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Abstract: This manuscript presents a new benchmark for assessing the quality of visual summaries

without the need for human annotators. It is based on the Signature Transform, specifically focusing

on the RMSE and the MAE Signature and Log-Signature metrics, and builds upon the assumption that

uniform random sampling can offer accurate summarization capabilities. We provide a new dataset

comprising videos from Youtube and their corresponding automatic audio transcriptions. Firstly, we

introduce a preliminary baseline for automatic video summarization, which has at its core a Vision

Transformer, an image–text model pre-trained with Contrastive Language–Image Pre-training (CLIP),

as well as a module of object detection. Following that, we propose an accurate technique grounded in

the harmonic components captured by the Signature Transform, which delivers compelling accuracy.

The analytical measures are extensively evaluated, and we conclude that they strongly correlate with

the notion of a good summary.

Keywords: video summarization; large language models; visual language models; CLIP; signature

transform

1. Introduction and Problem Statement

Video data have become ubiquitous, from content creation to the animation industry.
The ability to summarize the information present in large quantities of data is a central
problem in many applications, particularly when there is a need to reduce the amount of in-
formation transmitted and to swiftly assimilate visual contents. Video summarization [1–7]
has been extensively studied in Computer Vision, using both handcrafted methods [8]
and learning techniques [9,10]. These approaches traditionally use feature extraction on
keyframes to formulate an adequate summary.

Recent advances in Deep Neural Networks (DNN) [11–13] have spurred progress
across various scientific fields [14–21]. In the realm of video summarization, two prominent
approaches have emerged: LSTM- and RNN-based models [22–24]. These models have
demonstrated considerable success in developing effective systems for video summariza-
tion. Additionally, numerous other learning techniques have been employed to address
this challenge [25–28].

In this study, we introduce a novel concatenation of models for video summarization,
capitalizing on advancements in Visual Language Models (VLM) [29,30]. Our approach
combines zero-shot text-conditioned object detection with automatic text video annotations,
resulting in an initial summarization method that captures the most critical information
within the visual sequence.

Metrics to assess the performance of such techniques have usually relied on a human
in the loop, using services such as Amazon Mechanical Turk (AMT) to provide annotated
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summaries for comparison. There have been attempts to introduce quantitative measures
to address this problem, the most common being the F1-score, but these measures need
human annotators and have shown that many state-of-the-art methodologies perform
worse than mere uniform random sampling [31].

However, in this work, we go beyond the current state of the art and introduce a set
of metrics based on the Signature Transform [32,33], a rough equivalent to the Fourier
Transform that takes order and area into account and that contrasts the spectrum of the
original video with the spectrum of the generated summary to provide a measurable score.
We then propose an accurate state-of-the-art baseline based on the Signature Transform
to accomplish the task. Thorough evaluations are provided, where we can see that the
methodologies provide accurate video summaries, and that the technique based on the
Signature Transform achieves summarization capabilities superior to the state of the art.
Indeed, the temporal content present in a video timeline makes the Signature Transform
an ideal candidate to assess the quality of generated summaries where a video stream is
treated as a path.

Section 2 gives a primer on the Signature Transform to bring forth in Section 2.1 a set of
metrics to assess the quality of visual summaries by considering the harmonic components
of the signal. The metrics are then used to put forward an accurate baseline for video sum-
marization in Section 2.2. In the following section, we introduce the concept of Foundation
Models, which serves to propose a preliminary technique for the summarization of videos.
Thorough experiments are conducted in Section 4, with emphasis on the newly introduced
dataset and the set of measures. Section 4.1 gives an assessment of the metrics in compari-
son to human annotators, whereas Section 4.2 evaluates the performance of the baselines
based on the Signature Transform against another technique. Finally, Section 5 delivers
conclusions, addresses the limitations of the methodology, and discusses further work.

2. Signature Transform

The Signature Transform [34–38] is roughly equivalent to the Fourier Transform;
instead of extracting information concerning frequency, it extracts information about the
order and area. However, the Signature Transform differs from the Fourier Transform in
that it utilizes the space of functions of paths, a more general case than the basis of the
space of paths found in the Fourier Transform.

Following the work in [34], the truncated signature of order N of the path x is defined
as a collection of coordinate iterated integrals

SN(x) =










∫

· · ·
∫

0<t1<···<ta<1

a

∏
c=1

d fzc

dt
(tc)dt1 · · ·dta





1≤z1,...,za≤d







1≤a≤N

. (1)

Here, x = (x1, . . . , xn), where xz ∈ R
d. Let f = ( f1, . . . , fd) : [0, 1] → R

d be continuous,
such that f ( z−1

n−1 ) = xz, and linear in the intervals in between.

2.1. RMSE and MAE Signature and Log-Signature

The F1-score between a summary and the ground truth of annotated data has been the
widely accepted measure of choice for the task of video summarization. However, recent
approaches highlighted the need to come up with metrics that can capture the underlying
nature of the information present in the video [31].

