Compactness in the endograph uniformity

Iván SÁNCHEZ
Departamento de Matemáticas, Universidad Autónoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, Del. Iztapalapa, C.P. 09340, Mexico City, Mexico (isr.uami@gmail.com)

Communicated by M. Sanchis

> | ABSTRACT |
| :--- |
| Given a uniform space (X, \mathcal{U}), we denote by $\mathcal{F}^{*}(X)$ to the family of |
| fuzzy sets u in (X, \mathcal{U}) such that u is normal and upper semicontinu- |
| ous. Let \mathcal{U}_{E} be the endograph uniformity on $\mathcal{F}^{*}(X)$. In this paper, |
| we mainly characterize totally bounded and compact subsets in the |
| uniform space $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$. |

2020 MSC: 03E72; 94D05; 28A20.
KEYWORDS: fuzzy sets; endograph uniformity; endograph metric; sendograph uniformity; sendograph metric; completeness; compactness.

1. Introduction

Compactness is a fundamental property in both theory and applications $[5,8,14]$, and compactness criteria have attracted much attention. The ArzelàAscoli theorem(s) provide compactness criteria in classic analysis and topology (see for instance [2]). Characterizations of compactness are useful in theoretical research and practical applications. So many researches are devoted to characterizations of compactness in a variety of fuzzy set spaces endowed with different topologies (see [3] and references within).

Kloeden [9] introduced the endograph metric d_{E} on fuzzy sets. Given a metric space (X, d), we denote by $\mathcal{F}(X)$ to the family of fuzzy sets u in (X, d) such that u is normal, upper semicontinuous and with compact support. Let $\mathcal{F}^{*}(X)$ be the completion of $\left(\mathcal{F}(X), d_{E}\right)$. In [3], relatively compact subsets in $\left(\mathcal{F}^{*}\left(\mathbb{R}^{n}\right), d_{E}\right)$ (where d is the usual metric in \mathbb{R}^{n}) are characterized via the
notion of Γ-convergence, which was introduced by Rojas-Medar and RománFlores [13].

In [6] was introduced the endograph uniformity \mathcal{U}_{E} on the family $\mathcal{F}^{*}(X)$ of fuzzy sets u in the uniform space (X, \mathcal{U}) such that u is normal and upper semicontinuous. In this paper, we mainly characterize totally bounded and compact subsets in the uniform space $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$ (see Theorem 3.1 and 3.6). The latter theorems generalize some results in [4].

We also study totally bounded and compact subsets in the sendograph uniformity \mathcal{U}_{S} on the family $\mathcal{F}(X)$ of fuzzy sets u in the uniform space (X, \mathcal{U}) such that u is normal, upper semicontinuous and has compact support (see Theorem 4.1 and 4.2).

2. Preliminaries

Given a non-empty set X, a fuzzy set u on X is a function $u: X \rightarrow[0,1]$. Let $\alpha \in(0,1]$. We define the α-level of u as the set $[u]_{\alpha}=\{x \in X: u(x) \geq \alpha\}$. The support of u is the set $[u]_{0}=\overline{\{x \in X: u(x)>0\}}$.

Now, let (X, d) be a metric space. Denote by $\mathcal{K}(X)$ (resp. $\mathcal{C}(X))$ to the family of non-empty compact (resp. closed) subsets of X. Given $A, B \in \mathcal{K}(X)$, we put $d_{\lambda}(A, B)=\max \{d(a, B): a \in A\}$, where $d(a, B)=\inf \{d(a, b): b \in$ $B\}$. Then d_{λ} is called the Hausdorff quasi-pseudometric on $\mathcal{K}(X)$. Note that $d_{\lambda}(A, B)=0$ if and only if $A \subseteq B$. We recall that the Hausdorff metric on $\mathcal{K}(X)$, denoted by d_{H}, is defined as $d_{H}(A, B)=\max \left\{d_{\lambda}(A, B), d_{\lambda}(B, A)\right\}$ for each $A, B \in \mathcal{K}(X)$.

Let X be a set and let A and B be subsets of $X \times X$, i.e., relations on the set X. The inverse relation of A will be denoted by A^{-1}, and the composition of A and B will be denoted by $A \circ B$. Thus, we have

$$
A^{-1}=\{(x, y) \in X \times X:(y, x) \in A\}
$$

and
$A \circ B=\{(x, y) \in X \times X$: there exists $z \in X$ such that $(x, z) \in A$ and $(z, y) \in B\}$.
The symbol A^{2} stands for $A \circ A$ and Δ_{X} for the diagonal of X, that is, the subset $\{(x, x): x \in X\}$ of $X \times X$. Every set $A \subseteq X \times X$ that contains Δ_{X} is called an entourage of the diagonal. We will denote by \mathcal{D}_{X} the family of all entourages of the diagonal of X.

Definition 2.1. A uniformity on a non-empty set X is a subfamily \mathcal{U} of \mathcal{D}_{X} which satisfies the following conditions:
(U1) If $A \in \mathcal{U}$ and $A \subseteq B \in \mathcal{D}_{X}$, then $B \in \mathcal{U}$.
(U2) If $A, B \in \mathcal{U}$, then $U \cap V \in \mathcal{U}$.
(U3) For every $A \in \mathcal{U}$, there exists $B \in \mathcal{U}$ such that $B^{2} \subseteq A$.
(U4) For every $A \in \mathcal{U}$, there exists $B \in \mathcal{U}$ such that $B^{-1} \subseteq A$.
(U5) $\bigcap_{A \in \mathcal{U}} A=\Delta_{X}$.
A uniform space is a pair (X, \mathcal{U}) consisting of a set X and a uniformity \mathcal{U} on the set X. Let (X, \mathcal{U}) be a uniform space. A family $\mathcal{B} \subseteq \mathcal{U}$ is called a base
for the uniformity \mathcal{U} if for every $A \in \mathcal{U}$, there exists $B \in \mathcal{B}$ such that $B \subseteq A$. The following result is well known and easy to prove.
Proposition 2.2. Let X be a non-empty set. A non-empty family \mathcal{B} of subsets of $X \times X$ is a base for some uniformity on X if and only if it satisfies the following properties:
(BS1) For any $A, B \in \mathcal{B}$, there exists $C \in \mathcal{B}$ such that $C \subset A \cap B$.
(BS2) For every $A \in \mathcal{B}$, there exists $B \in \mathcal{B}$ such that $B^{-1} \subseteq A$.
(BS3) For every $A \in \mathcal{B}$, there exists $B \in \mathcal{B}$ such that $B^{2} \subseteq A$.
(BS4) $\bigcap_{A \in \mathcal{B}} A=\Delta_{X}$.
As usual, a set X equipped with a topology τ is called a topological space and it will be denoted by (X, τ). It is a well-known fact that every uniformity \mathcal{U} on a set X induces a topology $\tau(\mathcal{U})$ on X. To be precise, the topology $\tau(\mathcal{U})$ is the family $\{V \subseteq X:$ for every $x \in V$, there exists $U \in \mathcal{U}$ such that $U(x) \subseteq V\}$, where $U(x)=\{y \in X:(x, y) \in U\}$. In this case, the topological space $(X, \tau(\mathcal{U}))$ is a Tychonoff space (for the details we refer to the reader to Chapter 8 of the classic text [1]).

We turn to a brief discussion of the hyperspaces that we will consider in this paper. Given a topological space (X, τ), the symbols $\mathcal{C}(X)$ and $\mathcal{K}(X)$ denote, respectively, the hyperspaces defined by

$$
\begin{aligned}
& \mathcal{C}(X)=\{E \subseteq X: E \text { is closed and non-empty }\} \\
& \mathcal{K}(X)=\{E \in \mathcal{C}(X): E \text { is compact }\}
\end{aligned}
$$

Thus, in the case of a uniform space $(X, \mathcal{U}), \mathcal{C}(X)$ (respectively, $\mathcal{K}(X))$ denotes the hyperspace of all non-empty closed (respectively, non-empty compact) subsets of $(X, \tau(\mathcal{U}))$. We will see that $\mathcal{C}(X)$ and $\mathcal{K}(X)$ can be endowed with a natural uniformity in this situation.

