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Abstract

The vast majority of real-world processes have inherent uncertainties, which, when
considered in the modelling process, can provide a representation that most ac-
curately describes the behaviour of the real process. Such uncertainties may be
parametric, due to the nature of the process, and/or additive, due to external
disturbances. In most practical cases, these are considered to have stochastic
behaviour and their descriptions as probability distributions are known.

Stochastic model predictive control algorithms are developed to control processes
with uncertainties of a stochastic nature, where the knowledge of the statistical
properties of the uncertainties is exploited by including it in the optimal control
problem (OCP) statement. Contrary to other model predictive control (MPC)
schemes, hard constraints are relaxed by reformulating them as probabilistic con-
straints to reduce conservatism. That is, violations of the original hard constraints
are allowed, but such violations must not exceed a permitted level of risk.

The non-convexity of such probabilistic constraints renders the optimisation prob-
lem computationally unmanageable, thus most stochastic MPC strategies in the
literature differ in how they deal with such constraints and uncertainties to turn
the problem computationally tractable. On the one hand, there are determinis-
tic strategies that, offline, convert probabilistic constraints into new determinis-
tic ones, using the propagation of uncertainties along the prediction horizon to
tighten the original hard constraints.

Scenario-based approaches, on the other hand, use the uncertainty information
to randomly generate, at each sampling instant, a set of possible evolutions of
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uncertainties over the prediction horizon. In this fashion, they convert the prob-
abilistic constraints into a set of deterministic constraints that must be fulfilled
for all the scenarios generated. These strategies stand out for their ability to in-
clude real-time updated uncertainty information. However, this advantage comes
with inconveniences such as computational effort, which grows as the number of
scenarios does, and the undesired effect on the optimisation problem caused by
scenarios with a low probability of occurrence when a small set of scenarios is
used.

The aforementioned challenges steered this thesis toward stochastic scenario-
based MPC approaches, and yielded three main contributions. The first one
consists of a comparative study of an algorithm from the deterministic group
with another one from the scenario-based group, where a special emphasis is made
on how each of them deals with uncertainties, transforms the probabilistic con-
straints and on the structure of the optimisation problem, as well as pointing out
their most outstanding aspects and challenges. Furthermore, the performances
of these algorithms are analysed and compared by means of numerical examples,
and their results provide the probabilistic feasibility of the optimisation problem,
among others.

The second contribution is a new proposal for a MPC algorithm, which is based
on conditional scenarios, developed for linear systems with parametric and/or
additive uncertainties that are correlated. This scheme exploits the existence of
such correlation to convert a large initial set of scenarios into a smaller one with
their probabilities of occurrence, which preserves the characteristics of the initial
set. The reduced set is used in an OCP in which the predictions of the system
states and inputs are penalised according to the probabilities of the scenarios that
compose them, giving less importance to the scenarios with lower probabilities of
occurrence. Two OCP structures are proposed, the first one considers the whole
reduced set, while the second one, in order to improve the cost index and reduce
the computational expense, uses sampling and discarding approaches to exclude
from the total set of constraints those related to scenarios with lower probability
of occurrence.

The third contribution consists of a procedure for the implementation of the new
MPC algorithm as an energy manager in a microgrid composed of the main elec-
tricity grid, renewable photovoltaic and wind energy sources, an energy storage
system, and connected loads, in which the forecasts of renewables and loads are
correlated.
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Resumen

La gran mayoría de procesos del mundo real tienen incertidumbres inherentes,
las cuales, al ser consideradas en el proceso de modelado, se puede obtener una
representación que describa con la mayor precisión posible el comportamiento del
proceso real. Tales incertidumbres pueden ser paramétricas, debido a la natura-
leza del proceso, y/o aditivas, debido a perturbaciones externas. En la mayoría
de casos prácticos, se considera que éstas tienen un comportamiento estocástico
y sus descripciones como distribuciones de probabilidades son conocidas.

Las estrategias de control predictivo estocástico están desarrolladas para el control
de procesos con incertidumbres de naturaleza estocástica, donde el conocimiento
de las propiedades estadísticas de las incertidumbres es aprovechado al incluirlo
en el planteamiento de un problema de control óptimo (OCP, del inglés Optimal
Control Problem). En éste, y contrario a otros esquemas de control predictivo
(MPC, del inglés Model Predictive Control), las restricciones duras son relajadas
al reformularlas como restricciones de tipo probabilísticas con el fin de reducir el
conservadurismo. Esto es, se permiten las violaciones de las restricciones duras
originales, pero tales violaciones no deben exceder un nivel de riesgo permitido.
La no-convexidad de tales restricciones probabilísticas hacen que el problema
de optimización sea computacionalmente inmanejable, por lo que la mayoría de
las estrategias de MPC estocástico en la literatura se diferencian en la forma
en que abordan tales restricciones y las incertidumbres, para volver el problema
computacionalmente manejable. Por un lado, están las estrategias deterministas
que, fuera de línea, convierten las restricciones probabilísticas en unas nuevas de
tipo deterministas, usando la propagación de las incertidumbres a lo largo del
horizonte de predicción para ajustar las restricciones duras originales.

Por otra parte, las estrategias basadas en escenarios usan la información de las
incertidumbres para, en cada instante de muestreo, generar de forma aleatoria un
conjunto de posibles evoluciones de éstas a lo largo del horizonte de predicción.
De esta manera, convierten las restricciones probabilísticas en un conjunto de
restricciones deterministas que deben cumplirse para todos los escenarios gene-
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rados. Estas estrategias se destacan por su capacidad de incluir en tiempo real
información actualizada de las incertidumbres. No obstante, esta ventaja genera
inconvenientes como su gasto computacional, el cual aumenta conforme lo hace
el número de escenarios y; por otra parte, el efecto no deseado en el problema
de optimización, causado por los escenarios con baja probabilidad de ocurrencia,
cuando se usa un conjunto de escenarios pequeño.

Los retos mencionados anteriormente orientaron esta tesis hacia los enfoques de
MPC estocástico basado en escenarios, produciendo tres contribuciones principa-
les. La primera consiste en un estudio comparativo de un algoritmo del grupo
determinista con otro del grupo basado en escenarios; en donde se hace un espe-
cial énfasis en cómo cada uno de estos aborda las incertidumbres, transforma las
restricciones probabilísticas y en la estructura de su problema de optimización,
además de señalar sus aspectos más destacados y desafíos. Asimismo, los desem-
peños de estos algoritmos son analizados y comparados por medio de ejemplos
numéricos y en sus resultados se provee la factibilidad probabilística del problema
de optimización, entre otros.

La segunda contribución es una nueva propuesta de algoritmo MPC, el cual se ba-
sa en escenarios condicionales, diseñado para sistemas lineales con incertidumbres
paramétricas y/o aditivas que están correlacionadas. Este esquema aprovecha la
existencia de tal correlación para convertir un conjunto de escenarios inicial de
gran tamaño en un conjunto de escenarios más pequeño con sus probabilidades
de ocurrencia, el cual conserva las características del conjunto inicial. El con-
junto reducido es usado en un OCP en el que las predicciones de los estados y
entradas del sistema son penalizadas de acuerdo con las probabilidades de los
escenarios que las componen, dando menor importancia a los escenarios con me-
nores probabilidades de ocurrencia. Se proponen dos estructuras de OCP, en la
primera se considera todo el conjunto reducido, mientras que en la segunda, con
el fin de mejorar el índice de coste y reducir el gasto computacional, se usan en-
foques de muestreo y descarte para excluir del conjunto total de restricciones, las
relacionadas con los escenarios con menor probabilidad de ocurrencia.

La tercera contribución consiste en un procedimiento para la implementación del
nuevo algoritmo MPC como gestor de la energía en una microrred compuesta
por la red eléctrica principal, fuentes de energía renovables fotovoltaica y eólica,
un sistema de almacenamiento de energía, y cargas conectadas; en la que las
previsiones de las energías renovables y las cargas están correlacionadas.
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Resum

La gran majoria de processos del món real tenen incerteses inherents, les quals,
en ser considerades en el procés de modelatge, es pot obtenir una representació
que descriga amb la major precisió possible el comportament del procés real.
Tals incerteses poden ser paramètriques, a causa de la naturalesa del procés, i/o
additives, a causa de pertorbacions externes. En la majoria de casos pràctics, es
considera que aquestes tenen un comportament estocàstic i les seues descripcions
com a distribucions de probabilitats són conegudes.

Les estratègies de control predictiu estocàstic estan desenvolupades per al con-
trol de processos amb incerteses de naturalesa estocàstica, on el coneixement
de les propietats estadístiques de les incerteses és aprofitat en incloure’l en el
plantejament d’un problema de control òptim (OCP, de l’anglès Optimal Control
Problem). En aquest, i contrari a altres esquemes de control predictiu (MPC,
de l’anglès Model Predictive Control), les restriccions dures són relaxades en re-
formulades com a restriccions de tipus probabilístiques amb la finalitat de reduir
el conservadorisme. Això és, es permeten les violacions de les restriccions dures
originals, però tals violacions no han d’excedir un nivell de risc permès. La no-
convexitat de tals restriccions probabilístiques fan que el problema d’optimització
siga computacionalment immanejable, per la qual cosa la majoria de les estratè-
gies de MPC estocàstic en la literatura es diferencien en la forma en què aborden
tals restriccions i les incerteses, per a tornar el problema computacionalment
manejable. D’una banda, estan les estratègies deterministes que, fora de línia,
converteixen les restriccions probabilístiques en unes noves de tipus determinis-
tes, usant la propagació de les incerteses al llarg de l’horitzó de predicció per a
ajustar les restriccions dures originals.

D’altra banda, les estratègies basades en escenaris usen la informació de les incer-
teses per a, en cada instant de mostreig, generar de manera aleatòria un conjunt
de possibles evolucions d’aquestes al llarg de l’horitzó de predicció. D’aquesta
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manera, converteixen les restriccions probabilístiques en un conjunt de restricci-
ons deterministes que s’han de complir per a tots els escenaris generats. Aquestes
estratègies es destaquen per la seua capacitat d’incloure en temps real infor-
mació actualitzada de les incerteses. No obstant això, aquest avantatge genera
inconvenients com la seua despesa computacional, el qual augmenta conforme
ho fa el nombre d’escenaris i; d’altra banda, l’efecte no desitjat en el problema
d’optimització, causat pels escenaris amb baixa probabilitat d’ocurrència, quan
s’usa un conjunt d’escenaris xicotet.

Els reptes esmentats anteriorment van orientar aquesta tesi cap als enfocaments
de MPC estocàstic basat en escenaris, produint tres contribucions principals. La
primera consisteix en un estudi comparatiu d’un algorisme del grup determinista
amb un altre del grup basat en escenaris; on es fa un especial èmfasi en com
cadascun d’aquests aborda les incerteses, transforma les restriccions probabilísti-
ques i en l’estructura del seu problema d’optimització, a més d’assenyalar els seus
aspectes més destacats i desafiaments. Així mateix, els acompliments d’aquests
algorismes són analitzats i comparats per mitjà d’exemples numèrics i en els seus
resultats es proveeix la factibilitat probabilística del problema d’optimització, en-
tre altres.

