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Abstract

Given a uniform space (X,U), we denote by F∗(X) to the family of
fuzzy sets u in (X,U) such that u is normal and upper semicontinu-
ous. Let UE be the endograph uniformity on F∗(X). In this paper,
we mainly characterize totally bounded and compact subsets in the
uniform space (F∗(X),UE).
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1. Introduction

Compactness is a fundamental property in both theory and applications
[5, 8, 14], and compactness criteria have attracted much attention. The Arzelà-
Ascoli theorem(s) provide compactness criteria in classic analysis and topology
(see for instance [2]). Characterizations of compactness are useful in theoret-
ical research and practical applications. So many researches are devoted to
characterizations of compactness in a variety of fuzzy set spaces endowed with
different topologies (see [3] and references within).

Kloeden [9] introduced the endograph metric dE on fuzzy sets. Given a
metric space (X, d), we denote by F(X) to the family of fuzzy sets u in (X, d)
such that u is normal, upper semicontinuous and with compact support. Let
F∗(X) be the completion of (F(X), dE). In [3], relatively compact subsets
in (F∗(Rn), dE) (where d is the usual metric in Rn) are characterized via the
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notion of Γ-convergence, which was introduced by Rojas-Medar and Román-
Flores [13].

In [6] was introduced the endograph uniformity UE on the family F∗(X)
of fuzzy sets u in the uniform space (X,U) such that u is normal and upper
semicontinuous. In this paper, we mainly characterize totally bounded and
compact subsets in the uniform space (F∗(X),UE) (see Theorem 3.1 and 3.6).
The latter theorems generalize some results in [4].

We also study totally bounded and compact subsets in the sendograph uni-
formity US on the family F(X) of fuzzy sets u in the uniform space (X,U) such
that u is normal, upper semicontinuous and has compact support (see Theorem
4.1 and 4.2).

2. Preliminaries

Given a non-empty set X, a fuzzy set u on X is a function u : X → [0, 1].
Let α ∈ (0, 1]. We define the α-level of u as the set [u]α = {x ∈ X : u(x) ≥ α}.
The support of u is the set [u]0 = {x ∈ X : u(x) > 0}.

Now, let (X, d) be a metric space. Denote by K(X) (resp. C(X)) to the
family of non-empty compact (resp. closed) subsets of X. Given A,B ∈ K(X),
we put dλ(A,B) = max{d(a,B) : a ∈ A}, where d(a,B) = inf{d(a, b) : b ∈
B}. Then dλ is called the Hausdorff quasi-pseudometric on K(X). Note that
dλ(A,B) = 0 if and only if A ⊆ B. We recall that the Hausdorff metric on
K(X), denoted by dH , is defined as dH(A,B) = max{dλ(A,B), dλ(B,A)} for
each A,B ∈ K(X).

Let X be a set and let A and B be subsets of X ×X, i.e., relations on the
set X. The inverse relation of A will be denoted by A−1 , and the composition
of A and B will be denoted by A ◦B. Thus, we have

A−1 = {(x, y) ∈ X ×X : (y, x) ∈ A}
and

A◦B = {(x, y) ∈ X×X : there exists z ∈ X such that (x, z) ∈ A and (z, y) ∈ B}.
The symbol A2 stands for A ◦ A and ∆X for the diagonal of X, that is, the
subset {(x, x) : x ∈ X} of X × X. Every set A ⊆ X × X that contains ∆X

is called an entourage of the diagonal. We will denote by DX the family of all
entourages of the diagonal of X.

Definition 2.1. A uniformity on a non-empty set X is a subfamily U of DX
which satisfies the following conditions:

(U1) If A ∈ U and A ⊆ B ∈ DX , then B ∈ U .
(U2) If A,B ∈ U , then U ∩ V ∈ U .
(U3) For every A ∈ U , there exists B ∈ U such that B2 ⊆ A.
(U4) For every A ∈ U , there exists B ∈ U such that B−1 ⊆ A.
(U5)

⋂
A∈U A = ∆X .

A uniform space is a pair (X,U) consisting of a set X and a uniformity U
on the set X. Let (X,U) be a uniform space. A family B ⊆ U is called a base
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for the uniformity U if for every A ∈ U , there exists B ∈ B such that B ⊆ A.
The following result is well known and easy to prove.

Proposition 2.2. Let X be a non-empty set. A non-empty family B of subsets
of X × X is a base for some uniformity on X if and only if it satisfies the
following properties:

(BS1) For any A,B ∈ B, there exists C ∈ B such that C ⊂ A ∩B.
(BS2) For every A ∈ B, there exists B ∈ B such that B−1 ⊆ A.
(BS3) For every A ∈ B, there exists B ∈ B such that B2 ⊆ A.
(BS4)

⋂
A∈B A = ∆X .

