

# Compactness in the endograph uniformity

IVÁN SÁNCHEZ

Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, C.P. 09340, Mexico City, Mexico (isr.uami@gmail.com)

Communicated by M. Sanchis

#### Abstract

Given a uniform space  $(X, \mathcal{U})$ , we denote by  $\mathcal{F}^*(X)$  to the family of fuzzy sets u in  $(X, \mathcal{U})$  such that u is normal and upper semicontinuous. Let  $\mathcal{U}_E$  be the endograph uniformity on  $\mathcal{F}^*(X)$ . In this paper, we mainly characterize totally bounded and compact subsets in the uniform space  $(\mathcal{F}^*(X), \mathcal{U}_E)$ .

2020 MSC: 03E72; 94D05; 28A20.

KEYWORDS: fuzzy sets; endograph uniformity; endograph metric; sendograph uniformity; sendograph metric; completeness; compactness.

## 1. INTRODUCTION

Compactness is a fundamental property in both theory and applications [5, 8, 14], and compactness criteria have attracted much attention. The Arzelà-Ascoli theorem(s) provide compactness criteria in classic analysis and topology (see for instance [2]). Characterizations of compactness are useful in theoretical research and practical applications. So many researches are devoted to characterizations of compactness in a variety of fuzzy set spaces endowed with different topologies (see [3] and references within).

Kloeden [9] introduced the endograph metric  $d_E$  on fuzzy sets. Given a metric space (X, d), we denote by  $\mathcal{F}(X)$  to the family of fuzzy sets u in (X, d) such that u is normal, upper semicontinuous and with compact support. Let  $\mathcal{F}^*(X)$  be the completion of  $(\mathcal{F}(X), d_E)$ . In [3], relatively compact subsets in  $(\mathcal{F}^*(\mathbb{R}^n), d_E)$  (where d is the usual metric in  $\mathbb{R}^n$ ) are characterized via the

notion of  $\Gamma$ -convergence, which was introduced by Rojas-Medar and Román-Flores [13].

In [6] was introduced the endograph uniformity  $\mathcal{U}_E$  on the family  $\mathcal{F}^*(X)$  of fuzzy sets u in the uniform space  $(X, \mathcal{U})$  such that u is normal and upper semicontinuous. In this paper, we mainly characterize totally bounded and compact subsets in the uniform space  $(\mathcal{F}^*(X), \mathcal{U}_E)$  (see Theorem 3.1 and 3.6). The latter theorems generalize some results in [4].

We also study totally bounded and compact subsets in the sendograph uniformity  $\mathcal{U}_S$  on the family  $\mathcal{F}(X)$  of fuzzy sets u in the uniform space  $(X, \mathcal{U})$  such that u is normal, upper semicontinuous and has compact support (see Theorem 4.1 and 4.2).

## 2. Preliminaries

Given a non-empty set X, a fuzzy set u on X is a function  $u : X \to [0, 1]$ . Let  $\alpha \in (0, 1]$ . We define the  $\alpha$ -level of u as the set  $[u]_{\alpha} = \{x \in X : u(x) \ge \alpha\}$ . The support of u is the set  $[u]_0 = \overline{\{x \in X : u(x) > 0\}}$ .

Now, let (X, d) be a metric space. Denote by  $\mathcal{K}(X)$  (resp.  $\mathcal{C}(X)$ ) to the family of non-empty compact (resp. closed) subsets of X. Given  $A, B \in \mathcal{K}(X)$ , we put  $d_{\lambda}(A, B) = \max\{d(a, B) : a \in A\}$ , where  $d(a, B) = \inf\{d(a, b) : b \in B\}$ . Then  $d_{\lambda}$  is called the *Hausdorff quasi-pseudometric* on  $\mathcal{K}(X)$ . Note that  $d_{\lambda}(A, B) = 0$  if and only if  $A \subseteq B$ . We recall that the *Hausdorff metric* on  $\mathcal{K}(X)$ , denoted by  $d_H$ , is defined as  $d_H(A, B) = \max\{d_{\lambda}(A, B), d_{\lambda}(B, A)\}$  for each  $A, B \in \mathcal{K}(X)$ .

Let X be a set and let A and B be subsets of  $X \times X$ , i.e., relations on the set X. The inverse relation of A will be denoted by  $A^{-1}$ , and the composition of A and B will be denoted by  $A \circ B$ . Thus, we have

$$A^{-1} = \{ (x, y) \in X \times X : (y, x) \in A \}$$

and

 $A \circ B = \{ (x, y) \in X \times X : \text{ there exists } z \in X \text{ such that } (x, z) \in A \text{ and } (z, y) \in B \}.$ 

The symbol  $A^2$  stands for  $A \circ A$  and  $\Delta_X$  for the diagonal of X, that is, the subset  $\{(x, x) : x \in X\}$  of  $X \times X$ . Every set  $A \subseteq X \times X$  that contains  $\Delta_X$  is called an *entourage of the diagonal*. We will denote by  $\mathcal{D}_X$  the family of all entourages of the diagonal of X.

**Definition 2.1.** A *uniformity* on a non-empty set X is a subfamily  $\mathcal{U}$  of  $\mathcal{D}_X$  which satisfies the following conditions:

- (U1) If  $A \in \mathcal{U}$  and  $A \subseteq B \in \mathcal{D}_X$ , then  $B \in \mathcal{U}$ .
- (U2) If  $A, B \in \mathcal{U}$ , then  $U \cap V \in \mathcal{U}$ .
- (U3) For every  $A \in \mathcal{U}$ , there exists  $B \in \mathcal{U}$  such that  $B^2 \subseteq A$ .
- (U4) For every  $A \in \mathcal{U}$ , there exists  $B \in \mathcal{U}$  such that  $B^{-1} \subseteq A$ .
- (U5)  $\bigcap_{A \in \mathcal{U}} A = \Delta_X.$

A uniform space is a pair  $(X, \mathcal{U})$  consisting of a set X and a uniformity  $\mathcal{U}$ on the set X. Let  $(X, \mathcal{U})$  be a uniform space. A family  $\mathcal{B} \subseteq \mathcal{U}$  is called a base for the uniformity  $\mathcal{U}$  if for every  $A \in \mathcal{U}$ , there exists  $B \in \mathcal{B}$  such that  $B \subseteq A$ . The following result is well known and easy to prove.

**Proposition 2.2.** Let X be a non-empty set. A non-empty family  $\mathcal{B}$  of subsets of  $X \times X$  is a base for some uniformity on X if and only if it satisfies the following properties:

- (BS1) For any  $A, B \in \mathcal{B}$ , there exists  $C \in \mathcal{B}$  such that  $C \subset A \cap B$ .
- (BS2) For every  $A \in \mathcal{B}$ , there exists  $B \in \mathcal{B}$  such that  $B^{-1} \subseteq A$ .
- (BS3) For every  $A \in \mathcal{B}$ , there exists  $B \in \mathcal{B}$  such that  $B^2 \subseteq A$ .
- (BS4)  $\bigcap_{A \in \mathcal{B}} A = \Delta_X.$

As usual, a set X equipped with a topology  $\tau$  is called a *topological space* and it will be denoted by  $(X, \tau)$ . It is a well-known fact that every uniformity  $\mathcal{U}$  on a set X induces a topology  $\tau(\mathcal{U})$  on X. To be precise, the topology  $\tau(\mathcal{U})$  is the family  $\{V \subseteq X : \text{ for every } x \in V, \text{ there exists } U \in \mathcal{U} \text{ such that } U(x) \subseteq V\}$ , where  $U(x) = \{y \in X : (x, y) \in U\}$ . In this case, the topological space  $(X, \tau(\mathcal{U}))$  is a Tychonoff space (for the details we refer to the reader to Chapter 8 of the classic text [1]).