La segona contribució és una nova proposta d’algorisme MPC, el qual es basa en
escenaris condicionals, dissenyat per a sistemes lineals amb incerteses paramètri-
ques i/o additives que estan correlacionades. Aquest esquema aprofita l’existència
de tal correlació per a convertir un conjunt d’escenaris inicial de gran grandària
en un conjunt d’escenaris més xicotet amb les seues probabilitats d’ocurrència,
el qual conserva les característiques del conjunt inicial. El conjunt reduït és usat
en un OCP en el qual les prediccions dels estats i entrades del sistema són pe-
nalitzades d’acord amb les probabilitats dels escenaris que les componen, donant
menor importància als escenaris amb menors probabilitats d’ocurrència. Es pro-
posen dues estructures de OCP, en la primera es considera tot el conjunt reduït,
mentre que en la segona, amb la finalitat de millorar l’índex de cost i reduir la
despesa computacional, s’usen enfocaments de mostreig i descarte per a excloure
del conjunt total de restriccions, les relacionades amb els escenaris amb menor
probabilitat d’ocurrència.

La tercera contribució consisteix en un procediment per a la implementació del
nou algorisme MPC com a gestor de l’energia en una microxarxa composta per
la xarxa elèctrica principal, fonts d’energia renovables fotovoltaica i eòlica, un
sistema d’emmagatzematge d’energia, i càrregues connectades; en la qual les pre-
visions de les energies renovables i les càrregues estan correlacionades.
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MHC Moving Horizon Control
MILP Mixed-Integer Linear Programming
MIQP Mixed Integer Quadratic Program
MPC Model Predictive Control
MPC n/c Classic MPC without Constraints
MPC w/c Classic MPC with Constraints
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RH Receding Horizon
RHC Receding Horizon Control
RMPC Robust MPC
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Chapter 1

Introduction

This chapter presents an overview of the research conducted and
how this led to the development of this thesis. In the first sec-
tion, some of the potentialities of model predictive control (MPC)
are briefly outlined, followed by how the uncertainties present in the
system are addressed by some of its strategies, and how the research
conducted to answer these questions motivated the choice of stochas-
tic MPC, specifically scenario-based MPC, as the main topic of this
thesis. The second section presents the objectives of this thesis. In
the third section, a literature review of stochastic MPC approaches,
and some applications as energy managers in the microgrids field.
In the fourth section, the main contributions of this thesis and their
importance are discussed.
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Chapter 1. Introduction

1.1 Motivation

Model Predictive Control (MPC) is widely used to control industrial processes
[1]–[3]; in fields such as automation and robotics [4]–[8], energy management in
buildings and renewable energies [9]–[14], and in many other areas [15]–[17]. This
is because of its main feature of predicting, using a mathematical model of the
process, the future behaviour of the real process, as well as the simplicity of
its application and its robustness in controlling various complex processes, with
many inputs and outputs, and with the possibility of taking into account their
constraints.

Based on updated information on process variables and the process model, at
each sampling time, the MPC makes predictions of future process behaviour over
a time window referred to as the prediction horizon [18]–[20]. These predictions,
depending on future controls (decision variables), are included in a cost function
to solve a constrained open-loop Optimal Control Problem (OCP); providing the
sequence of optimal controls that minimise this function as a solution. Then,
using the Receding Horizon principle (RH) [21], the first element, corresponding
to the input calculated for the current instant, of the sequence of future controls
is applied to the process, and the rest of the elements are discarded. This is
because once a sample period has elapsed, the OCP is solved again with updated
information, and the RH concept is applied again.

One significant issue when using a deterministic MPC is its need for an accurate
model of the process to be controlled. The complexity of the dynamics of most
real-life processes does not allow them to be represented by a fixed mathemat-
ical model since various types of uncertainties are always present. This can be
problematic, as using an inaccurate model can lead to erroneous predictions that
are far from the actual behaviour of the process, thus affecting its performance
and, more importantly, the stability and feasibility of the control system [18],
[22]. Robust MPC and stochastic MPC approaches take into account process
uncertainties by incorporating them into the model used for prediction. Thus,
they are more appropriate strategies for uncertain systems.

Robust MPC (RMPC) approaches [22]–[25] are developed to control systems with
uncertainties, which are unknown but are bounded, and their limits are known.
Under this premise, a family of models is constructed, in which one of them is
an approximate representation of the real process; thereby forming a polytopic
system that contains the nominal one. Thus, an OCP is formulated for all vertices
of the polytope, whose predicted trajectories form a band around that of the
nominal model. The sequence of optimal controls is computed by minimising the
worst-case (minimax problem), subject to constraints that must be met for all
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1.1 Motivation

cases. Implementing these algorithms is computationally demanding, and in some
cases prohibitive, due to worst-case online optimisation, which does not always
occur, thus making them conservative.

On the other hand, stochastic MPC strategies [20], [24], [26]–[29] consider that
the uncertainties, that are not required to be bounded, are of a stochastic nature
and the information about how they are distributed is considered as known. This
statistical information knowledge is exploited to solve an OCP, with an expected
value cost function, and where hard constraints on states and inputs, commonly
the former, are reformulated as probabilistic constraints, so that they must be
satisfied at least at a desired probability level. Such constraints relaxation, in
probabilistic terms, reduces the worst-case conservatism, as a transgression of the
constraints is allowed within a permitted probability level.

During the early stage of this research, it was noted that in the topic related
to stochastic MPC, most algorithms are categorised into two major groups: the
deterministic group and the scenario-based group. This led to carrying out a com-
parative study of two MPCs, each from one group, pointing out the advantages
and challenges of each. The scenario-based MPC, has outstanding aspects such
as the possibility to include online the updated statistical information related
to the uncertainties, and the ability to consider uncertainties historical data, in
case the analytical expressions of their probabilities distributions are unavailable.
Challenges include, on the one side, the computational burden that grows as the
number of scenarios employed to solve the OCP does and, on the other side, the
effect that unlikely scenarios have on the quality of the optimal solution when a
reduced number of scenarios are considered in the OCP.

In most practical applications the uncertainties are considered stochastic and
their probabilistic characteristics are known. It is considered, therefore, that this
information can be exploited in the formulation of the OCP. The above motivated
to focus this thesis on the area of stochastic MPC, specifically the scenario-based
MPC, in view of its highlights and improvement opportunities mentioned above.

Consequently, this thesis explores how the stochastic MPC works, how it ad-
dresses the uncertainties information and what are its strengths and weaknesses;
how a scenario-based MPC can take into account the knowledge of system uncer-
tainties when there is a correlation between some of them, in order to enhance
the probability of constraint satisfaction; and how to use a scenario-based MPC
for energy management in a microgrid where some power generation and demand
forecasts are correlated.
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Chapter 1. Introduction

1.2 Thesis Objectives

The main objective of this thesis is to propose a scenario-based model predictive
control approach suitable for systems with correlated uncertainties, which lever-
ages the knowledge of these features to enhance the probability of satisfying the
constraints.

The defined specific objectives for the general objective fulfilment are listed below:

1. Conduct a comparative study between two stochastic MPC techniques of
the deterministic and scenario-based groups to determine the most salient
aspects of these strategies and their possible improvement opportunities.

2. Propose a new scenario-based MPC algorithm that considers the correlation
between system uncertainties to improve constraint satisfaction.

3. Develop a procedure to adapt the proposed MPC algorithm as a solution to
energy management in the field of microgrids.

4. Conduct a case study of a microgrid including photovoltaic and wind gener-
ation, and energy storage system, with correlation between generation and
demand, to validate the effectiveness of the proposed MPC as an energy
management system.

1.3 Literature Review

As mentioned in section 1.1, stochastic model predictive control strategies [26]–
[29] were conceived for systems in which their uncertainties are considered to be
stochastic in nature, and whose features such as the distribution types of these
random variables are considered to be known. Such uncertainties can be either
parametric [30], [31], due to external disturbances [28], [32]–[34] or both [35]–
[38], and may be bounded [35], [38], [39] (necessary in most strategies to ensure
the feasibility of the OCP and the stability of the system [27], [40]) or not [32],
[34], [41], [42], and features as their probability distributions shapes are usually
considered Gaussian type, and their sequences in time are generally supposed to
be independent and identically distributed (i.i.d.).

The stochastic MPC uses this statistical information to solve an optimal control
problem (OCP) whose cost function to be minimised is a quadratic cost based on
the expected value. In this function, the predictions of the states, control actions
and the terminal state, the latter related to system stability [40], are penalised.
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1.3 Literature Review

Hard constraints on system states and inputs, usually the first, are reformulated
as probabilistic constraints (chance constraints) where they are required to be
satisfied at least with a user-defined minimum desired probability level. Consid-
ering such detailed information on uncertainties in the formulation of this OCP
provides it robustness, and, on the other side, relaxing the constraints in prob-
abilistic terms reduces the conservatism [24], [43] of the worst-case, in relation
to the robust MPC, by allowing its transgression within a permitted probability
level.

Most stochastic MPC approaches in the literature can be classified into two
groups [29], [41] depending on how the information related to the uncertainties
is addressed in the OCP formulation. These are, the deterministic group strate-
gies [39], [42], [44], [45] and; on the other side, the group of scenario-based (or
randomised) strategies [35], [36], [41], [46].

The deterministic approaches adopt an OCP in which state constraints are for-
mulated as chance or probabilistic constraints (CC), where it is required that the
probability of constraint fulfilment in the states must not be lower than a desired
level. Due to the non-convexity of these chance constraints, they can render the
problem computationally intractable, and therefore, they are generally converted
into equivalent deterministic and convex ones. For this purpose, the first two
statistical moments knowledge of uncertainties (random variables) is exploited to
calculate their propagation over the prediction horizon and use them for tight-
ening of the original hard constraints, this offline. Thus, the chance-constrained
OCP, it becomes a deterministic one, in which the cost function, based on the ex-
pected value, is replaced by one that only contains the predictions of the nominal
trajectories of the states and inputs, and which is subject to the new deterministic
constraints, which are functions of these states and inputs. As a result, the OCP
is similar to a classical MPC in both structure and computational effort.

The scenario-based approaches, conversely, make use of statistical data on uncer-
tainties and a random number generator to online, i.e., at each sampling interval,
generate a set of possible evolutions, so-called scenarios [47], [48], of the uncer-
tainties along the prediction horizon. In this way, these scenarios are incorporated
into a conventional convex OCP, where the expected value of the cost function is
approximated to the sample average of all states and inputs predicted trajecto-
ries, obtained from all the generated scenarios. The probabilistic constraints are
substituted by the original hard constraints, that must be fulfilled for all of these
predicted states and inputs. The number of realisations to be employed to solve
the OCP determines the quality of the solution or its closeness to the original
stochastic MPC problem. This number can be computed as a function [36], [47],
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Chapter 1. Introduction

[48] of a defined desired probability level of constraint satisfaction and the number
of decision variables of the OCP, among others.

