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Abstract

In this work, we will define a new type metric with degree m and m+1
points which is called m-hemi metric as a generalization of 2-metric
spaces. We will give and prove some topological properties. Also,
Banach contraction mapping principle was proved and an application
to Fredholm integral equation were gived in hemi metric spaces.
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1. Hemi metric spaces

Metric spaces are used in many sciences besides mathematics. Metric fixed
point theory started with the Banach contraction principle in 1922. In cases
where this principle is insufficient, some generalized metric spaces and gener-
alized contraction principles were defined and many fixed point theorems were
proved. One of them is quasi-metric by defined without symmetry axiom [2]
and the other one is semi-metric by defined without triangular inequality [31].
The concept of partial metric spaces are defined as the distance from x to x may
not be zero in the usual metric [24, 25]. b-metric, modular metric, F-metric
are some another generalizations of metric in the literature and most of fixed
point and common fixed point theorems were proved in these spaces (see more
[1, 4, 5, 14, 17, 18, 23, 28].
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Gähler [15] introduced the notion of 2-metric based on the geometry of more
than two points. Gähler [15] and later Lahiri et. al [21] gived some topological
properties of 2-metric spaces. Mustafa and Sims [26] defined another notion
of generalized metric space based on three point geometry which is named G-
metric. In [3], Branciari suggested a new generalization of the metric notion
by replacing the triangle inequality by a more general one involving four points
which is named rectangular metric. George et. al [16] defined rectangular b-
metric by considering the concepts of b-metric and rectangular metric together.
Choi et.al. [7] gived the concept of g-metric with degree n is a distance of n +
1 points, generalizing the ordinary distance between two points and G-metric
between three points. Moreover, authors proved some fixed point theorems in
these spaces [8, 6, 12, 13, 19, 20, 22, 26, 27, 29].

Deza and Rosenberg [11] introduced the notion of m−hemi-metric on a set
with at least m+2 elements for integer m. Authors considered generalizations
of the notion of metric in the direction of distances between three or more
elements. Also see [9, 10].

In this work, we give the notion of the hemi-metric as a new type of metric
and some topological properties. Further, we introduce fixed point theorems
for Banach contraction and a generalized contraction principle in hemi-metric
space.

Definition 1.1 ([11]). Let m ∈ Z+ and H a set with at least m+ 2 elements.
dh : Hm+1 → R is called m-hemi-metric if for all h1, h2, ...hm+2 ∈ H,

i. dh (h1, h2, ...hm+1) ≥ 0 (non-negativity),
ii. dh (h1, h2, ...hm+1) = 0 ⇔ if for any hi, hk ∈ H, hi = hk (zero condi-

tioned),
iii. dh (h1, h2, ...hm+1) = dh

(
hπ(1), hπ(2), ..., hπ(m+1)

)
, for any permuta-

tion π of {1, 2, ...,m+ 1} (totally symmetry)

iv. dh (h1, h2, ...hm+1) ≤
∑m+1
i=1 dh (h1, , , , hi−1, hi+1, ..., hm+2) (m-simplex

inequality).

Then
(
H, dh

)
is called m-hemi metric space.

The concept of m−hemi-metric as an m-ary generalization of the concept
of semi-metric. A significant appropriate case of the m-hemi-metric is the
following case obtained for m = 2.

A function dh : H3 → R is called a 2−metric if dh satisfies (i), (ii), (iii) and
the following tetrahedron inequality,

dh (h1, h2, h3) ≤ dh (h1, h2, h4) + dh (h1, h3, h4) + dh (h2, h3, h4)

Lemma 1.2 ([30]). Let dh is an m-hemi-metric on H, then dh

1+dh
is an

m-hemi-metric on H.

Lemma 1.3 ([30]). Let dh is an m-hemi-metric on H, then min
{

1, dh
}

is
an m-hemi-metric on H.
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Example 1.4. Let H = {0} ∪ { 1
n : n ≥ 1, n ∈ N}. Define dh : Hm+1 → R ,

dh (h1, h2, ...hm+1) =

{
1, hi 6= hj , for all i, j,
0, hi = hj , for any i, j

Then dh is an m-hemi-metric on H.

Example 1.5. Define dh : Hm+1 → R , dh (h1, h2, ...hm+1) = min{1, p (hi, hj)}
with usual metric p (hi, hj) = |hi − hj | , then dh is an m-hemi-metric on H.

Example 1.6. Define dh : Hm+1 → R , dh (h1, h2, ...hm+1) =
∑m+1
i,j=1 |hi − hj | ,

then dh is an m-hemi-metric on H.

Example 1.7. Define dh : Hm+1 → R , dh (h1, h2, ...hm+1) =
∣∣Πm+1

i,j=1hi − hj
∣∣ ,

then dh is an m-hemi-metric on H.

