρ) be a complete metric space and T : Zn → Z be a
continuous asymptotically regular mapping on Z such that

ρ (T (z, . . . , z), T (z̄, . . . , z̄)) ≤ ϕ (ρ(z, z̄) + η {ρ(z, Tz) + ρ(z̄, T z̄)})

where ϕ ∈ Φ. Then the system of equation T (z, . . . , z) = z has a unique
solution. Moreover, if we take η = 1 then continuity of T need not be required.

Proof. The proof is obtained by taking Wi = Z, Ti = T, ρi = ρ and aik = qk
with q1 + · · ·+ qn = 1 for each i = 1, 2, . . . , n, in Theorem 2.4. �

If we take Di(ω, ω̄) =
n∑
k=1

aikρk(ωk, ω̄k) for i = 1, 2, . . . , n, in Theorem

2.4 then assumptions of continuity and coordinatewise asymptotic regularity
remain redundant and we get an extension of [20, Theorem 1.4].

Theorem 2.9. Let (Wi, ρi), i = 1, 2, . . . , n, be complete metric spaces and
Ti : W → Wi, i = 1, 2, . . . , n, be mappings. If there exists ϕ ∈ Φ such that for
all ω, ω̄ ∈W and i = 1, 2, . . . , n, the following condition hold:

ρi(Tiω, Tiω̄) ≤ ϕ

(
n∑
k=1

aikρk(ωk, ω̄k)

)
(2.12)
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where aik, i, k = 1, 2 . . . , n are defined in Theorem 2.4. Then, the system of
equations (1.1) has a unique solution (z1, . . . , zn) in W . Moreover, for arbi-
trarily fixed ω1

i ∈Wi, i = 1, 2, . . . , n, the sequence of successive approximations
ωm+1
i = Tiω

m converges to zi = lim
m→∞

ωmi for i = 1, 2, . . . n and m ∈ N.

Proof. For each i = 1, 2, . . . , n, pick ω0
i ∈Wi and define

ωm+1
i = Tiω

m for i = 1, 2, . . . , n and m ∈ N ∪ {0}.

Then from (2.2) and Peron’s theorem [13, page 53], there exist positive numbers
(r1, . . . , rn) such

n∑
k=1

aikrk ≤ ri for i = 1, 2, . . . , n. (2.13)

We may assume that

ρi(ω
1
i , ω

0
i ) ≤ ri for i = 1, 2, . . . , n.

Then from (2.12) and (2.13), we have

ρi(ω
2
i , ω

1
i ) = ρi(Tiω

1, Tiω
0)

≤ ϕ

(
n∑
k=1

aikρk(ω1
k, ω

0
k)

)

≤ ϕ

(
n∑
k=1

aikrk

)
< ri for i = 1, 2, . . . , n.

Since these inequalities are strict, there exists an h = max{ρi(ω2
i , ω

1
i )/ri : i =

1, 2, . . . , n} ∈ (0, 1) such that

ρi(ω
2
i , ω

1
i ) ≤ hri for i = 1, 2, . . . , n.

Now using induction, we prove that the following inequalities are true for all
m ≥ 1 ∈ N,

ρi(ω
m+1
i , ωmi ) ≤ hmri for i = 1, 2, . . . , n and m ∈ N ∪ {0}.

Assume that the above inequalities are true for some m ∈ N. Then from (2.12),
we have

ρi(ω
m+2
i , ωm+1

i ) = ρi(Tiω
m+1, Tiω

m)

≤ ϕ

(
n∑
k=1

aikρk(ωm+1
k , ωmk )

)

≤ ϕ

(
n∑
k=1

aikh
mrk

)
< hmrk for i = 1, 2, . . . , n.

Again, since the above inequalities are strict, we can find h ∈ (0, 1) such that

ρi(ω
m+2
i , ωm+1

i ) ≤ hm+1ri for i = 1, 2, . . . , n.
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Making m→∞, we get

lim
m→∞

ρi(ω
m+1
i , ωmi ) = 0 for i = 1, 2, . . . , n.

Hence the system of mappings (T1, . . . , Tn) is an asymptotically regular on W .
Also, the condition (2.10) implies that the mappings Ti, i = 1, 2, . . . , n are
continuous on W . Rest of the proof may be completed following the proof of
Theorem 2.4. �

If we take Wi = Z, Ti = T, aik = 1, ρi = ρ for each i, k = 1, 2, . . . , n in
Theorem 2.9, we get the following result.

Corollary 2.10. Let (Z, ρ) be a complete metric space and T : Zn → Z be a
mapping on Z such that

ρ (T (z, . . . , z), T (z̄, . . . , z̄)) ≤ ϕ (ρ(z, z̄))

where ϕ ∈ Φ. Then T (z, . . . , z) = z has a unique solution. Moreover, if we
take η = 1 then continuity of T is not required.