Let (X, \mathcal{U}) be a uniform space. For each $U \in \mathcal{U}$ and each $A \subset X$, let us define $U(A)=\bigcup_{x \in A} U(x)$. Now, for each $U \in \mathcal{U}$ consider the families

$$
\begin{aligned}
& \mathcal{C}[U]=\{(A, B) \in \mathcal{C}(X) \times \mathcal{C}(X): A \subseteq U(B), B \subseteq U(A)\} \\
& \mathcal{K}[U]=\{(A, B) \in \mathcal{K}(X) \times \mathcal{K}(X): A \subseteq U(B), B \subseteq U(A)\}
\end{aligned}
$$

Among the most interesting results in the theory of hyperspaces are the following three well-known results.
Proposition 2.3 ([11]). If (X, \mathcal{U}) is a uniform space, then $\{\mathcal{K}[U]: U \in \mathcal{U}\}$ is a base for a uniformity $\mathcal{K}(\mathcal{U})$ on $\mathcal{K}(X)$.

A remarkable result by Michael [11] allows us to describe the topology induced by the uniformity $\mathcal{K}(\mathcal{U})$. Let us recall that, for any topological space (X, τ), the topology τ induces a topology τ_{V} on $\mathcal{C}(X)$, the so-called Vietoris topology, a base for τ_{V} is the family of all sets of the form
$\mathcal{V}\left\langle V_{1}, V_{2}, \ldots, V_{k}\right\rangle=\left\{B \in \mathcal{C}(X): B \subset \bigcup_{i=1}^{k} V_{i}\right.$ and $B \cap V_{i} \neq \varnothing$ for $\left.i=1,2, \ldots, k\right\}$,
where $V_{1}, V_{2}, \ldots, V_{n}$ is a finite sequence of non-empty open sets of X.

Theorem 2.4 ([11]). If (X, \mathcal{U}) is a uniform space, then the topology induced by $\mathcal{K}(\mathcal{U})$ on $\mathcal{K}(X)$ coincides with the Vietoris topology induced by $\tau(\mathcal{U})$ on $\mathcal{K}(X)$.

Allowing for the previous result, if no confusion can arise, $\mathcal{K}(X)$ will be denote the hyperspace of all non-empty compact subsets of $(X, \tau(\mathcal{U}))$ equipped with the Vietoris topology induced by $\tau(\mathcal{U})$. For the hyperspace $\mathcal{C}(X)$ we have the following.

Proposition 2.5 ([11]). If (X, \mathcal{U}) is a uniform space, then $\{\mathcal{C}[U]: U \in \mathcal{U}\}$ is a base for a uniformity $\mathcal{C}(\mathcal{U})$ on $\mathcal{C}(X)$.

The following result is easy to prove.
Lemma 2.6. Let (X, \mathcal{U}) be a uniform space. If $W \in \mathcal{U}$ and $A, B, C, D \in \mathcal{K}(X)$ satisfy $(A, C) \in \mathcal{K}[W]$ and $(B, D) \in \mathcal{K}[W]$, then $(A \cup B, C \cup D) \in \mathcal{K}[W]$.

Let (X, \mathcal{U}) be a uniform space. Let us recall that a non-empty subset $A \subseteq X$ is totally bounded in (X, \mathcal{U}) if for every $U \in \mathcal{U}$, there exists a finite subset $F \subseteq A$ such that $A \subseteq U(F)$.

Proposition 2.7. Let (X, \mathcal{U}) be a uniform space. Then $A \subseteq X$ is totally bounded in (X, \mathcal{U}) if and only if for every $U \in \mathcal{U}$, there exists a finite subset $F \subseteq X$ such that $A \subseteq U(F)$.
Proposition 2.8. If (X, \mathcal{U}) is a totally bounded uniform space, then the uniformity $\mathcal{K}(\mathcal{U})$ on $\mathcal{K}(X)$ is totally bounded.

Proof. Take $U \in \mathcal{U}$. Since (X, \mathcal{U}) is totally bounded, there exists a finite subset $A \subseteq X$ such that $X=U(A)$. Denote by F the family of all non-empty finite subsets of A. Let us show that $\mathcal{K}(X)=\mathcal{K}[U](F)$. Fix $K \in \mathcal{K}(X)$. We can find $B \in F$ such that $K \subseteq U(B)$ and $K \cap U(b) \neq \varnothing$ for each $b \in B$. The choice of B implies that $(B, K) \in \mathcal{K}[U]$. This completes the proof.

Let (X, U) be a uniform space. Denote by $\mathcal{F}^{*}(X)$ the family of fuzzy sets u on (X, \mathcal{U}) satisfying the following conditions:
i) u is upper semicontinuous.
ii) $[u]_{\alpha} \in \mathcal{K}(X)$ for every $\alpha \in(0,1]$.
iii) $u_{0}=\overline{\bigcup\left\{[u]_{\alpha}: \alpha \in(0,1]\right\}}$.

Theorem 2.9 ([7, Proposition 4.9]). Let X be a Hausdorff space and $u \in$ $\mathcal{F}^{*}(X)$. If $L_{u}:(0,1] \rightarrow\left(\mathcal{K}(X), \tau_{V}\right)$ is defined by $L_{u}(\alpha)=[u]_{\alpha}$ for all $\alpha \in(0,1]$, then L_{u} is left-continuous on $(0,1]$.

Conversely, if $\left\{[u]_{\alpha}: \alpha \in(0,1]\right\} \subseteq \mathcal{K}(X)$ is a decreasing family such that the function $L:(0,1] \rightarrow\left(\mathcal{K}(X), \tau_{V}\right)$ defined by $L(\alpha)=[u]_{\alpha}$ is left-continuous, then there exists a unique $w \in \mathcal{F}^{*}(X)$ such that $[w]_{\alpha}=[u]_{\alpha}$ for every $\alpha \in(0,1]$.
Remark 2.10. Let X be a Hausdorff space and $u \in \mathcal{F}^{*}(X)$. If $L_{u}:(0,1] \rightarrow$ $\left(\mathcal{K}(X), \tau_{V}\right)$ is defined by $L_{u}(\alpha)=[u]_{\alpha}$ for all $\alpha \in(0,1]$, then $\lim _{\alpha \rightarrow \beta^{+}} L_{u}(\alpha)=$ $\overline{\bigcup_{\beta<\alpha}[u]_{\alpha}}$ for each $\beta \in(0,1)$ and we put $\lim _{\alpha \rightarrow \beta^{+}} L_{u}(\alpha)=u_{\beta^{+}}$.

3. Compactness in the endograph uniformity

Let (X, \mathcal{U}) be a uniform space. If $u \in \mathcal{F}^{*}(X)$, then the endograph of u is defined as $\operatorname{end}(u)=\{(x, \alpha) \in X \times[0,1]: u(x) \geq \alpha\}$. Notice that $\operatorname{end}(u) \in$ $\mathcal{C}(X \times[0,1])$. Consider the uniformity $\mathcal{U}_{\mathbb{I}}$ defined on $\mathbb{I}=[0,1]$ by means of the base $\left\{V_{\epsilon}: \epsilon>0\right\}$, where $V_{\epsilon}=\{(\alpha, \beta) \in \mathbb{I} \times \mathbb{I}:|\alpha-\beta|<\epsilon\}$. Then we can take the product uniformity $\mathcal{U} \times \mathcal{U}_{\mathbb{I}}$ on $X \times \mathbb{I}$. We have that $\left\{U \times V_{\epsilon}: U \in \mathcal{U}, \epsilon>0\right\}$ is a base for $\mathcal{U} \times \mathcal{U}_{\mathbb{I}}$. Note that $((a, \alpha),(b, \beta)) \in U \times V_{\epsilon}$ if and only if $(a, b) \in U$ and $|\alpha-\beta|<\epsilon$. Let (X, \mathcal{U}) be a uniform space. Given $U \in \mathcal{U}$ and $\epsilon>0$, we define the following sets:

$$
E[U, \epsilon]=\left\{(u, v) \in \mathcal{F}^{*}(X) \times \mathcal{F}^{*}(X):(e n d(u), e n d(v)) \in \mathcal{C}\left[U \times V_{\epsilon}\right]\right\}
$$

It follows from Proposition 2.5 that the family $\{E[U, \epsilon]: U \in \mathcal{U}, \epsilon>0\}$ is base for a uniformity \mathcal{U}_{E} on $\mathcal{F}^{*}(X)$. The uniformity \mathcal{U}_{E} is called the endograph uniformity.

