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Abstract. Artificial Intelligence (AI) provides a fundamental aid in
building operations, allowing infrastructure inspection and compliance
with safety standards. In the collaborative tasks involved, detecting areas
of interest, such as surface defects, is crucial. A drawback of supervised
AI-based approaches is that they require manual annotation, which en-
tails additional costs. This paper presents a novel unsupervised anomaly
detection approach for locating defects based on generative models that
learn the distribution of defect-free images. Using attention maps to val-
idate in a subset, we propose a formulation that does not require access-
ing labelled images, enabling task automation, maintenance optimisation
and cost reduction.

Keywords: Visual Inspection · Infrastructure Inspection · Defects · Un-
supervised Segmentation.

1 Introduction

Collaborative Networks (CN) are alliances of entities working together to solve
complex problems that a single individual or organisation cannot efficiently
tackle. Three factors have led Artificial Intelligence (AI) to show promising
results in favour of CNs. Firstly, the increase in data availability and lower
procurement hardware prices. Secondly, the development of techniques that al-
low processing large datasets to identify patterns, correlations and anomalies.
Finally, the integration and interoperability, bridging the gap between systems
and sharing knowledge. When combined, CN and AI can solve complex problems
requiring human expertise and the automation of algorithms.

In the world of AI, one field of great interest is Computer Vision (CV). It is a
huge field focused on automatically extracting information from visual content,
such as images or videos. The implementation of CV has significantly increased
because of the integration of AI and Deep learning (DL) techniques in the areas
of biomedicine, the food industry, the agricultural sector and the development of
autonomous cars, among others [1]–[3]. One of the most widespread applications
is related to product inspection in the industry, either during the production
phase of the parts or in the operation of products and structures [4].
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Various algorithms have been used in CV for industry manufacturing and
component performance monitoring: supervised, semi-supervised and unsuper-
vised [5]. Supervised algorithms learn to recognise patterns in images, which
allows to predict the presence of defects in unseen images. However, supervised
learning requires large amounts of data and duly labelled by experts, which
entails considerable time and economic costs. In contrast, unsupervised learn-
ing is used when the data is unlabelled. The goal is to find hidden patterns or
structures in the data without prior knowledge. Unsupervised anomaly detec-
tion can be employed when labelled data is unavailable. This approach is based
on a few assumptions, including that most samples in the dataset are expected
not defective and defective instances are rare occurrences within the dataset [6].
Semi-supervised algorithms combine features of supervised and unsupervised
algorithms. While unsupervised learning has shown promise in some CV appli-
cations, it is less commonly used for defect inspection than supervised learning,
given that the latter has traditionally performed better.

Inspecting parts and detecting defects in the industry are generally conducted
using Non-Destructive Testing (NDT). A diverse range of quality assessment and
defect inspection methods are available. Their selection depends on the specific
product being examined and the significance of the information obtained from
each technique in a particular scenario. The most commonly used methods are
visual inspection, thermography, acoustic emissions, electromagnetic testing, ul-
trasound or X-rays. CV has been successfully integrated into NDT, highlighting
its use with thermal imaging cameras to detect heat anomalies that may indi-
cate defects [7] or with X-ray imaging to detect internal flaws in components [8].
Combining CV technology with other NDT methods can improve defect detec-
tion capabilities, reduce the risk of product failure and increase overall product
quality.

Fig. 1. Digital Twin flow as a non-destructive test for defect inspection.
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Digital Twin (DT) technology is also being explored as a NDT for defect
inspection. Creating a virtual replica of a product or component can simulate
various operating conditions and analyse the impact of defects on product per-
formance without physical testing. This approach can significantly reduce the
time and cost associated with traditional testing methods while providing more
accurate and detailed data. Leveraging DT as a NDT for defect inspection can
enhance product quality, minimise the risk of failure, and increase efficiency
in the manufacturing process [9]. AI can be employed to analyse the data ob-
tained from DT (Fig. 1), facilitating diagnostics and preventive maintenance.
Techniques such as explainable AI can be incorporated for data analysis and to
predict potential risks [10].

The present research work is part of a more comprehensive development
project intended to add value to the construction and operation of the build-
ing. Specifically, the aim is to develop a model for inspecting infrastructures to
ensure compliance with safety standards. As a novelty, unsupervised techniques
are to be used with an end-to-end approach to perform semantic segmentation
and classification at the same time. This allows circumventing the usual lack of
labelled data and provide a method that can achieve a high level of accuracy
on unlabelled data, thus avoiding the costs and time associated with supervised
tasks. To validate the accuracy and performance of the model proposed, a la-
belled subset of the data is intended to be used.