If we take n = 1, Ti = f , a11 = 1, Wi = Y , and ρi = ρ in Corollary 2.9, then
we obtain Theorem 1.3 as a direct consequence of Corollary 2.9.

Now, we establish an existence and uniqueness result for a new class of
system of mappings without using the assumption of continuity.

Theorem 2.11. Let (Wi, ρi), i = 1, 2, . . . , n, be complete metric spaces and Ti :
W →Wi, i = 1, 2, . . . , n, be mappings. If the system of mappings (T1, . . . , Tn)
is coordinatewise asymptotically regular on W such that the following conditions
hold:

ρi(ωi, Tiω̄) ≤
n∑
k=1

aikρk(ωk, ω̄k) + µ{ρi(ωi, Tiω) + ρi(Tiω
j , Tiω

j+1)}; (2.14)

|λi| < 1 for i = 1, 2, . . . , n (2.15)

for all ω, ω̄ ∈ W , where aik > 0, i, k = 1, . . . , n, µ ∈ [0,∞), j ∈ N and
λi, i = 1, . . . , n are characteristics roots of matrix (aik), i, k = 1, 2, . . . , n.
Then, the system of equations (1.1) has a unique solution (z1, . . . , zn) ∈ W
and for arbitrarily fixed ω1

i ∈ Wi, i = 1, 2, . . . , n the sequence of successive
approximations ωm+1

i = Tiω
m for i = 1, 2 . . . n and m ∈ N converges such

that zi = lim
n→∞

ωmi for i = 1, 2, . . . n.

Proof. For each i = 1, 2, . . . , n, pick ω0
i ∈Wi and define

ωm+1
i = Tiω

m for m ∈ N and i = 1, 2, . . . , n.

Now, by coordinatewise asymptotic regularity of (T1, . . . , Tn), we get

lim
m→∞

ρi(ω
m
i , ω

m+1
i ) = 0 for i = 1, 2, . . . , n.

Then, for every εi > 0, i = 1, 2, . . . , n there exists an r ∈ N such that

ρi(ω
m
i , ω

m+1
i ) < εi for i = 1, 2, . . . , n and m ≥ r ∈ N. (2.16)
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Now, we assume that the sequence (ωmi ) ∈ Wi is not Cauchy for each i =
1, 2, . . . , n. Then following the proof of Theorem 2.4 we get, there exist εi > 0
and two sequences of positive integers (pi(r)), (qi(r)) with r ≤ pi(r) < qi(r)
such that

lim
r→∞

ρi(ω
pi(r)
i , ω

qi(r)
i ) = εi for i = 1, 2, . . . , n and r ∈ N. (2.17)

Next, we observe that,

εi ≤ ρi(ω
pi(r)
i , ω

qi(r)
i )

≤ ρi(ω
pi(r)
i , ω

pi(r)+1
i ) + ρi(ω

pi(r)+1
i , ω

qi(r)+1
i ) + ρi(ω

qi(r)+1
i , ω

qi(r)
i )

≤ ρi(ω
pi(r)
i , ω

pi(r)+1
i ) + ρi(Tiω

pi(r), Tiω
qi(r)) + ρi(ω

qi(r)+1
i , ω

qi(r)
i )

≤ ρi(ω
pi(r)
i , ω

pi(r)+1
i ) +

n∑
k=1

aikρk(ω
pi(r)
k , ω

qi(r)
k )

+µ
{
ρi(ω

pi(r)
i , Tiω

pi(r)) + ρi(T
j
i ω

pi(r), T j+1
i ωpi(r))

}
+ ρi(ω

qi(r)+1
i , ω

qi(r)
i )

= ρi(ω
pi(r)
i , ω

pi(r)+1
i ) +

n∑
k=1

aikρk(ω
pi(r)
k , ω

qi(r)
k ) + µ

{
ρi(ω

pi(r)
i , ω

pi(r)+1
i )

}
+µ
{
ρi(ω

pi(r)+j
i , ω

pi(r)+j+1
i )

}
+ ρi(ω

qi(r)+1
i , ω

qi(r)
i )

for i = 1, 2, . . . , n. Making r →∞ and using (2.16), (2.17), we get

εi ≤
n∑
k=1

aikεk for i = 1, 2, . . . , n. (2.18)

Now, from Peron’s theorem [13, page 53] and condition (2.15) there exist pos-
itive numbers (t1, . . . , tn) such that

n∑
k=1

aiktk < ti for i = 1, 2, . . . , n.

We may assume that

εi ≤ ti for i = 1, 2, . . . , n.

Further, if we put

h = max
1≤i≤n

(
t−1i

n∑
k=1

aiktk

)
(2.19)

then h ∈ (0, 1) and

n∑
k=1

aiktk ≤ hti for i = 1, 2, . . . , n.