We start this section with a characterization of totally bounded subsets in $\mathcal{F}^{*}(X)$.

Theorem 3.1. Let (X, \mathcal{U}) be a uniform space and a non-empty subset $A \subseteq$ $\mathcal{F}^{*}(X)$. Then the following conditions are equivalent:
i) A is totally bounded in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$.
ii) $A(\alpha)=\bigcup\left\{[u]_{\alpha}: u \in A\right\}$ is totally bounded in (X, \mathcal{U}) for each $\alpha \in(0,1]$.
iii) $A_{\alpha}=\left\{[u]_{\alpha}: u \in A\right\}$ is totally bounded in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ for each $\alpha \in(0,1]$.
Proof. Let us show that i) implies ii). Suppose that A is a totally bounded subset in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$. Fix $\alpha \in(0,1]$. Take $U \in \mathcal{U}$. We can find a symmetric $V \in \mathcal{U}$ such that $V^{2} \subseteq U$. Put $\epsilon=\frac{\alpha}{2}<\alpha$ and $\delta=\alpha-\frac{\epsilon}{4}>0$. Since A is totally bounded in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$, there exist $u_{1}, \ldots, u_{k} \in A$ such that $A \subseteq$ $\bigcup_{i=1}^{k} E[V, \epsilon]\left(u_{i}\right)$. We also put $A_{\alpha}(k)=\bigcup_{i=1}^{k}\left[u_{i}\right]_{\alpha}$ and $A_{\epsilon}(k)=\bigcup_{i=1}^{k}\left[u_{i}\right]_{\epsilon}$. Note that $A_{\alpha}(k) \subseteq A_{\epsilon}(k)$. Clearly, $A_{\epsilon}(k)$ is totally bounded in (X, \mathcal{U}). Hence, there exists a finite subset $J \subseteq A_{\epsilon}(k)$ such that $A_{\epsilon}(k) \subseteq V(J)$. Define $J^{\prime}=\{b \in J$: $\left.V^{2}(b) \cap A(\alpha) \neq \varnothing\right\}$.

Claim I: $A(\alpha) \subseteq U\left(J^{\prime}\right)$.
Take $a \in A(\alpha)$. Then $a \in[u]_{\alpha}$ for some $u \in A$. So $\left(\operatorname{end}(u)\right.$, end $\left.\left(u_{i}\right)\right) \in$ $\mathcal{C}\left[V \times V_{\epsilon}\right]$ for some $i=1,2, \ldots, k$. Then there exists $\left(z_{a}, \beta\right) \in \operatorname{end}\left(u_{i}\right)$ with $\left((a, \alpha),\left(z_{a}, \beta\right)\right) \in V \times V_{\epsilon}$. So $\left(a, z_{a}\right) \in V$ and $\alpha-\beta<\epsilon=\frac{\alpha}{2}$. Hence $\epsilon<\beta$. It follows that

$$
z_{a} \in\left[u_{i}\right]_{\beta} \subseteq\left[u_{i}\right]_{\epsilon} \subseteq A_{\epsilon}(k)
$$

By the choice of J, we can find $b \in J$ with $z_{a} \in V(b)$. Since $\left(a, z_{a}\right) \in V$ and $\left(z_{a}, b\right) \in V$, we have that $(a, b) \in V^{2}$. Hence $a \in V^{2}(b) \cap A(\alpha)$. So $b \in J^{\prime}$ and $a \in V^{2}(b) \subseteq U(b) \subseteq U\left(J^{\prime}\right)$, which proves Claim I. So Proposition 2.7 and Claim I imply that $A(\alpha)$ is totally bounded in (X, \mathcal{U}).

Let us prove that ii) \Rightarrow iii). We now assume that $A(\alpha)$ is totally bounded in (X, \mathcal{U}) for each $\alpha \in(0,1]$. Take $\alpha \in(0,1]$, we put $X_{\alpha}=A(\alpha)$ and $\mathcal{U}_{\alpha}=\left.\mathcal{U}\right|_{X_{\alpha}}$.

By Proposition 2.8, the uniform space ($\left.\mathcal{K}\left(X_{\alpha}\right), \mathcal{K}\left(\mathcal{U}_{\alpha}\right)\right)$ is totally bounded. Note that $A_{\alpha} \subseteq \mathcal{K}\left(X_{\alpha}\right)$. It follows from [1, Theorem 8.3.2] that A_{α} is totally bounded in $\left(\mathcal{K}\left(X_{\alpha}\right), \mathcal{K}\left(\mathcal{U}_{\alpha}\right)\right)$. Given $U \in \mathcal{U}$, there exists a finite subset $J \subseteq A_{\alpha}$ such that $A_{\alpha} \subseteq \mathcal{K}\left[U \cap X_{\alpha}^{2}\right](J) \subseteq \mathcal{K}[U](J)$. Therefore, A_{α} is totally bounded in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$.

In order to show that iii) implies i), assume that $A_{\alpha}=\left\{[u]_{\alpha}: u \in A\right\}$ is totally bounded in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ for each $\alpha \in(0,1]$. Let us show that A is totally bounded in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$. Take $W \in \mathcal{U}$ and $\epsilon>0$. We can assume that $\epsilon<1$. Choose $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$. Put $\alpha_{i}=\frac{n+1-i}{n}$ for each $i=1, \ldots, n$ and $\alpha_{n+1}=0$. Since $A_{\alpha_{i}}$ is totally bounded in $(\mathcal{K}(\underset{X}{n}), \mathcal{K}(\mathcal{U}))$ for each $i=1, \ldots, n$, there exists a finite subset $I_{i} \subseteq A_{\alpha_{i}}$ such that $A_{\alpha_{i}} \subseteq \mathcal{K}[W]\left(I_{i}\right)$ for each $i=1, \ldots, n$. By Proposition 2.7, we can assume that $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}$ and every I_{i} is closed under union. Let \mathcal{V} be the family of $v \in \mathcal{F}^{*}(X)$ such that $[v]_{\alpha}=K_{i} \in I_{i}$ for each $\alpha \in\left(\alpha_{i+1}, \alpha_{i}\right]$ and each $i=1,2, \ldots, n$. Clearly, \mathcal{V} is finite and non-empty. Let us prove the following:

$$
\begin{equation*}
A \subseteq E[W, \epsilon](\mathcal{V}) \tag{3.1}
\end{equation*}
$$

Take $u \in A$. Then there exists $K_{i} \in I_{i}$ such that $\left([u]_{\alpha_{i}}, K_{i}\right) \in \mathcal{K}[W]$ for each $i=1,2, \ldots, n$. By Lemma 2.6 and the fact that each I_{i} is closed under union, we can suppose that $K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{n}$. Let $v \in \mathcal{V}$ be such that $[v]_{\alpha}=K_{i}$ for each $\alpha \in\left(\alpha_{i+1}, \alpha_{i}\right]$ and each $i=1,2, \ldots, n$. Note that $v_{0}=[v]_{\alpha_{n+1}}=K_{n}$. Pick $(x, \beta) \in \operatorname{end}(u)$. If $\alpha_{n} \geq \beta \geq \alpha_{n+1}$, then

$$
(x, \beta) \in\left[W \times V_{\epsilon}\right](x, 0) \subseteq\left[W \times V_{\epsilon}\right](\operatorname{end}(v))
$$

We now suppose that $\alpha_{i} \geq \beta>\alpha_{i+1}$ for some $i=1,2, \ldots, n-1$. Since $\left([u]_{\alpha_{i}}, K_{i}\right) \in \mathcal{K}[W]$ and $x \in[u]_{\beta} \subseteq[u]_{\alpha_{i+1}}$ for each $i=1,2, \ldots, n-1$, there exists $k \in \mathcal{K}_{i+1}$ such that $(x, k) \in W$. So $\left((x, \beta),\left(k, \alpha_{i+1}\right)\right) \in W \times V_{\epsilon}$. Therefore, $(x, \beta) \in\left[W \times V_{\epsilon}\right](\operatorname{end}(v))$ for each $(x, \beta) \in \operatorname{end}(u)$. We have thus proved that $\operatorname{end}(u) \subseteq\left[W \times V_{\epsilon}\right](\operatorname{end}(v))$.