We turn to a brief discussion of the hyperspaces that we will consider in this paper. Given a topological space  $(X, \tau)$ , the symbols  $\mathcal{C}(X)$  and  $\mathcal{K}(X)$  denote, respectively, the hyperspaces defined by

$$\mathcal{C}(X) = \{ E \subseteq X : E \text{ is closed and non-empty} \},\$$

$$\mathcal{K}(X) = \{ E \in \mathcal{C}(X) : E \text{ is compact} \}.$$

Thus, in the case of a uniform space  $(X, \mathcal{U})$ ,  $\mathcal{C}(X)$  (respectively,  $\mathcal{K}(X)$ ) denotes the hyperspace of all non-empty closed (respectively, non-empty compact) subsets of  $(X, \tau(\mathcal{U}))$ . We will see that  $\mathcal{C}(X)$  and  $\mathcal{K}(X)$  can be endowed with a natural uniformity in this situation.

Let  $(X, \mathcal{U})$  be a uniform space. For each  $U \in \mathcal{U}$  and each  $A \subset X$ , let us define  $U(A) = \bigcup_{x \in A} U(x)$ . Now, for each  $U \in \mathcal{U}$  consider the families

$$\mathcal{C}[U] = \{ (A, B) \in \mathcal{C}(X) \times \mathcal{C}(X) : A \subseteq U(B), \ B \subseteq U(A) \}, \\ \mathcal{K}[U] = \{ (A, B) \in \mathcal{K}(X) \times \mathcal{K}(X) : A \subseteq U(B), \ B \subseteq U(A) \}$$

Among the most interesting results in the theory of hyperspaces are the following three well-known results.

**Proposition 2.3** ([11]). If (X, U) is a uniform space, then  $\{\mathcal{K}[U] : U \in U\}$  is a base for a uniformity  $\mathcal{K}(U)$  on  $\mathcal{K}(X)$ .

A remarkable result by Michael [11] allows us to describe the topology induced by the uniformity  $\mathcal{K}(\mathcal{U})$ . Let us recall that, for any topological space  $(X, \tau)$ , the topology  $\tau$  induces a topology  $\tau_V$  on  $\mathcal{C}(X)$ , the so-called *Vietoris* topology, a base for  $\tau_V$  is the family of all sets of the form

$$\mathcal{V}\langle V_1, V_2, \dots, V_k \rangle = \left\{ B \in \mathcal{C}(X) : B \subset \bigcup_{i=1}^k V_i \text{ and } B \cap V_i \neq \emptyset \text{ for } i = 1, 2, \dots, k \right\}$$

where  $V_1, V_2, \ldots, V_n$  is a finite sequence of non-empty open sets of X.

© AGT, UPV, 2024

Appl. Gen. Topol. 25, no. 1 201

**Theorem 2.4** ([11]). If (X, U) is a uniform space, then the topology induced by  $\mathcal{K}(U)$  on  $\mathcal{K}(X)$  coincides with the Vietoris topology induced by  $\tau(U)$  on  $\mathcal{K}(X)$ .

Allowing for the previous result, if no confusion can arise,  $\mathcal{K}(X)$  will be denote the hyperspace of all non-empty compact subsets of  $(X, \tau(\mathcal{U}))$  equipped with the Vietoris topology induced by  $\tau(\mathcal{U})$ . For the hyperspace  $\mathcal{C}(X)$  we have the following.

**Proposition 2.5** ([11]). If (X, U) is a uniform space, then  $\{C[U] : U \in U\}$  is a base for a uniformity C(U) on C(X).

The following result is easy to prove.

**Lemma 2.6.** Let  $(X, \mathcal{U})$  be a uniform space. If  $W \in \mathcal{U}$  and  $A, B, C, D \in \mathcal{K}(X)$ satisfy  $(A, C) \in \mathcal{K}[W]$  and  $(B, D) \in \mathcal{K}[W]$ , then  $(A \cup B, C \cup D) \in \mathcal{K}[W]$ .

Let  $(X, \mathcal{U})$  be a uniform space. Let us recall that a non-empty subset  $A \subseteq X$  is *totally bounded* in  $(X, \mathcal{U})$  if for every  $U \in \mathcal{U}$ , there exists a finite subset  $F \subseteq A$  such that  $A \subseteq U(F)$ .

**Proposition 2.7.** Let (X, U) be a uniform space. Then  $A \subseteq X$  is totally bounded in (X, U) if and only if for every  $U \in U$ , there exists a finite subset  $F \subseteq X$  such that  $A \subseteq U(F)$ .

**Proposition 2.8.** If (X, U) is a totally bounded uniform space, then the uniformity  $\mathcal{K}(U)$  on  $\mathcal{K}(X)$  is totally bounded.

*Proof.* Take  $U \in \mathcal{U}$ . Since  $(X, \mathcal{U})$  is totally bounded, there exists a finite subset  $A \subseteq X$  such that X = U(A). Denote by F the family of all non-empty finite subsets of A. Let us show that  $\mathcal{K}(X) = \mathcal{K}[U](F)$ . Fix  $K \in \mathcal{K}(X)$ . We can find  $B \in F$  such that  $K \subseteq U(B)$  and  $K \cap U(b) \neq \emptyset$  for each  $b \in B$ . The choice of B implies that  $(B, K) \in \mathcal{K}[U]$ . This completes the proof.  $\Box$ 

Let (X, U) be a uniform space. Denote by  $\mathcal{F}^*(X)$  the family of fuzzy sets u on  $(X, \mathcal{U})$  satisfying the following conditions:

- i) u is upper semicontinuous.
- ii)  $[u]_{\alpha} \in \mathcal{K}(X)$  for every  $\alpha \in (0, 1]$ .
- iii)  $u_0 = \overline{\bigcup \{ [u]_\alpha : \alpha \in (0, 1] \}}.$

**Theorem 2.9** ([7, Proposition 4.9]). Let X be a Hausdorff space and  $u \in \mathcal{F}^*(X)$ . If  $L_u: (0,1] \to (\mathcal{K}(X), \tau_V)$  is defined by  $L_u(\alpha) = [u]_\alpha$  for all  $\alpha \in (0,1]$ , then  $L_u$  is left-continuous on (0,1].

Conversely, if  $\{[u]_{\alpha} : \alpha \in (0,1]\} \subseteq \mathcal{K}(X)$  is a decreasing family such that the function  $L: (0,1] \to (\mathcal{K}(X), \tau_V)$  defined by  $L(\alpha) = [u]_{\alpha}$  is left-continuous, then there exists a unique  $w \in \mathcal{F}^*(X)$  such that  $[w]_{\alpha} = [u]_{\alpha}$  for every  $\alpha \in (0,1]$ .

Remark 2.10. Let X be a Hausdorff space and  $u \in \mathcal{F}^*(X)$ . If  $L_u: (0,1] \to (\mathcal{K}(X), \tau_V)$  is defined by  $L_u(\alpha) = [u]_\alpha$  for all  $\alpha \in (0,1]$ , then  $\lim_{\alpha \to \beta^+} L_u(\alpha) = (\mathcal{K}(X), \tau_V)$ 

 $\overline{\bigcup_{\beta < \alpha} [u]_{\alpha}} \text{ for each } \beta \in (0,1) \text{ and we put } \lim_{\alpha \to \beta^+} L_u(\alpha) = u_{\beta^+}.$ 