Some successful practical applications involving scenario-based schemes include
the control of processes such as comfort or thermal management in buildings [13],
autonomous vehicles [49], water resources management [16], [17] and management
of microgrids [14], [50], among others. The online scenario generation provides
these schemes with the flexibility to include new information or changes in uncer-
tainties, as well as using historical data when their probability distributions are
unknown or do not have classical distribution shapes.

However, as discussed in [29], [36], the mentioned advantages of scenario-based
MPCs lead to, on one side, a larger computational overhead due to the time it
takes for the OCP to be solved, increasing or decreasing in line with the number
of scenarios for which all constraints must be fulfilled, and that for very large
values may become intractable. On the other side, there is the impact that the
unlikely scenarios have on the OCP solution if few scenarios are employed. This
is due to the possibility that, given the randomness in the scenarios selection,
many of them may be far from the system reality and, as a result, the calculated
optimal controls may lead to a wrong closed-loop system behaviour.

In random convex programs [51], [52], the number of scenarios required such
that the optimal solutions obtained by the OCP meet the original probabilistic
constraints is calculated regarding the desired probability of satisfying the con-
straints, the number of decision variables in the OCP, and a defined very low
probability of a catastrophic event occurring, i.e. the probability that such prob-
abilistic constraints are not satisfied. Such an undesired event may occur if for a
limited number of scenarios most of them are improbable, but a reduction in this
level of risk leads to an increase in the number of scenarios.

Sampling and discarding approaches [52] improve the cost function while main-
taining a minimum allowable level of constraint satisfaction. This is achieved for
a reasonably large number of generated scenarios, of which some are discarded
from the OCP constraints. Both the numbers of scenarios to be considered and
discarded from the OCP constraints are calculated as a function of the desired
probability level of constraints satisfaction, the probability level of a bad event
occurring and the number of decision variables. In [36], a reduced sample-removal
pair is proposed for MPC where the probabilistic constraints are interpreted as
the average-in-time probability of constraint violations. By defining an acceptable
level of risk of constraint violation and a parameter associated with the dimension
of the unconstrained subspace of the search space, a given pair consisting of the
minimum number of scenarios to consider in the cost function and a maximum
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number of scenarios to discard from the constraints in the states is calculated.
Nevertheless, these sampling-discarding approaches can lead to an increase in the
time taken to solve the problem as they first require a large number of scenarios
to maintain the level of constraint satisfaction in the absence of the discarded sce-
narios. Secondly, the unlikely scenarios to be excluded from the constraints must
be identified, so a suitable algorithm [52] is also required to identify them, which,
depending on their level of greed, could lead to a computationally prohibitive
OCP to solve.

Others approaches are the scenario tree-based MPC [53]–[57], which are based on
multistage stochastic optimisation, in which a tree-shaped scenario structure is
constructed, through a set of realisations of uncertainties. Each branch or node in
the tree depicts a specific future instant, having the associated state, control action
and the probability of being reached, given the uncertainty. Starting from the
current state and time, and following the temporal order, each possible path in this
tree is referred to as a scenario, in which each has its own control actions, thereby
augmenting the number of decision variables. In [57], one these approaches is
integrated together with the sampling-discarding [36] to improve solution time
by considering only a small number of scenarios that correspond to those with
the highest probability of occurrence. In [55] presents an approach that uses the
Gaussian regression process to learn the uncertainty of the system, dependent on
the state-input relationship, and is adapted to a scenario tree algorithm. In [56]
an adaptive scenario tree approach is introduced for nonlinear systems where,
both, state and input-dependent uncertainties are assumed, where a Bayesian
neural network (BNN) is required to model the uncertain dynamics of the system
by using historical data on its trajectory.

A combination of deterministic and scenario-based approaches are considered
in [32], [34], [38], [41], for systems with purely additive uncertainties in [32],
[34], [41], where the sequences of uncertainties are assumed to be generally cor-
related in time, and not independent and identically distributed (i.i.d.) in time
as in most stochastic algorithms. In [41], features such as the time correlation
of uncertainties and the concept of scenarios are leveraged to, offline, calculate
so-called probabilistic reachable sets (PRS) [58] for constraints tightening, which,
applying the concept of error tubes in MPC [21], are used to formulate the OCP.
In [32], both the mean and the covariance of the uncertainty vector are assumed
to be bounded; thereby such considerations are used to tighten the constraints
by calculating PRSs applying the concept of the correlation bound. A state ini-
tialisation technique is proposed in [34] to, according to a specified probability
level, enforce that the actual state remains within a PRS and close to the nominal
state. The varied presumptions about the uncertainties used offline to perform

7



Chapter 1. Introduction

the constraint tightening by the above techniques improve the online computa-
tional effort, giving them similar characteristics to those of the MPCs from the
first group. However, the potential of scenario-based approaches, such as the on-
line inclusion of updated uncertainty information, would be wasted, besides their
implementation is only possible for systems with additive uncertainties.

A field in which the characteristics of MPCs, such as their prediction capability
and robustness, have been most successfully exploited is that of microgrids; in
particular stochastic MPC approaches, given the inherent uncertainties in these
systems. The growing energy demand [59], whether due to the use of new tech-
nologies by consumers, population growth, economic expansion or climate change
impacts increasingly on the supply capacity of the main network, resulting in
poor service quality, sudden power outages, and increased electricity prices, with
high fluctuation associated with existing demand or drought periods. These fac-
tors have generated the need for users of the electricity service to explore other
energy sources, either to mitigate such technical issues and/or to reduce energy
consumption from the main grid for electricity cost savings or reduce dependence
on the distribution network [60]. Some examples of these energy types are re-
newable energy sources (RES) such as photovoltaic (PV) generators and wind
turbines (WT), and controllable generators like fuel cells and diesel engines. The
integration of these technologies together with technologies as energy storage sys-
tems (ESS) [61]–[63], such as battery systems, supercapacitors or flywheels among
others, is referred to as distributed energy resources (DER) [60], [64].

A microgrid (MG) [64], [65] of small or large size can generally be defined as a
system consisting of several DERs and multiple loads, which extracts or sends
(to generate economic benefits) energy if connected to the main grid, or is self-
sufficient if not connected (isolated). The choice of the MG energy manage-
ment system (EMS) is essential since it is responsible for managing demand au-
tonomously in real-time by coordinating its DERs.

Compared to conventional controllers, an EMS based on a MPC strategy [66],
[67] considerably improves the efficiency of the MG due to its robustness and the
fact that in each control period, it uses a model of the MG which can incorporate
updated RES and demand forecasts to predict its future behaviour within a time
window in the range of minutes up to months. These predictions are considered
in a constrained OCP, in which the cost of energy to be consumed from the main
grid is generally minimised, yielding the necessary future controls for optimal MG
operation; where obeying the receding horizon principle, only the first element of
the sequence of controls is applied, executing the OCP again at the next instant.
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As mentioned in section 1.1, an important issue when using a deterministic MPC
[68], [69] is the accuracy of the employed MG model. RES and demand forecasts,
which are related to fluctuating weather conditions, have inherent uncertainties
[70] that might produce predictions far from the actual behaviour of the MG,
leading to inefficient use of DERs and affecting the cost benefits. Consequently,
energy management in a MG with stochastic MPC schemes is more suitable, given
the above factors.

Some works related to applications of stochastic MPC approaches from both
stochastic groups to the context of EMS in a MG include [71]–[78], which ad-
dresses problems such as thermal comfort in buildings, demand response, fault
detection, isolated MG and coordination of multiple RES, EMS and households.
For example, [71] addresses the thermal comfort of a household while providing
a demand response, taking into account uncertainties in PV power and outdoor
temperature forecasts. In [75], is applied to the control of a heating, ventilat-
ing and air conditioning (HVAC) system for maintain indoor thermal comfort
in buildings, taking into account the occupancy status of its zones; all this is
coordinated with an ESS and with PV penetration, considering the presence of
uncertainties in temperature and in the PV forecasts.

In [76], an EMS is proposed for a MG consisting of PV generators, wind turbines,
controllable generators and a ESS, as well as the classification of demand into
critical, curtailable and shiftable loads; considering the presence of uncertainties
in the forecasts of demand, electricity prices, PV and wind generation. The
OCP consists of a mixed integer quadratic program (MIQP), which considers
the scenarios obtained from reducing a primary set of scenarios through a two-
stage reduction technique. In [77] proposes the EMS for a microgrid consisting
of several ESS, houses, and PV generators with forecast uncertainties. The OCP
objectives are maintaining the ESS state of charge (SOC) at certain levels in
case of unexpected events, lower purchased energy costs and increasing profits
from the sale of the energy produced. Based on the tightest constraint of the
set of scenarios, the OCP is reformulated into a computationally more tractable
one incorporating slack variables. In [78], a two-stage scenario-based MPC is
proposed for the energy management of ESSs. The upper stage is run hourly to
forecast PV generation and demand, while the lower stage is run on a minute
scale and focuses on maintaining the power balance. The scenarios are generated
using a proposed methodology, considering the presence of uncertainties in PV
generation and demand.
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1.4 Main Contributions

The work conducted in order to answer the research questions outlined in sec-
tion 1.1 produced outcomes such as a comparative study of two stochastic MPCs
belonging to the deterministic and scenario-based groups, which researchers in-
terested in studying these control strategies will find very useful; a scenario-based
MPC approach for linear systems with correlated uncertainties, where exploit-
ing these uncertainty characteristics leads to an OCP with a higher probability
of constraint satisfaction; and the implementation of this approach as an energy
management system in the framework of a microgrid with correlated forecasts.

Comparison of a stochastic MPC from the deterministic group with
one from the scenario-based group

There are limited works comparing the techniques of deterministic and scenario-
based MPC groups, discussing in detail the approach to the control problem,
retaining their core structures, and validating the probabilistic feasibility of each
OCP by means of examples. Some works on such comparisons can be found
in [17], [57], [79]. In [79], several stochastic MPC proposals are outlined and
compared with the deterministic counterpart. However, these approaches differ
from the general formulation, so the conventional way of converting probabilis-
tic constraints into their deterministic equivalents is not addressed. In [57], a
strategy from the first group is compared with two from the second group for
the control of a hydrogen-based microgrid. The nature of this process requires
a cost function that differs from the general formulation, while the inputs are
taken as the decision variables, in contrast to most algorithms, which obey the
dual paradigm [18], [40], where the inputs consist of a state feedback [35], [38],
[39], [80] or state error feedback [32], [34], [41], [44], [45] parameterisation. Also,
the results do not present an analysis of constraint satisfaction, in probabilistic
form, for each OCP. Another comparison is made in [17] applied to applied to
drinkingwater network, where, as in the previous work, a strategy from the first
group is also compared with two from the second group. Also, as in the previous
case, the structures of OCPs differ from those generally proposed. The results
analyse different performance indices but do not include any index indicating the
probability with which the obtained optimal solutions satisfy the constraints.