2 Related work: Defect detection in civil infraestructures

Defect detection with AI-based CV models has the potential to revolutionise the
way that civil infrastructure and construction are monitored and maintained. DL
is becoming increasingly popular for detecting and assessing civil infrastructure
and construction defects. It has been the focus of research studies by many
authors [11], [12]. Several DL algorithms have been used or developed for the
classification, localisation, or segmentation of defects, mainly consisting of cracks
in concrete or steel structures and, to a lesser extent, corrosion [13].

The most used algorithms are supervised convolutional neural network (CNN)
variations with end-to-end DL approaches. These algorithms have reached great
results for defect detection in concrete structures. For example, a CNN was em-
ployed in a study to construct a model that can effectively identify concrete
cracks in various scenarios, overcoming the restrictions posed by conventional
image-processing techniques [14]. Yang et al. introduced a dual CNN architec-
ture composed of a CNN and a fully connected network (FCN) for detecting
cracks on concrete bridges. The CNN method was utilised to eliminate inter-
ference signals, while the FCN was employed to extract relevant features of the
cracks [15]. Cha et al. used CNNs to detect and classify cracks, reaching good re-
sults in detection accuracy [16]. Nevertheless, these supervised approaches have
the crucial barrier of the absence of publicly available datasets with appropriate
annotations due to the necessity for time-consuming and labour-intensive work
for data preparation [17].



4 Authors Suppressed Due to Excessive Length

Regarding the segmentation of cracks using CV, some authors studied the
localisation and delineation of the damaged shape using deep CNN. Islam et al.
developed a transfer-learning approach to identify cracks using four pretrained
models[18]. Zhang et al. used a pixel-wise CNN and an FCN to segment defects
such as concrete cracks, concrete spalling, exposed reinforcement bars, steel cor-
rosion, steel fracture and fatigue cracks, and asphalt [19].

Unsupervised machine learning methods have been used for crack detection
in construction in the last years, such as Principal Component Analysis (PCA)
and several clustering methods, but they need more robustness. As far as we are
concerned, there need to be more approaches for training DL algorithms without
annotation that have been used for defect detection in other industrial fields
but to a lesser degree in construction and civil infrastructure [20]. Although
some studies use DL algorithms, there are yet to be state-of-the-art studies
that perform the classification and segmentation of cracks [21], [22]. Thus, the
application of unsupervised learning in this field is still relatively new and more
research is needed to explore its full potential.

3 Methodology

An overview of our proposed method for defect detection is depicted in Figure
2. In the following, we describe the problem formulation and each proposed
component.

Problem formulation: Under the paradigm of unsupervised anomaly detec-
tion, we denote the set of unlabeled training images as XT = {xn}Nn=1, composed
of only normal images, i.e., images without defects. We now define an encoder
in charge of transforming the input data XT into a latent representation (with
a lower dimensionality) Z through a non-linear mapping function, Z = fϕ(XT ),
where ϕ are the learnable parameters of the encoder architecture. The decoder
stage produces the reconstruction of the data based on the features embedded
in the latent space, R = gθ(Z). The reconstructed representation R is required
to be as similar to XT as possible. During the inference, we use a set of unla-
beled images XI = {xm}Mm=1, composed of images without and with defects to
differentiate them and provide the map where the defect is found.

3.1 Variational autoencoder

Variational autoencoder (VAE) is an unsupervised approach composed of an
encoder-decoder architecture commonly used for anomaly detection [23]. With
a VAE, the input data is coded as a multivariate normal distribution p(z|x)
around a point in the latent space. In this way, the encoder part is optimized
to obtain a multivariate normal distribution’s mean and covariance matrix. The
VAE algorithm assumes no correlation exists between latent space dimensions;
therefore, the covariance matrix is diagonal. In this way, the encoder only needs
to assign each input sample to a mean and a variance vector. In addition, the
logarithm of the variance is set, as this can take any real number in the range
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Fig. 2. Method overview. In line with the established literature on anomaly detec-
tion, the Variational Autoencoder (VAE) is optimized to maximize the evidence lower
bound (ELBO). Furthermore, we incorporate an attention constraint through a size-
constrained loss, which compels the network to explore the entire image. During infer-
ence, the attention map is thresholded to generate the final segmentation mask.