As usual, a set X equipped with a topology τ is called a topological space and
it will be denoted by (X, τ). It is a well-known fact that every uniformity U on
a set X induces a topology τ(U) on X. To be precise, the topology τ(U) is the
family {V ⊆ X : for every x ∈ V , there exists U ∈ U such that U(x) ⊆ V },
where U(x) = {y ∈ X : (x, y) ∈ U}. In this case, the topological space
(X, τ(U)) is a Tychonoff space (for the details we refer to the reader to Chap-
ter 8 of the classic text [1]).

We turn to a brief discussion of the hyperspaces that we will consider in this
paper. Given a topological space (X, τ), the symbols C(X) and K(X) denote,
respectively, the hyperspaces defined by

C(X) = {E ⊆ X : E is closed and non-empty},
K(X) = {E ∈ C(X) : E is compact}.

Thus, in the case of a uniform space (X,U), C(X) (respectively, K(X)) de-
notes the hyperspace of all non-empty closed (respectively, non-empty compact)
subsets of (X, τ(U)). We will see that C(X) and K(X) can be endowed with a
natural uniformity in this situation.

Let (X,U) be a uniform space. For each U ∈ U and each A ⊂ X, let us
define U(A) =

⋃
x∈A U(x). Now, for each U ∈ U consider the families

C[U ] = {(A,B) ∈ C(X)× C(X) : A ⊆ U(B), B ⊆ U(A)},
K[U ] = {(A,B) ∈ K(X)×K(X) : A ⊆ U(B), B ⊆ U(A)}.

Among the most interesting results in the theory of hyperspaces are the fol-
lowing three well-known results.

Proposition 2.3 ([11]). If (X,U) is a uniform space, then {K[U ] : U ∈ U} is
a base for a uniformity K(U) on K(X).

A remarkable result by Michael [11] allows us to describe the topology in-
duced by the uniformity K(U). Let us recall that, for any topological space
(X, τ), the topology τ induces a topology τV on C(X), the so-called Vietoris
topology, a base for τV is the family of all sets of the form

V 〈V1, V2, . . . , Vk〉 =

{
B ∈ C(X) : B ⊂

k⋃
i=1

Vi and B ∩ Vi 6= ∅ for i = 1, 2, . . . , k

}
,

where V1, V2, . . . , Vn is a finite sequence of non-empty open sets of X.
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Theorem 2.4 ([11]). If (X,U) is a uniform space, then the topology induced by
K(U) on K(X) coincides with the Vietoris topology induced by τ(U) on K(X).

Allowing for the previous result, if no confusion can arise, K(X) will be
denote the hyperspace of all non-empty compact subsets of (X, τ(U)) equipped
with the Vietoris topology induced by τ(U). For the hyperspace C(X) we have
the following.

Proposition 2.5 ([11]). If (X,U) is a uniform space, then {C[U ] : U ∈ U} is
a base for a uniformity C(U) on C(X).

The following result is easy to prove.

Lemma 2.6. Let (X,U) be a uniform space. If W ∈ U and A,B,C,D ∈ K(X)
satisfy (A,C) ∈ K[W ] and (B,D) ∈ K[W ], then (A ∪B,C ∪D) ∈ K[W ].

Let (X,U) be a uniform space. Let us recall that a non-empty subset A ⊆ X
is totally bounded in (X,U) if for every U ∈ U , there exists a finite subset F ⊆ A
such that A ⊆ U(F ).

Proposition 2.7. Let (X,U) be a uniform space. Then A ⊆ X is totally
bounded in (X,U) if and only if for every U ∈ U , there exists a finite subset
F ⊆ X such that A ⊆ U(F ).

Proposition 2.8. If (X,U) is a totally bounded uniform space, then the uni-
formity K(U) on K(X) is totally bounded.

Proof. Take U ∈ U . Since (X,U) is totally bounded, there exists a finite subset
A ⊆ X such that X = U(A). Denote by F the family of all non-empty finite
subsets of A. Let us show that K(X) = K[U ](F ). Fix K ∈ K(X). We can find
B ∈ F such that K ⊆ U(B) and K ∩ U(b) 6= ∅ for each b ∈ B. The choice of
B implies that (B,K) ∈ K[U ]. This completes the proof. �

Let (X,U) be a uniform space. Denote by F∗(X) the family of fuzzy sets u
on (X,U) satisfying the following conditions:

i) u is upper semicontinuous.
ii) [u]α ∈ K(X) for every α ∈ (0, 1].

iii) u0 =
⋃
{[u]α : α ∈ (0, 1]}.

Theorem 2.9 ([7, Proposition 4.9]). Let X be a Hausdorff space and u ∈
F∗(X). If Lu : (0, 1]→ (K(X), τV ) is defined by Lu(α) = [u]α for all α ∈ (0, 1],
then Lu is left-continuous on (0, 1].

Conversely, if {[u]α : α ∈ (0, 1]} ⊆ K(X) is a decreasing family such that the
function L : (0, 1]→ (K(X), τV ) defined by L(α) = [u]α is left-continuous, then
there exists a unique w ∈ F∗(X) such that [w]α = [u]α for every α ∈ (0, 1].