In this work, we leverage tools from harmonic analysis by the use of the Signature
Transform to introduce a set of measures, namely, Signature and Log-Signature Root Mean
Squared Error (denoted from now on as RMSE Signature and Log-Signature), that can shed
light on what a good summary is and serve as powerful tools to analytically quantize the
information present in the selected frames.
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As introduced in [32] in the context of GAN convergence assessment, the RMSE
and MAE Signature and Log-Signature can be defined as follows, particularized for the
application under study:

Definition 1. Given n components of the element-wise mean of the signatures {ỹ(c)}n
c=1 ⊆ T(Rd)

from the target summary to the score, and the same number of components of the element-wise mean
of the signatures {x̃(c)}n

c=1 ⊆ T(Rd) from the original video subsampled at a given frame rate
and uniformly chosen, we define the Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE) as

RMSE
({

x̃(c)
}n

c=1
,
{

ỹ(c)
}n

c=1

)

=

√

1

n

n

∑
c=1

(

ỹ(c) − x̃(c)
)2

, (2)

and

MAE
({

x̃(c)
}n

c=1
,
{

ỹ(c)
}n

c=1

)

=
1

n

n

∑
c=1

|ỹ(c) − x̃(c)|, (3)

respectively, where T(Rd) = ∏
∞
c=0

(

R
d
)⊗c

.

The case for Log-Signature is analogous.
For the task of video summarization, two approaches are given. In the case where

the user has annotated summaries available, RMSE (S̄, S̄target) is computed between an
element-wise mean of the annotated summaries and the target summary to the score.
If annotations are not available, a comparison against mean random uniform samples is
performed, S̄, and mean score and standard deviation are provided. Given the properties
of the Signature Transform, the measure takes into consideration the harmonic components
that are intrinsic to the video under study and that should be preserved once the video is
shortened to produce a summary. As a matter of fact, both approaches should lead to the
same conclusions, as the harmonic components present in the annotated summaries and
the ones present in average in the random uniform samples should also agree. A confidence
interval of the scores can be provided for a given measure by analyzing the distances in the
RMSEs of annotated summaries or random uniform samples, RMSE (S̄a, S̄c).

When comparing against random uniform samples, the underlying assumption is as
follows: we assume that good visual summaries capturing all or most of the harmonic
components present in the visual cues will achieve a lower standard deviation. In contrast,
summaries that lack support for the most important components will yield higher values.
For a qualitative example, see Figure 1. With these ideas in mind, we can discern techniques
that likely generate consistent summaries from those that fail to convey the most critical
information. Moreover, the study of random sample intervals provides a set of tolerances
for considering a given summary adequate for the task, meaning it is comparable to or better
than uniform sampling of the interval at capturing harmonic components. Consequently,
the proposed measures allow for a percentage score representing the number of times
a given methodology outperforms random sampling by containing the same or more
harmonic components present in the spectrum.

2.2. Summarization of Videos with RMSE Signature

Proposing a methodology based on the Signature Transform to select proper frames
for a visual summary can be effectuated as follows: Given a uniform random sample of
the video to summarize, we can compare it against subsequent random summaries using
RMSE (S̄, S̄∗). We can repeat this procedure n times and choose, as a good candidate,
the minimum according to the standard deviation. Using this methodology, we can also
repeat the procedure for a range of selected summary lengths, which will give us a set of
good candidates, among which we will choose the candidate with the minimum standard
deviation. This will provide us with an estimate of the most suitable length. It is important
to note that this baseline is completely unsupervised in the sense that no annotations
are used, only the metrics based on the Signature Transform. We rely on the fact that,
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in general, uniform random samples provide relatively accurate summaries, and among
those, we choose the ones that are best according to std(RMSE (S̄, S̄∗)), which we denote as
RMSE (S̄, S̄umin

)|n. This will grant us competitive uniform random summaries according to
the given measures to use as a baseline for comparison against other methodologies, and
with which we can estimate an appropriate summary length to use in those cases.

Figure 1. Conceptual plot with RMSE (S̄, S̄) and RMSE (S̄, S̄∗) standard deviation and mean for two

given summaries (our method and a counterexample) of 12 frames using a randomly picked video

from Youtube to illustrate how to select a proper summary according to the proposed metric.

Below, we provide a description of the entities involved in the computation of the
metrics and the proposed baselines based on the Signature Transform:

• S̄∗: Element-wise mean Signature Transform of the target summary to the score of the
corresponding video;

• S̄: Element-wise mean Signature Transform of a uniform random sample of the
corresponding video;

• RMSE (S̄, S̄∗): Root mean squared error between the spectra of S̄ and S̄∗ with the same
summary length. For the computation of standard deviation and mean, this value is
calculated ten times, changing S̄;

• RMSE (S̄, S̄): Root mean squared error between the spectra of S̄ and S̄ with the same
summary length. For computation of standard deviation and mean, this value is
calculated ten times, changing both S̄ each time;

• RMSE (S̄, S̄umin
)|n: Baseline based on the Signature Transform. It corresponds to

RMSE (S̄, S̄∗), where S̄∗ is, in this case, a fixed uniform random sample denoted as S̄u.
We repeat this procedure n times and choose the minimum candidate according to
standard deviation, S̄umin

, to propose as a summary;
• std(): Standard deviation.

3. Summarization of Videos via Text-Conditioned Object Detection

Large Language Models (LLM) [39–42] and VLMs [43] have emerged as indispens-
able resources for characterizing complex tasks and bestowing intelligent systems with
the capacity to interact with humans in unprecedented ways. These models, also called
Foundation Models [44–46], excel in a wide variety of tasks, such as robotics manipu-
lation [47–49], and can be integrated with other modules to perform robustly in highly
complex situations such as navigation and guidance [50,51]. One fundamental module is
the Vision Transformer [52].

We introduce a simple yet effective technique aimed at generating video summaries
that accurately describe the information contained within video streams, while also propos-
ing new measures for the task of the summarization of videos. These measures will prove
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useful not only when text transcriptions are available, but also in more general cases in
which we seek to describe the quality of a video summary.