Using a similar argument, we can show that $\operatorname{end}(v) \subseteq\left[W \times V_{\epsilon}\right](\operatorname{end}(u))$. Hence $u \in E[W, \epsilon](v)$. Therefore, $A \subseteq E[W, \epsilon](\mathcal{V})$. By (3.1) and Proposition 2.7, we have that A is totally bounded in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$.

Corollary 3.2. Let (X, \mathcal{U}) be a uniform space and $\mathcal{D} \subseteq \mathcal{K}(X)$. Then the following conditions are equivalent:
i) $\boldsymbol{D}=\bigcup\{C \in \mathcal{D}\}$ is totally bounded in (X, \mathcal{U}).
ii) \mathcal{D} is totally bounded in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$.

Proof. We put $A=\left\{\chi_{K}: K \in \mathcal{D}\right\} \subseteq \mathcal{F}^{*}(X)$ and apply Theorem 3.1.
We need the following three results in order to prove Theorem 3.6.
Lemma 3.3. Consider a uniform space (X, \mathcal{U}) and $\mathcal{D} \subseteq \mathcal{K}(X)$. If $\left(\mathcal{D},\left.\mathcal{K}(\mathcal{U})\right|_{\mathcal{D}}\right)$ is compact, then $\boldsymbol{D}=\bigcup\{C \in \mathcal{D}\}$ is compact with respect to the uniformity $\left.\mathcal{U}\right|_{D}$.

Proof. We can assume that (X, \mathcal{U}) is complete, otherwise we can take its completion. Let $\left\{x_{\sigma}\right\}_{\sigma \in \Sigma}$ be a net in \mathbf{D}. Pick $C_{\sigma} \in \mathcal{D}$ such that $x_{\sigma} \in C_{\sigma}$. Since
$\left(\mathcal{D},\left.\mathcal{K}(\mathcal{U})\right|_{\mathcal{D}}\right)$ is compact, the net $\left\{C_{\sigma}\right\}_{\sigma \in \Sigma}$ has a finer net $\left\{C_{\sigma^{\prime}}\right\}_{\sigma^{\prime} \in \Sigma^{\prime}}$ which converges to $C \in \mathcal{D}$. The set $\mathcal{E}=\{C\} \cup\left\{C_{\sigma^{\prime}}: \sigma^{\prime} \in \Sigma^{\prime}\right\} \subseteq \mathcal{D}$ is totally bounded, since \mathcal{D} is compact. By Corollary 3.2, $\mathbf{E}=\bigcup\{E \in \mathcal{E}\}$ is totally bounded in (X, \mathcal{U}). Then $\overline{\mathbf{E}}$ is totally bounded in (X, \mathcal{U}). So $\overline{\mathbf{E}}$ is compact, since (X, \mathcal{U}) is complete. We know that $x_{\sigma^{\prime}} \in \mathbf{E}$ for each $\sigma^{\prime} \in \Sigma^{\prime}$. Hence there exists a net $\left\{x_{\sigma^{\prime \prime}}\right\}_{\sigma^{\prime \prime} \in \Sigma^{\prime \prime}}$ finer than $\left\{x_{\sigma^{\prime}}\right\}_{\sigma^{\prime} \in \Sigma^{\prime}}$ which converges to $x \in \overline{\mathbf{E}}$. It is straightforward to show that $x \in C$. We have thus proved that $\left\{x_{\sigma}\right\}_{\sigma \in \Sigma}$ has a finer net which converges to $x \in \mathbf{D}$. Therefore, \mathbf{D} is compact.

Lemma 3.4. Consider a uniform space (X, \mathcal{U}) and $\mathcal{D} \subseteq \mathcal{K}(X)$. If $\boldsymbol{D}=\bigcup\{C \in$ $\mathcal{D}\}$ is complete with respect to the uniformity $\left.\mathcal{U}\right|_{D}$ and \mathcal{D} is closed in $\mathcal{K}(X)$, then $\left(\mathcal{D},\left.\mathcal{K}(\mathcal{U})\right|_{\mathcal{D}}\right)$ is complete.

Proof. If \mathbf{D} is complete with respect to the uniformity $\left.\mathcal{U}\right|_{\mathbf{D}}$, then $\left(\mathcal{K}(\mathbf{D}),\left.\mathcal{K}(\mathcal{U})\right|_{\mathcal{K}(\mathbf{D})}\right)$ is complete by [12]. Since \mathcal{D} is closed in $\mathcal{K}(X)$, we have that \mathcal{D} is closed in $\mathcal{K}(\mathbf{D})$. The completeness of $\left(\mathcal{K}(\mathbf{D}),\left.\mathcal{K}(\mathcal{U})\right|_{\mathcal{K}(\mathbf{D})}\right)$ implies that $\left(\mathcal{D},\left.\mathcal{K}(\mathcal{U})\right|_{\mathcal{D}}\right)$ is complete.
Proposition 3.5. Consider a uniform space (X, \mathcal{U}) and $\mathcal{D} \subseteq \mathcal{K}(X)$. Then the following conditions are equivalent:
i) \mathcal{D} is compact in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$.
ii) $\boldsymbol{D}=\bigcup\{C \in \mathcal{D}\}$ is compact in (X, \mathcal{U}) and \mathcal{D} is closed in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$.

Proof. i) \Rightarrow ii) by Lemma 3.3. Let us show that ii) \Rightarrow i). If \mathbf{D} is compact, then \mathcal{D} is totally bounded in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$ by Corollary 3.2 . On the other hand, \mathcal{D} is complete by Lemma 3.4. Therefore, \mathcal{D} is compact in $(\mathcal{K}(X), \mathcal{K}(\mathcal{U}))$.

Theorem 3.6. Let (X, \mathcal{U}) be a uniform space and a non-empty subset $A \subseteq$ $\mathcal{F}^{*}(X)$. Then the following conditions are equivalent:
i) A is compact $\operatorname{in}\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$.
ii) A is closed in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$ and $A(\alpha)=\bigcup\left\{[u]_{\alpha}: u \in A\right\}$ is compact in (X, \mathcal{U}) for each $\alpha \in(0,1]$.

Proof. Let $(\widehat{X}, \widehat{\mathcal{U}})$ the completion of (X, \mathcal{U}). Then $\mathcal{F}^{*}(X) \subseteq \mathcal{F}^{*}(\widehat{X})$. Let us show that i) implies ii). Clearly, A is compact in $\left(\mathcal{F}^{*}(\widehat{X}), \widehat{\mathcal{U}}_{E}\right)$. By Theorem 3.1, $A(\alpha)$ is totally bounded in $(\widehat{X}, \widehat{\mathcal{U}})$ for each $\alpha \in(0,1]$. Let us show that $A(\alpha)$ is closed in $(\widehat{X}, \widehat{\mathcal{U}})$ for each $\alpha \in(0,1]$. Take $\alpha \in(0,1]$ and $x \in \overline{A(\alpha)}^{\widehat{X}}$. Then there exists a net $\left\{x_{\sigma}\right\}_{\sigma \in \Sigma}$ in $A(\alpha)$ which converges to x. For every $\sigma \in \Sigma$, we can choose $u_{\sigma} \in A$ such that $x_{\sigma} \in\left[u_{\sigma}\right]_{\alpha}$. Since A is compact $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma}$ has a finer net $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma^{\prime}}$ which converges to $u \in A$. We define $v \in \mathcal{F}^{*}(\widehat{X})$ as follows:

$$
[v]_{\beta}= \begin{cases}{[u]_{\beta},} & \text { if } \beta \in(\alpha, 1] \\ \{x\} \cup[u]_{\beta}, & \text { if } \beta \in(0, \alpha]\end{cases}
$$