From (2.18), we have

εi ≤
n∑
k=1

aikεk ≤
n∑
k=1

aiktk ≤
n∑
k=1

aikhtk < hti for i = 1, 2, . . . , n.
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Repeating this process m times, we get

εi ≤ hmti for i = 1, 2, . . . , n.

Making m→∞, we get the following contradictions

εi ≤ 0 for i = 1, 2, . . . , n.

Hence, (ωmi ) is a Cauchy sequence for each i = 1, 2, . . . , n. Since Wi is a
complete metric space, there exists zi ∈ Wi such that lim

m→∞
ωmi = zi for i =

1, 2, . . . , n. Now from (2.14), we have

ρi(ω
m
i , Tiz) ≤

n∑
k=1

aikρk(ωmk , zk) + µ{ρi(ωmi , ωm+1
i ) + ρi(ω

m+j
i , ωm+j+1

i )}

for i = 1, 2, . . . , n. Making m→∞, we get

ρi(zi, Tiz) ≤ 0 for i = 1, 2, . . . , n

which implies that Tiz = zi for i = 1, 2, . . . , n. Hence the system of equations
(1.1) has a solution in W . For uniqueness of the solution, assume that w =
(w1, . . . , wn) is another solution of system of equations (1.1). Then

0 < ρi(zi, wi) = ρi(zi, Tiw)

≤
n∑
k=1

aikρk(zk, wk) + µ{ρi(zi, Tiz) + ρi(Tiz
j , Tiz

j+1)}

≤
n∑
k=1

aikρk(zk, wk) for i = 1, 2, . . . , n.

We may assume that

ρi(zi, wi) ≤ ti for i = 1, 2, . . . , n,

then

ρi(zi, wi) ≤
n∑
k=1

aikρi(zi, wi) ≤
n∑
k=1

aiktk < ti for i = 1, 2, . . . , n.

Taking into account of (2.19), there exists h ∈ (0, 1) such that

ρi(zi, wi) ≤
n∑
k=1

aiktk ≤ hti for i = 1, 2, . . . , n.

Continuing this process m times, we get

ρi(zi, wi) ≤ hmti for i = 1, 2, . . . , n.

Making m→∞, we get

ρi(zi, wi) = 0 for i = 1, 2, . . . , n.

Hence zi = wi for i = 1, 2, . . . , n. �
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Example 2.12. Let Wi = [0, 1] and ρi be usual metric on Wi for each i = 1, 2.
Define Ti : W1 ×W2 →Wi for i = 1, 2 by

T1(ω1, ω2) =

{
0, when 0 ≤ ω1 < 1,

1/2, when ω1 = 1,
and

T2(ω1, ω2) =

{
0, when 0 ≤ ω2 < 1,

1/2, when ω2 = 1.

Then, it is easily seen that the system (T1, T2) is continuous and coordinatewise
asymptotically regular on W1 ×W2. Now, for ω, ω̄ ∈ [0, 1)× [0, 1) or ω = ω̄ =
(1, 1), we have

ρi(ωi, Tiω̄) = ωi ≤ µρi(ωi, Tiω) for i = 1, 2 and µ ≥ 2.

If ω ∈ [0, 1) and ω̄ = (1, 1) then

ρi(ωi, Tiω̄) = |ωi − ω̄i| ≤ µρi(ωi, Tiω) for i = 1, 2 and µ ≥ 2.

Thus the system (T1, T2) satisfies the condition (2.14) for n = 2. Hence all the
assumptions of Theorem 2.9 are verified and (ω1, ω2) = (0, 0) is a solution of
the system of equations (1.1) for n = 2.

If we take Wi = Z, Ti = T, aik = h, ρi = ρ for each i, k = 1, 2, . . . , n in
Theorem 2.11, we get the following result.

Corollary 2.13. Let (Z, ρ) be a complete metric space and T : Zn → Z be a
mapping on Z such that

ρ ((z, . . . , z), T (z̄, . . . , z̄)) ≤ hρ(z, z̄) + µ

{
ρ(z, T (z, . . . , z))+
ρ(T j(z, . . . , z), T j+1(z, . . . , z))

}
where ϕ ∈ Φ, µ ∈ [0,∞), j ∈ N and h ∈ (0, 1). Then the equation T (z, . . . , z) =
z has a unique solution.

If we take n = 1, a11 = k, Ti = f, Wi = Y, ρi = ρ, in Theorem 2.11 then
we get following result of [24, Theorem 7].

Corollary 2.14. Let (Y, ρ) be a complete metric space. Assume that f : W →
W is an asymptotically regular mapping satisfying the following condition :

ρ(u, fv) ≤ kρ(u, v) + µ{ρ(u, fu) + ρ(f ju, f j+1u)}

where j ∈ N, k ∈ (0, 1) and µ ∈ [0,∞). Then there exists a unique fixed point
p ∈ Y for f and for any ω̄ ∈ Y, we have lim

n→∞
fn(ω) = p.
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