Building on the text-conditioned object detection using Vision Transformers, as recently
proposed in [53], we enhance the summarization task by leveraging the automated text
transcriptions found in video platforms. We utilize a module of noun extraction employing
NLP techniques [54], which is subsequently processed to account for the most frequent
nouns. These nouns serve as input queries for text-conditioned object searches in frames.
Frames containing the queries are selected for the video summary; see Figure 2 for a
detailed depiction of the methodology.

In this manuscript, we initially present a baseline leveraging text-conditioned object
detection, specifically Contrastive Language–Image Pre-training (CLIP) [43]. To assess
this approach, we employ a recently introduced metric based on the Signature Transform,
which accurately gauges summary quality compared to a uniform random sample. Our
preliminary baseline effectively demonstrates the competitiveness of uniform random
sampling [31]. Consequently, we introduce a technique utilizing prior knowledge of the Sig-
nature, specifically the element-wise mean comparison of the spectrum, to generate highly
accurate random uniform samples for summarization. The Signature Transform allows for
a design featuring an inherent link between the methodology, metric, and baseline. We first
present a method for evaluation, followed by a set of metrics for assessment, and ultimately,
we propose a state-of-the-art baseline that can function as an independent technique.

Figure 2. Video Summarization via Zero-shot Text-conditioned Object Detection.

4. Experiments: Dataset and Metrics

A dataset consisting of 28 videos about science experiments was sourced from Youtube,
along with their automatic audio transcriptions, to evaluate the methodology and the pro-
posed metrics. Table 1 provides a detailed description of the collected data and computed
metrics, Figure 3 shows the distribution of selected frames using text-conditioned object
detection over a subset of videos and the baselines based on the Signature Transform,
Figure 4 depicts a visual comparison between methodologies, and Figures 5 and 6 visually
elucidate the RMSE distribution for each video with mean and standard deviation.
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Figure 3. Comparison of distribution of selected frames for a subset of videos (Tides, Sulfur Hexaflu-

oride, Centre of Gravity and Bubbles) using the method based on text-conditioned object detection

and the baselines using the Signature Transform.

The dataset consists of science videos covering a wide range of experiments on several
topics of interest; it has an average number of 264 frames per video (sampling rate 1

4 s) and
an average duration of 17 min 30 s.

Figure 3 depicts the selected frames when using our methodology for a subset of videos
in the dataset. The selection coincides with the trigger of the zero-shot text-conditioned
object detector by the 20 most frequent word code-phrase queries, which chooses a subset
of the methodology that best explains the main factors of the argument. A comparison with
the baselines based on the Signature Transform with 10 and 20 points is delivered.

In all experiments that involve the computation of the Signature Transform, we use
the parameters proposed in [32] that were originally used to assess synthetic distributions
generated with GANs; specifically, we employ truncated signatures of order 3 with a
resized image size of 64 × 64 in grayscale.

RMSE (S̄, S̄∗) computes the element-wise mean of the signatures of both the target
summary to the score and a random uniform sample with the same number of frames,
comparing their spectra with the use of the RMSE. Likewise, RMSE (S̄, S̄) computes the
same measure between two random uniform samples with the same number of frames.
The standard deviation of both results is compared to assess the quality of the summarized
video concerning the present harmonic components. The preliminary technique based
on text-conditioned object detection (see Table 1) achieves a zero-shot of 50% positive
cases when compared against std (RMSE (S̄, S̄)). The number of frames selected by the
methodology is consistent, and it automatically selects on average 20% of the total number
of frames.

In this paragraph, we discuss the baseline based on the Signature Transform (see
Table 1) in terms of the RMSE (S̄, S̄umin

)|10 and RMSE (S̄, S̄umin
)|20. These techniques select

a uniform random sample with minimum standard deviation in a set of 10 points and
20 points, respectively, and achieve 100% positive cases when compared to RMSE (S̄, S̄).
Under the assumption that the summary can be approximated well by a random uniform
sample, which holds true in many cases, the methodology finds a set of frames that
maximizes the harmonic components relative to those present in the original video.
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Table 1. Descriptive statistics with RMSE (S̄, S̄∗) (target summary against random uniform sample)

and RMSE (S̄, S̄) (random uniform sample against random uniform sample). RMSE (S̄, S̄umin )|10

and RMSE (S̄, S̄umin )|20 correspond to the baselines based on the Signature Transform using 10 and

20 random samples, respectively. Highlighted results in blue/brown correspond to values better than

std (RMSE (S̄, S̄)). Yellow values indicate when std (RMSE (S̄, S̄)) is lower than std (RMSE (S̄, S̄∗)).

Descriptive Statistics Summary RMSE (S̄, S̄∗) RMSE (S̄, S̄) RMSE (S̄, S̄umin
)|10 RMSE (S̄, S̄umin

)|20

Video # Frames Length # Frames (%) Std Mean Std Mean Std Mean Std Mean

Tides 159 10 m 29 s 35 (22%) 13,663 202,388 14,838 155,986 8859 157,455 7312 167,480

Sulfur Hexafluoride 230 15 m 12 s 47 (20%) 22,727 217,935 22,607 179,409 7194 161,995 7722 173,490

Centre of Gravity 155 10 m 14 s 33 (21%) 12,333 181,460 16,404 168,824 8481 160,779 12,416 175,971

Bubbles 174 11 m 30 s 35 (20%) 23,127 201,553 16,806 185,702 7461 194,993 5711 175,176

Airplanes 158 10 m 24 s 22 (14%) 19,964 215,688 23,591 231,539 8417 227,391 10,235 233,020