Let us show that $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma^{\prime}}$ converges to v. Given $U \in \widehat{\mathcal{U}}$ and $\epsilon>0$, there exists $\sigma_{0} \in \Sigma^{\prime}$ such that $\left(x, x_{\sigma}\right) \in U$ and $\left(u, u_{\sigma}\right) \in E[U, \epsilon]$ for every $\sigma \geq \sigma_{0}$. Take $\sigma \geq \sigma_{0}$. Clearly, $\operatorname{end}\left(u_{\sigma}\right) \subseteq\left[U \times V_{\epsilon}\right](e n d(u)) \subseteq\left[U \times V_{\epsilon}\right](e n d(v))$. We now pick $(y, \beta) \in \operatorname{end}(v)$. If $y \neq x$, then $(y, \beta) \in \operatorname{end}(u) \subseteq\left[U \times V_{\epsilon}\right]\left(\operatorname{end}\left(u_{\sigma}\right)\right)$. On the
other hand, if $y=x$, the definition of v implies that $\beta \leq \alpha$. Then $x_{\sigma} \in\left[u_{\sigma}\right]_{\alpha} \subseteq$ $\left[u_{\sigma}\right]_{\beta}$. So $\left(x_{\sigma}, \beta\right) \in \operatorname{end}\left(u_{\sigma}\right)$ and $(x, \beta) \in\left[U \times V_{\epsilon}\right]\left(x_{\sigma}, \beta\right) \subseteq\left[U \times V_{\epsilon}\right]\left(\operatorname{end}\left(u_{\sigma}\right)\right)$. Hence, end $(v) \subseteq\left[U \times V_{\epsilon}\right]\left(\right.$ end $\left.\left(u_{\sigma}\right)\right)$. We have thus proved that $\left(v, u_{\sigma}\right) \in E[U, \epsilon]$ for every $\sigma \geq \sigma_{0}$. Therefore, $u=v$ and $x \in[u]_{\alpha} \subseteq A(\alpha)$. So $A(\alpha)$ is closed and totally bounded in $(\widehat{X}, \widehat{U})$. It follows that $A(\alpha)$ is compact.

In order to show that ii) \Rightarrow i), assume that A is closed in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{E}\right)$ and $A(\alpha)=\bigcup\left\{[u]_{\alpha}: u \in A\right\}$ is compact in (X, \mathcal{U}) for each $\alpha \in(0,1]$. By Theorem 3.1, A is totally bounded in $\left(\mathcal{F}^{*}(\widehat{X}), \widehat{\mathcal{U}}_{E}\right)$. We put $X_{\alpha}=A(\alpha)$ for each $\alpha \in(0,1)$. Given $u \in \mathcal{F}^{*}(X)$ and $\alpha \in(0,1)$, we put $\operatorname{end}_{\alpha}(u)=\left[u_{\alpha^{+}} \times\right.$ $\{\alpha\}] \cup[\operatorname{end}(u) \cap(X \times(\alpha, 1])]$, see Remark 2.10 for the symbol $u_{\alpha^{+}}$. Note that $\operatorname{end}_{\alpha}(u) \in \mathcal{K}\left(X_{\alpha} \times[0,1]\right)$. Since X_{α} is compact, we can conclude that $\mathcal{K}\left(X_{\alpha} \times[0,1]\right)$ is compact for every $\alpha \in(0,1)$. We can argue as in the proof of $[6$, Theorem 5.3] to show that $E_{\alpha}=\left\{\operatorname{end}_{\alpha}(u): u \in A\right\}$ is closed in $\mathcal{K}\left(X_{\alpha} \times[0,1]\right)$. Hence E_{α} is compact for each $\alpha \in(0,1)$.

Claim 1: Take $0<\beta<\alpha<1$. Suppose that $\left\{\operatorname{end}_{\alpha}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma}$ and $\left\{\operatorname{end}_{\beta}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma}$ have a finer net $\left\{\operatorname{end}_{\alpha}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma^{\prime}}$ and $\left\{\operatorname{end}_{\beta}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma^{\prime}}$ which converge to $\operatorname{end}_{\alpha}(u)$ and $\operatorname{end}_{\beta}(v)$, respectively. Then $[u]_{\gamma}=[v]_{\gamma}$ for each $\gamma \in(\alpha, 1]$.

Pick $\gamma \in(\alpha, 1]$. Let us show that $\left([u]_{\gamma},[v]_{\gamma}\right) \in \mathcal{K}[W]$ for every $W \in \mathcal{U}$. Take a symmetric $U \in \mathcal{U}$ such that $U^{4} \subseteq W$. Put $d=\gamma-\alpha$ and $\alpha_{n}=\gamma-\frac{d}{4 n}$ for each $n \in \mathbb{N}$. Then the sequence $\left\{\alpha_{n}\right\}_{n} \subseteq(\alpha, \gamma)$ is increasing and converges to γ. Since $\left\{\operatorname{end}_{\alpha}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma^{\prime}}$ and $\left\{\operatorname{end}_{\beta}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma^{\prime}}$ converge to $\operatorname{end}_{\alpha}(u)$ and $\operatorname{end}_{\beta}(v)$, respectively; then for every $n \in \mathbb{N}$, there exists $\sigma_{n} \in \Sigma^{\prime}$ such that

$$
\begin{equation*}
\operatorname{end}_{\alpha}\left(u_{\sigma_{n}}\right) \subseteq\left[U \times V_{\frac{d}{4 n}}^{4 n}\right]\left(\operatorname{end}_{\alpha}(u)\right) \quad \text { and } \quad \operatorname{end}_{\alpha}(u) \subseteq\left[U \times V_{\frac{d}{4 n}}\right]\left(\operatorname{end}_{\alpha}\left(u_{\sigma_{n}}\right)\right) . \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{end}_{\beta}\left(u_{\sigma_{n}}\right) \subseteq\left[U \times V_{\frac{d}{4 n}}\right]\left(\operatorname{end}_{\beta}(v)\right) \quad \text { and } \quad \operatorname{end}_{\beta}(v) \subseteq\left[U \times V_{\frac{d}{4 n}}\right]\left(\operatorname{end}_{\beta}\left(u_{\sigma_{n}}\right)\right) . \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), we have that $\operatorname{end}_{\alpha}(u) \subseteq\left[U^{2} \times V_{\frac{d}{2 n}}\right]\left(\operatorname{end}_{\beta}(v)\right)$ for each $n \in \mathbb{N}$. Fix $x \in[u]_{\gamma}$. Since $\left(x, \alpha_{n}\right) \in \operatorname{end}_{\alpha}(u)$, we can take $\left(y_{n}, \beta_{n}\right) \in \operatorname{end}_{\beta}(v)$ such that $\left(\left(x, \alpha_{n}\right),\left(y_{n}, \beta_{n}\right)\right) \in U^{2} \times V_{\frac{d}{2 n}}$. Since $\left|\alpha_{n}-\beta_{n}\right|<\frac{d}{2 n}$ and $\left\{\alpha_{n}\right\}_{n}$ converges to γ, we can conclude that $\left\{\beta_{n}\right\}_{n}$ converges to γ. Note that the sequence $\left\{\left(y_{n}, \beta_{n}\right)\right\}_{n}$ is in the compact set $e n d_{\beta}(v)$. Therefore, we can suppose that $\left\{\left(y_{n}, \beta_{n}\right)\right\}_{n}$ converges to (y, γ). Hence $y \in[v]_{\gamma}$. On the other hand, $\left(x, y_{n}\right) \in U^{2}$ for each $n \in \mathbb{N}$. The latter fact implies that $(x, y) \in \overline{U^{2}} \subseteq U^{3}$. So $x \in U^{3}(y) \subseteq W(y)$. Hence $[u]_{\gamma} \subseteq W\left([v]_{\gamma}\right)$.