Example 1.8. Let dh : Nm+1 → R ,

dh (h1, h2, ...hm+1) =

{
0, any hi = hk,

max {hi} , other
. Then dh is an m-hemi-

metric on N.
Definition 1.9. Let

(
H, dh

)
be an m-hemi-metric space. For h0, h1, ..., hm ∈

H and ε > 0 ,

B (h0, h1, ..., hm−1, ε) = {y ∈ H : dh(h0, h1, ..., hm−1, y) < ε}
is called h−open ball centered at h0, h1, ..., hm−1 with radius ε.

The topology generated on H by taking the collection of all h−open balls
as a subbasis, which we call the m-hemi-metric topology. It is denoted by τ .
Members of τ are called h-open sets and their complements, h-closed sets.

Lemma 1.10. Let
(
H, dh

)
be an m-hemi-metric space and A ⊆ H. Then A

is an h−open set if and only if for every a ∈ A there are finite number of points
h1, h2, ..., hm, h

′

1, h
′

2, ..., h
′

m and ε1, ε2 > 0 such that a ∈ B (a, h1, h2, ..., hm−1, ε1)∩
B
(
a, h

′

1, h
′

2, ..., h
′

m−1, ε2

)
⊂ A.

Proof. The sufficiency of the claim is evident from the fact that the intersection

of the h−open balls B (a, h1, h2, ..., hm−1, ε1) ∩ B
(
a, h

′

1, h
′

2, ..., h
′

m−1, ε2

)
is h-

open, the sufficiency of the condition follows immediately.
Conversely let A be a h−open set and a ∈ A. Then there exists h-open balls

B (h1, h2, ..., hm, ε1) , B
(
h
′

1, h
′

2, ..., h
′

m, ε2

)
such that a ∈ B (h1, h2, ..., hm, ε1)∩

B
(
h
′

1, h
′

2, ..., h
′

m, ε2

)
⊂ A.

Since a ∈ B (h1, h2, ..., hm, ε1) and a ∈ B
(
h
′

1, h
′

2, ..., h
′

m, ε2

)
, then

dh (h1, h2, ..., hm, a) = p1 < ε1 and dh
(
h
′

1, h
′

2, ..., h
′

m, a
)

= p2 < ε2. Choose

ti <
εi−pi

2 for i = 1, 2. Then, we have

a ∈ B (a, h1, h2, ..., hm−1, t1) ∩B
(
a, h

′

1, h
′

2, ..., h
′

m−1, t2

)
⊂ B (h1, h2, ..., hm, ε1) ∩B

(
h
′

1, h
′

2, ..., h
′

m, ε2

)
⊂ A.
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This completes the proof.
�

Definition 1.11. If A is a subset of an m−hemi-metric space (H, dh), we
define the h−closure of A, denoted by A−, as the h-closure of A with respect
to the topology tau.

Definition 1.12. Let (H, dh) be an m-hemi-metric space and {hn} be a se-
quence in H.

i. {hn} is named h−convergent to a y ∈ H if and only if

limn1,n2,,...nm→∞d
h (hn1

, hn2
, ..., hnm

, y) = 0.

Therefore {hn} is h−convergent to y if and only if it converges to y
with respect to the topology tau.

ii. {hn} is named h−Cauchy sequence if and only if

limn,m→∞d
h (hn0 , hn1 , ..., hnm) = 0.

iii. (H, dh) is called h−complete if every h−Cauchy sequence h−convergent
in H.

iv. A mapping f is called h−continuous on H if fhn → fy when hn → y.

Proposition 1.13. Let (H, dh) be a m-hemi-metric space and {hn} be a se-
quence in H.

i. {hn} convergence to a y ∈ H if for all ε > 0 , ∃n0 ∈ N such that
n1, ...nm ≥ n0 ⇒ dh (y, hn1

, ..., hnm
) < ε.

ii. If {hn} is a h−Cauchy sequence, then for all ε > 0, ∃ n0 ∈ N such that
n0, n1...nm ≥ n0 ⇒ dh (hn0 , hn1 , ..., hnm) < ε.

Example 1.14. Let H = {0} ∪ { 1
n : n ≥ 1, n ∈ N}. Define dh : Hm+1 → R ,

dh (h1, h2, ...hm+1) =

{
1, hi 6= hj , for all i, j,
0, hi = hj , for any i, j

Then the sequence
{

1
n+1

}
⊂ H convergences to 0. But it is not h-Cauchy

sequence.

Lemma 1.15. The limit is unique in m-hemi-metric space.

Proof. Let (H, dh) be an m-hemi-metric space and {hn} be a h−convergent
sequence in H. Assume x, y ∈ H are two limit of {hn}. Thus we get for all ε > 0
there exists n0 ∈ N such that n1, ...nm ≥ n0 ⇒ ds (x, hn1 , ..., hnm) < ε

(m+1) and

there exists n′0 ∈ N such that n1, ...nm ≥ n′0 ⇒ dh (y, hn1
, ..., hnm

) < ε
(m+1) .