Protons 174 11 m 30 s 25 (14%) 29,853 252,224 20,186 262,434 12,835 251,907 11,542 250,512

Hydrophobic 168 11 m 06 s 29 (17%) 15,016 251,671 25,835 248,548 11,973 250,131 13,917 245,761

States of Matter 332 22 m 03 s 78 (23%) 16,249 156,408 9709 130,064 6630 115,454 5340 121,028

Spool Racer 332 22 m 02 s 90 (27%) 15,903 142,520 11,883 136,147 7054 137,621 8112 151,888

Paper Airplane 332 22 m 03 s 29 (9%) 20,642 235,639 11,829 221,220 5400 224,718 9385 177,448

Loudest Sound 332 22 m 01 s 93 (28%) 16,898 179,963 8304 148,885 7884 138,561 4355 147,016

Lightning 332 22 m 01 s 70 (21%) 15,237 169,338 21,862 162,849 9300 177,008 7494 153,797

Light Challenge 332 22 m 02 s 82 (25%) 12,566 152,488 10,546 126,117 5490 139,700 4874 129,044

Hot Air Balloon 332 22 m 01 s 98 (30%) 8620 150,366 5417 144,634 3516 137,141 4165 138,453

Hoop Glider 332 22 m 01 s 82 (25%) 6419 148,065 6752 132,544 4051 133,897 4966 133,894

Drag Race 332 22 m 03 s 73 (22%) 9384 135,228 8931 125,264 4375 122,615 4645 129,851

All about Balance 332 22 m 03 s 59 (18%) 14,023 182,063 14,238 182,179 7801 176,219 6914 167,727

Air Pressure 332 22 m 03 s 65 (20%) 10,123 166,342 18,314 151,664 6386 145,897 4602 148,232

Friction and Momentum 162 10 m 42 s 28 (17%) 18,754 217,403 22,443 218,203 13,348 202,288 12,238 205,680

Electricity 162 10 m 41 s 30 (19%) 24,376 298,238 22,885 279,820 16,889 268,932 10,263 270,619

Catapult 169 11 m 11 s 27 (16%) 26,413 271,643 31,265 214,727 15,158 203,290 10,222 188,008

Carbonation and More 165 10 m 53 s 40 (24%) 18,977 237,142 18,107 226,044 12,130 234,278 11,884 214,149

Carbon Dioxide 162 10 m 41 s 38 (23%) 25,862 245,415 18,806 217,270 13,838 207,828 7760 211,504

Bridge 164 10 m 51 s 21 (13%) 25,839 269,412 26,038 271,551 10,761 263,747 13,038 264,532

Bread Experiment 337 22 m 22 s 59 (18%) 15,099 189,086 8575 146,771 5542 153,224 5691 156,230

Balloon Power 337 22 m 22 s 53 (16%) 14,075 157,542 29,415 147,710 7741 128,920 7351 134,545

Attraction and Forces 654 43 m 30 s 81 (12%) 5955 107,097 7486 102,965 3701 96,266 2093 99,271

Puzzles 209 13 m 48 s 46 (22%) 11,258 185,502 19,012 196,762 14,620 199,556 14,622 197,064

Average 264 17 m 30 s 52 (20%) 14/28 (50%) 28/28 (100%) 28/28 (100%)

Figure 4 displays examples of summaries using the baseline based on the Signature
Transform compared to the summaries using text-conditioned object detection. The figure allows
for a visual comparison of the results obtained using RMSE (S̄, S̄umin

)|10, RMSE (S̄, S̄umin
)|20

and S̄∗. The best summary among the three baselines according to the metric is highlighted
(Table 1).

Figure 4. Summarization of videos using the baseline based on the Signature Transform in comparison

to the summarization using text-conditioned object detection. RMSE (S̄, S̄umin )|10, RMSE (S̄, S̄umin )|20

and S̄∗ summaries for two videos of the introduced dataset. The best summary among the three,

according to the metric, is highlighted.

The selected frames are consistent and provide a good overall description of the
original videos. Moreover, the metric based on the Signature Transform aligns well with
our expectations of a high-quality summary, with better scores being assigned to summaries
that effectively convey the content present in the original video.

Table 2 presents a qualitative analysis of the baseline based on the Signature Transform
using 10 points, RMSE (S̄, S̄umin

)|10 and RMSE (S̄, S̄) with a varying number of frames per
summary. We observe that RMSE (S̄, S̄) reflects the variability of the harmonic compo-
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nents present; that is, it is preferable to work with lengths for which the variability among
summaries is low, according to the standard deviation. RMSE (S̄, S̄umin

)|10 indicates the min-
imum standard deviation achieved in a set of 10 points, meaning that given a computational
budget allowing us to select up to a specific number of frames, a good choice is to pick the
length that yields the minimum RMSE (S̄, S̄umin

)|10 with low variability, as per RMSE (S̄, S̄).
RMSE (S̄, S̄∗) (Figure 5) and RMSE (S̄, S̄) (Figure 6) show the respective distribution

of RMSE values (10 points) with the mean and standard deviation. Low standard de-
viations, in comparison with the random uniform sample counterparts, indicate good
summarization capabilities.

Figure 5. Plot with RMSE (S̄, S̄∗) standard deviation and mean.

Figure 6. Plot with RMSE (S̄, S̄) standard deviation and mean.
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Table 2. Descriptive statistics for a set of videos with varying numbers of frames per summary with

RMSE (S̄, S̄umin )|10 (brown) and RMSE (S̄, S̄) (yellow).