Fix $x \in[v]_{\gamma}$. By (3.3) and $\left(x, \alpha_{n}\right) \in \operatorname{end}_{\beta}(v)$, we can take $\left(y_{n}, \beta_{n}\right) \in$ $\operatorname{end}_{\beta}\left(u_{\sigma_{n}}\right)$ such that $\left(\left(x, \alpha_{n}\right),\left(y_{n}, \beta_{n}\right)\right) \in U \times V_{\frac{d}{4 n}}$. Since $\left|\alpha_{n}-\beta_{n}\right|<\frac{d}{4 n}$ for every $n \in \mathbb{N}$, we have the following:
$\alpha=\frac{(2 n-1) \alpha+\alpha}{2 n}<\frac{(2 n-1) \gamma+\alpha}{2 n}=\gamma-\frac{d}{2 n}=\alpha_{n}-\frac{d}{4 n}<\beta_{n}<\alpha_{n}+\frac{d}{4 n}=\gamma$.

It follows that $\beta_{n} \in(\alpha, \gamma)$ for all $n \in \mathbb{N}$. So $\left(y_{n}, \beta_{n}\right) \in e n d_{\alpha}\left(u_{\sigma_{n}}\right)$. By (3.2), we can take $\left(z_{n}, \delta_{n}\right) \in \operatorname{end} d_{\alpha}(u)$ such that $\left(\left(y_{n}, \beta_{n}\right),\left(z_{n}, \delta_{n}\right)\right) \in U \times V_{\frac{d}{4 n}}$. For each $n \in \mathbb{N}$, we have that

$$
\left|\alpha_{n}-\delta_{n}\right| \leq\left|\alpha_{n}-\beta_{n}\right|+\left|\beta_{n}-\delta_{n}\right|<\frac{d}{2 n}
$$

Since $\left\{\alpha_{n}\right\}_{n}$ converges to γ, we can conclude that $\left\{\delta_{n}\right\}_{n}$ converges to γ. Note that the sequence $\left\{\left(z_{n}, \delta_{n}\right)\right\}_{n}$ is in the compact set $\operatorname{end} d_{\alpha}(u)$. Therefore, we can suppose that $\left\{\left(z_{n}, \delta_{n}\right)\right\}_{n}$ converges to (z, γ). Hence $z \in[u]_{\gamma}$. On the other hand, $\left(x, z_{n}\right) \in U^{2}$ for each $n \in \mathbb{N}$. The latter fact implies that $(x, z) \in \overline{U^{2}} \subseteq$ $U^{3} \subseteq W$. So $x \in W(z)$ and $[v]_{\gamma} \subseteq W\left([u]_{\gamma}\right)$. Hence $\left([u]_{\gamma},[v]_{\gamma}\right) \in \mathcal{K}[W]$ for every $W \in \mathcal{U}$, whence $[u]_{\gamma}=[v]_{\gamma}$ for each $\gamma \in(\alpha, 1]$. This completes the proof of Claim 1.

Take a net $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma_{1}}$ in A. Since E_{α} is compact for each $(0,1)$, the net $\left\{e n d_{\frac{1}{2}}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma_{1}}$ has a finer net $\left\{\operatorname{end}_{\frac{1}{2}}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma_{2}}$ which converges to end ${ }_{\frac{1}{2}}\left(v_{2}\right)$ with $v_{2} \in A$. By induction, for every $n \in \mathbb{N}$, we can obtain a net $\left\{\text { end } \frac{1}{n+1}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma_{n+1}}$ which is finer than $\left\{e n d_{\frac{1}{n+1}}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma_{n}}$ and $\left\{e n d_{\frac{1}{n+1}}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma_{n+1}}$ converges to end $\frac{1}{n+1}\left(v_{n+1}\right)$ with $v_{n+1} \in A$.

By Claim 1, the set $(X \times\{0\}) \cup \bigcup_{n \geq 2} e n d_{\frac{1}{n}}\left(v_{n}\right)$ is the endograph of a fuzzy set $v \in \mathcal{F}^{*}(X)$. Let us show that v is an accumulation point of $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma_{1}}$. Take $U \in \mathcal{U}$ and $\epsilon>0$. We can choose $n \geq 2$ such that $\frac{1}{n}<\epsilon$. Fix $\sigma_{0} \in \Sigma$. Since $\left\{\operatorname{end}_{\frac{1}{n}}\left(u_{\sigma}\right)\right\}_{\sigma \in \Sigma_{n}}$ converges to end $_{\frac{1}{n}}\left(v_{n}\right)$, we can find $\sigma \geq \sigma_{0}$ such that

$$
\begin{equation*}
\operatorname{end}_{\frac{1}{n}}\left(u_{\sigma}\right) \subseteq\left[U \times V_{\frac{1}{n}}\right]\left(e n d_{\frac{1}{n}}\left(v_{n}\right)\right) \quad \text { and } \quad e n d_{\frac{1}{n}}\left(v_{n}\right) \subseteq\left[U \times V_{\frac{1}{n}}\right]\left(e n d_{\frac{1}{n}}\left(u_{\sigma}\right)\right) \tag{3.4}
\end{equation*}
$$

Take $(x, \alpha) \in \operatorname{end}(v)$ with $\alpha \in\left[0, \frac{1}{n}\right]$. Then $(x, x) \in U$ and $(\alpha, 0) \in V_{\epsilon}$. So $(x, \alpha) \in\left[U \times V_{\epsilon}\right]\left(\operatorname{end}\left(u_{\sigma}\right)\right)$. If $\alpha>\frac{1}{n}$, (3.4) implies the following:

$$
(x, \alpha) \in e n d_{\frac{1}{n}}\left(v_{n}\right) \subseteq\left[U \times V_{\frac{1}{n}}\right]\left(e n d_{\frac{1}{n}}\left(u_{\sigma}\right)\right) \subseteq\left[U \times V_{\epsilon}\right]\left(e n d\left(u_{\sigma}\right)\right)
$$

We have thus proved that $\operatorname{end}(v) \subseteq\left[U \times V_{\epsilon}\right]\left(e n d\left(u_{\sigma}\right)\right)$. Similarly, we can show that $\operatorname{end}\left(u_{\sigma}\right) \subseteq\left[U \times V_{\epsilon}\right](e n d(v))$. Therefore, v is an accumulation point of $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma_{1}}$. Finally, we know that A is closed in $\mathcal{F}^{*}(X)$, so $v \in A$. We can conclude that every net in A has an accumulation point in A, i.e., A is compact.

Consider now a metric space (X, d). Define the metric d^{*} on $X \times[0,1]$ as follows:

$$
d^{*}((x, a),(y, b))=\max \{d(x, y),|a-b|\}
$$

The endograph metric d_{E} on $\mathcal{F}^{*}(X)$ is the Hausdorff distance d_{H}^{*} (with respect to $X \times[0,1])$ between $\operatorname{end}(u)$ and $\operatorname{end}(v)$ for each $u, v \in \mathcal{F}^{*}(X)$. Recall that a metric space (X, d) has a natural uniformity \mathcal{U}_{d} determinated by the base $\left\{U_{\epsilon}: \epsilon>0\right\}$, where $U_{\epsilon}=\{(x, y) \in X \times X: d(x, y)<\epsilon\}$.
Corollary 3.7 ([4]). Let (X, d) be a metric space and a non-empty subset $A \subseteq \mathcal{F}^{*}(X)$. Then the following conditions are equivalent:
i) A is compact in $\left(\mathcal{F}^{*}(X), d_{E}\right)$.
ii) A is closed in $\left(\mathcal{F}^{*}(X), d_{E}\right)$ and $A(\alpha)=\bigcup\left\{[u]_{\alpha}: u \in A\right\}$ is compact in (X, d) for each $\alpha \in(0,1]$.
Proof. By a result of [6], we have that $\mathcal{U}_{d_{E}}=\left(\mathcal{U}_{d}\right)_{E}$. It is easy to see that A is compact (closed) in $\left(\mathcal{F}^{*}(X), \mathcal{U}_{d_{E}}\right)$ if and only if A is compact (closed) in $\left(\mathcal{F}^{*}(X), d_{E}\right)$ if and only if A is compact (closed) in $\left(\mathcal{F}^{*}(X),\left(\mathcal{U}_{d}\right)_{E}\right)$. We also have that $A(\alpha)$ is compact in $\left(X, \mathcal{U}_{d}\right)$ if and only if $A(\alpha)$ is compact in (X, d) for each $\alpha \in(0,1]$. It remains to apply Theorem 3.6 to the uniform space $\left(X, \mathcal{U}_{d}\right)$.