Appl. Gen. Topol. 25, no. 1 202

③ AGT, UPV, 2024

## 3. Compactness in the endograph uniformity

Let  $(X, \mathcal{U})$  be a uniform space. If  $u \in \mathcal{F}^*(X)$ , then the *endograph* of u is defined as  $end(u) = \{(x, \alpha) \in X \times [0, 1] : u(x) \geq \alpha\}$ . Notice that  $end(u) \in \mathcal{C}(X \times [0, 1])$ . Consider the uniformity  $\mathcal{U}_{\mathbb{I}}$  defined on  $\mathbb{I} = [0, 1]$  by means of the base  $\{V_{\epsilon} : \epsilon > 0\}$ , where  $V_{\epsilon} = \{(\alpha, \beta) \in \mathbb{I} \times \mathbb{I} : |\alpha - \beta| < \epsilon\}$ . Then we can take the product uniformity  $\mathcal{U} \times \mathcal{U}_{\mathbb{I}}$  on  $X \times \mathbb{I}$ . We have that  $\{U \times V_{\epsilon} : U \in \mathcal{U}, \epsilon > 0\}$ is a base for  $\mathcal{U} \times \mathcal{U}_{\mathbb{I}}$ . Note that  $((a, \alpha), (b, \beta)) \in U \times V_{\epsilon}$  if and only if  $(a, b) \in U$ and  $|\alpha - \beta| < \epsilon$ . Let  $(X, \mathcal{U})$  be a uniform space. Given  $U \in \mathcal{U}$  and  $\epsilon > 0$ , we define the following sets:

 $E[U,\epsilon] = \{(u,v) \in \mathcal{F}^*(X) \times \mathcal{F}^*(X) : (end(u), end(v)) \in \mathcal{C}[U \times V_{\epsilon}]\}.$ 

It follows from Proposition 2.5 that the family  $\{E[U, \epsilon] : U \in \mathcal{U}, \epsilon > 0\}$  is base for a uniformity  $\mathcal{U}_E$  on  $\mathcal{F}^*(X)$ . The uniformity  $\mathcal{U}_E$  is called the *endograph uniformity*.

We start this section with a characterization of totally bounded subsets in  $\mathcal{F}^*(X)$ .

**Theorem 3.1.** Let  $(X, \mathcal{U})$  be a uniform space and a non-empty subset  $A \subseteq \mathcal{F}^*(X)$ . Then the following conditions are equivalent:

- i) A is totally bounded in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ .
- ii)  $A(\alpha) = \bigcup \{ [u]_{\alpha} : u \in A \}$  is totally bounded in  $(X, \mathcal{U})$  for each  $\alpha \in (0, 1]$ .
- iii)  $A_{\alpha} = \{[u]_{\alpha} : u \in A\}$  is totally bounded in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$  for each  $\alpha \in (0, 1]$ .

Proof. Let us show that i) implies ii). Suppose that A is a totally bounded subset in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ . Fix  $\alpha \in (0, 1]$ . Take  $U \in \mathcal{U}$ . We can find a symmetric  $V \in \mathcal{U}$  such that  $V^2 \subseteq U$ . Put  $\epsilon = \frac{\alpha}{2} < \alpha$  and  $\delta = \alpha - \frac{\epsilon}{4} > 0$ . Since A is totally bounded in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ , there exist  $u_1, ..., u_k \in A$  such that  $A \subseteq \bigcup_{i=1}^k E[V, \epsilon](u_i)$ . We also put  $A_\alpha(k) = \bigcup_{i=1}^k [u_i]_\alpha$  and  $A_\epsilon(k) = \bigcup_{i=1}^k [u_i]_\epsilon$ . Note that  $A_\alpha(k) \subseteq A_\epsilon(k)$ . Clearly,  $A_\epsilon(k)$  is totally bounded in  $(X, \mathcal{U})$ . Hence, there exists a finite subset  $J \subseteq A_\epsilon(k)$  such that  $A_\epsilon(k) \subseteq V(J)$ . Define  $J' = \{b \in J : V^2(b) \cap A(\alpha) \neq \emptyset\}$ .

# Claim I: $A(\alpha) \subseteq U(J')$ .

Take  $a \in A(\alpha)$ . Then  $a \in [u]_{\alpha}$  for some  $u \in A$ . So  $(end(u), end(u_i)) \in C[V \times V_{\epsilon}]$  for some i = 1, 2, ..., k. Then there exists  $(z_a, \beta) \in end(u_i)$  with  $((a, \alpha), (z_a, \beta)) \in V \times V_{\epsilon}$ . So  $(a, z_a) \in V$  and  $\alpha - \beta < \epsilon = \frac{\alpha}{2}$ . Hence  $\epsilon < \beta$ . It follows that

$$z_a \in [u_i]_{\beta} \subseteq [u_i]_{\epsilon} \subseteq A_{\epsilon}(k).$$

By the choice of J, we can find  $b \in J$  with  $z_a \in V(b)$ . Since  $(a, z_a) \in V$  and  $(z_a, b) \in V$ , we have that  $(a, b) \in V^2$ . Hence  $a \in V^2(b) \cap A(\alpha)$ . So  $b \in J'$  and  $a \in V^2(b) \subseteq U(b) \subseteq U(J')$ , which proves Claim I. So Proposition 2.7 and Claim I imply that  $A(\alpha)$  is totally bounded in  $(X, \mathcal{U})$ .

Let us prove that ii)  $\Rightarrow$  iii). We now assume that  $A(\alpha)$  is totally bounded in  $(X, \mathcal{U})$  for each  $\alpha \in (0, 1]$ . Take  $\alpha \in (0, 1]$ , we put  $X_{\alpha} = A(\alpha)$  and  $\mathcal{U}_{\alpha} = \mathcal{U}|_{X_{\alpha}}$ .

By Proposition 2.8, the uniform space  $(\mathcal{K}(X_{\alpha}), \mathcal{K}(\mathcal{U}_{\alpha}))$  is totally bounded. Note that  $A_{\alpha} \subseteq \mathcal{K}(X_{\alpha})$ . It follows from [1, Theorem 8.3.2] that  $A_{\alpha}$  is totally bounded in  $(\mathcal{K}(X_{\alpha}), \mathcal{K}(\mathcal{U}_{\alpha}))$ . Given  $U \in \mathcal{U}$ , there exists a finite subset  $J \subseteq A_{\alpha}$  such that  $A_{\alpha} \subseteq \mathcal{K}[U \cap X_{\alpha}^2](J) \subseteq \mathcal{K}[U](J)$ . Therefore,  $A_{\alpha}$  is totally bounded in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ .

In order to show that iii) implies i), assume that  $A_{\alpha} = \{[u]_{\alpha} : u \in A\}$  is totally bounded in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$  for each  $\alpha \in (0, 1]$ . Let us show that A is totally bounded in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ . Take  $W \in \mathcal{U}$  and  $\epsilon > 0$ . We can assume that  $\epsilon < 1$ . Choose  $n \in \mathbb{N}$  such that  $\frac{1}{n} < \epsilon$ . Put  $\alpha_i = \frac{n+1-i}{n}$  for each i = 1, ..., n and  $\alpha_{n+1} = 0$ . Since  $A_{\alpha_i}$  is totally bounded in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$  for each i = 1, ..., n, there exists a finite subset  $I_i \subseteq A_{\alpha_i}$  such that  $A_{\alpha_i} \subseteq \mathcal{K}[W](I_i)$ for each i = 1, ..., n. By Proposition 2.7, we can assume that  $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$ and every  $I_i$  is closed under union. Let  $\mathcal{V}$  be the family of  $v \in \mathcal{F}^*(X)$  such that  $[v]_{\alpha} = K_i \in I_i$  for each  $\alpha \in (\alpha_{i+1}, \alpha_i]$  and each i = 1, 2, ..., n. Clearly,  $\mathcal{V}$ is finite and non-empty. Let us prove the following:

$$A \subseteq E[W, \epsilon](\mathcal{V}). \tag{3.1}$$

Take  $u \in A$ . Then there exists  $K_i \in I_i$  such that  $([u]_{\alpha_i}, K_i) \in \mathcal{K}[W]$  for each i = 1, 2, ..., n. By Lemma 2.6 and the fact that each  $I_i$  is closed under union, we can suppose that  $K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ . Let  $v \in \mathcal{V}$  be such that  $[v]_{\alpha} = K_i$  for each  $\alpha \in (\alpha_{i+1}, \alpha_i]$  and each i = 1, 2, ..., n. Note that  $v_0 = [v]_{\alpha_{n+1}} = K_n$ . Pick  $(x, \beta) \in end(u)$ . If  $\alpha_n \geq \beta \geq \alpha_{n+1}$ , then

$$(x,\beta) \in [W \times V_{\epsilon}](x,0) \subseteq [W \times V_{\epsilon}](end(v)).$$