(−∞,∞), matching the natural output range from a neural network, whereas
that variance values are always positive. To provide continuity and completeness
to the latent space, it is necessary to regularize both the logarithm of the variance
and the mean of the distributions returned by the encoder. This regularisation
is achieved by matching the encoder output distribution to the standard normal
distribution (zµ = 0 and zσ = 1). After obtaining and optimizing the parameters
of the mean and variance of the latent distributions, it is necessary to take
samples of the learned representations to reconstruct the original input data.
Samples of the encoder output distribution are obtained as follows:

Z ≈ p(z|x) = zµ + zσ · ϵ (1)

where ϵ is randomly sampled from a standard normal distribution and σ =

exp( log(σ
2)

2 ).

The minimized loss function in a variational autoencoder comprises two
terms: (1) a reconstruction term that compares the reconstructed data to the
original input to get as effective encoding-decoding as possible and (2) a reg-
ularisation term in charge of regularizing the latent space organization. The
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regularisation term is expressed as the Kulback-Leibler (KL) divergence that
measures the difference between the predicted latent probability distribution of
the data and the standard normal distribution [24]:

DKL[N(zµ, zσ)||N(0, 1)] =
1

2

∑
(1 + log(z2σ)− z2µ − z2σ) (2)

The KL function is minimised to 0 if µ = 0 and log(σ2) = 0 for all dimensions.
As these two terms differ from 0, the variational autoencoder loss increases.
The compensation between the reconstruction error and the KL divergence is a
hyper-parameter to be adjusted in this type of architecture.

Since training a VAE consists in minimizing a two-term loss function, this is
equivalent to maximize the evidence lower-bound (ELBO):

LV AE = LR(xT , x̂T ) + βLKL(p(z|x)||p(z)) (3)

where β is a weighting factor to optimize.

3.2 Anomaly segmentation via Grad-CAMs

Several works based on unsupervised anomaly detection use attention maps to
mimic the segmentation mask of the anomaly. In particular, attention maps
a ∈ RΩi are generated from the mean latent vector zµ, by using Grad-CAM [25]
via backpropagation to the encoder block output. Therefore, given an image (x),
the attention maps is calculated as follows:

a = σ

(
K∑
k

αkfϕ(x)k

)
(4)

where K is the total number of filters of the encoder layer, σ is the sigmoid
function, and αk is the generated gradient such that: αk = 1

|a|
∑

t∈ΩT

∂zµ
∂ak,t

,

where ΩT is the spatial feature domain.
The idea underlying the Grad-CAM is to enforce them to cover the whole

free-defect image without showing high activations concentrated in some areas.
In inference, the activations will be concentrated in the area with defects. There-
fore, it is necessary to introduce a constraint related to the Grad-CAM in the
global loss function. Following the method show in [26], we use a log-barrier
extension function with a single global constraint to achieve maximum coverage
of class-activation maps over the whole image. Thus, we can formally define the
approximation of log-barrier as:

ψt(z) =

{
− 1

t log(−fc(a)) if fc(a) ≤ − 1
t2

tfc(a)− 1
t log(

1
t2 ) +

1
t otherwise,

(5)

where t controls the barrier during training, and fc(a) =
(
1− 1

|ΩT |
∑

l∈Ω al

)
is the constraint over the attention map from the jth image, which enforces
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the generated attention map to cover the whole image, where Ω is the spatial
features domain.

L = LV AE + λ

N∑
n=1

ψt(1−
1

|ΩT |
∑
l∈Ωi

al) (6)

In this scenario, for a given t, the optimizer will try to find a solution with
a good compromise between minimizing the loss of the VAE and satisfying the
constraint fc(a).

3.3 Inference

During inference, we obtain the reconstruction of the inferred images XI using
the VAE trained with defect-free images (XT ). After obtaining the reconstructed
images, we calculate the error concerning the original images. According to our
hypothesis, we consider that those inferred images with a high reconstruction
error will be defective. Therefore, we establish a threshold by considering the
mean and standard deviation of the errors in the defect-free images used for
validation. Inferred images with an error exceeding the threshold will be classified
as defective, while those falling below the threshold will be classified as non-
defective. Additionally, we use the anomaly saliency map as a segmentation
map. During the experimental stage, we found that anomalies produce larger
activation on attention maps than the constrained normal samples. Then, the
map is thresholded to create an anomaly mask of the image.