Let N = max {n0, n
′
0}. For m > N and using m−simplex inequality for all

distinct element hn1
, ...hnm−1

, hnm
∈ H,

dh
(
x, y, hn1

, ..., hnm−1

)
≤ [dh

(
y, hn1

, ..., hnm−1
, wnm

)
+ dh

(
x, hn1

, ..., hnm−1
, hnm

)
+dh

(
x, y, hn2 , ..., hnm−1 , hnm

)
+ ...

+dh
(
x, y, hn2

, ..., hnm−2
, hnm

)
]

< (m+ 1)
ε

m+ 1
= ε.
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Since ε is arbitrary dh
(
x, y, hn1

, ..., hnm−1

)
= 0. Thus x = y. �

Definition 1.16. An m−hemi-metric space (H, dh) is named compact if every
sequence in H has a convergent subsequence.

2. Banach Fixed Point Theorem

Theorem 2.1. Let
(
H, dh

)
be an h−complete m− hemi-metric space and f :

H → H be an h− continuous self mapping satisfying

dh (fhm, ..., fh0) ≤ γdh (hm, ..., h0) (2.1)

for all where hm, ..., h0 ∈ H γ ∈ [0, 1). Then f has a unique fixed point

Proof. Let h0 ∈ H be any point and m ∈ Z+. We define a sequence h
(n+1)
m =

fh
(n)
m for ∀ n ≥ 1.
From (2.1),

dh
(
h

(n)
m+1, h

(n)
m , ..., h

(n)
1

)
= dh

(
fh

(n)
m+1, fh

(n)
m , ..., fh

(n)
1

)
≤ γdh

(
h

(n)
m+1, h

(n)
m , ..., h

(n)
1

)
≤ ...

≤ γndh
(
h

(0)
m+1, h

(0)
m , ..., h

(0)
1

)
.

Letting limit, we have

lim
n,m→∞

dh
(
h

(n)
m+1, h

(n)
m , ..., h

(n)
1

)
= 0.

Hence,
{
h

(n)
m

}
is an h−Cauchy sequence. Since

(
H, dh

)
is h−complete, there

exists a y ∈ H with h
(n)
m → y. By h−continuity of f,

lim
n→+∞

dh
(
fh(n)

m , ..., fh
(n)
1 , fy

)
= 0.

And by

lim
n→+∞

dh
(
fh(n)

m , ..., fh
(n)
1 , fy

)
= 0

and uniqueness of limit, fy = y.
Now we show that uniqueness of fixed point. Suppose f has different fixed

points h1, h2,..., hm, hm+1 with hi 6= hj for 1 ≤ i, j ≤ m+ 1. By (2.1),

dh (h1, h2, ..., hm+1) = dh (fh1, fh2,..., fhm+1)

≤ γdh (h1, h2,..., hm+1)

which is a contradiction with γ ∈ [0, 1) . Thus f has unique fixed point. �

Example 2.2. Let H = [0, 3
2 ). Define

dh : Hm+1 → R , dh (h1, h2,..., hm+1) = min {1, |hi − hj |} for 1 ≤ i, j ≤ m+ 1
and

f : H → H, f(x) = {
h2

2 if h ∈ [0, 1)
2h−1

2 if h ∈
[
1, 3

2

) .
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Then dh is an h−complete m−hemi-metric on H. Then (2.1) is satisfied. 0 is
unique fixed point of f .

3. Application

Let consider the Fredholm integral equation

h (t) =

∫ 1

0

J (t, s, u (s)) ds, t ∈ [a, b] (3.1)

and C [0, 1] with m−hemi-metric

dh (h1, h2,..., hm, hm+1) =

{
0, if any hi = hj

maxt∈[a,b] {|hi (t)− hj(t)|} , if hi 6= hj

for i, j = 1, 2, ...,m+ 1 and hi ∈ C [0, 1] .

Theorem 3.1. Consider the integral equation (3.1) and suppose

(i) J : [0, 1]× [0, 1]× R→ R+ is continuous,
(ii) for all (t, s) ∈ [0, 1]× [0, 1] and γ ∈ [0, 1) such that

|J (t, s, h1 (s))− J (t, s, h2 (s))| ≤ γ |h1 (s)− h2 (s)|

Then integral equation (3.1) has a unique solution.

Proof. Let hi 6= hj for all hi ∈ C [0, 1] . For 1 ≤ i, j ≤ m+ 1, from definition of
integral equation,

dh (fh1, fh2, ..., fhm+1) = max
t∈[0,1]

{|fhi (t)− fhj(t)|}

= max
t∈[0,1]

∣∣∣∣∫ 1

0

(J(t, s, hi (s))− J (t, s, hj (s)) ds

∣∣∣∣
≤ max

t∈[0,1]

∫ 1

0

|J(t, s, hi (s))− J (t, s, hj (s))| ds

≤ γ max
t∈[0,1]

∣∣∣∣∫ 1

0

(hi (s)− hj (s))ds

∣∣∣∣
≤ γ max

t∈[0,1]
|(hi (s)− hj (s))|

= γdh (h1, h2, ..., hm+1)

Thus, by Theorem 2.1, integral equation (3.1) has unique solution. �
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