Dataset RMSE (S̄, S̄umin
)|10 RMSE (S̄, S̄) Visualization

Video # Frames Summary (%) Std Mean Std Mean Plot (Std,Std)

Tides 159

8 (5%) 22,786 422,026 54,067 390,483

5 10 15 20 25
0

2

4

6
·104

summary %

st
d

(r
m

se
)

RMSE(S̄, S̄umin
)|10

RMSE(S̄, S̄)

16 (10%) 12,851 254,984 37,713 263,881

24 (15%) 9423 202,925 17,935 224,797

32 (20%) 9074 183,933 15,700 186,621

40 (25%) 4782 158,183 13,903 159,452

Sulfur Hexafluoride 230

12 (5%) 30,325 452,134 68,212 362,061

5 10 15 20 25
0

2

4

6

·104

summary %

st
d

(r
m

se
)

RMSE(S̄, S̄umin
)|10

RMSE(S̄, S̄)

23 (10%) 12,701 281,425 39,872 246,967

35 (15%) 12,034 228,530 20,846 201,740

46 (20%) 9241 190,985 28,621 175,440

58 (25%) 7914 161,618 9021 152,310

Centre of Gravity 155

8 (5%) 48,787 406,502 49,234 369,648

5 10 15 20 25
0

1

2

3

4

5
·104

summary %

st
d

(r
m

se
)

RMSE(S̄, S̄umin
)|10

RMSE(S̄, S̄)

16 (10%) 22,163 252,841 21,974 276,366

24 (15%) 8050 212,893 26,776 229,959

31 (20%) 10,963 180,953 35,813 184,437

39 (25%) 2528 164,666 16,259 163,007

Bubbles 174

9 (5%) 24,538 401,406 37,816 397,470

5 10 15 20 25
0

1

2

3

4

5
·104

summary %

st
d

(r
m

se
)

RMSE(S̄, S̄umin
)|10

RMSE(S̄, S̄)

18 (10%) 11,669 272,430 49,740 276,152

27 (15%) 12,965 213,336 19,125 215,961

35 (20%) 10,331 190,639 13,792 183,984

44 (25%) 7625 173,009 9427 162,091

4.1. Assessment of the Metrics

The metrics have been rigorously evaluated using the dataset in [1], which consists of
short videos sourced from Youtube, and includes 5 annotated summaries per video for a
total of 20. Tables 3 and 4 report the results, using a one-frame-per-second sampling rate.
In this case, the average number of times that the human annotator outperforms uniform
random sampling according to the proposed metric, std (RMSE (S̄, S̄)), is 87%. Several
observations emerge from these findings:

• The proposed metrics demonstrate that human evaluators can perform above average
during the task, effectively capturing the dominant harmonic frequencies present in
the video.

• Another crucial aspect to emphasize is that the metrics are able to evaluate human anno-
tators with fair criteria and identify which subjects are creating competitive summaries.

• Moreover, the observations from this study indicate that the metrics serve as a reliable
proxy for evaluating summaries without the need for annotated data, as they correlate
strongly with human annotations.

Figure 7 shows the mean and standard deviation for each human-annotated summary
(user 1 to user 5) for the subset of 20 videos from [1], using a sampling rate of 1 frame
per second. For each video, a visual inspection of the error plot bar for each annotated
summary provides an accurate estimate of the quality of the annotation compared to other
users. Specifically:

• Annotations with lower standard deviations offer a better harmonic representation of
the overall video;

• Annotations with higher standard deviations suggest that important harmonic com-
ponents are missing from the given summary;

• The metrics make it simple to identify annotated summaries that may need to be
relabeled for improved accuracy.

Furthermore, these metrics remain consistent when applied to various sampling rates.
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Figure 7. Error bar plot with mean and standard deviation for each human-annotated summary of

the subset of 20 videos from [1]. Sampling rate: 1 frame per second.

That being said, there are several standard measures that are commonly used for video
summarization, such as F1 score, precision, recall, and Mean Opinion Score (MOS). Each
of these measures has its own strengths and weaknesses. Compared to these standard
measures, the proposed benchmark based on the Signature Transform has several potential
advantages. Here are a few reasons for this:

• Content based: the Signature Transform is a content-based approach that captures the
salient features of the video data. This means that the proposed measure is not reliant
on manual annotations or subjective human ratings, which can be time consuming
and prone to biases.

• Robustness: the Signature Transform is a robust feature extraction technique that can
handle different types of data, including videos with varying frame rates, resolutions,
and durations. This means that the proposed measure can be applied to a wide range
of video datasets without the need for pre-processing or normalization.

• Efficiency: the Signature Transform is a computationally efficient approach that can be
applied to large-scale datasets. This means that the proposed measure can be used to
evaluate the effectiveness of visual summaries quickly and accurately.

• Flexibility: the Signature Transform can be applied to different types of visual sum-
maries, including keyframe-based and shot-based summaries. This means that the
proposed measure can be used to evaluate different types of visual summaries and
compare their effectiveness.

Overall, the proposed measure based on the Signature Transform has the potential
to provide a more accurate and comprehensive assessment of the standard of visual sum-
maries compared to the preceding measures used in video summarization.
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Table 3. Descriptive statistics with RMSE (S̄, S̄∗) (target summary against random uniform sam-

ple) and RMSE (S̄, S̄) (random uniform sample against random uniform sample). Lower is better.

Sampling rate: 1 frame per second. Dataset in [1], videos from V11 to V20. Highlighted results

in blue/yellow correspond to the lowest values, either std (RMSE (S̄, S̄∗)) or std (RMSE (S̄, S̄)),

respectively.