Consequently, such a classification of stochastic MPC algorithms led to the first
contribution of this thesis, consisting of a comparative study of two stochas-
tic MPC algorithms, one from the deterministic group and the other from the
scenario-based group, also a classic MPC as a baseline, focused on linear sys-
tems with parametric and additive uncertainties. This is in order, on the one
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side, to obtain a detailed description of the theoretical background of each strat-
egy, comparing the way they address the uncertainties, their prediction models,
cost functions, the transformation of the probabilistic constraints into determin-
istic ones, and the OCP structures they set out. On the other side, to analyse
their computational feasibility and constraint satisfaction, among others, through
numerical examples, besides highlighting the most outstanding aspects of these
strategies and their possible enhancement opportunities.

The numerical examples results demonstrate that the two stochastic MPC ap-
proaches have better probabilities of satisfying the constraints than a classical
MPC. Due to the offline constraints tightening, the deterministic group MPC
has a similar computational effort to the classic MPC, but with a considerable
increase in the probability of satisfaction. Nevertheless, if the characteristics of
the uncertainties change due to the nature of the system [46], [55], [56], [81], in
that case, their new information could not be considered during online operation,
so affecting the control performance.

On the other hand, scenario-based schemes, in addition to providing better prob-
abilities of constraint satisfaction, have an inherent flexibility by enabling the
addition of this new information online to generate the scenarios since, unlike
the deterministic approaches, they do not require offline constraint adjustment.
Besides, these techniques are widely used when there is no model of the uncer-
tainties or when they do not obey any known distribution type, because if a large
amount of empirical information on uncertainty values is available, scenarios can
be selected from these and, therefore, it is not necessary to know the distribution
of the random variables. However, this requires a higher computational effort
due to the generation of scenarios online and the inclusion of these in the OCP
constraints.

A proposal for a scenario-based MPC algorithm for systems with
correlated uncertainties

The challenges of a scenario-based MPC discussed above, such as enhancing
its probability of constraint satisfaction, as well as reducing its computational
tractability; were addressed and led to the second significant contribution of
this dissertation, consisting of a scenario-based MPC algorithm called condi-
tional scenario-based model predictive control (CSB-MPC). This was developed
for discrete-time linear systems influenced by either parametric uncertainties or
exogenous disturbances, or both, and which are correlated and bounded.
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Most stochastic MPC approaches are oriented to systems with largely strictly
additive or, to a lesser extent, strictly parametric uncertainties; and whose real-
isations are either independent or correlated in time. In addition to the above
systems, this proposal also considers systems that include both types of uncertain-
ties, which are considered bounded and feature a correlation between all random
variables or between some of them.

This strategy adapts a reduction method based on conditional scenarios (CS) [82],
proposed as an approximation to the two-stage stochastic mixed-integer linear
programming problems, to the MPC framework. The purpose of this is to approx-
imate a large primary set of equiprobable scenarios of uncertainties realisations
to a new reduced one of CSs with their probabilities of occurrence, retaining the
main features of this primary set; where updated uncertainties information, such
as probability distributions or historical data, can be included since the scenario
generation-reduction process is performed online. The probabilities of occurrence
of the uncertainties are utilised in the proposed cost function as penalising weights
for the states and inputs related to these realisations. The above is to mitigate
the effect of unlikely scenarios in the OCP, whereby more emphasis is given to
states and inputs with higher probabilities of occurrence.

The results in this contribution showed that a CSB-MPC has a higher probability
of satisfying the constraints than a standard scenario-based MPC for the same
number of scenarios and offers a similar, sometimes shorter, solution time when
using a smaller primary set.

A procedure for adapting the proposed MPC algorithm as an energy
management system in a microgrid with correlated forecasts

In the works mentioned section 1.3 and in most of the literature, uncertainties
in a microgrids are assumed to be either uncorrelated or each is correlated in
time, but no consideration is given to the correlation that may exist between
them. There are cases, due to working hours, off-hours, activity in a household,
etc., where there is a high correlation between powers [83]–[87], either between
the output powers of RES generators, PV-wind, PV-demand, wind-demand, or
between various loads on the demand side. Moreover, photovoltaic and wind
power generation forecasts, and possibly demand forecast, are strongly influenced
by meteorological conditions that can be highly fluctuating, which can also affect
the type or distribution of uncertainties. Therefore, a energy management based
on a scenario-based MPC is desirable, given its possibility to include updated
statistical information in real-time, to make better decisions consistent with the
actual situation of the system.
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The issues above, inherent in a MG were addressed in the development of the
third important contribution of this thesis, which consists of the adaptation of
the proposed conditional scenario-based MPC (CSB-MPC) to manage energy in
a microgrid with correlated forecasts. First, a mathematical model of a standard
microgrid that includes uncertainties in power generation and demand forecasts,
with the possibility of being correlated to improve EMS performance in a micro-
grid with these characteristics is established. Secondly, a procedure is established
to adapt a CSB-MPC to the EMS framework in a MG with, where these corre-
lation features are exploited in the solution of a OCP with guaranteed numerical
and probabilistic feasibilities, that assigns greater importance to predictions with
a higher probability of occurrence.

The results of a case study comparing the performance of the CSB-MPC with that
of a deterministic MPC, a stochastic MPC from the first group, and a stochastic
MPC from the second group demonstrated that a CSB-MPC has better probabil-
ities of constraint satisfaction. Also, the CSB-MPC showed similar solution times
and lower operating costs than those of the MPC of the second group. ■

The contributions outlined in this section also yielded the following products:

Journal articles:

• E. A. González, J. Sanchis, S. García-Nieto, J. V. Salcedo, "A Compar-
ative Study of Stochastic Model Predictive Controllers", Electronics
(dec. 2020), doi: 10.3390/electronics9122078.

• E. A. González, J. Sanchis, J. V. Salcedo, M. A. Martínez, "Con-
ditional Scenario-Based Model Predictive Control", Journal of the
Franklin Institute (may 2023), doi: 10.1016/j.jfranklin.2023.05.012.

• E. A. González, J. Sanchis, J. V. Salcedo, M. A. Martínez, "Condi-
tional Scenario-Based Energy Management Algorithm with Uncertain
Correlated Forecasts", Journal of Energy Storage (mar. 2024), doi:
10.1016/j.est.2024.111177.

Software toolboxes:

• E. A. González, "Stochastic Model Predictive Control Toolbox", Ver-
sion 1.0.8, 2021, url: MATLAB Central.

• E. A. González, "Conditional Scenario-Based MPC", Version 1.0.2,
2023, url: MATLAB Central.
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Chapter 2

A Comparative Study of
Stochastic Model Predictive

Controllers

This chapter presents an overview of the main concepts of the
stochastic MPC; starting from the structure of a classical MPC and
continuing with those of stochastic MPCs of the deterministic (CC-
MPC) and scenario-based (SCMPC) groups. On the one hand, the
CC-MPC is based on analytical methods and solves an optimal con-
trol problem (OCP) similar to a classic MPC with constraints. This
defines probabilistic constraints on the states, which are transformed
into equivalent deterministic ones. On the other hand, SCMPC solves
an OCP for a specified number of random realisations of uncertain-
ties, also called scenarios. The first section presents the scope of this
chapter. The second section presents a review of classic MPC. The
third section shows stochastic MPC approaches of both groups for the
control of linear systems. In the fourth section, two numerical ex-
amples comparing the performance of stochastic MPCs and classic
MPC are presented, using simulations to control mechanical and liq-
uid level systems. For comparison purposes, a set of indicators related
to control performance, constraint violations and computational cost,
among others, was calculated for both examples. Finally, the fifth
section presents the conclusions of this chapter.
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2.1 Introduction

This chapter addresses an overview of the main concepts of the stochastic model
predictive control. Also, a comparative study of two stochastic model predictive
controllers for linear systems with parametric and additive uncertainties, belong-
ing to the deterministic and scenario-based groups is made. The main aspects to
be highlighted are

• A detailed description of the theoretical background of the stochastic model
predictive control strategy is presented. Emphasis is made on the formula-
tion of the optimal control problem and how uncertainties are addressed. In
addition, the SCMPC formulation for worst case OCP is analysed.

• The ways in which OCPs are stated in each strategy are compared with
respect to the cost function and constraints on the states according to the
statistical information. The structural similarity between the CC-MPC ap-
proach and classic MPC is shown by transforming probabilistic constraints
into deterministic ones.

• The viability of these two control strategies is analysed through two numer-
ical examples: a two-mass spring SISO system with parametric and additive
uncertainties and a nonlinear quadruple-tank system with additive uncer-
tainties. The controllers comparison is made by using performance indices
such as number of successful runs, number of times the constraints are vio-
lated, mean value of the integral absolute error and the computational cost.
The results show that the two stochastic schemes have higher probability
of success than the classic MPC. The SCMPC presents the highest proba-
bility of success, but with the highest computational cost. The CC-MPC
has similar computational cost to the classic MPC, but with a considerable
increase in the probability of success.

2.2 Model Predictive Control Strategy

Consider the discrete linear system (2.1a) with constraints in states and inputs
(2.1b) and (2.1c), respectively

xi+1 = Axi +Bui (2.1a)
x ∈ X (2.1b)
u ∈ U. (2.1c)
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where variables x ∈ Rnx and u ∈ Rnu represent the state and system inputs
vectors at the instant i ∈ N; A ∈ Rnx×nx is the state matrix and B ∈ Rnx×nu is
the system input matrix. X and U are convex sets that contain the origin in their
interiors

MPC is a strategy that uses an explicit model of the process where, at each sam-
pling time and with the current information of the process variables, predictions
of process future behaviour along a horizon are managed. Such predictions are
incorporated into a cost index to solve an open loop Optimal Control Problem
(OCP) subject to constraints, which results in the sequence of future optimal
controls.

With the above in mind, given the current instant k and with the availability of
the current state of the plant x̂k, based on (2.1a), predictions are made for the
states xi+1|k, along a prediction horizon N

xi+1|k = Axi|k +Bui|k (2.2)
∀i ∈ {0, 1, . . . , N − 1}

where, the terms xi|k and ui|k indicate the predicted value of such a variable
for instant i ahead of k, based on the information available at time k, such that
x0|k = x̂k.