4. Compactness in the sendograph uniformity

Given a uniform space (X, \mathcal{U}), we denote by $\mathcal{F}(X)$ the elements of $\mathcal{F}^{*}(X)$ with compact support. If $u \in \mathcal{F}(X)$, the sendograph of u is defined by $\operatorname{send}(u)=\operatorname{end}(u) \cap\left(u_{0} \times[0,1]\right)$. Observe that $\operatorname{send}(u) \in \mathcal{K}(X \times[0,1])$. Given $U \in \mathcal{U}$ and $\epsilon>0$, we define the following sets:

$$
S[U, \epsilon]=\left\{(u, v) \in \mathcal{F}(X) \times \mathcal{F}(X):(\operatorname{send}(u), \operatorname{send}(v)) \in \mathcal{K}\left[U \times V_{\epsilon}\right]\right\}
$$

By Proposition 2.3, the family $\{S[U, \epsilon]: U \in \mathcal{U}, \epsilon>0\}$ is base for a uniformity \mathcal{U}_{S} on $\mathcal{F}(X)$. The uniformity \mathcal{U}_{S} is called the sendograph uniformity.

Consider now a metric space (X, d). Define the metric d^{*} on $X \times[0,1]$ as follows:

$$
d^{*}((x, a),(y, b))=\max \{d(x, y),|a-b|\}
$$

The sendograph metric d_{S} on $\mathcal{F}(X)$ is the Hausdorff metric $d_{H}^{*}($ on $\mathcal{K}(X \times[0,1])$) between the non-empty compact subsets $\operatorname{send}(u)$ and $\operatorname{send}(v)$ for every $u, v \in$ $\mathcal{F}(X)$ (see [10]).
Theorem 4.1. Let A be a non-empty subset of a uniform space (X, \mathcal{U}). Then A is totally bounded in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$ if and only if $A(0)=\bigcup_{u \in A} u_{0}$ is totally bounded in (X, \mathcal{U}).

Proof. Suppose that A is a totally bounded subset in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$. Take $U \in \mathcal{U}$. We can find a symmetric $V \in \mathcal{U}$ such that $V^{2} \subseteq U$. Since A is totally bounded in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$, there exist $u_{1}, \ldots, u_{k} \in A$ such that $A \subseteq \bigcup_{i=1}^{k} S[V, 1]\left(u_{i}\right)$. We also put $A(k)=\bigcup_{i=1}^{k}\left[u_{i}\right]_{0}$. Clearly, $A(k)$ is totally bounded in (X, \mathcal{U}). Hence, there exists a finite subset $J \subseteq A(k)$ such that $A(k) \subseteq V(J)$. Define $J^{\prime}=\{b \in$ $\left.J: V^{2}(b) \cap A(0) \neq \varnothing\right\}$.

Claim II: $A(0) \subseteq U\left(J^{\prime}\right)$.
Take $a \in A(0)$. Then $a \in[u]_{0}$ for some $u \in A$. So $\left(\operatorname{send}(u), \operatorname{send}\left(u_{i}\right)\right) \in$ $\mathcal{K}\left[V \times V_{1}\right]$ for some $i=1,2, \ldots, k$. Then there exists $\left(z_{a}, \beta\right) \in \operatorname{send}\left(u_{i}\right)$ with $\left((a, 0),\left(z_{a}, \beta\right)\right) \in V \times V_{1}$. So $\left(a, z_{a}\right) \in V$ and $\beta<1$. It follows that

$$
z_{a} \in\left[u_{i}\right]_{\beta} \subseteq\left[u_{i}\right]_{0} \subseteq A(k)
$$

By the choice of J, we can find $b \in J$ with $z_{a} \in V(b)$. Then $\left(a, z_{a}\right),\left(z_{a}, b\right) \in V$. So $(a, b) \in V^{2}$. Hence $a \in V^{2}(b) \cap A(0)$. So $b \in J^{\prime}$ and $a \in V^{2}(b) \subseteq U(b) \subseteq$
$U\left(J^{\prime}\right)$. This completes the proof of Claim II. Proposition 2.7 and Claim II imply that $A(0)$ is totally bounded in (X, \mathcal{U}).

For the converse, we assume that $A(0)$ is totally bounded in (X, \mathcal{U}). Hence $A(\alpha)$ is totally bounded in (X, \mathcal{U}) for every $\alpha \in[0,1]$. For each $\alpha \in[0,1]$, we put $X_{\alpha}=A(\alpha)$ and $\mathcal{U}_{\alpha}=\left.\mathcal{U}\right|_{X_{\alpha}}$. By Proposition 2.8, the uniform space $\left(\mathcal{K}\left(X_{\alpha}\right), \mathcal{K}\left(\mathcal{U}_{\alpha}\right)\right)$ is totally bounded. Let us show that A is totally bounded in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$. Take $W \in \mathcal{U}$ and $\epsilon>0$. We can assume that $\epsilon<1$. Choose $n \in \mathbb{N}$ such that $\frac{1}{n}<\epsilon$. Put $\alpha_{i}=\frac{n+1-i}{n}$ for each $i=1, \ldots, n$ and $\alpha_{n+1}=0$. Since $\left(\mathcal{K}\left(X_{\alpha_{i}}\right), \mathcal{K}\left(\mathcal{U}_{\alpha_{i}}\right)\right)$ is totally bounded for each $i=1, \ldots, n$, there exists a finite subset $I_{i} \subseteq \mathcal{K}\left(X_{\alpha_{i}}\right)$ such that $\mathcal{K}\left(X_{\alpha_{i}}\right)=\mathcal{K}\left[W \cap X_{\alpha_{i}}^{2}\right]\left(I_{i}\right)$ for each $i=1, \ldots, n$. By Proposition 2.7, we can assume that $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n}$ and every I_{i} is closed under union. Let \mathcal{V} be the family of $v \in \mathcal{F}(X)$ such that $[v]_{\alpha}=K_{i} \in I_{i}$ for each $\alpha \in\left(\alpha_{i+1}, \alpha_{i}\right]$ and each $i=1,2, \ldots, n$. Clearly, \mathcal{V} is finite and non-empty. Let us prove the following:

$$
\begin{equation*}
A \subseteq S[W, \epsilon](\mathcal{V}) \tag{4.1}
\end{equation*}
$$

Take $u \in A$. Then there exists $K_{i} \in I_{i}$ such that $\left([u]_{\alpha_{i}}, K_{i}\right) \in \mathcal{K}\left[W \cap X_{\alpha_{i}}^{2}\right]$ for each $i=1,2, \ldots, n$. By Lemma 2.6 and the fact that each I_{i} is closed under union, we can suppose that $K_{1} \subseteq K_{2} \subseteq \cdots \subseteq K_{n}$. Let $v \in \mathcal{V}$ be such that $[v]_{\alpha}=K_{i}$ for each $\alpha \in\left(\alpha_{i+1}, \alpha_{i}\right]$ and each $i=1,2, \ldots, n$. Note that $v_{0}=K_{n}$. Pick $(x, \beta) \in \operatorname{send}(u)$. Suppose that $\alpha_{i} \geq \beta>\alpha_{i+1}$ for some $i=1,2, \ldots, n-1$. Since $\left([u]_{\alpha_{i}}, K_{i}\right) \in \mathcal{K}\left[W \cap X_{\alpha_{i}}^{2}\right]$ and $x \in[u]_{\beta} \subseteq[u]_{\alpha_{i+1}}$ for each $i=1,2, \ldots, n-1$, there exists $k \in \mathcal{K}_{i+1}$ such that $(x, k) \in W$. So $\left((x, \beta),\left(k, \alpha_{i+1}\right)\right) \in W \times V_{\epsilon}$. Therefore, $(x, \beta) \in\left[W \times V_{\epsilon}\right](\operatorname{send}(v))$. Now if $(x, \beta) \in \operatorname{send}(u)$ and $0 \leq$ $\beta \leq \frac{1}{n}$, then $x \in u_{0}=\overline{\bigcup_{\alpha>0}[u]_{\alpha}}$. Hence $u_{0} \cap W(x) \neq \varnothing$. So we can find $y \in[u]_{\alpha}$ for some $\alpha>0$ such that $(x, y) \in W$. We can assume that $\alpha \in\left(0, \frac{1}{n}\right]$. Therefore, $(x, \beta) \in\left[W \times V_{\epsilon}\right](y, \alpha) \subseteq\left[W \times V_{\epsilon}\right](\operatorname{sen} d(v))$. We have thus proved that $\operatorname{send}(u) \subseteq\left[W \times V_{\epsilon}\right](\operatorname{send}(v))$.