Youtube, Dataset RMSE (S̄, S̄∗) RMSE (S̄, S̄) Visualization

Video # Frames User # Frames User Std Mean Std Mean Plot (Std,Std)

V11 48

1 10 26,644 171,106 46,655 151,483

0 1 2 3 4 5 6

·104

2 12 13,673 202,172 15,479 155,481

3 10 29,857 213,880 51,590 182,327

4 9 21,192 236,959 52,982 196,303

5 8 31,627 254,336 52,925 193,520

V12 59

1 11 15,497 436,723 46,551 252,142

·

0 2 4 6 8

·104

2 17 18,927 359,562 24,665 177,286

3 15 26,071 342,161 31,703 180,066

4 11 25,330 429,272 82,323 242,627

5 14 34,479 348,834 39,199 188,417

V13 59

1 19 12,238 187,001 24,649 114,155
·

0 1 2 3 4

·104

2 9 25,267 287,479 34,635 166,495

3 18 7790 187,346 21,203 126,432

4 14 9544 222,496 25,553 140,508

5 18 12,298 198,349 27,138 124,386

V14 59

1 9 32,739 302,118 51,770 183,978

·

0 1 2 3 4 5 6

·104

2 16 20,249 219,068 44,235 141,927

3 17 24,345 222,559 35,235 113,806

4 10 20,498 244,509 27,548 155,515

5 16 26,561 200,139 32,840 143,384

V15 57

1 12 14,454 237,551 51,812 207,845

0 1 2 3 4 5 6

·104

2 11 20,018 301,650 46,590 209,491

3 13 13,192 261,014 42,337 171,810

4 13 36,408 305,376 30,041 179,442

5 14 44,931 261,859 54,428 180,145

V16 70

1 9 35,722 449,758 95,662 376,411

0 0.2 0.4 0.6 0.8 1

·105

2 9 86,863 425,107 65,626 328,563

3 12 41,260 388,869 43,186 340,133

4 9 51,299 447,523 65,698 375,162

5 13 42,200 369,517 52,316 302,677

V17 59

1 12 17,668 324,562 36,166 242,235

·

0 1 2 3 4

·104

2 13 26,203 262,895 32,930 243,366

3 18 10,957 250,543 30,660 177,779

4 12 19,956 300,390 20,252 223,791

5 16 12,611 297,707 28,433 207,258

V18 50

1 13 35,152 501,230 74,454 260,574

·

0 2 4 6 8

·104

2 14 40,896 559,244 70,863 274,572

3 14 46,791 540,747 39,899 246,964

4 10 33,309 541,490 56,012 329,343

5 14 30,663 420,924 72,998 308,756

V19 65

1 15 6114 186,893 16,695 119,136

·

0 1 2 3 4

·104

2 20 6701 225,075 6899 103,517

3 20 5339 167,085 8834 103,752

4 13 8462 185,452 12,020 129,608

5 6 23,992 275,155 32,512 208,629



Electronics 2023, 12, 1735 12 of 19

Table 3. Cont.

Youtube, Dataset RMSE (S̄, S̄∗) RMSE (S̄, S̄) Visualization

Video # Frames User # Frames User Std Mean Std Mean Plot (Std,Std)

V20 61

1 15 23,716 627,121 52,711 540,857

·

0 0.2 0.4 0.6 0.8 1

·105

2 12 19,933 707,823 86,586 609,589

3 9 52,818 787,188 93,656 747,199

4 11 43,598 688,065 68,016 617,091

5 11 31,058 695,905 69,077 618,156

Table 4. Descriptive statistics with RMSE (S̄, S̄∗) (target summary against random uniform sample)

and RMSE (S̄, S̄) (random uniform sample against random uniform sample). Lower is better. Sam-

pling rate: 1 frame per second. Dataset in [1], videos from V71 to V80. Highlighted values correspond

to the lowest standard deviation.

Youtube, Dataset RMSE (S̄, S̄∗) RMSE (S̄, S̄) Visualization

Video # Frames User # Frames User Std Mean Std Mean Plot (Std,Std)

V71 277

1 18 16,916 319,975 35,173 330,114

0 1 2 3 4 5 6

·104

2 18 23,314 315,996 48,511 339,793

3 20 38,384 293,853 50,766 345,021

4 17 32,270 310,193 32,411 359,049

5 18 41,753 329,353 59,688 334,337

V72 536

1 18 15,842 187,019 32,676 194,820
·

0 1 2 3 4 5

·104

2 16 25,427 211,466 33,363 202,442

3 16 18,684 196,149 45,453 217,699

4 18 21,112 205,421 19,122 177,117

5 18 27,718 206,335 29,057 205,808

V73 201

1 11 64,802 538,239 116,284 484,970
·

0 0.5 1 1.5 2 2.5

·105

2 7 153,682 106,8305 211,124 704,655

3 8 113,805 661,992 135,899 653,041

4 8 83,387 856,406 248,619 689,301

5 7 111,767 899,150 241,947 794,828

V74 293

1 17 25,780 282,200 29,674 309,051
·

0 1 2 3 4 5 6

·104

2 16 18,954 273,776 51,670 331,322

3 15 36,714 322,833 24,961 335,618

4 13 41,327 363,665 55,543 369,875

5 16 30,798 289,135 38,881 353,928

V75 383

1 14 42,736 254,385 25,959 282,877

0 2 4 6

·104

2 13 41,632 263,431 39,826 337,124

3 10 59,083 315,531 39,925 330,766

4 17 37,954 227,411 28,843 250,314

5 12 49,908 278,966 63,236 312,366

V76 89

1 6 64,097 440,825 93,524 422,565
·

0 1 2 3 4 5 6

·105

2 4 53,727 536,138 123,009 464,922

3 1 566,208 843,799 485,614 878,793

4 6 40,356 382,643 78,354 424,418

5 6 39,194 395,906 60,916 401,751

V77 168

1 12 24,546 302,076 47,095 366,748
·

0 0.2 0.4 0.6 0.8 1

·105

2 9 52,176 339,285 61,880 385,056

3 9 61,623 355,883 54,390 413,118

4 10 39,765 349,207 90,313 400,379

5 7 70,562 440,656 90,468 451,833
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Table 4. Cont.