Predictions (2.2) are included in the quadratic cost index (2.3), where, the decision
variables are the future controls uk = {u0|k, u1|k, . . . , uN−1|k}. Matrices Q ∈
Rnx×nx andR ∈ Rnu×nu are weighting matrices that penalise the firstN predicted
states and predicted inputs, respectively, and are defined by the designer such that
Q be a positive semi-defined symmetric matrix (Q ≥ 0) and R a positive defined
symmetric matrix (R > 0)

J(x̂k,uk) =
N−1∑
i=0

(
x⊤

i|kQxi|k + u⊤
i|kRui|k

)
. (2.3)

The optimal decision variables u∗
k = {u∗

0|k, u
∗
1|k, . . . , u

∗
N−1|k} that lead the states

of the system to a desired operating point [88], or as a regulator towards the
origin, are calculated by minimising J(x̂k,uk) in OCP (2.4a) with constraints
(2.4b)-(2.4f). This strategy is also known as Moving Horizon Control (MHC) or
Receding Horizon Control (RHC), in the sense that only the first element u∗

0|k of
the optimal controls sequence u∗

k, which corresponds to the input for the current
instant k, is applied to the system; so that OCP (2.4) is performed again at time
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k + 1.

min
u0|k,u1|k,...,uN−1|k

J(x̂k,uk) (2.4a)

s.t.
xi+1|k = Axi|k +Bui|k (2.4b)
xi+1|k ∈ X (2.4c)
ui|k ∈ U (2.4d)
x0|k = x̂k (2.4e)
∀i ∈ {0, 1, . . . , N − 1}. (2.4f)

The cost index J(x̂k,uk) has drawbacks [19], [22] in the sense of stability (all the
trajectories of the states converge towards an equilibrium point) and feasibility
(the OCP always finds a feasible solution) since for small prediction horizons the
computational cost is low, but it may cause a deviation between trajectories of the
open-loop predictions and the closed-loop system, or not find a feasible solution;
while for very large horizons it improves stability and feasibility but increases the
computational load.

Dual Mode Paradigm

Dual mode prediction paradigm [18], [19], [22] seeks to ensure stability for an
appropriate (or long enough) horizon N , incorporating in (2.3) the terminal cost
x⊤

N |kPxN |k that penalizes the terminal state xN |k with matrix P ∈ Rnx×nx , which
is a positive defined symmetric matrix P > 0

JN (x̂k,vk) =
N−1∑
i=0

(
x⊤

i|kQxi|k + u⊤
i|kRui|k

)
+ x⊤

N |kPxN |k. (2.5)

The sequence of inputs uk obey the state feedback control law (2.6), where K ∈
Rnu×nx is a gain or feedback matrix that stabilizes the system, and vk ∈ Rnu are
the new decision variables such that vk = {v0|k, v1|k, . . . , vN−1|k}

ui|k = Kxi|k + vi|k. (2.6)

Therefore, the solution of the OCP (2.4) using (2.5) is divided into two parts
JN (x̂k,vk) = J1 + J2. In mode one,

J1 =
N−1∑
i=0

(
x⊤

i|kQxi|k + u⊤
i|kRui|k

)
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the OCP is solved, subject to constraints (2.4c)–(2.4d), where the future control
sequences (2.7) are calculated for the first N instants

ui|k = Kxi|k + vi|k, ∀i ∈ {0, 1, . . . , N − 1} (2.7)

in mode 2,

J2 =
∞∑

i=N

(
x⊤

i|kQxi|k + u⊤
i|kRui|k

)
= x⊤

N |kPxN |k

for the following instants, the optimization is carried out assuming that there are
no constraints, through a terminal feedback law (2.8) that stabilizes the system

ui|k = Kxi|k, ∀i ∈ {N,N + 1, . . . ,∞}. (2.8)

By parameterizing the inputs through the state feedback law (2.6), it is sought
to make the closed-loop system obey a quadratic stability criterion [89]. For LTI
systems such as (2.1a), assuming that matrix A + BK is strictly stable, matri-
ces K and P are obtained from solving a Quadratic Optimal Control Problem
(LQR) [90]; where K is given by (2.9a), P is calculated by the convergence of the
discrete Riccati equation (2.9b), ∀k ∈ {0, 1, . . .}

K = −(R+B⊤PB)−1
B⊤PA (2.9a)

Pk+1 = Q+A⊤PkA−A⊤PkB(R+B⊤PkB)−1B⊤PkA, P0 = Q. (2.9b)

Based on this paradigm, and for a long enough horizon, the system will be stable
in the Lyapunov’s sense as long as two conditions are met. The first condition
requires the existence of a solution for P such that P > 0. The second condition
requires that the predicted inputs and states satisfy the constraints along a finite
horizon, which is achieved by ensuring that JN (x̂k,vk) is decreasing from time k.

Another condition also used to ensure closed-loop stability, is to complement the
dual mode by adding the terminal constraint xN |k ∈ XT [18], [20] to the OCP,
with X being the set of allowed values for the states. The purpose of this is to
force the terminal state xN |k and the following states to remain within a safe
zone or terminal set XT , positively invariant [89]–[91], under the terminal control
law (2.8); such that XT ⊂ X. ■
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Given the current state x0|k = x̂k and incorporating the model (2.2) and control
law(2.6) in the cost function (2.5), the equivalent of OCP (2.4) is as follows

min
v0|k,v1|k,...,vN−1|k

JN (x̂k,vk) (2.10a)

s.t.
xi+1|k = Axi|k +Bui|k (2.10b)
ui|k = Kxi|k + vi|k (2.10c)
Hxi+1|k ≤ h (2.10d)
Dui|k ≤ d (2.10e)
x0|k = x̂k (2.10f)
∀i ∈ {0, 1, . . . , N − 1} (2.10g)

where constraints for the predicted states (2.1b) and input (2.1c) trajectories are
expressed as linear inequalities (2.10d) and (2.10e), respectively; with H ∈ Rcx×nx

and D ∈ Rcu×nu ; vectors h ∈ Rcx and d ∈ Rcu represent the constraint limits; and
cx and cu are the number of state constraints and input constraints, respectively.

Given the quadratic and convex nature of (2.5), the linear model (2.2) and the
type of constraints (2.10d) and (2.10e), a finite horizon OCP stated as in (2.10) can
be solved at each control period. This OCP is a quadratic programming problem
(QP) with a global optimum whose solution results in the optimal control vector
v∗

k = {v∗
0|k, v

∗
1|k, . . . , v

∗
N−1|k}, where only the first element v∗

0|k is applied to the
input at that instant. This is u0|k = Kx̂k + v∗

0|k.

2.3 Stochastic MPC

Consider the dynamics of an uncertain system defined by

xi+1 = A(δi)xi +B(δi)ui +G(δi)wi (2.11)

where w ∈ Rnw are additive disturbances, G ∈ Rnx×nw is a matrix that relates
the influence of w on system states, and δ are parametric uncertainties.

Stochastic model predictive control approaches were inspired by this type of sys-
tems, in which δ and w are stochastic in nature, independent and with known
probability distributions. Since this statistical information is taken into account
in the solution of the OCP [26]–[29], stochastic predictive control has been widely
accepted and has been applied in different areas such as building air conditioning
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[13], [75], [92], renewable energy management [93], [94], process control [3], [95],
robotics and automotive [5], [41], [96]–[98]. A more extensive review of these and
other applications is presented in [26], [27], [29], [45], [46], where network control
systems, air traffic, finance, path planning and training control are discussed.

Most stochastic model predictive control strategies can be classified into two
groups: those based on analytical methods (CC-MPC) [39], [44], [45], [80], which
solve an OCP based on the expected value of a cost index, subject to probabilistic
constraints (usually on the predicted states); and those based on random scenar-
ios (SCMPC) [35], [36], [41], which solve an OCP for a determined number of
random realisations of uncertainties also called scenarios.

2.3.1 Chance-Constrained MPC (CC-MPC)

Consider (2.12a) an uncertain system with additive uncertainties, and with state
feedback input (2.12b)

xi+1|k = Axi|k +Bui|k +Gwi|k (2.12a)
ui|k = Kxi|k + vi|k (2.12b)

∀i ∈ {0, 1, . . . , N − 1} (2.12c)

where w, which is not necessarily bounded [29], [42], [44], has a distribution Pw

and any sequence {w0, w1, . . . , wN−1} has zero mean (E[wi] = 0) with its values
independent and identically distributed (i.i.d.).

In the CC-MPC approach, the cost index JS(x̂k,vk) is expressed as the expected
value of the quadratic index (2.5)

JS(x̂k,vk) = Ek

[
N−1∑
i=0

(
x⊤

i|kQxi|k + u⊤
i|kRui|k

)
+ x⊤

N |kPxN |k

]
(2.13)

where matrices K and P are obtained using (2.9). Also, the hard constraints in
the states Hxi+1|k ≤ h are replaced by probabilistic constraints [29], [42] (2.14),
with the aim that the probability of constraint satisfaction in the state is above
a desired level p ∈ [0, 1], or does not exceed a permitted level of risk 1 − p

Pk[Hxi+1|k ≤ h] ≥ p. (2.14)
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According to the above, the analogous OCP of (2.10) to be solved for the uncertain
system (2.12) is the following stochastic OCP

min
v0|k,v1|k,...,vN−1|k

JS(x̂k,vk) (2.15a)

s.t.
xi+1|k = Axi|k +Bui|k +Gwi|k (2.15b)
ui|k = Kxi|k + vi|k (2.15c)
Pk[Hxi+1|k ≤ h] ≥ p (2.15d)
Dui|k ≤ d (2.15e)
x0|k = x̂k (2.15f)
∀i ∈ {0, 1, . . . , N − 1}. (2.15g)

Defining the prediction xi|k as the sum of two variables, a deterministic variable
zi|k = Ek[xi|k] which represents the predicted nominal value of xi|k, and a stochas-
tic variable ei|k = xi|k − zi|k which comprises the effect of the perturbation and
whose mean is zero, that is

xi|k = zi|k + ei|k (2.16)

substituting (2.16) in (2.12b), the following state feedback control law is obtained

ui|k = K(zi|k + ei|k) + vi|k. (2.17)

a common alternative to (2.17) is based on feedback of the deviation ei|k [44], [45]
as ui|k = Kei|k + vi|k. Hence, replacing (2.17) and (2.16) in (2.12a), predictions
∀i ∈ {0, 1, . . . , N − 1} are given in (2.18), where z0|k = x̂k, e0|k = 0, and Acl =
A+BK

zi+1|k + ei+1|k = Aclzi|k +Bvi|k +Aclei|k +Gwi|k. (2.18)

The above expression can be divided into two parts. Predictions of the nominal
state (2.19a), and predictions of the deviation (2.19b)

zi+1|k = Aclzi|k +Bvi|k, z0|k = x̂k (2.19a)
ei+1|k = Aclei|k +Gwi|k, e0|k = 0. (2.19b)

Replacing (2.16) and (2.17) in (2.13), and remembering that the expected value
of a product involving ei|k is zero (since ei|k is zero mean), a new cost index
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containing the nominal trajectories of the predicted states zi|k is obtained

ĴS(x̂k,vk) =
N−1∑
i=0

(
z⊤

i|kQzzzi|k + z⊤
i|kQzvvi|k + v⊤

i|kRvi|k

)
+ z⊤

N |kPzN |k + c (2.20)

where Qzz = Q + K⊤RK, Qzv = 2K⊤R, and c = Ek[
∑N−1

i=0 (e⊤
i|kQxxei|k) +

e⊤
N |kPeN |k] is a constant term that can be excluded from the cost index, since it

does not depend on the decision variables vi|k and does not influence the optimum.

Constraints Tightening

The nonconvexity of constraints (2.15d) can make the OCP (2.15) computation-
ally unmanageable. For this reason, such probabilistic constraints are converted
into deterministic and convex equivalents [44], [45] using the knowledge of the first
two statistical moments of the random variable w, by tightening the hard con-
straints Hxi+1|k ≤ h offline. This results in an OCP similar to (2.10) in structure
and computational tractability.