We now suppose that  $\alpha_i \geq \beta > \alpha_{i+1}$  for some i = 1, 2, ..., n - 1. Since  $([u]_{\alpha_i}, K_i) \in \mathcal{K}[W]$  and  $x \in [u]_{\beta} \subseteq [u]_{\alpha_{i+1}}$  for each i = 1, 2, ..., n - 1, there exists  $k \in \mathcal{K}_{i+1}$  such that  $(x, k) \in W$ . So  $((x, \beta), (k, \alpha_{i+1})) \in W \times V_{\epsilon}$ . Therefore,  $(x, \beta) \in [W \times V_{\epsilon}](end(v))$  for each  $(x, \beta) \in end(u)$ . We have thus proved that  $end(u) \subseteq [W \times V_{\epsilon}](end(v))$ .

Using a similar argument, we can show that  $end(v) \subseteq [W \times V_{\epsilon}](end(u))$ . Hence  $u \in E[W, \epsilon](v)$ . Therefore,  $A \subseteq E[W, \epsilon](\mathcal{V})$ . By (3.1) and Proposition 2.7, we have that A is totally bounded in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ .

**Corollary 3.2.** Let  $(X, \mathcal{U})$  be a uniform space and  $\mathcal{D} \subseteq \mathcal{K}(X)$ . Then the following conditions are equivalent:

- i)  $\mathbf{D} = \bigcup \{ C \in \mathcal{D} \}$  is totally bounded in  $(X, \mathcal{U})$ .
- ii)  $\mathcal{D}$  is totally bounded in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ .

*Proof.* We put  $A = \{\chi_K : K \in \mathcal{D}\} \subseteq \mathcal{F}^*(X)$  and apply Theorem 3.1.

We need the following three results in order to prove Theorem 3.6.

**Lemma 3.3.** Consider a uniform space (X, U) and  $\mathcal{D} \subseteq \mathcal{K}(X)$ . If  $(\mathcal{D}, \mathcal{K}(U)|_{\mathcal{D}})$  is compact, then  $\mathbf{D} = \bigcup \{C \in \mathcal{D}\}$  is compact with respect to the uniformity  $\mathcal{U}|_{\mathbf{D}}$ .

*Proof.* We can assume that  $(X, \mathcal{U})$  is complete, otherwise we can take its completion. Let  $\{x_{\sigma}\}_{\sigma \in \Sigma}$  be a net in **D**. Pick  $C_{\sigma} \in \mathcal{D}$  such that  $x_{\sigma} \in C_{\sigma}$ . Since

 $(\mathcal{D}, \mathcal{K}(\mathcal{U})|_{\mathcal{D}})$  is compact, the net  $\{C_{\sigma}\}_{\sigma \in \Sigma}$  has a finer net  $\{C_{\sigma'}\}_{\sigma' \in \Sigma'}$  which converges to  $C \in \mathcal{D}$ . The set  $\mathcal{E} = \{C\} \cup \{C_{\sigma'} : \sigma' \in \Sigma'\} \subseteq \mathcal{D}$  is totally bounded, since  $\mathcal{D}$  is compact. By Corollary 3.2,  $\mathbf{E} = \bigcup \{E \in \mathcal{E}\}$  is totally bounded in  $(X, \mathcal{U})$ . Then  $\overline{\mathbf{E}}$  is totally bounded in  $(X, \mathcal{U})$ . So  $\overline{\mathbf{E}}$  is compact, since  $(X, \mathcal{U})$  is complete. We know that  $x_{\sigma'} \in \mathbf{E}$  for each  $\sigma' \in \Sigma'$ . Hence there exists a net  $\{x_{\sigma''}\}_{\sigma''\in\Sigma''}$  finer than  $\{x_{\sigma'}\}_{\sigma'\in\Sigma'}$  which converges to  $x \in \overline{\mathbf{E}}$ . It is straightforward to show that  $x \in C$ . We have thus proved that  $\{x_{\sigma}\}_{\sigma\in\Sigma}$  has a finer net which converges to  $x \in \mathbf{D}$ . Therefore,  $\mathbf{D}$  is compact.  $\Box$ 

**Lemma 3.4.** Consider a uniform space  $(X, \mathcal{U})$  and  $\mathcal{D} \subseteq \mathcal{K}(X)$ . If  $\mathbf{D} = \bigcup \{C \in \mathcal{D}\}$  is complete with respect to the uniformity  $\mathcal{U}|_{\mathbf{D}}$  and  $\mathcal{D}$  is closed in  $\mathcal{K}(X)$ , then  $(\mathcal{D}, \mathcal{K}(\mathcal{U})|_{\mathcal{D}})$  is complete.

*Proof.* If **D** is complete with respect to the uniformity  $\mathcal{U}|_{\mathbf{D}}$ , then  $(\mathcal{K}(\mathbf{D}), \mathcal{K}(\mathcal{U})|_{\mathcal{K}(\mathbf{D})})$  is complete by [12]. Since  $\mathcal{D}$  is closed in  $\mathcal{K}(X)$ , we have that  $\mathcal{D}$  is closed in  $\mathcal{K}(\mathbf{D})$ . The completeness of  $(\mathcal{K}(\mathbf{D}), \mathcal{K}(\mathcal{U})|_{\mathcal{K}(\mathbf{D})})$  implies that  $(\mathcal{D}, \mathcal{K}(\mathcal{U})|_{\mathcal{D}})$  is complete.  $\Box$ 

**Proposition 3.5.** Consider a uniform space (X, U) and  $\mathcal{D} \subseteq \mathcal{K}(X)$ . Then the following conditions are equivalent:

- i)  $\mathcal{D}$  is compact in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ .
- ii)  $\mathbf{D} = \bigcup \{ C \in \mathcal{D} \}$  is compact in  $(X, \mathcal{U})$  and  $\mathcal{D}$  is closed in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ .

*Proof.* i)  $\Rightarrow$  ii) by Lemma 3.3. Let us show that ii)  $\Rightarrow$  i). If **D** is compact, then  $\mathcal{D}$  is totally bounded in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$  by Corollary 3.2. On the other hand,  $\mathcal{D}$  is complete by Lemma 3.4. Therefore,  $\mathcal{D}$  is compact in  $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ .

**Theorem 3.6.** Let  $(X, \mathcal{U})$  be a uniform space and a non-empty subset  $A \subseteq \mathcal{F}^*(X)$ . Then the following conditions are equivalent:

- i) A is compact in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ .
- ii) A is closed in  $(\mathcal{F}^*(X), \mathcal{U}_E)$  and  $A(\alpha) = \bigcup \{ [u]_\alpha : u \in A \}$  is compact in  $(X, \mathcal{U})$  for each  $\alpha \in (0, 1]$ .