Remark 2.10. Let X be a Hausdorff space and u ∈ F∗(X). If Lu : (0, 1] →
(K(X), τV ) is defined by Lu(α) = [u]α for all α ∈ (0, 1], then lim

α→β+
Lu(α) =⋃

β<α[u]α for each β ∈ (0, 1) and we put lim
α→β+

Lu(α) = uβ+ .
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3. Compactness in the endograph uniformity

Let (X,U) be a uniform space. If u ∈ F∗(X), then the endograph of u is
defined as end(u) = {(x, α) ∈ X × [0, 1] : u(x) ≥ α}. Notice that end(u) ∈
C(X × [0, 1]). Consider the uniformity UI defined on I = [0, 1] by means of the
base {Vε : ε > 0}, where Vε = {(α, β) ∈ I× I : |α− β| < ε}. Then we can take
the product uniformity U ×UI on X× I. We have that {U ×Vε : U ∈ U , ε > 0}
is a base for U ×UI. Note that ((a, α), (b, β)) ∈ U × Vε if and only if (a, b) ∈ U
and |α − β| < ε. Let (X,U) be a uniform space. Given U ∈ U and ε > 0, we
define the following sets:

E[U, ε] = {(u, v) ∈ F∗(X)×F∗(X) : (end(u), end(v)) ∈ C[U × Vε]}.

It follows from Proposition 2.5 that the family {E[U, ε] : U ∈ U , ε > 0} is base
for a uniformity UE on F∗(X). The uniformity UE is called the endograph
uniformity.

We start this section with a characterization of totally bounded subsets in
F∗(X).

Theorem 3.1. Let (X,U) be a uniform space and a non-empty subset A ⊆
F∗(X). Then the following conditions are equivalent:

i) A is totally bounded in (F∗(X),UE).
ii) A(α) =

⋃
{[u]α : u ∈ A} is totally bounded in (X,U) for each α ∈ (0, 1].

iii) Aα = {[u]α : u ∈ A} is totally bounded in (K(X),K(U)) for each
α ∈ (0, 1].

Proof. Let us show that i) implies ii). Suppose that A is a totally bounded
subset in (F∗(X),UE). Fix α ∈ (0, 1]. Take U ∈ U . We can find a symmetric
V ∈ U such that V 2 ⊆ U . Put ε = α

2 < α and δ = α − ε
4 > 0. Since A

is totally bounded in (F∗(X),UE), there exist u1, ..., uk ∈ A such that A ⊆⋃k
i=1E[V, ε](ui). We also put Aα(k) =

⋃k
i=1[ui]α and Aε(k) =

⋃k
i=1[ui]ε. Note

that Aα(k) ⊆ Aε(k). Clearly, Aε(k) is totally bounded in (X,U). Hence, there
exists a finite subset J ⊆ Aε(k) such that Aε(k) ⊆ V (J). Define J ′ = {b ∈ J :
V 2(b) ∩A(α) 6= ∅}.

Claim I: A(α) ⊆ U(J ′).
Take a ∈ A(α). Then a ∈ [u]α for some u ∈ A. So (end(u), end(ui)) ∈

C[V × Vε] for some i = 1, 2, ..., k. Then there exists (za, β) ∈ end(ui) with
((a, α), (za, β)) ∈ V × Vε. So (a, za) ∈ V and α − β < ε = α

2 . Hence ε < β. It
follows that

za ∈ [ui]β ⊆ [ui]ε ⊆ Aε(k).

By the choice of J , we can find b ∈ J with za ∈ V (b). Since (a, za) ∈ V and
(za, b) ∈ V , we have that (a, b) ∈ V 2. Hence a ∈ V 2(b) ∩ A(α). So b ∈ J ′

and a ∈ V 2(b) ⊆ U(b) ⊆ U(J ′), which proves Claim I. So Proposition 2.7 and
Claim I imply that A(α) is totally bounded in (X,U).

Let us prove that ii)⇒ iii). We now assume that A(α) is totally bounded in
(X,U) for each α ∈ (0, 1]. Take α ∈ (0, 1], we put Xα = A(α) and Uα = U|Xα .
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By Proposition 2.8, the uniform space (K(Xα),K(Uα)) is totally bounded. Note
that Aα ⊆ K(Xα). It follows from [1, Theorem 8.3.2] that Aα is totally bounded
in (K(Xα),K(Uα)). Given U ∈ U , there exists a finite subset J ⊆ Aα such
that Aα ⊆ K[U ∩ X2

α](J) ⊆ K[U ](J). Therefore, Aα is totally bounded in
(K(X),K(U)).