Defining the constraints (2.14) as a set of single chance-constraints (2.21), can
be interpreted as the probability that a predicted state does not violate the jth
constraint must be greater than or equal to the jth desired probability level pj

Pk[Hjxi+1|k ≤ hj ] ≥ pj , ∀j ∈ {1, 2, . . . , cx}. (2.21)

Substituting (2.16) into (2.21), separating the deterministic part Hjzi+1|k from
the stochastic one, hj −Hjei+1|k, and setting a new bound ηji+1|k calculated in
such a way that Hjzi+1|k ≤ ηji+1|k then

Pk[ηji+1|k ≤ hj −Hjei+1|k] ≥ pj . (2.22)

The bound ηji+1|k, that is the new tightened bound for hj , can be obtained from
solving a chance-constrained optimization problem stated as in (2.23), whose
decision variable is η

ηji+1|k = max
η

η (2.23a)

s.t.
Pk[η ≤ hj −Hjei+1|k] ≥ pj (2.23b)
∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , cx} (2.23c)
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where the left-hand side of inequality (2.23b) is expressed in terms of the integral
of the probability density function of hj −Hjei+1|k.

As an alternative to solve (2.23), let us assume that probability distribution of w
is known and is of Gaussian type w ∼ N (0,Σw), with zero mean and covariance
Σw. This assumption implies that the error ei+1|k in (2.19b) also has a known
normal distribution ei+1|k ∼ N (0,Σei+1|k

) with zero mean (E[ei+1|k] = 0), and
covariance Σei+1|k

, whose evolution can be obtained by applying the covariance
formula of a random variable, i.e. ΣY = E[(Y − E[Y ])2]

Σei+1|k
=E

[(
ei+1|k − E

[
ei+1|k

]) (
ei+1|k − E

[
ei+1|k

])⊤
]

=E[(Aclei|k +Gwi|k)(Aclei|k +Gwi|k)⊤]
=AclE[ei|ke

⊤
i|k]A⊤

cl + 2AclE[ei|kw
⊤
i|k]G⊤ +GE[wi|kw

⊤
i|k]G⊤

=AclΣei|k
A⊤

cl + 2AclΣei|k,wi|k
G⊤ +GΣwG

⊤

due to the independence between the random variables ei|k and wi|k, it follows
that Σei|k,wi|k

= 0, so that

Σei+1|k
= AclΣei|k

A⊤
cl +GΣwG

⊤, Σe0|k
= 0. (2.24)

Now, reordering Equation (2.22)

Pk[Hjei+1|k ≤ hj − ηji+1|k] ≥ pj (2.25)

random variable Hjei+1|k in (2.25) has zero mean µ = 0 and covariance σj
2
i+1|k =

HjΣei+1|k
H⊤

j , and its cumulative distribution function (CDF) FHe is

FHe(hj − ηji+1|k) = 1
2

[
1 + erf

(
(hj − ηji+1|k) − µ

σji+1|k
√

2

)]
(2.26)

where erf(·) is the error function. Given that(2.26) is the left-hand side of (2.25),
it is required to satisfy

1
2

[
1 + erf

(
hj − ηji+1|k

σji+1|k
√

2

)]
= pj .
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From the above equation, an expression can be obtained for the ηji+1|k bound,
where erf−1(·) is the inverse error function

ηji+1|k = hj − σji+1|kf(pj) (2.27a)

f(pj) =
√

2erf−1(2pj − 1). (2.27b)

Note that the constraints are tightened for values of pj within the range 0.5 ≤
pj ≤ 1, where for pj = 0.5 the bound ηji+1|k corresponds to the original hj , while
for larger values this bound is further reduced.

For unknown distributions of w, by means of Chebyshev-Cantelli inequality [29],
[45], it is also possible to find ηji+1|k, where only the first two statistical moments
of state xi+1|k are required. This inequality is given by the expression

P[Y − E [Y ] < λ] ≥ 1 − σ2

σ2 + λ2 , λ > 0 (2.28)

where Y is the random variable, E [Y ] its mean, σ2 is the covariance and λ is an
upper bound. The left-hand side term of the inequality (2.25) in the (2.28) form
will be

Pk[Hjei+1|k − µ < hj − ηji+1|k] ≥ 1 −
σj

2
i+1|k

σj
2
i+1|k + (hj − ηji+1|k)2 . (2.29)

Based on (2.25) and (2.29) as its left-hand side, the following must be fulfilled

1 −
σj

2
i+1|k

σj
2
i+1|k + (hj − ηji+1|k)2 = pj . (2.30)

Finally, an expression for ηji+1|k can be obtained

ηji+1|k = hj − σji+1|kf(pj) (2.31a)

f(pj) =
√

pj

1 − pj
. (2.31b)

It should be noted that the calculation of ηji+1|k, through either (2.23), (2.27) or
(2.31), presents an advantage in computational terms when it is performed offline
since the random variable ei+1|k does not depend on the state xi|k or the decision
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Figure 2.1: Comparison of obtained distances σf(p), based on the error function erf (2.27)
and based on the Chebyshev-Cantelli inequality (2.31), for various values of p and with
σ = 1.

variable vi|k (see (2.19b)). Therefore, the deterministic equivalent of the chance
constraints (2.25) is

Hjzi+1|k ≤ ηji+1|k. (2.32)

Furthermore, note that in equations (2.27a) and (2.31a), the term σi+1|kf(pj)
determines the minimum distance at which the nominal state zi+1|k can approach
the original limit hj to account for uncertainties and thus, a lower probability of
violation of hj .

Figure 2.1 compares the minimum distances σf(p) obtained with (2.27b) and
(2.31b), for various values of p and with σ = 1, i.e., 1f(p). There it can be seen
that in both cases, this distance increases as the desired probability of constraints
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satisfaction p increases. Besides, the distance calculated using the Chebyshev-
Cantelli inequality is larger than the one obtained based on the error function erf,
which makes it more conservative. ■

Based on the nominal index (2.20) and deterministic constraints (2.32), the de-
terministic equivalent of the CC-MPC (2.15) with finite prediction horizon N can
be stated as

min
v0|k,v1|k,...,vN−1|k

ĴS(x̂k,vk) (2.33a)

s.t.
zi+1|k = Aclzi|k +Bvi|k (2.33b)
ui|k = Kzi|k + vi|k (2.33c)
Hjzi+1|k ≤ ηji+1|k (2.33d)

Dui|k ≤ d (2.33e)
z0|k = x̂k (2.33f)
∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , cx}. (2.33g)

This OCP, as well as (2.10), can be solved using quadratic programming, where
at each sampling time only the first element v∗

0|k of the optimal sequence v∗
k is

applied to the system, that is uk|k = Kx̂k + v∗
0|k.

2.3.2 Scenario-Based MPC (SCMPC)

The aim of SCMCP is to solve a convex OCP whose cost index for a pre-
diction horizon N is composed not by a single trajectory of the states, but
by the average of a set of C trajectories generated due to random realisations
of the disturbances also known as scenarios [35], [36]. The optimal controls
u∗

k = {u∗
0|k, u

∗
1|k, . . . , u

∗
N−1|k} are those that minimise such an index satisfying

the constraints for each scenario. For this reason, the selection of the number of
scenarios, C, requires special attention in order to guarantee a defined minimum
level of confidence or non-violation of constraints.

Consider the uncertain system defined in (2.11), where for a given instant k, the
state predictions xi+1|k and future control inputs ui|k are given by

xi+1|k = A(δi|k)xi|k +B(δi|k)ui|k +G(δi|k)wi|k (2.34a)
ui|k = Kxi|k + vi|k (2.34b)

∀i ∈ {0, 1, . . . , N − 1} (2.34c)
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where δ is associated with bounded parametric uncertainties [47] with probability
distribution Pδ, while w (which is not necessarily bounded [29], [42], [44]) has
a distribution Pw. Any sequence {w0, w1, . . . , wN−1} and {δ0, δ1, . . . , δN−1} has
zero mean (E[δi] = 0,E[wi] = 0) with its values independent and identically
distributed (i.i.d.).

In the following, the notation X
[j]
i|k is interpreted as the predicted value of the

variable X of scenario j, for the time step i ahead of the current time instant k.
With this in mind, for a given instant k, let us define the jth scenario denoted by

γ
[j]
k = {δ

[j]
k ,w

[j]
k }

where δ
[j]
k and w

[j]
k are random and known realisations of the parametric and

additive uncertainties along N , respectively

δ
[j]
k = {δ[j]

0|k δ
[j]
1|k . . . δ

[j]
N−1|k},

w
[j]
k = {w[j]

0|k w
[j]
1|k . . . w

[j]
N−1|k}.

Thus, the set Γk of C random and independent scenarios for the instant k is given
by

Γk = {γ[1]
k , γ

[2]
k , . . . , γ

[C]
k },

∀j ∈ {1, 2, . . . , C}.

With knowledge of the probability distributions Pδ and Pw, the realisations δ
[j]
k

and w
[j]
k can be obtained by means of a random number generator. On the other

hand, if there is no knowledge of the probability distributions, δ
[j]
k and w

[j]
k can

be extracted from experimental data.

Therefore, predictions (2.34a) and (2.34b) for the jth scenario are given by (2.35a)
and (2.35b), where it is fulfilled that the initial condition x

[j]
0|k = x̂k and the

decision variables {v0|k, v1|k, . . . , vN−1|k} are the same for each j

x
[j]
i+1|k = A(δ[j]

i|k)x[j]
i|k +B(δ[j]

i|k)ui|k +G(δ[j]
i|k)w[j]

i|k, x
[j]
0|k = x̂k (2.35a)

u
[j]
i|k = Kx

[j]
i|k + vi|k (2.35b)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C}. (2.35c)
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Then, based in (2.5), the cost index in which the evolutions of the states (2.35a)
and inputs (2.35b) of scenario j are penalised is given by

J
[j]
N (x̂k,vk) =

N−1∑
i=0

(
x

[j]⊤
i|k Qx

[j]
i|k + u

[j]⊤
i|k Ru

[j]
i|k

)
+ x

[j]⊤
N |kPx

[j]
N |k. (2.36)

From (2.36), a global cost index JSc(x̂k,vk) is defined as the average of the C
trajectories generated, which conform a band around a nominal trajectory

JSc(x̂k,vk) = 1
C

C∑
j=1

J
[j]
N (x̂k,vk) (2.37)

Note that in the scenario framework, (2.37) represents the sample average of the
cost function based on the expected value (2.13). Under (2.37), a scenario-based
optimal control problem is stated as

min
v0|k,v1|k,...,vN−1|k

JSc(x̂k,vk) (2.38a)

s.t.

x
[j]
i+1|k = A(δ[j]

i|k)x[j]
i|k +B(δ[j]

i|k)ui|k +G(δ[j]
i|k)w[j]

i|k (2.38b)

u
[j]
i|k = Kx

[j]
i|k + vi|k (2.38c)

Hx
[j]
i+1|k ≤ h (2.38d)

Du
[j]
i|k ≤ d (2.38e)

x
[j]
0|k = x̂k (2.38f)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C} (2.38g)

where constraints (2.38d) and (2.38e), whose matrices are the same as in (2.10d)
and (2.10e), indicate that they must be met for each scenario j. OCP (2.38)
can be solved by quadratic programming where, the solution at time k yields the
optimal controls

v∗
k = {v∗

0|k, v
∗
k+1|k, . . . , v

∗
k+N−1|k}

and only the first element v∗
0|k is applied to the process in that time, i.e., u0|k =

Kx̂k + v∗
0|k.