Youtube, Dataset RMSE (S̄, S̄∗) RMSE (S̄, S̄) Visualization

Video # Frames User # Frames User Std Mean Std Mean Plot (Std,Std)

V78 310

1 13 65,238 706,978 96,368 770,000
·

0 1 2 3 4

·105

2 14 100,771 672,121 112,412 807,250

3 3 410,792 159,3229 203,589 188,2757

4 9 149,063 839,743 213,286 106,1204

5 23 40,178 466,571 73,228 614,140

V79 49

1 7 56,918 831,057 124,249 835,575
·

0 0.5 1 1.5

·105

2 8 56,569 793,831 60,657 859,241

3 6 85,973 925,025 104,621 990,479

4 5 158,480 109,3141 179,902 109,9105

5 6 87,104 873,950 131,597 895,318

V80 159

1 18 66,585 529,875 67,019 572,836
·

0 0.2 0.4 0.6 0.8 1

·105

2 17 66,367 527,930 59,432 602,819

3 13 29,459 579,078 84,101 726,883

4 12 43,740 643,016 87,688 685,117

5 14 89,016 553,274 94,849 649,317

Figure 8 shows a summary that is well annotated by all users, demonstrating that the
metrics can accurately indicate when human annotators have effectively summarized the
information present in the video.

Figure 8. Visual depiction of human annotated summaries together with RMSE (S̄, S̄∗) and

RMSE (S̄, S̄) of video V11, Table 3. Sampling rate: 1 frame per second. Highlighted values on

the table correspond to the lowest standard deviation.

To illustrate how these metrics can help improve annotations, Figure 9 displays the
metrics along with the annotated summaries of users 1 to 5. We observe that selecting the
frames highlighted by users 1–4 can increase the performance if user 5 is asked to relabel
its summary.
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Figure 9. Visual depiction of human annotated summaries together with RMSE (S̄, S̄∗) and

RMSE (S̄, S̄) of video V19, Table 3. Sampling rate: 1 frame per second. Highlighted frames can

increase the accuracy of the annotated summary by user 5. Highlighted values on the table corre-

spond to the lowest standard deviation.

Figure 10 showcases an example in which random uniform sampling outperforms the
majority of human annotators. This occurs because the visual information is uniformly
distributed throughout the video. In this case, user 5 performs the best, scoring slightly
higher than std (RMSE (S̄, S̄). Highlighted values on the table correspond to the lowest
standard deviation.).

Figure 10. Visual depiction of human annotated summaries, together with RMSE (S̄, S̄∗) and

RMSE (S̄, S̄) of video V75, Table 4. Sampling rate: 1 frame per second. Highlighted values on

the table correspond to the lowest standard deviation.

Similarly, Figure 11 presents an example in which incorporating the highlighted frames
improves the accuracy of the annotated summary by user 3, which is currently performing
worse than uniform random sampling, according to the metrics.
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Figure 11. Visual depiction of human annotated summaries together with RMSE (S̄, S̄∗) and

RMSE (S̄, S̄) of video V76, Table 4. Sampling rate: 1 frame per second. Highlighted frames can

increase the accuracy of the annotated summary by user 3. Highlighted values on the table corre-

spond to the lowest standard deviation.

4.2. Evaluation

In this section, we evaluate the baselines and metrics compared to VSUMM [1],
a methodology based on handcrafted techniques that performs particularly well on this
dataset. Table 5 displays the comparison between the standard deviation of RMSE (S̄, S̄∗)
and RMSE (S̄, S̄), as well as against the baselines based on the Signature Transform,
RMSE (S̄, S̄umin

)|10 and RMSE (S̄, S̄umin
)|20, with 10 and 20 points, respectively.

We can observe how the metrics effectively capture the quality of the visual summaries
and how the introduced methodology based on the Signature Transform achieves state-
of-the-art results with both 10 and 20 points. The advantages of using a technique that
operates on the spectrum of the signal, compared to other state-of-the-art systems, is that it
can generate visual summaries without fine-tuning the methodology. In other words, there
is no need to train on a subset of the target distribution of videos, but rather, compelling
summaries can be generated at once for any dataset. Moreover, this approach is highly
efficient, as computation is performed on the CPU and consists only of calculating the
Signature Transform, element-wise mean, and RMSE. These operations can be further
optimized for rapid on-device processing or for deploying in parallel at the tera-scale level.

Table 5. VSUMM [1] comparison against baseline based on the Signature Transform for the first

20 videos of the dataset crawled from Youtube. Descriptive statistics with RMSE (S̄, S̄∗) (target

summary against random uniform sample) and RMSE (S̄, S̄) (random uniform sample against

random uniform sample). RMSE (S̄, S̄umin )|10 and RMSE (S̄, S̄umin )|20 correspond to the baselines

based on the Signature Transform using 10 and 20 random samples, respectively. Highlighted results

are better than std (RMSE (S̄, S̄)). Sampling rate: 1 frame per second. Highlighted results correspond

to lowest standard deviation as described in Table 1.