In order to show that iii) implies i), assume that Aα = {[u]α : u ∈ A} is
totally bounded in (K(X),K(U)) for each α ∈ (0, 1]. Let us show that A is
totally bounded in (F∗(X),UE). Take W ∈ U and ε > 0. We can assume
that ε < 1. Choose n ∈ N such that 1

n < ε. Put αi = n+1−i
n for each

i = 1, ..., n and αn+1 = 0. Since Aαi is totally bounded in (K(X),K(U)) for
each i = 1, ..., n, there exists a finite subset Ii ⊆ Aαi such that Aαi ⊆ K[W ](Ii)
for each i = 1, ..., n. By Proposition 2.7, we can assume that I1 ⊆ I2 ⊆ · · · ⊆ In
and every Ii is closed under union. Let V be the family of v ∈ F∗(X) such
that [v]α = Ki ∈ Ii for each α ∈ (αi+1, αi] and each i = 1, 2, ..., n. Clearly, V
is finite and non-empty. Let us prove the following:

A ⊆ E [W, ε] (V). (3.1)

Take u ∈ A. Then there exists Ki ∈ Ii such that ([u]αi ,Ki) ∈ K[W ] for each
i = 1, 2, ..., n. By Lemma 2.6 and the fact that each Ii is closed under union,
we can suppose that K1 ⊆ K2 ⊆ · · · ⊆ Kn. Let v ∈ V be such that [v]α = Ki

for each α ∈ (αi+1, αi] and each i = 1, 2, ..., n. Note that v0 = [v]αn+1 = Kn.
Pick (x, β) ∈ end(u). If αn ≥ β ≥ αn+1, then

(x, β) ∈ [W × Vε](x, 0) ⊆ [W × Vε](end(v)).

We now suppose that αi ≥ β > αi+1 for some i = 1, 2, ..., n − 1. Since
([u]αi ,Ki) ∈ K[W ] and x ∈ [u]β ⊆ [u]αi+1

for each i = 1, 2, ..., n − 1, there
exists k ∈ Ki+1 such that (x, k) ∈ W . So ((x, β), (k, αi+1)) ∈ W × Vε. There-
fore, (x, β) ∈ [W × Vε](end(v)) for each (x, β) ∈ end(u). We have thus proved
that end(u) ⊆ [W × Vε](end(v)).

Using a similar argument, we can show that end(v) ⊆ [W × Vε](end(u)).
Hence u ∈ E [W, ε] (v). Therefore, A ⊆ E [W, ε] (V). By (3.1) and Proposition
2.7, we have that A is totally bounded in (F∗(X),UE). �

Corollary 3.2. Let (X,U) be a uniform space and D ⊆ K(X). Then the
following conditions are equivalent:

i) D =
⋃
{C ∈ D} is totally bounded in (X,U).

ii) D is totally bounded in (K(X),K(U)).

Proof. We put A = {χK : K ∈ D} ⊆ F∗(X) and apply Theorem 3.1. �

We need the following three results in order to prove Theorem 3.6.

Lemma 3.3. Consider a uniform space (X,U) and D ⊆ K(X). If (D,K(U)|D)
is compact, then D =

⋃
{C ∈ D} is compact with respect to the uniformity U|D.

Proof. We can assume that (X,U) is complete, otherwise we can take its com-
pletion. Let {xσ}σ∈Σ be a net in D. Pick Cσ ∈ D such that xσ ∈ Cσ. Since

© AGT, UPV, 2024 Appl. Gen. Topol. 25, no. 1 204



Compactness in the endograph uniformity

(D,K(U)|D) is compact, the net {Cσ}σ∈Σ has a finer net {Cσ′}σ′∈Σ′ which con-
verges to C ∈ D. The set E = {C} ∪ {Cσ′ : σ′ ∈ Σ′} ⊆ D is totally bounded,
since D is compact. By Corollary 3.2, E =

⋃
{E ∈ E} is totally bounded in

(X,U). Then E is totally bounded in (X,U). So E is compact, since (X,U) is
complete. We know that xσ′ ∈ E for each σ′ ∈ Σ′. Hence there exists a net
{xσ′′}σ′′∈Σ′′ finer than {xσ′}σ′∈Σ′ which converges to x ∈ E. It is straightfor-
ward to show that x ∈ C. We have thus proved that {xσ}σ∈Σ has a finer net
which converges to x ∈ D. Therefore, D is compact. �

Lemma 3.4. Consider a uniform space (X,U) and D ⊆ K(X). If D =
⋃
{C ∈

D} is complete with respect to the uniformity U|D and D is closed in K(X),
then (D,K(U)|D) is complete.

Proof. If D is complete with respect to the uniformity U|D, then (K(D),K(U)|K(D))
is complete by [12]. Since D is closed in K(X), we have that D is closed in
K(D). The completeness of (K(D),K(U)|K(D)) implies that (D,K(U)|D) is
complete. �

Proposition 3.5. Consider a uniform space (X,U) and D ⊆ K(X). Then the
following conditions are equivalent:

i) D is compact in (K(X),K(U)).
ii) D =

⋃
{C ∈ D} is compact in (X,U) and D is closed in (K(X),K(U)).