Proof. Let  $(\widehat{X}, \widehat{\mathcal{U}})$  the completion of  $(X, \mathcal{U})$ . Then  $\mathcal{F}^*(X) \subseteq \mathcal{F}^*(\widehat{X})$ . Let us show that i) implies ii). Clearly, A is compact in  $(\mathcal{F}^*(\widehat{X}), \widehat{\mathcal{U}}_E)$ . By Theorem 3.1,  $A(\alpha)$  is totally bounded in  $(\widehat{X}, \widehat{\mathcal{U}})$  for each  $\alpha \in (0, 1]$ . Let us show that  $A(\alpha)$ is closed in  $(\widehat{X}, \widehat{\mathcal{U}})$  for each  $\alpha \in (0, 1]$ . Take  $\alpha \in (0, 1]$  and  $x \in \overline{A(\alpha)}^{\widehat{X}}$ . Then there exists a net  $\{x_{\sigma}\}_{\sigma\in\Sigma}$  in  $A(\alpha)$  which converges to x. For every  $\sigma \in \Sigma$ , we can choose  $u_{\sigma} \in A$  such that  $x_{\sigma} \in [u_{\sigma}]_{\alpha}$ . Since A is compact  $\{u_{\sigma}\}_{\sigma\in\Sigma}$  has a

finer net  $\{u_{\sigma}\}_{\sigma \in \Sigma'}$  which converges to  $u \in A$ . We define  $v \in \mathcal{F}^*(\widehat{X})$  as follows:

$$[v]_{\beta} = \begin{cases} [u]_{\beta}, & \text{if } \beta \in (\alpha, 1].\\ \{x\} \cup [u]_{\beta}, & \text{if } \beta \in (0, \alpha]. \end{cases}$$

Let us show that  $\{u_{\sigma}\}_{\sigma\in\Sigma'}$  converges to v. Given  $U \in \widehat{\mathcal{U}}$  and  $\epsilon > 0$ , there exists  $\sigma_0 \in \Sigma'$  such that  $(x, x_{\sigma}) \in U$  and  $(u, u_{\sigma}) \in E[U, \epsilon]$  for every  $\sigma \geq \sigma_0$ . Take  $\sigma \geq \sigma_0$ . Clearly,  $end(u_{\sigma}) \subseteq [U \times V_{\epsilon}](end(u)) \subseteq [U \times V_{\epsilon}](end(v))$ . We now pick  $(y, \beta) \in end(v)$ . If  $y \neq x$ , then  $(y, \beta) \in end(u) \subseteq [U \times V_{\epsilon}](end(u_{\sigma}))$ . On the

other hand, if y = x, the definition of v implies that  $\beta \leq \alpha$ . Then  $x_{\sigma} \in [u_{\sigma}]_{\alpha} \subseteq [u_{\sigma}]_{\beta}$ . So  $(x_{\sigma}, \beta) \in end(u_{\sigma})$  and  $(x, \beta) \in [U \times V_{\epsilon}](x_{\sigma}, \beta) \subseteq [U \times V_{\epsilon}](end(u_{\sigma}))$ . Hence,  $end(v) \subseteq [U \times V_{\epsilon}](end(u_{\sigma}))$ . We have thus proved that  $(v, u_{\sigma}) \in E[U, \epsilon]$  for every  $\sigma \geq \sigma_0$ . Therefore, u = v and  $x \in [u]_{\alpha} \subseteq A(\alpha)$ . So  $A(\alpha)$  is closed and totally bounded in  $(\widehat{X}, \widehat{\mathcal{U}})$ . It follows that  $A(\alpha)$  is compact.

In order to show that ii)  $\Rightarrow$  i), assume that A is closed in  $(\mathcal{F}^*(X), \mathcal{U}_E)$ and  $A(\alpha) = \bigcup \{ [u]_{\alpha} : u \in A \}$  is compact in  $(X, \mathcal{U})$  for each  $\alpha \in (0, 1]$ . By Theorem 3.1, A is totally bounded in  $(\mathcal{F}^*(\hat{X}), \hat{\mathcal{U}}_E)$ . We put  $X_{\alpha} = A(\alpha)$  for each  $\alpha \in (0, 1)$ . Given  $u \in \mathcal{F}^*(X)$  and  $\alpha \in (0, 1)$ , we put  $end_{\alpha}(u) = [u_{\alpha^+} \times \{\alpha\}] \cup [end(u) \cap (X \times (\alpha, 1])]$ , see Remark 2.10 for the symbol  $u_{\alpha^+}$ . Note that  $end_{\alpha}(u) \in \mathcal{K}(X_{\alpha} \times [0, 1])$ . Since  $X_{\alpha}$  is compact, we can conclude that  $\mathcal{K}(X_{\alpha} \times [0, 1])$  is compact for every  $\alpha \in (0, 1)$ . We can argue as in the proof of [6, Theorem 5.3] to show that  $E_{\alpha} = \{end_{\alpha}(u) : u \in A\}$  is closed in  $\mathcal{K}(X_{\alpha} \times [0, 1])$ . Hence  $E_{\alpha}$  is compact for each  $\alpha \in (0, 1)$ .

Claim 1: Take  $0 < \beta < \alpha < 1$ . Suppose that  $\{end_{\alpha}(u_{\sigma})\}_{\sigma \in \Sigma}$  and  $\{end_{\beta}(u_{\sigma})\}_{\sigma \in \Sigma}$ have a finer net  $\{end_{\alpha}(u_{\sigma})\}_{\sigma \in \Sigma'}$  and  $\{end_{\beta}(u_{\sigma})\}_{\sigma \in \Sigma'}$  which converge to  $end_{\alpha}(u)$ and  $end_{\beta}(v)$ , respectively. Then  $[u]_{\gamma} = [v]_{\gamma}$  for each  $\gamma \in (\alpha, 1]$ .

Pick  $\gamma \in (\alpha, 1]$ . Let us show that  $([u]_{\gamma}, [v]_{\gamma}) \in \mathcal{K}[W]$  for every  $W \in \mathcal{U}$ . Take a symmetric  $U \in \mathcal{U}$  such that  $U^4 \subseteq W$ . Put  $d = \gamma - \alpha$  and  $\alpha_n = \gamma - \frac{d}{4n}$  for each  $n \in \mathbb{N}$ . Then the sequence  $\{\alpha_n\}_n \subseteq (\alpha, \gamma)$  is increasing and converges to  $\gamma$ . Since  $\{end_{\alpha}(u_{\sigma})\}_{\sigma \in \Sigma'}$  and  $\{end_{\beta}(u_{\sigma})\}_{\sigma \in \Sigma'}$  converge to  $end_{\alpha}(u)$  and  $end_{\beta}(v)$ , respectively; then for every  $n \in \mathbb{N}$ , there exists  $\sigma_n \in \Sigma'$  such that

$$end_{\alpha}(u_{\sigma_n}) \subseteq [U \times V_{\frac{d}{4n}}](end_{\alpha}(u)) \quad \text{and} \quad end_{\alpha}(u) \subseteq [U \times V_{\frac{d}{4n}}](end_{\alpha}(u_{\sigma_n})).$$

$$(3.2)$$

$$end_{\beta}(u_{\sigma_n}) \subseteq [U \times V_{\frac{d}{4n}}](end_{\beta}(v)) \text{ and } end_{\beta}(v) \subseteq [U \times V_{\frac{d}{4n}}](end_{\beta}(u_{\sigma_n})).$$

$$(3.3)$$

From (3.2) and (3.3), we have that  $end_{\alpha}(u) \subseteq [U^2 \times V_{\frac{d}{2n}}](end_{\beta}(v))$  for each  $n \in \mathbb{N}$ . Fix  $x \in [u]_{\gamma}$ . Since  $(x, \alpha_n) \in end_{\alpha}(u)$ , we can take  $(y_n, \beta_n) \in end_{\beta}(v)$  such that  $((x, \alpha_n), (y_n, \beta_n)) \in U^2 \times V_{\frac{d}{2n}}$ . Since  $|\alpha_n - \beta_n| < \frac{d}{2n}$  and  $\{\alpha_n\}_n$  converges to  $\gamma$ , we can conclude that  $\{\beta_n\}_n$  converges to  $\gamma$ . Note that the sequence  $\{(y_n, \beta_n)\}_n$  is in the compact set  $end_{\beta}(v)$ . Therefore, we can suppose that  $\{(y_n, \beta_n)\}_n$  converges to  $(y, \gamma)$ . Hence  $y \in [v]_{\gamma}$ . On the other hand,  $(x, y_n) \in U^2$  for each  $n \in \mathbb{N}$ . The latter fact implies that  $(x, y) \in \overline{U^2} \subseteq U^3$ . So  $x \in U^3(y) \subseteq W(y)$ . Hence  $[u]_{\gamma} \subseteq W([v]_{\gamma})$ .