4 Experimental setting

4.1 Dataset and evaluation metrics

The dataset utilized in this study [27] comprises concrete images which were
sourced from multiple buildings within the METU Campus. The dataset contains
20,000 negative and 20,000 positive crack images, enabling image classification
tasks. These images have 227 x 227 pixels and are represented in RGB chan-
nels.The images exhibit variations in surface finish and illumination conditions,
contributing to a diverse and realistic representation of real-world scenarios. To
conduct our experiments, we selected a representative part of the dataset. To
validate the segmentation output, 200 mask segmentations were created man-
ually. These masks serve as ground truth (GT) references for evaluating the
segmentation algorithm.

To evaluate the performance of the proposed approach regarding the clas-
sification task, we compute accuracy, precision, F1-score, recall and confusion
matrix. To assess the semantic segmentation predicted by the model, we use
some metrics such as AUC ROC, AU PRC, DICE and IoU [28].
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4.2 Implementation details

We trained all our models using the dataset described during 300 epochs with
the Adam optimizer, a learning rate of 0.00001 and batch size of 32. We defined
5 convolutional blocks in the VAE determining 32 as the dimension of the la-
tent coding space. Variable t has a value of 20 in log-barrier loss. The binary
cross-entropy loss was computed for segmentation and L2 in classification. The
threshold value optimized and used to classify the images was 0.2366. Regarding
the hardware, we used NVIDIA RTX 3090 24 GB x 1, 525.60.11 drivers & CUDA
12.0, MSI Z270 Gamming PRO Carbon (MS-7A63); 32 GB and Intel i7-7700K
(4.2 GHz), whereas the software used was Pytorch for building and training the
models, and Sci-kit learn for evaluation.

5 Results

The results of the experimentation will be discussed below according to the
methodology proposed.

5.1 Classification

After the model is trained, we use a not seen 200-image dataset without defects
to calculate the error between the images and the reconstructed images (x −
x̂). We hypothesise that the optimized threshold will have the compromise to
assume that those images with reconstruction error above the threshold will be
anomalies. To do so, we use the mean error plus the standard deviation error
and the result is 0.2366. We plot the histograms (Figure 3, left) to see which is
the distribution and where is located the calculated error.

Fig. 3. Histograms of errors in crack images (up left) in images without cracks (down
left) and confusion matrix (right).
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The confusion matrix is included (Figure 3, right), considering 4,000 test
unseen images. Furthermore, metric results to evaluate the classification are
considered in Table 1.

Table 1. Metrics for the crack-non crack classification using the optimized threshold.

Accuracy Precision Recall F1-score

0.823 0.823 0.824 0.823

Since there is no previous work using unsupervised methods on the subject,
we compare ourselves with supervised studies, bearing in mind that we will not
be up to the task. In [29], STCNet I model accuracy over the same dataset is
99.71% and in [18] VGG16 gets an average accuracy of 99.61% using transfer
learning.

5.2 Unsupervised Defect Segmentation

To assess the model performance in unsupervised segmentation, we consider an
iteration as one full training with a singular seed. The quantitative results by
iteration and averaged of AU ROC, AU PRC, DICE, IoU are shown in 2.

Fig. 4. Qualitative assessments of various examples: original, GT and Grad-CAMs.

Given the absence of prior research utilizing unsupervised methods for this
subject, we acknowledge our comparison with supervised studies while acknowl-
edging that we may not achieve the same level of performance. In [30] a CNN
combined with ViT shows a IoU score of 0.82 in segmentation using our dataset.
They add other supervised models as U-Net and DeepLabv3+ getting a IoU 0.79
and 0.82 respectively.
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Table 2. Three Iterations Results over 200 unseen images and Average.

metric AU ROC AU PRC DICE IoU

Iter 0 0.97 0.76 0.71 0.55
Iter 1 0.95 0.64 0.65 0.48
Iter 2 0.96 0.78 0.72 0.54

Average 0.96 0.73 0.69 0.53

6 Conclusion

A relevant body of literature on defect detection in the industry requires manual
annotation to train deep learning-based models. The annotation process is an
expensive task that increases the costs of the industrial process. To overcome this
issue, in this work, we propose an unsupervised anomaly detection algorithm able
to detect and find the crack location in concrete images. The proposed method
based on VAE and Grad-CAMs allows the detection and segmentation of defects
showing promising results. Our approach aims to serve as a foundational step
towards achieving zero-defect manufacturing, providing a holistic solution to
minimize deviations in the operation of buildings and manufacturing processes.
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