A robust SCMPC approach is achieved by replacing (2.38a) with (2.39), so that
the sequence vk that minimises the worst case (min-max optimisation) [29], [35]
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of the C realisations is calculated, as opposed to (2.38a), in which a nominal
trajectory is minimised

min
v0|k,v1|k,...,vN−1|k

max
j=1,2,...,C

J
[j]
N (x̂k,vk). (2.39)

This robust approach is expensive computationally, because the worst case of
all the scenarios is obtained first, to subsequently perform a minimisation on it.
Another drawback is that the worst case does not always correspond to reality
at that moment, so an optimum applied to the real process could lead to poor
behaviour.

Number of Scenarios

The number of scenarios C demands special attention in order to guarantee com-
pliance with the constraints in the states with at least a specified probability
level [26], [27], [35], [51]. Consider the chance-constrained optimisation problem
(2.40), where x is the vector of decision variables of dimension d, γ is the vector
of random variables; and p ∈ [0, 1] is a desired probability level of satisfaction of
the constraints f(x, γ) ≤ 0, with f(x, γ) convex in x

min
x
c⊤x (2.40a)

s.t.
P[f(x, γ) ≤ 0] ≥ p. (2.40b)

In random convex programs [51], the problem (2.40) is approximated to (2.41) by
considering C samples

{
γ[1], γ[2], . . . , γ[C]

}
of the random vector γ, whereby the

probabilistic constraints (2.40b) are converted into C convex constraints (2.41b)

min
x
c⊤x (2.41a)

s.t.
f(x, γ[j]) ≤ 0, ∀j ∈ {1, 2, . . . , C}. (2.41b)

Let x∗ = x∗
({
γ[1], γ[2], . . . , γ[C]

})
be an optimal solution of (2.41), and V (x)

the probability violation of constraint f(x, γ) ≤ 0, i.e., V (x) = P[f(x, γ) > 0].
Then, the probability the optimal solution x∗ does not meet the constraints, at
least with probability level p, is expressed by

P[V (x∗) > 1 − p] (2.42)
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the expression (2.42) can be understood as the probability of a bad event oc-
curring, since x∗ does not satisfy (2.40b). By setting β ∈ [0, 1] as a very small
pessimistic probability level (e.g., β = 10−9), it is intended that for (2.42) the
following is satisfied

P[V (x∗) > 1 − p] ≤ β

the left part of the above expression is reformulated in terms of the number of
decision variables d, the number of scenarios C and the probability p, through
the binomial cumulative probability function which represents the probability of
having no more than d − 1 successes in C Bernoulli trials with a probability of
success 1 − p

d−1∑
j=0

(
C

j

)
(1 − p)jpC−j ≤ β (2.43)

hence, the number of scenarios C can be obtained as the minimum value that
satisfies the condition (2.43), or by its approximation using the Chernoff bound
for the Binomial tail

C ≥ 2
1 − p

(
ln
( 1
β

)
+ d

)

where, according to Theorem 3.1 in [51], it holds that any optimal solution x∗,
feasible or not, obtained by the scenario program (2.41) has a guaranteed feasibil-
ity level 1−β of satisfying the constraints (2.41b), or the probabilistic constraints
(2.40b).

Also, in [29] provides another straightforward way to calculate C that is the
following inequality

C ≥
d+ 1 + ln

(
1
β

)
+
√

2(d+ 1) ln
(

1
β

)
1 − p

. (2.44)

Note that in both (2.43) and (2.44), the computation of C only depends on the
probability levels set and the number of decision variables; and its value grows
as p does or β diminishes. The latter can be seen in Figure 2.2, which shows the
scenarios obtained using (2.43), with a fixed d = 5 and for various values of p and
β.
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Figure 2.2: Number of computed scenarios C using inequality (2.43), with a fixed d = 5
and various values of p and β.

Finally, in the context of the SCMPC (2.38), by establishing a desired probability
of constraints satisfaction p, a very low confidence level β, and with the num-
ber of decision variables given by d = nuN , the probabilistic constraints (2.14)
Pk[xi+1|k ∈ X] ≥ p can be transformed into C deterministic constraints, where
the number of C scenarios to be used is determined using either (2.43) or (2.44).
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Matrices K and P

For systems such as (2.34a), such matrices are obtained from a quadratic stability
analysis from Lyapunov’s approach [19], [90], [99]. For example, consider the
polytopic system (2.45a) and the control law (2.45b), where the pairs [Ak, Bk]
form the polytope of uncertainty Ω, [Ak, Bk] ∈ Ω and whose convex hull Co of L
vertices is given by Ω = Co {[A1, B1], [A2, B2], . . . , [AL, BL]}

xi+1 = Akxi +Bkui (2.45a)
ui = Kxi (2.45b)

∀i ∈ {0, 1, . . .}, ∀k ∈ {1, 2, . . . , L}. (2.45c)

Replacing (2.45b) in (2.45a) yields the following autonomous system

xi+1 = (Ak +BkK)xi (2.46)

where the matrix Ak + BkK will be strictly stable, i.e., its eigenvalues lie inside
the unit circle or all trajectories of (2.46) converge to zero x∞ = 0, only if there
exists a positive definite hermitian P matrix (P > 0) such that for the quadratic
Lyapunov function V (xi) it holds that

V (xi) = x⊤
i Pxi (2.47a)

∆V (xi) ≤ 0 (2.47b)

with ∆V (xi) = V (xi+1) − V (xi), using (2.46) can be expressed as

∆V (xi) = x⊤
i

[
(Ak +BkK)⊤P (Ak +BkK) − P

]
xi.

Let J(xi) be a desired quadratic performance index for the system (2.45a) with
input (2.45b)

J(xi) =
∞∑

i=0
(x⊤

i Qxi + u⊤
i Rui)

=
∞∑

i=0
x⊤

i

(
Q+K⊤RK

)
xi (2.48)

where, in order to achieve asymptotic stability for (2.45a), it must be satisfied
that (2.47a) is the upper bound of (2.48) J(xi) ≤ V (xi) (see section 8.4 in [19]
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for more details). Since x∞ = 0 (hence V (x∞) = 0), such an inequality can be
expressed in terms of ∆V (xi), that is

J(xi) ≤ −
∞∑

i=0
∆V (xi),

∞∑
i=0

x⊤
i

(
Q+K⊤RK

)
xi ≤ −

∞∑
i=0

x⊤
i

[
(Ak +BkK)⊤P (Ak +BkK) − P

]
xi,

∞∑
i=0

x⊤
i

[
(Ak +BkK)⊤P (Ak +BkK) − P

]
xi +

∞∑
i=0

x⊤
i

(
Q+K⊤RK

)
xi ≤ 0,

∞∑
i=0

x⊤
i

[
(Ak +BkK)⊤P (Ak +BkK) − P +Q+K⊤RK

]
xi ≤ 0

which is true for any xi if it holds that

(Ak +BkK)⊤P (Ak +BkK) − P +Q+K⊤RK ≤ 0. (2.49)

The expression (2.49) represents the so-called discrete Lyapunov inequality. Mak-
ing the change of variables K = Y X−1 and P = X−1, and premultiplying and
postmultiplying (2.49) by X

X − (AkX +BkY )⊤X−1(AkX +BkY ) −XQX − Y ⊤RY ≥ 0. (2.50)

Via (2.50), Y and X can be obtained by solving the problem of eigenvalues
(EVP) (2.51a) [19], [99]; subject to constraint (2.51b), which represents a linear
matrix inequality (LMI) in terms of the vertices of Ω

max
X,Y

tr(X) (2.51a)

s.t.
X 0 0 AkX +BkY
0 Q−1 0 X
0 0 R−1 Y

(AkX +BkY )⊤ X⊤ Y ⊤ X

 ≥ 0 (2.51b)

∀k ∈ {1, 2, . . . , L} (2.51c)

where tr(X) is the trace of X. With the solution of (2.51), finally

K = Y X−1 (2.52a)
P = X−1. (2.52b)
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2.4 Comparison of Stochastic MPCs Through Numerical
Examples

In this section, two examples are presented in which various MPCs were evaluated
by performing Nr Monte Carlo simulations for each control scheme, always start-
ing from the same initial state x0|0 and assuming that the state measurements are
accurate. The performances of the MPCs were analysed through the following
performance indices

• Ns: number of simulations from Nr where no constraints were violated.

• ps: probability of success of a simulation, ps = Ns/Nr.

• Nv: number of constraints violated in all Nr simulations.

• IAEavg: mean value of the integral absolute error of the states, based on the
closed-loop system responses of the Nr simulations.

• IAUavg: mean value of the integral of the absolute value of the applied inputs
of all Nr.

• tavg: average time taken for the algorithm to obtain a solution.

• σmax: maximum standard deviation of the states with constraints.

• POavg: average percentage overshoot of constraints in the violated states.

• COCP: number of OCP constraints.

A 64-bit Windows 10 computer, 16 GB of RAM and 2.5 GHz Intel Core i7 proces-
sor was used. Simulations were run in Matlab R2018b; control actions for classic
MPC, CC-MPC and SCMPC were calculated using the quadprog toolbox of the
Mosek 9.2 optimisation software and Matlab fminimax function for the Robust
SCMPC.

Furthermore, for reproducible results, the specialised Stochastic Model Predic-
tive Control Toolbox software was developed in Matlab for the realisation of a
part of the simulations in this section. This software allows simulating (Matlab’s
quadprog solver is used for optimisation) a CC-MPC or SCMPC to control multi-
variable systems with additive disturbances and is available at MATLAB Central
[100] so that the reader can reproduce the results of this section or use it in other
systems.
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Figure 2.3: Two-mass spring system.

2.4.1 Example 1: Two-Mass Spring System

Consider the two-mass spring system [23], [101] with friction-less sliding of Figure
2.3 where the masses m1 with position x1 and m2 with position x2 are linked by
a spring with elastic constant ks. The control input u is a force acting on m1 and
w1 and w2 are external disturbances acting on m1 and m2, respectively.

The system’s equations of motion using x3 as the linear velocity of m1 and x4 as
the linear velocity of m2 are

ẋ1 = x3

ẋ2 = x4

m1ẋ3 = −ks(x1 − x2) + u+ w1

m2ẋ4 = ks(x1 − x2) + w2.