Proof. i)⇒ ii) by Lemma 3.3. Let us show that ii)⇒ i). If D is compact, then
D is totally bounded in (K(X),K(U)) by Corollary 3.2. On the other hand, D
is complete by Lemma 3.4. Therefore, D is compact in (K(X),K(U)). �

Theorem 3.6. Let (X,U) be a uniform space and a non-empty subset A ⊆
F∗(X). Then the following conditions are equivalent:

i) A is compact in (F∗(X),UE).
ii) A is closed in (F∗(X),UE) and A(α) =

⋃
{[u]α : u ∈ A} is compact in

(X,U) for each α ∈ (0, 1].

Proof. Let (X̂, Û) the completion of (X,U). Then F∗(X) ⊆ F∗(X̂). Let us

show that i) implies ii). Clearly, A is compact in (F∗(X̂), ÛE). By Theorem 3.1,

A(α) is totally bounded in (X̂, Û) for each α ∈ (0, 1]. Let us show that A(α)

is closed in (X̂, Û) for each α ∈ (0, 1]. Take α ∈ (0, 1] and x ∈ A(α)
X̂

. Then
there exists a net {xσ}σ∈Σ in A(α) which converges to x. For every σ ∈ Σ, we
can choose uσ ∈ A such that xσ ∈ [uσ]α. Since A is compact {uσ}σ∈Σ has a

finer net {uσ}σ∈Σ′ which converges to u ∈ A. We define v ∈ F∗(X̂) as follows:

[v]β =

{
[u]β , if β ∈ (α, 1].
{x} ∪ [u]β , if β ∈ (0, α].

Let us show that {uσ}σ∈Σ′ converges to v. Given U ∈ Û and ε > 0, there exists
σ0 ∈ Σ′ such that (x, xσ) ∈ U and (u, uσ) ∈ E[U, ε] for every σ ≥ σ0. Take
σ ≥ σ0. Clearly, end(uσ) ⊆ [U × Vε](end(u)) ⊆ [U × Vε](end(v)). We now pick
(y, β) ∈ end(v). If y 6= x, then (y, β) ∈ end(u) ⊆ [U × Vε](end(uσ)). On the
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other hand, if y = x, the definition of v implies that β ≤ α. Then xσ ∈ [uσ]α ⊆
[uσ]β . So (xσ, β) ∈ end(uσ) and (x, β) ∈ [U × Vε](xσ, β) ⊆ [U × Vε](end(uσ)).
Hence, end(v) ⊆ [U ×Vε](end(uσ)). We have thus proved that (v, uσ) ∈ E[U, ε]
for every σ ≥ σ0. Therefore, u = v and x ∈ [u]α ⊆ A(α). So A(α) is closed

and totally bounded in (X̂, Û). It follows that A(α) is compact.
In order to show that ii) ⇒ i), assume that A is closed in (F∗(X),UE)

and A(α) =
⋃
{[u]α : u ∈ A} is compact in (X,U) for each α ∈ (0, 1]. By

Theorem 3.1, A is totally bounded in (F∗(X̂), ÛE). We put Xα = A(α) for
each α ∈ (0, 1). Given u ∈ F∗(X) and α ∈ (0, 1), we put endα(u) = [uα+ ×
{α}] ∪ [end(u) ∩ (X × (α, 1])], see Remark 2.10 for the symbol uα+ . Note
that endα(u) ∈ K(Xα × [0, 1]). Since Xα is compact, we can conclude that
K(Xα×[0, 1]) is compact for every α ∈ (0, 1). We can argue as in the proof of [6,
Theorem 5.3] to show that Eα = {endα(u) : u ∈ A} is closed in K(Xα× [0, 1]).
Hence Eα is compact for each α ∈ (0, 1).

Claim 1: Take 0 < β < α < 1. Suppose that {endα(uσ)}σ∈Σ and {endβ(uσ)}σ∈Σ

have a finer net {endα(uσ)}σ∈Σ′ and {endβ(uσ)}σ∈Σ′ which converge to endα(u)
and endβ(v), respectively. Then [u]γ = [v]γ for each γ ∈ (α, 1].

Pick γ ∈ (α, 1]. Let us show that ([u]γ , [v]γ) ∈ K[W ] for every W ∈ U . Take

a symmetric U ∈ U such that U4 ⊆W . Put d = γ−α and αn = γ− d
4n for each

n ∈ N. Then the sequence {αn}n ⊆ (α, γ) is increasing and converges to γ.
Since {endα(uσ)}σ∈Σ′ and {endβ(uσ)}σ∈Σ′ converge to endα(u) and endβ(v),
respectively; then for every n ∈ N, there exists σn ∈ Σ′ such that

endα(uσn) ⊆ [U × V d
4n

](endα(u)) and endα(u) ⊆ [U × V d
4n

](endα(uσn)).