Fix  $x \in [v]_{\gamma}$ . By (3.3) and  $(x, \alpha_n) \in end_{\beta}(v)$ , we can take  $(y_n, \beta_n) \in end_{\beta}(u_{\sigma_n})$  such that  $((x, \alpha_n), (y_n, \beta_n)) \in U \times V_{\frac{d}{4n}}$ . Since  $|\alpha_n - \beta_n| < \frac{d}{4n}$  for every  $n \in \mathbb{N}$ , we have the following:

$$\alpha = \frac{(2n-1)\alpha + \alpha}{2n} < \frac{(2n-1)\gamma + \alpha}{2n} = \gamma - \frac{d}{2n} = \alpha_n - \frac{d}{4n} < \beta_n < \alpha_n + \frac{d}{4n} = \gamma.$$

© AGT, UPV, 2024

Appl. Gen. Topol. 25, no. 1 206

It follows that  $\beta_n \in (\alpha, \gamma)$  for all  $n \in \mathbb{N}$ . So  $(y_n, \beta_n) \in end_{\alpha}(u_{\sigma_n})$ . By (3.2), we can take  $(z_n, \delta_n) \in end_{\alpha}(u)$  such that  $((y_n, \beta_n), (z_n, \delta_n)) \in U \times V_{\frac{d}{4n}}$ . For each  $n \in \mathbb{N}$ , we have that

$$|\alpha_n - \delta_n| \le |\alpha_n - \beta_n| + |\beta_n - \delta_n| < \frac{d}{2n}$$

Since  $\{\alpha_n\}_n$  converges to  $\gamma$ , we can conclude that  $\{\delta_n\}_n$  converges to  $\gamma$ . Note that the sequence  $\{(z_n, \delta_n)\}_n$  is in the compact set  $end_\alpha(u)$ . Therefore, we can suppose that  $\{(z_n, \delta_n)\}_n$  converges to  $(z, \gamma)$ . Hence  $z \in [u]_{\gamma}$ . On the other hand,  $(x, z_n) \in U^2$  for each  $n \in \mathbb{N}$ . The latter fact implies that  $(x, z) \in \overline{U^2} \subseteq U^3 \subseteq W$ . So  $x \in W(z)$  and  $[v]_{\gamma} \subseteq W([u]_{\gamma})$ . Hence  $([u]_{\gamma}, [v]_{\gamma}) \in \mathcal{K}[W]$  for every  $W \in \mathcal{U}$ , whence  $[u]_{\gamma} = [v]_{\gamma}$  for each  $\gamma \in (\alpha, 1]$ . This completes the proof of **Claim 1**.

Take a net  $\{u_{\sigma}\}_{\sigma\in\Sigma_{1}}$  in A. Since  $E_{\alpha}$  is compact for each (0,1), the net  $\{end_{\frac{1}{2}}(u_{\sigma})\}_{\sigma\in\Sigma_{1}}$  has a finer net  $\{end_{\frac{1}{2}}(u_{\sigma})\}_{\sigma\in\Sigma_{2}}$  which converges to  $end_{\frac{1}{2}}(v_{2})$  with  $v_{2} \in A$ . By induction, for every  $n \in \mathbb{N}$ , we can obtain a net  $\{end_{\frac{1}{n+1}}(u_{\sigma})\}_{\sigma\in\Sigma_{n+1}}$  which is finer than  $\{end_{\frac{1}{n+1}}(u_{\sigma})\}_{\sigma\in\Sigma_{n}}$  and  $\{end_{\frac{1}{n+1}}(u_{\sigma})\}_{\sigma\in\Sigma_{n+1}}$  converges to  $end_{\frac{1}{n+1}}(v_{n+1})$  with  $v_{n+1} \in A$ .

By **Claim 1**, the set  $(X \times \{0\}) \cup \bigcup_{n \geq 2} end_{\frac{1}{n}}(v_n)$  is the endograph of a fuzzy set  $v \in \mathcal{F}^*(X)$ . Let us show that v is an accumulation point of  $\{u_\sigma\}_{\sigma \in \Sigma_1}$ . Take  $U \in \mathcal{U}$  and  $\epsilon > 0$ . We can choose  $n \geq 2$  such that  $\frac{1}{n} < \epsilon$ . Fix  $\sigma_0 \in \Sigma$ . Since  $\{end_{\frac{1}{n}}(u_\sigma)\}_{\sigma \in \Sigma_n}$  converges to  $end_{\frac{1}{n}}(v_n)$ , we can find  $\sigma \geq \sigma_0$  such that

$$end_{\frac{1}{n}}(u_{\sigma}) \subseteq [U \times V_{\frac{1}{n}}](end_{\frac{1}{n}}(v_n)) \quad \text{and} \quad end_{\frac{1}{n}}(v_n) \subseteq [U \times V_{\frac{1}{n}}](end_{\frac{1}{n}}(u_{\sigma})).$$
(3.4)

Take  $(x, \alpha) \in end(v)$  with  $\alpha \in [0, \frac{1}{n}]$ . Then  $(x, x) \in U$  and  $(\alpha, 0) \in V_{\epsilon}$ . So  $(x, \alpha) \in [U \times V_{\epsilon}](end(u_{\sigma}))$ . If  $\alpha > \frac{1}{n}$ , (3.4) implies the following:

$$(x,\alpha) \in end_{\frac{1}{n}}(v_n) \subseteq [U \times V_{\frac{1}{n}}](end_{\frac{1}{n}}(u_{\sigma})) \subseteq [U \times V_{\epsilon}](end(u_{\sigma})).$$

We have thus proved that  $end(v) \subseteq [U \times V_{\epsilon}](end(u_{\sigma}))$ . Similarly, we can show that  $end(u_{\sigma}) \subseteq [U \times V_{\epsilon}](end(v))$ . Therefore, v is an accumulation point of  $\{u_{\sigma}\}_{\sigma \in \Sigma_1}$ . Finally, we know that A is closed in  $\mathcal{F}^*(X)$ , so  $v \in A$ . We can conclude that every net in A has an accumulation point in A, i.e., A is compact.

Consider now a metric space (X, d). Define the metric  $d^*$  on  $X \times [0, 1]$  as follows:

$$d^*((x,a),(y,b)) = \max\{d(x,y), |a-b|\}.$$

The endograph metric  $d_E$  on  $\mathcal{F}^*(X)$  is the Hausdorff distance  $d_H^*$  (with respect to  $X \times [0,1]$ ) between end(u) and end(v) for each  $u, v \in \mathcal{F}^*(X)$ . Recall that a metric space (X,d) has a natural uniformity  $\mathcal{U}_d$  determinated by the base  $\{U_{\epsilon} : \epsilon > 0\}$ , where  $U_{\epsilon} = \{(x,y) \in X \times X : d(x,y) < \epsilon\}$ .

**Corollary 3.7** ([4]). Let (X, d) be a metric space and a non-empty subset  $A \subseteq \mathcal{F}^*(X)$ . Then the following conditions are equivalent:

- i) A is compact in  $(\mathcal{F}^*(X), d_E)$ .
- ii) A is closed in  $(\mathcal{F}^*(X), d_E)$  and  $A(\alpha) = \bigcup \{ [u]_\alpha : u \in A \}$  is compact in (X, d) for each  $\alpha \in (0, 1]$ .