Using a similar argument, we can show that $\operatorname{send}(v) \subseteq\left[W \times V_{\epsilon}\right](\operatorname{send}(u))$. Hence $u \in S[W, \epsilon](v)$. Therefore, $A \subseteq S[W, \epsilon](\mathcal{V})$. By (4.1) and Proposition 2.7, we have that A is totally bounded in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$.

Theorem 4.2. Let A be a non-empty subset of a uniform space (X, \mathcal{U}). Then A is compact in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$ if and only if A is closed in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$ and $A(0)$ is compact in (X, \mathcal{U}).
Proof. Assume that A is compact in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$. Let $(\widehat{X}, \widehat{\mathcal{U}})$ be the completion of (X, \mathcal{U}). Then $\mathcal{F}(X) \subseteq \mathcal{F}(\widehat{X})$. Clearly, A is compact in $\left(\mathcal{F}(\widehat{X}), \widehat{\mathcal{U}}_{S}\right)$. By Theorem 4.1, $A(0)$ is totally bounded in $(\widehat{X}, \widehat{\mathcal{U}})$. Let us show that $A(0)$ is closed in $(\widehat{X}, \widehat{\mathcal{U}})$. Take $x \in \overline{A(0)} \widehat{X}$ and a net $\left\{x_{\sigma}\right\}_{\sigma \in \Sigma}$ in $A(0)$ which converges to x. For every $\sigma \in \Sigma$, we take $u_{\sigma} \in A$ such that $x_{\sigma} \in\left[u_{\sigma}\right]_{0}$. Since A is compact, the net $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma}$ in A has a finer net $\left\{u_{\sigma}\right\}_{\sigma \in \Sigma^{\prime}}$ which converges to $u \in A$. Let us show that $x \in u_{0}$. Suppose the contrary, then there exists $W \in \widehat{\mathcal{U}}$ such that $W(x) \cap u_{0}=\varnothing$. Pick $V \in \widehat{\mathcal{U}}$ such that $V^{2} \subseteq U$. On the other hand, there exists $\sigma_{0} \in \Sigma^{\prime}$ such that $\left(u, u_{\sigma}\right) \in S[V, 1]$ and $\left(x, x_{\sigma}\right) \in V$ for
each $\sigma \geq \sigma_{0}$. Hence $\left(x_{\sigma_{0}}, 0\right) \in \operatorname{send}\left(u_{\sigma_{0}}\right) \subseteq\left[V \times V_{1}\right](\operatorname{send}(u))$. So there exists $(y, \beta) \in \operatorname{send}(u)$ with $\left(x_{\sigma_{0}}, y\right) \in V$ and $\beta<1$. Then $y \in[u]_{\beta} \subseteq u_{0}$. Since $\left(x, x_{\sigma_{0}}\right) \in V$ and $\left(x_{\sigma_{0}}, y\right) \in V$, we have that $(x, y) \in W$. So $y \in W(x)$, which contradicts that $W(x) \cap u_{0}=\varnothing$. Therefore, $A(0)$ is compact in (X, \mathcal{U}).

We now suppose that A is closed in $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$ and $A(0)$ is compact in (X, \mathcal{U}). Put $Y=A(0)$ and $\mathcal{V}=\left.\mathcal{U}\right|_{Y}$. We can assume that $A \subseteq \mathcal{F}(Y) \subseteq$ $\mathcal{F}(X)$. Since (Y, \mathcal{V}) is compact, $\left(\mathcal{F}(Y), \mathcal{V}_{S}\right)$ is complete by a result of [6]. Hence A is complete, since A is closed in $\left(\mathcal{F}(Y), \mathcal{V}_{S}\right)$. On the other hand, A is totally bounded in $\left(\mathcal{F}(Y), \mathcal{V}_{S}\right)$ by Theorem 4.1. Therefore, A is compact $\left(\mathcal{F}(X), \mathcal{U}_{S}\right)$.

Corollary 4.3. [4] Let A be a non-empty subset of a metric space (X, d). Then A is compact in $\left(\mathcal{F}(X), d_{S}\right)$ if and only if A is closed in $\left(\mathcal{F}(X), d_{S}\right)$ and $A(0)$ is compact in (X, d).

Proof. It is easy to see that A is compact (closed) in $\left(\mathcal{F}(X), d_{S}\right)$ if and only if A is compact (closed) in $\left(\mathcal{F}(X), \mathcal{U}_{d_{S}}\right)$. Since $\mathcal{U}_{d_{S}}=\left(\mathcal{U}_{d}\right)_{S}$, we have that A is compact (closed) in $\left(\mathcal{F}(X), d_{S}\right)$ if and only if A is compact (closed) in $\left(\mathcal{F}(X),\left(\mathcal{U}_{d}\right)_{S}\right)$. On the othe hand, $A(0)$ is compact in (X, d) if and only if $A(0)$ is compact in $\left(X, \mathcal{U}_{d}\right)$. If we apply Theorem 4.2 to the uniform space $\left(X, \mathcal{U}_{d}\right)$, we obtain the required conclusion.

5. Acknowledgements

This research was supported by Conacyt, grant: Ciencia de Frontera 64356. The author thank to the anonymous referee for the careful reading of the original manuscript and her/his comments, which helped to improve this work.

References

[1] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[2] J. J. Font, D. Sanchis, and M. Sanchis, Completeness, metrizability and compactness in spaces of fuzzy-number-valued functions, Fuzzy Sets and Systems 353 (2018), 124-136.
[3] H. Huang, Characterizations of endograph metric and Γ-convergence on fuzzy, Fuzzy Sets and Systems 350 (2018), 55-85.
[4] H. Huang, Properties of several fuzzy set spaces, arXiv:1910.02205v2 [math.GM].
[5] G. Huang, G.-B. Huang, S. Song, and K. You, Trends in extreme learning machines: a review, Neural Netw. 61 (2015), 32-48.
[6] D. Jardón, I. Sánchez and M. Sanchis, Fuzzy sets on uniform spaces, preprint.
[7] D. Jardón, I. Sánchez and M. Sanchis, Some questions about Zadeh's extension on metric spaces, Fuzzy Sets Syst. 379 (2020), 115-124.
[8] J. L. Kelley, General Topology, Springer, New York, NY, USA, 1975.
[9] P. E. Kloeden, Compact supported endographs and fuzzy sets, Fuzzy Sets Syst. 4, no. 2 (1980), 193-201.
[10] J. Kupka, On fuzzifications of discrete dynamical systems, Information Sciences 181 (2011), 2858-2872.
[11] E. Michael, Topologies on spaces of subsets, Transactions of the American Mathematical Society 71, no. 1 (1951), 152-182.

Compactness in the endograph uniformity

[12] K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology and its Applications (1974), 217-233.
[13] M. Rojas-Medar, and H. Román-Flores, On the equivalence of convergences of fuzzy sets, Fuzzy Sets Syst. 80 (1996), 217-224.
[14] F. Scarselli, and A. C. Tsoi, Universal approximation using feedforward neural networks: a survey of some existing methods, and some new results, Neural Netw. 11, no. 1 (1998), 15-37.