(3.2)

endβ(uσn) ⊆ [U × V d
4n

](endβ(v)) and endβ(v) ⊆ [U × V d
4n

](endβ(uσn)).

(3.3)
From (3.2) and (3.3), we have that endα(u) ⊆ [U2 × V d

2n
](endβ(v)) for each

n ∈ N. Fix x ∈ [u]γ . Since (x, αn) ∈ endα(u), we can take (yn, βn) ∈ endβ(v)

such that ((x, αn), (yn, βn)) ∈ U2 × V d
2n

. Since |αn − βn| < d
2n and {αn}n

converges to γ, we can conclude that {βn}n converges to γ. Note that the
sequence {(yn, βn)}n is in the compact set endβ(v). Therefore, we can suppose
that {(yn, βn)}n converges to (y, γ). Hence y ∈ [v]γ . On the other hand,

(x, yn) ∈ U2 for each n ∈ N. The latter fact implies that (x, y) ∈ U2 ⊆ U3. So
x ∈ U3(y) ⊆W (y). Hence [u]γ ⊆W ([v]γ).

Fix x ∈ [v]γ . By (3.3) and (x, αn) ∈ endβ(v), we can take (yn, βn) ∈
endβ(uσn) such that ((x, αn), (yn, βn)) ∈ U × V d

4n
. Since |αn − βn| < d

4n for

every n ∈ N, we have the following:

α =
(2n− 1)α+ α

2n
<

(2n− 1)γ + α

2n
= γ− d

2n
= αn−

d

4n
< βn < αn+

d

4n
= γ.
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It follows that βn ∈ (α, γ) for all n ∈ N. So (yn, βn) ∈ endα(uσn). By (3.2), we
can take (zn, δn) ∈ endα(u) such that ((yn, βn), (zn, δn)) ∈ U × V d

4n
. For each

n ∈ N, we have that

|αn − δn| ≤ |αn − βn|+ |βn − δn| <
d

2n
.

Since {αn}n converges to γ, we can conclude that {δn}n converges to γ. Note
that the sequence {(zn, δn)}n is in the compact set endα(u). Therefore, we can
suppose that {(zn, δn)}n converges to (z, γ). Hence z ∈ [u]γ . On the other

hand, (x, zn) ∈ U2 for each n ∈ N. The latter fact implies that (x, z) ∈ U2 ⊆
U3 ⊆ W . So x ∈ W (z) and [v]γ ⊆ W ([u]γ). Hence ([u]γ , [v]γ) ∈ K[W ] for
every W ∈ U , whence [u]γ = [v]γ for each γ ∈ (α, 1]. This completes the proof
of Claim 1.

Take a net {uσ}σ∈Σ1
in A. Since Eα is compact for each (0, 1), the net

{end 1
2
(uσ)}σ∈Σ1

has a finer net {end 1
2
(uσ)}σ∈Σ2

which converges to end 1
2
(v2)

with v2 ∈ A. By induction, for every n ∈ N, we can obtain a net {end 1
n+1

(uσ)}σ∈Σn+1

which is finer than {end 1
n+1

(uσ)}σ∈Σn and {end 1
n+1

(uσ)}σ∈Σn+1
converges to

end 1
n+1

(vn+1) with vn+1 ∈ A.

By Claim 1, the set (X×{0})∪
⋃
n≥2 end 1

n
(vn) is the endograph of a fuzzy

set v ∈ F∗(X). Let us show that v is an accumulation point of {uσ}σ∈Σ1
. Take

U ∈ U and ε > 0. We can choose n ≥ 2 such that 1
n < ε. Fix σ0 ∈ Σ. Since

{end 1
n

(uσ)}σ∈Σn converges to end 1
n

(vn), we can find σ ≥ σ0 such that

end 1
n

(uσ) ⊆ [U × V 1
n

](end 1
n

(vn)) and end 1
n

(vn) ⊆ [U × V 1
n

](end 1
n

(uσ)).

(3.4)
Take (x, α) ∈ end(v) with α ∈ [0, 1

n ]. Then (x, x) ∈ U and (α, 0) ∈ Vε. So

(x, α) ∈ [U × Vε](end(uσ)). If α > 1
n , (3.4) implies the following:

(x, α) ∈ end 1
n

(vn) ⊆ [U × V 1
n

](end 1
n

(uσ)) ⊆ [U × Vε](end(uσ)).

We have thus proved that end(v) ⊆ [U × Vε](end(uσ)). Similarly, we can
show that end(uσ) ⊆ [U × Vε](end(v)). Therefore, v is an accumulation point
of {uσ}σ∈Σ1

. Finally, we know that A is closed in F∗(X), so v ∈ A. We
can conclude that every net in A has an accumulation point in A, i.e., A is
compact. �

Consider now a metric space (X, d). Define the metric d∗ on X × [0, 1] as
follows:

d∗((x, a), (y, b)) = max{d(x, y), |a− b|}.
The endograph metric dE on F∗(X) is the Hausdorff distance d∗H (with respect
to X × [0, 1]) between end(u) and end(v) for each u, v ∈ F∗(X). Recall that
a metric space (X, d) has a natural uniformity Ud determinated by the base
{Uε : ε > 0}, where Uε = {(x, y) ∈ X ×X : d(x, y) < ε}.