Proof. By a result of [6], we have that  $\mathcal{U}_{d_E} = (\mathcal{U}_d)_E$ . It is easy to see that A is compact (closed) in  $(\mathcal{F}^*(X), \mathcal{U}_{d_E})$  if and only if A is compact (closed) in  $(\mathcal{F}^*(X), d_E)$  if and only if A is compact (closed) in  $(\mathcal{F}^*(X), (\mathcal{U}_d)_E)$ . We also have that  $A(\alpha)$  is compact in  $(X, \mathcal{U}_d)$  if and only if  $A(\alpha)$  is compact in  $(X, \mathcal{U}_d)$  for each  $\alpha \in (0, 1]$ . It remains to apply Theorem 3.6 to the uniform space  $(X, \mathcal{U}_d)$ .

## 4. Compactness in the sendograph uniformity

Given a uniform space  $(X, \mathcal{U})$ , we denote by  $\mathcal{F}(X)$  the elements of  $\mathcal{F}^*(X)$ with compact support. If  $u \in \mathcal{F}(X)$ , the *sendograph* of u is defined by  $send(u) = end(u) \cap (u_0 \times [0, 1])$ . Observe that  $send(u) \in \mathcal{K}(X \times [0, 1])$ . Given  $U \in \mathcal{U}$  and  $\epsilon > 0$ , we define the following sets:

$$S[U,\epsilon] = \{(u,v) \in \mathcal{F}(X) \times \mathcal{F}(X) : (send(u), send(v)) \in \mathcal{K}[U \times V_{\epsilon}]\}.$$

By Proposition 2.3, the family  $\{S[U, \epsilon] : U \in \mathcal{U}, \epsilon > 0\}$  is base for a uniformity  $\mathcal{U}_S$  on  $\mathcal{F}(X)$ . The uniformity  $\mathcal{U}_S$  is called the *sendograph uniformity*.

Consider now a metric space (X, d). Define the metric  $d^*$  on  $X \times [0, 1]$  as follows:

$$d^*((x,a),(y,b)) = \max\{d(x,y), |a-b|\}.$$

The sendograph metric  $d_S$  on  $\mathcal{F}(X)$  is the Hausdorff metric  $d_H^*$  (on  $\mathcal{K}(X \times [0, 1])$ ) between the non-empty compact subsets send(u) and send(v) for every  $u, v \in \mathcal{F}(X)$  (see [10]).

**Theorem 4.1.** Let A be a non-empty subset of a uniform space  $(X, \mathcal{U})$ . Then A is totally bounded in  $(\mathcal{F}(X), \mathcal{U}_S)$  if and only if  $A(0) = \bigcup_{u \in A} u_0$  is totally bounded in  $(X, \mathcal{U})$ .

Proof. Suppose that A is a totally bounded subset in  $(\mathcal{F}(X), \mathcal{U}_S)$ . Take  $U \in \mathcal{U}$ . We can find a symmetric  $V \in \mathcal{U}$  such that  $V^2 \subseteq U$ . Since A is totally bounded in  $(\mathcal{F}(X), \mathcal{U}_S)$ , there exist  $u_1, ..., u_k \in A$  such that  $A \subseteq \bigcup_{i=1}^k S[V, 1](u_i)$ . We also put  $A(k) = \bigcup_{i=1}^k [u_i]_0$ . Clearly, A(k) is totally bounded in  $(X, \mathcal{U})$ . Hence, there exists a finite subset  $J \subseteq A(k)$  such that  $A(k) \subseteq V(J)$ . Define  $J' = \{b \in J : V^2(b) \cap A(0) \neq \emptyset\}$ .

## Claim II: $A(0) \subseteq U(J')$ .

Take  $a \in A(0)$ . Then  $a \in [u]_0$  for some  $u \in A$ . So  $(send(u), send(u_i)) \in \mathcal{K}[V \times V_1]$  for some i = 1, 2, ..., k. Then there exists  $(z_a, \beta) \in send(u_i)$  with  $((a, 0), (z_a, \beta)) \in V \times V_1$ . So  $(a, z_a) \in V$  and  $\beta < 1$ . It follows that

$$z_a \in [u_i]_\beta \subseteq [u_i]_0 \subseteq A(k)$$

By the choice of J, we can find  $b \in J$  with  $z_a \in V(b)$ . Then  $(a, z_a), (z_a, b) \in V$ . So  $(a, b) \in V^2$ . Hence  $a \in V^2(b) \cap A(0)$ . So  $b \in J'$  and  $a \in V^2(b) \subseteq U(b) \subseteq U(b)$ 

© AGT, UPV, 2024

Appl. Gen. Topol. 25, no. 1 208

U(J'). This completes the proof of Claim II. Proposition 2.7 and Claim II imply that A(0) is totally bounded in  $(X, \mathcal{U})$ .

For the converse, we assume that A(0) is totally bounded in  $(X, \mathcal{U})$ . Hence  $A(\alpha)$  is totally bounded in  $(X, \mathcal{U})$  for every  $\alpha \in [0, 1]$ . For each  $\alpha \in [0, 1]$ , we put  $X_{\alpha} = A(\alpha)$  and  $\mathcal{U}_{\alpha} = \mathcal{U}|_{X_{\alpha}}$ . By Proposition 2.8, the uniform space  $(\mathcal{K}(X_{\alpha}), \mathcal{K}(\mathcal{U}_{\alpha}))$  is totally bounded. Let us show that A is totally bounded in  $(\mathcal{F}(X), \mathcal{U}_S)$ . Take  $W \in \mathcal{U}$  and  $\epsilon > 0$ . We can assume that  $\epsilon < 1$ . Choose  $n \in \mathbb{N}$  such that  $\frac{1}{n} < \epsilon$ . Put  $\alpha_i = \frac{n+1-i}{n}$  for each i = 1, ..., n and  $\alpha_{n+1} = 0$ . Since  $(\mathcal{K}(X_{\alpha_i}), \mathcal{K}(\mathcal{U}_{\alpha_i}))$  is totally bounded for each i = 1, ..., n, there exists a finite subset  $I_i \subseteq \mathcal{K}(X_{\alpha_i})$  such that  $\mathcal{K}(X_{\alpha_i}) = \mathcal{K}[W \cap X^2_{\alpha_i}](I_i)$  for each i = 1, ..., n. By Proposition 2.7, we can assume that  $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$  and every  $I_i$  is closed under union. Let  $\mathcal{V}$  be the family of  $v \in \mathcal{F}(X)$  such that  $[v]_{\alpha} = K_i \in I_i$  for each  $\alpha \in (\alpha_{i+1}, \alpha_i]$  and each i = 1, 2, ..., n. Clearly,  $\mathcal{V}$  is finite and non-empty. Let us prove the following:

$$A \subseteq S[W, \epsilon](\mathcal{V}). \tag{4.1}$$

Take  $u \in A$ . Then there exists  $K_i \in I_i$  such that  $([u]_{\alpha_i}, K_i) \in \mathcal{K}[W \cap X_{\alpha_i}^2]$ for each i = 1, 2, ..., n. By Lemma 2.6 and the fact that each  $I_i$  is closed under union, we can suppose that  $K_1 \subseteq K_2 \subseteq \cdots \subseteq K_n$ . Let  $v \in \mathcal{V}$  be such that  $[v]_{\alpha} = K_i$  for each  $\alpha \in (\alpha_{i+1}, \alpha_i]$  and each i = 1, 2, ..., n. Note that  $v_0 = K_n$ . Pick  $(x, \beta) \in send(u)$ . Suppose that  $\alpha_i \geq \beta > \alpha_{i+1}$  for some i = 1, 2, ..., n-1. Since  $([u]_{\alpha_i}, K_i) \in \mathcal{K}[W \cap X_{\alpha_i}^2]$  and  $x \in [u]_{\beta} \subseteq [u]_{\alpha_{i+1}}$  for each i = 1, 2, ..., n-1, there exists  $k \in \mathcal{K}_{i+1}$  such that  $(x, k) \in W$ . So  $((x, \beta), (k, \alpha_{i+1})) \in W \times V_{\epsilon}$ . Therefore,  $(x, \beta) \in [W \times V_{\epsilon}](send(v))$ . Now if  $(x, \beta) \in send(u)$  and  $0 \leq \beta \leq \frac{1}{n}$ , then  $x \in u_0 = \bigcup_{\alpha > 0} [u]_{\alpha}$ . Hence  $u_0 \cap W(x) \neq \emptyset$ . So we can find  $y \in [u]_{\alpha}$  for some  $\alpha > 0$  such that  $(x, y) \in W$ . We can assume that  $\alpha \in (0, \frac{1}{n}]$ . Therefore,  $(x, \beta) \in [W \times V_{\epsilon}](y, \alpha) \subseteq [W \times V_{\epsilon}](send(v))$ . We have thus proved that  $send(u) \subseteq [W \times V_{\epsilon}](send(v))$ .