Descriptive Statistics VSUMM RMSE (S̄, S̄∗) RMSE (S̄, S̄) RMSE (S̄, S̄umin
)|10 RMSE (S̄, S̄umin

)|20

Video # Frames # Frames Std Mean Std Mean Std Mean Std Mean

V11 48 11 25,981 185,959 37,907 175,031 16,343 148,128 18,343 159,157
V12 59 13 56,274 313,156 41,613 205,004 17,770 181,533 11,665 206,951
V13 59 19 7018 184,865 15,319 120,307 10,578 110,258 6655 134,846
V14 59 8 21,415 281,969 39,412 171,935 19,069 157,531 10,104 180,199
V15 57 10 20,159 271,197 46,041 219,182 27,536 192,667 27,765 218,787
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Table 5. Cont.

Descriptive Statistics VSUMM RMSE (S̄, S̄∗) RMSE (S̄, S̄) RMSE (S̄, S̄umin
)|10 RMSE (S̄, S̄umin

)|20

Video # Frames # Frames Std Mean Std Mean Std Mean Std Mean

V16 70 9 65,997 513,440 84,667 428,025 38,088 283,324 30,235 446,068
V17 59 15 10,697 255,666 41,831 197,136 17,625 197,944 19,102 227,646
V18 50 14 42,731 449,324 51,635 230,695 33,525 261,288 30,179 242,746
V19 65 16 3891 235,797 5739 121,766 5883 116,245 4582 111,766
V20 61 9 43,864 796,448 39,035 733,547 28,460 684,546 39,414 644,681
V71 277 17 20,840 383,945 43,176 341,779 14,908 352,365 20,657 327,732
V72 536 12 61,886 233,649 48,603 252,688 17,604 276,631 18,966 248,489
V73 201 10 40,261 717,107 156,051 533,457 64,344 681,064 38,361 711,039
V74 293 17 26,274 270,374 36,674 334,265 17,622 354,621 17,486 330,606
V75 383 10 37,516 272,804 38,026 366,510 23,163 339,078 21,295 360,216
V76 89 7 36,084 353,323 114,266 377,699 31,131 335,958 34,724 405,954
V77 168 9 26,653 361,516 67,134 422,612 33,214 407,085 27,562 480,795
V78 310 13 95,305 831,043 127,705 823,938 33,903 980,397 36,361 951,784
V79 49 7 67,052 965,267 101,325 878,917 42,513 818,629 47,401 885,023
V80 159 15 48,115 613,702 118,428 644,529 43,411 589,256 37,487 808,984
Average 153 12 17/20 (85%) 19/20 (95%) 19/20 (95%)

5. Conclusions and Future Work

In this manuscript, we propose a benchmark based on the Signature Transform to
evaluate visual summaries. For this purpose, we introduce a dataset consisting of videos
obtained from Youtube related to science experiments with automatic audio transcriptions.
A baseline, based on zero-shot text-conditioned object detection, is used as a preliminary
technique in the study to evaluate the metrics. Subsequently, we present an accurate
baseline built on the prior knowledge that the Signature provides. Furthermore, we
conduct rigorous comparison against human-annotated summaries to demonstrate the
high correlation between the measures and the human notion of a good summary.

One of the main contributions of this work is that techniques based on the Signa-
ture Transform can be integrated with any state-of-the-art method in the form of a gate
that activates when the method performs worse than the metric, std (RMSE (S̄, S̄∗)) >

std (RMSE (S̄, S̄)).
The experiments conducted in this work lead to the following conclusion: if a method

for delivering a summarization technique is proposed that involves complex computation
(e.g., DNN techniques or Foundation Models), it must provide better summarization
capabilities than the baselines based on the Signature Transform, which serve as lower
bounds for uniform random samples. If not, there is no need to use a more sophisticated
technique that would involve greater computational and memory overhead and possibly
require training data. The only exception to this would be when additional constraints are
present in the problem, such as when summarization must be performed by leveraging
audio transcriptions (as in the technique based on text-conditioned object detection) or any
other type of multimodal data.

That being said, the methodology proposed based on the Signature Transform, al-
though accurate and effective, is built on the overall representation of harmonic components
of the signal. Videlicet, under certain circumstances, can provide summaries in which
frames are selected due to low-level representations of the signal, such as color and im-
age intensity, rather than the storyline. Moreover, it assumes that, in general, uniform
random sampling can provide good summarization capabilities, which is supported by
the literature. However, this assumption is not fulfilled in all circumstances. Therefore,
in subsequent works, it would be desirable to develop techniques that perform exception-
ally well according to the metrics while simultaneously bestowing a level of intelligence
similar to the methodology based on Foundation Models. This would take into account
factors such as the human concept of detected objects, leading to more context-aware and
meaningful summarization.
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Abbreviations

The following abbreviations are used in this manuscript:

DNN Deep Neural Networks

AMT Amazon Mechanical Turk

RMSE Root Mean Squared Error

MAE Mean Absolute Error

VLM Visual Language Models

LLM Large Language Models

GAN Generative Adversarial Networks

CLIP Contrastive Language–Image Pre-training

LSTM Long Short-Term Memory

RNN Recurrent Neural Network

NLP Natural Language Processing

CPU Central Processing Unit

MOS Mean Opinion Score
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