Corollary 3.7 ([4]). Let (X, d) be a metric space and a non-empty subset
A ⊆ F∗(X). Then the following conditions are equivalent:
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i) A is compact in (F∗(X), dE).
ii) A is closed in (F∗(X), dE) and A(α) =

⋃
{[u]α : u ∈ A} is compact in

(X, d) for each α ∈ (0, 1].

Proof. By a result of [6], we have that UdE = (Ud)E . It is easy to see that
A is compact (closed) in (F∗(X),UdE ) if and only if A is compact (closed) in
(F∗(X), dE) if and only if A is compact (closed) in (F∗(X), (Ud)E). We also
have that A(α) is compact in (X,Ud) if and only if A(α) is compact in (X, d)
for each α ∈ (0, 1]. It remains to apply Theorem 3.6 to the uniform space
(X,Ud). �

4. Compactness in the sendograph uniformity

Given a uniform space (X,U), we denote by F(X) the elements of F∗(X)
with compact support. If u ∈ F(X), the sendograph of u is defined by
send(u) = end(u) ∩ (u0 × [0, 1]). Observe that send(u) ∈ K(X × [0, 1]). Given
U ∈ U and ε > 0, we define the following sets:

S[U, ε] = {(u, v) ∈ F(X)×F(X) : (send(u), send(v)) ∈ K[U × Vε]}.

By Proposition 2.3, the family {S[U, ε] : U ∈ U , ε > 0} is base for a uniformity
US on F(X). The uniformity US is called the sendograph uniformity.

Consider now a metric space (X, d). Define the metric d∗ on X × [0, 1] as
follows:

d∗((x, a), (y, b)) = max{d(x, y), |a− b|}.
The sendograph metric dS on F(X) is the Hausdorff metric d∗H (onK(X×[0, 1]))
between the non-empty compact subsets send(u) and send(v) for every u, v ∈
F(X) (see [10]).

Theorem 4.1. Let A be a non-empty subset of a uniform space (X,U). Then
A is totally bounded in (F(X),US) if and only if A(0) =

⋃
u∈A u0 is totally

bounded in (X,U).

Proof. Suppose that A is a totally bounded subset in (F(X),US). Take U ∈ U .
We can find a symmetric V ∈ U such that V 2 ⊆ U . Since A is totally bounded

in (F(X),US), there exist u1, ..., uk ∈ A such that A ⊆
⋃k
i=1 S[V, 1](ui). We

also put A(k) =
⋃k
i=1[ui]0. Clearly, A(k) is totally bounded in (X,U). Hence,

there exists a finite subset J ⊆ A(k) such that A(k) ⊆ V (J). Define J ′ = {b ∈
J : V 2(b) ∩A(0) 6= ∅}.

Claim II: A(0) ⊆ U(J ′).
Take a ∈ A(0). Then a ∈ [u]0 for some u ∈ A. So (send(u), send(ui)) ∈

K[V × V1] for some i = 1, 2, ..., k. Then there exists (za, β) ∈ send(ui) with
((a, 0), (za, β)) ∈ V × V1. So (a, za) ∈ V and β < 1. It follows that

za ∈ [ui]β ⊆ [ui]0 ⊆ A(k).

By the choice of J , we can find b ∈ J with za ∈ V (b). Then (a, za), (za, b) ∈ V .
So (a, b) ∈ V 2. Hence a ∈ V 2(b) ∩ A(0). So b ∈ J ′ and a ∈ V 2(b) ⊆ U(b) ⊆
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U(J ′). This completes the proof of Claim II. Proposition 2.7 and Claim II
imply that A(0) is totally bounded in (X,U).

For the converse, we assume that A(0) is totally bounded in (X,U). Hence
A(α) is totally bounded in (X,U) for every α ∈ [0, 1]. For each α ∈ [0, 1],
we put Xα = A(α) and Uα = U|Xα . By Proposition 2.8, the uniform space
(K(Xα),K(Uα)) is totally bounded. Let us show that A is totally bounded in
(F(X),US). Take W ∈ U and ε > 0. We can assume that ε < 1. Choose n ∈ N
such that 1

n < ε. Put αi = n+1−i
n for each i = 1, ..., n and αn+1 = 0. Since

(K(Xαi),K(Uαi)) is totally bounded for each i = 1, ..., n, there exists a finite
subset Ii ⊆ K(Xαi) such that K(Xαi) = K[W∩X2

αi ](Ii) for each i = 1, ..., n. By
Proposition 2.7, we can assume that I1 ⊆ I2 ⊆ · · · ⊆ In and every Ii is closed
under union. Let V be the family of v ∈ F(X) such that [v]α = Ki ∈ Ii for
each α ∈ (αi+1, αi] and each i = 1, 2, ..., n. Clearly, V is finite and non-empty.
Let us prove the following:

A ⊆ S [W, ε] (V). (4.1)

Take u ∈ A. Then there exists Ki ∈ Ii such that ([u]αi ,Ki) ∈ K[W ∩X2
αi ]

for each i = 1, 2, ..., n. By Lemma 2.6 and the fact that each Ii is closed under
union, we can suppose that K1 ⊆ K2 ⊆ · · · ⊆ Kn. Let v ∈ V be such that
[v]α = Ki for each α ∈ (αi+1, αi] and each i = 1, 2, ..., n. Note that v0 = Kn.
Pick (x, β) ∈ send(u). Suppose that αi ≥ β > αi+1 for some i = 1, 2, ..., n− 1.
Since ([u]αi ,Ki) ∈ K[W ∩X2

αi ] and x ∈ [u]β ⊆ [u]αi+1
for each i = 1, 2, ..., n−1,

there exists k ∈ Ki+1 such that (x, k) ∈ W . So ((x, β), (k, αi+1)) ∈ W × Vε.
Therefore, (x, β) ∈ [W × Vε](send(v)). Now if (x, β) ∈ send(u) and 0 ≤
β ≤ 1

n , then x ∈ u0 =
⋃
α>0[u]α. Hence u0 ∩ W (x) 6= ∅. So we can find

y ∈ [u]α for some α > 0 such that (x, y) ∈W . We can assume that α ∈ (0, 1
n ].

Therefore, (x, β) ∈ [W × Vε](y, α) ⊆ [W × Vε](send(v)). We have thus proved
that send(u) ⊆ [W × Vε](send(v)).

Using a similar argument, we can show that send(v) ⊆ [W × Vε](send(u)).
Hence u ∈ S [W, ε] (v). Therefore, A ⊆ S [W, ε] (V). By (4.1) and Proposition
2.7, we have that A is totally bounded in (F(X),US). �

Theorem 4.2. Let A be a non-empty subset of a uniform space (X,U). Then
A is compact in (F(X),US) if and only if A is closed in (F(X),US) and A(0)
is compact in (X,U).

Proof. Assume that A is compact in (F(X),US). Let (X̂, Û) be the completion

of (X,U). Then F(X) ⊆ F(X̂). Clearly, A is compact in (F(X̂), ÛS). By

Theorem 4.1, A(0) is totally bounded in (X̂, Û). Let us show that A(0) is

closed in (X̂, Û). Take x ∈ A(0)
X̂

and a net {xσ}σ∈Σ in A(0) which converges
to x. For every σ ∈ Σ, we take uσ ∈ A such that xσ ∈ [uσ]0. Since A is
compact, the net {uσ}σ∈Σ in A has a finer net {uσ}σ∈Σ′ which converges to
u ∈ A. Let us show that x ∈ u0. Suppose the contrary, then there exists

W ∈ Û such that W (x) ∩ u0 = ∅. Pick V ∈ Û such that V 2 ⊆ U . On the
other hand, there exists σ0 ∈ Σ′ such that (u, uσ) ∈ S[V, 1] and (x, xσ) ∈ V for
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each σ ≥ σ0. Hence (xσ0
, 0) ∈ send(uσ0

) ⊆ [V × V1](send(u)). So there exists
(y, β) ∈ send(u) with (xσ0 , y) ∈ V and β < 1. Then y ∈ [u]β ⊆ u0. Since
(x, xσ0) ∈ V and (xσ0 , y) ∈ V , we have that (x, y) ∈ W . So y ∈ W (x), which
contradicts that W (x) ∩ u0 = ∅. Therefore, A(0) is compact in (X,U).

We now suppose that A is closed in (F(X),US) and A(0) is compact in
(X,U). Put Y = A(0) and V = U|Y . We can assume that A ⊆ F(Y ) ⊆
F(X). Since (Y,V) is compact, (F(Y ),VS) is complete by a result of [6].
Hence A is complete, since A is closed in (F(Y ),VS). On the other hand, A
is totally bounded in (F(Y ),VS) by Theorem 4.1. Therefore, A is compact
(F(X),US). �

Corollary 4.3. [4] Let A be a non-empty subset of a metric space (X, d). Then
A is compact in (F(X), dS) if and only if A is closed in (F(X), dS) and A(0)
is compact in (X, d).

Proof. It is easy to see that A is compact (closed) in (F(X), dS) if and only
if A is compact (closed) in (F(X),UdS ). Since UdS = (Ud)S , we have that
A is compact (closed) in (F(X), dS) if and only if A is compact (closed) in
(F(X), (Ud)S). On the othe hand, A(0) is compact in (X, d) if and only if A(0)
is compact in (X,Ud). If we apply Theorem 4.2 to the uniform space (X,Ud),
we obtain the required conclusion. �
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