Using a similar argument, we can show that  $send(v) \subseteq [W \times V_{\epsilon}](send(u))$ . Hence  $u \in S[W, \epsilon](v)$ . Therefore,  $A \subseteq S[W, \epsilon](\mathcal{V})$ . By (4.1) and Proposition 2.7, we have that A is totally bounded in  $(\mathcal{F}(X), \mathcal{U}_S)$ .

**Theorem 4.2.** Let A be a non-empty subset of a uniform space (X, U). Then A is compact in  $(\mathcal{F}(X), \mathcal{U}_S)$  if and only if A is closed in  $(\mathcal{F}(X), \mathcal{U}_S)$  and A(0) is compact in (X, U).

Proof. Assume that A is compact in  $(\mathcal{F}(X), \mathcal{U}_S)$ . Let  $(\hat{X}, \hat{\mathcal{U}})$  be the completion of  $(X, \mathcal{U})$ . Then  $\mathcal{F}(X) \subseteq \mathcal{F}(\hat{X})$ . Clearly, A is compact in  $(\mathcal{F}(\hat{X}), \hat{\mathcal{U}}_S)$ . By Theorem 4.1, A(0) is totally bounded in  $(\hat{X}, \hat{\mathcal{U}})$ . Let us show that A(0) is closed in  $(\hat{X}, \hat{\mathcal{U}})$ . Take  $x \in \overline{A(0)}^{\hat{X}}$  and a net  $\{x_{\sigma}\}_{\sigma \in \Sigma}$  in A(0) which converges to x. For every  $\sigma \in \Sigma$ , we take  $u_{\sigma} \in A$  such that  $x_{\sigma} \in [u_{\sigma}]_0$ . Since A is compact, the net  $\{u_{\sigma}\}_{\sigma \in \Sigma}$  in A has a finer net  $\{u_{\sigma}\}_{\sigma \in \Sigma'}$  which converges to  $u \in A$ . Let us show that  $x \in u_0$ . Suppose the contrary, then there exists  $W \in \hat{\mathcal{U}}$  such that  $W(x) \cap u_0 = \emptyset$ . Pick  $V \in \hat{\mathcal{U}}$  such that  $V^2 \subseteq U$ . On the other hand, there exists  $\sigma_0 \in \Sigma'$  such that  $(u, u_{\sigma}) \in S[V, 1]$  and  $(x, x_{\sigma}) \in V$  for

each  $\sigma \geq \sigma_0$ . Hence  $(x_{\sigma_0}, 0) \in send(u_{\sigma_0}) \subseteq [V \times V_1](send(u))$ . So there exists  $(y, \beta) \in send(u)$  with  $(x_{\sigma_0}, y) \in V$  and  $\beta < 1$ . Then  $y \in [u]_{\beta} \subseteq u_0$ . Since  $(x, x_{\sigma_0}) \in V$  and  $(x_{\sigma_0}, y) \in V$ , we have that  $(x, y) \in W$ . So  $y \in W(x)$ , which contradicts that  $W(x) \cap u_0 = \emptyset$ . Therefore, A(0) is compact in  $(X, \mathcal{U})$ .

We now suppose that A is closed in  $(\mathcal{F}(X), \mathcal{U}_S)$  and A(0) is compact in  $(X, \mathcal{U})$ . Put Y = A(0) and  $\mathcal{V} = \mathcal{U}|_Y$ . We can assume that  $A \subseteq \mathcal{F}(Y) \subseteq \mathcal{F}(X)$ . Since  $(Y, \mathcal{V})$  is compact,  $(\mathcal{F}(Y), \mathcal{V}_S)$  is complete by a result of [6]. Hence A is complete, since A is closed in  $(\mathcal{F}(Y), \mathcal{V}_S)$ . On the other hand, A is totally bounded in  $(\mathcal{F}(Y), \mathcal{V}_S)$  by Theorem 4.1. Therefore, A is compact  $(\mathcal{F}(X), \mathcal{U}_S)$ .

**Corollary 4.3.** [4] Let A be a non-empty subset of a metric space (X, d). Then A is compact in  $(\mathcal{F}(X), d_S)$  if and only if A is closed in  $(\mathcal{F}(X), d_S)$  and A(0) is compact in (X, d).

Proof. It is easy to see that A is compact (closed) in  $(\mathcal{F}(X), d_S)$  if and only if A is compact (closed) in  $(\mathcal{F}(X), \mathcal{U}_{d_S})$ . Since  $\mathcal{U}_{d_S} = (\mathcal{U}_d)_S$ , we have that A is compact (closed) in  $(\mathcal{F}(X), d_S)$  if and only if A is compact (closed) in  $(\mathcal{F}(X), (\mathcal{U}_d)_S)$ . On the othe hand, A(0) is compact in (X, d) if and only if A(0)is compact in  $(X, \mathcal{U}_d)$ . If we apply Theorem 4.2 to the uniform space  $(X, \mathcal{U}_d)$ , we obtain the required conclusion.

## 5. Acknowledgements

This research was supported by Conacyt, grant: Ciencia de Frontera 64356. The author thank to the anonymous referee for the careful reading of the original manuscript and her/his comments, which helped to improve this work.

#### References

- [1] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [2] J. J. Font, D. Sanchis, and M. Sanchis, Completeness, metrizability and compactness in spaces of fuzzy-number-valued functions, Fuzzy Sets and Systems 353 (2018), 124–136.
- [3] H. Huang, Characterizations of endograph metric and Γ-convergence on fuzzy, Fuzzy Sets and Systems 350 (2018), 55–85.
- [4] H. Huang, Properties of several fuzzy set spaces, arXiv:1910.02205v2 [math.GM].
- [5] G. Huang, G.-B. Huang, S. Song, and K. You, Trends in extreme learning machines: a review, Neural Netw. 61 (2015), 32–48.
- [6] D. Jardón, I. Sánchez and M. Sanchis, Fuzzy sets on uniform spaces, preprint.
- [7] D. Jardón, I. Sánchez and M. Sanchis, Some questions about Zadeh's extension on metric spaces, Fuzzy Sets Syst. 379 (2020), 115–124.
- [8] J. L. Kelley, General Topology, Springer, New York, NY, USA, 1975.
- [9] P. E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets Syst. 4, no. 2 (1980), 193–201.
- [10] J. Kupka, On fuzzifications of discrete dynamical systems, Information Sciences 181 (2011), 2858–2872.
- [11] E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society 71, no. 1 (1951), 152–182.

Compactness in the endograph uniformity

- [12] K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology and its Applications (1974), 217–233.
- [13] M. Rojas-Medar, and H. Román-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets Syst. 80 (1996), 217–224.
- [14] F. Scarselli, and A. C. Tsoi, Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results, Neural Netw. 11, no. 1 (1998), 15–37.