Setting the state vectors as x = [x1 x2 x3 x4]⊤ and additive disturbances as w =
[w1 w2]⊤; its representation in the discrete state space by Euler’s approximation
method, for a sampling time Ts is

xk+1 = Axk +Buk +Gwk

A =


1 0 Ts 0
0 1 0 Ts

−ksTs
m1

ksTs
m1

1 0
ksTs
m2

−ksTs
m2

0 1

 , B =


0
0
Ts
m1
0

 , G =


0 0
0 0
Ts
m1

0
0 Ts

m2



where m1, m2 = 1 kg are constant, Ts = 0.1 s (this was selected fulfilling the
Nyquist–Shannon sampling theorem, taking the highest frequency of the poles of
the system) and the constraints |x3|, |x4| ≤ 0.12m/s must be satisfied.

The elastic constant ks is associated with parametric uncertainties δ and it has a
uniform probability distribution ks ∼ U([0.5, 2.0])N/m. The additive disturbances

36



2.4 Comparison of Stochastic MPCs Through Numerical Examples

w have a normal distribution w ∼ N (0,Σw)N with zero mean and covariance
matrix Σw = diag(0.0222, 0.0222).

For all controllers Q = diag(1, 1, 4, 6), R = 1, where N = 6, hence 6 decision
variables given a single input. The probability level of constraint satisfaction for
CC-MPC and SCMPC is p = 0.95 for both. Setting β = 10−9 and replacing
together with p in (2.44), produces C = 896 scenarios for the SCMPC.

Three cases were established based on the parameter ks to evaluate the perfor-
mance of five MPCs. classic without constraints (MPC n/c), classic with con-
straints (MPC w/c), CC-MPC, SCMPC and Robust SCMPC:

• Case 1: ks is known, constant and it is set to its nominal value ks = 1.25.

• Case 2: ks is unknown and varies according to its probability distribution
at every control period.

• Case 3: ks is unknown and remains constant for all instants along each
simulation. The ks value varies according to its probability distribution in
each simulation.

For each case, Nr = 100 simulations with NTs = 100 sampling times of duration
were performed, starting from the initial state x0|0 = x̂0 = [0.5 0.5 0 0]⊤ towards
the origin as the desired state.

For Case 1, the feedback matrix K and the terminal state weighting P are ob-
tained from solving a Quadratic Optimal Control Problem (LQR) [19], [28]

K =


−2.876

1.683
−3.187
−0.904


⊤

, P =


155.739 −102.335 43.512 77.451

−102.335 117.489 −26.755 −30.134
43.512 −26.755 40.392 15.371
77.451 −30.134 15.371 126.794

 .

For Cases 2 and 3, they are obtained by solving an eigenvalues problem (EVP);
through a stability analysis of Lyapunov’s approach [19], [90], [99], such matrices
are

K =


−56.563

41.356
−15.171
−45.156


⊤

, P =


4509 −3280 971 3801

−3280 2450 −709 −2706
971 −709 244 791

3801 −2706 791 3462

 .
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Table 2.1: MPCs performance indices for Case 1.

Controller Ns ps Nv IAEavg IAUavg tavg σmax POavg COCP

MPC n/c 0 0.00 2416 43.88 5.35 5.6 ms 0.009 20.98% 0
MPC w/c 3 0.03 702 49.01 7.29 5.9 ms 0.031 2.45% 24
CC-MPC 64 0.64 135 49.85 7.39 5.7 ms 0.029 1.78% 24
SCMPC 84 0.84 168 50.61 7.55 79.0 ms 0.036 6.78% 21504
SCMPC (robust) 74 0.74 30 52.50 8.70 235.7 ms 0.054 6.01% 21504

Case 1 Results

Table 2.1 shows high probabilities of success ps (0.84, 0.74 and 0.64) by the
stochastic MPCs. However, the biggest success of the SCMPC and Robust
SCMPC required longer times tavg (79.0 ms and 235.7 ms) to obtain the control
sequence than CC-MPC (5.7 ms), which works as a classic MPC with constraints.
This makes sense since in each iteration SCMPC and Robust SCMPC select 896
random realisations for w and solve the OCP (2.38) for all of them (COCP = 21504
constraints) using (2.37) or (2.39).

Figure 2.4 shows the Nr = 100 trajectories made by the real states and input (thin
solid lines), starting from x̂0 = [0.5 0.5 0 0]⊤ towards the origin. The MPC n/c
(Figure 2.4a), having no constraints, presents the highest violations (Nv = 2416)
and overshoots (POavg = 20.98%), while the mean trajectories (thick solid lines)
of the constrained MPCs do not exceed the limits (black dashed lines).

Notice how stochastic approaches (Figures 2.4c–e) are within these limits or barely
exceed them, showing that the probability that a state is within the allowed
limits is 68%. The largest standard deviations σmax occurred in the scenario-
based MPCs (0.036 and 0.054) due to the randomness mentioned in [36] and
because the worst case is not always the closest to reality (hence, the highest
IAEavg (52.50) and IAUavg (8.70) of all). Also note that the conservatism of
the Robust SCMPC provides it with the lowest number of violated constraints
(Nv = 30) of the MPCs. However, its probability of success (ps = 0.74) is
below that of the SCMPC (ps = 0.84), which has the highest number of violated
constraints (Nv = 168). This is because the 30 constraints violations of the
Robust SCMPC are concentrated in 26 unsuccessful runs, while the 168 of the
SCMPC are concentrated only in 16 unsuccessful runs.
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(a) MPC n/c (b) MPC w/c

(c) CC-MPC (p = 0.95) (d) SCMPC (p = 0.95, C = 896)

(e) Robust SCMPC (p = 0.95, C = 896)

Figure 2.4: Case 1: Two-mass spring system controlled with different MPCs, for 100
Monte Carlo simulations. Trajectories of the real states and input (thin solid lines), mean
value (thick solid lines), mean value with standard deviation (dotted lines), minimum and
maximum values (blue dashed lines) and constraints (black dashed lines) |x3|, |x4| ≤ 0.12.
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(a) MPC n/c (b) MPC w/c

(c) CC-MPC (p = 0.95) (d) SCMPC (p = 0.95, C = 896)

(e) Robust SCMPC (p = 0.95, C = 896)

Figure 2.5: Case 2: Two-mass spring system controlled with different MPCs, for 100
Monte Carlo simulations. Trajectories of the real states and input (thin solid lines), mean
value (thick solid lines), mean value with standard deviation (dotted lines), minimum and
maximum values (blue dashed lines) and constraints (black dashed lines) |x3|, |x4| ≤ 0.12.
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(a) MPC n/c (b) MPC w/c

(c) CC-MPC (p = 0.95) (d) SCMPC (p = 0.95, C = 896)

(e) Robust SCMPC (p = 0.95, C = 896)

Figure 2.6: Case 3: Two-mass spring system controlled with different MPCs, for 100
Monte Carlo simulations. Trajectories of the real states and input (thin solid lines), mean
value (thick solid lines), mean value with standard deviation (dotted lines), minimum and
maximum values (blue dashed lines) and constraints (black dashed lines) |x3|, |x4| ≤ 0.12.
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Table 2.2: MPCs performance indices for Case 2.

Controller Ns ps Nv IAEavg IAUavg tavg σmax POavg COCP

MPC n/c 0 0.00 611 50.58 6.16 6.3 ms 0.010 20.97% 0
MPC w/c 4 0.04 362 51.37 5.59 6.4 ms 0.027 1.75% 24
CC-MPC 65 0.65 77 51.98 5.87 6.3 ms 0.031 1.13% 24
SCMPC 94 0.94 7 52.91 6.96 220.3 ms 0.045 13.67% 21504
SCMPC (robust) 86 0.86 21 53.14 8.70 311.8 ms 0.055 6.29% 21504

Table 2.3: MPCs performance indices for Case 3.

Controller Ns ps Nv IAEavg IAUavg tavg σmax POavg COCP

MPC n/c 0 0.00 754 51.27 6.14 5.8 ms 0.028 19.38% 0
MPC w/c 1 0.01 462 52.16 5.74 6.1 ms 0.032 2.07% 24
CC-MPC 57 0.57 107 52.56 5.73 5.9 ms 0.036 1.90% 24
SCMPC 85 0.85 28 53.42 6.95 220.9 ms 0.046 11.22% 21504
SCMPC (robust) 79 0.79 27 53.97 8.67 327.5 ms 0.062 28.23% 21504

Case 2 Results

The performance indices and the closed-loop trajectories are shown in Table 2.2
and Figure 2.5, respectively. As in Case 1, stochastic MPCs had the highest ps,
observing an increase in the scenario-based schemes (0.94 and 0.86), despite the
randomness of ks. Nevertheless, these schemes are the ones who take the longest
to calculate the solution tavg (220.3 ms and 311.8 ms) due to the fact that, in
addition to selecting 896 random scenarios for w, it should also be done for ks.

As seen in Figure 2.5, the mean trajectories that include the standard deviations
of the stochastic MPCs are the only ones that stay within the limits, indicating
that the probability that a state is within the allowed limits is 68%. This kind
of robustness on stochastic strategies implies high values of IAEavg and IAUavg
indicators compared to the others.
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Case 3 Results

As can be seen in Table 2.3 and Figure 2.6, it is once again corroborated that
the highest ps and average trajectories with standard deviations within the limits
belongs to stochastic MPCs.

Regarding Case 2, the indicators tavg are very similar, but for this case higher stan-
dard deviations σmax of the three cases are observed. The high POavg (28.23%)
presented by the robust SCMPC can be seen in the trajectories of the x3 (Figure
2.6e) state; however, this strategy presents the lowest Nv (27) of all MPCs.

2.4.2 Example 2: Quadruple-Tank System

Consider the quadruple-tank system [102], [103] of Figure 2.7, in which the aim is
to control the level of liquid hi in tank i ∀i ∈ {1, 2, 3, 4}, by means of pumps 1 and
2 whose flows are proportional to the applied voltage (QP1 = k1v1, QP2 = k2v2)
and are distributed by the valves in proportions determined by γ1, γ2 ∈ [0, 1]

Let Ai be the cross section of tank i; ai and a12 are the areas of the tank outlet
pipes; and g is the acceleration due to gravity. By performing a mass balance
and applying Bernoulli’s law, the equations that describe the behaviour of the
nonlinear system are given by

dh1

dt
= − a1

A1

√
2gh1 − a12

A1
sgn(h1 − h2)

√
2g|h1 − h2| + (1 − γ2)k2

A1
v2,

dh2

dt
= − a2

A2

√
2gh2 + a12

A2
sgn(h1 − h2)

√
2g|h1 − h2| + (1 − γ1)k1

A2
v1,

dh3

dt
= a1

A3

√
2gh1 − a3

A3

√
2gh3 + γ1k1

A3
v1,

dh4

dt
= a2

A4

√
2gh2 − a4

A4

√
2gh4 + γ2k2

A4
v2.

(2.53)

Let us define the state vectors x = [x1 x2 x3 x4]⊤ and inputs u = [u1 u2]⊤;
where xi = hi − h0

i and ui = vi − v0
i represent the deviations from the operating

point P 0 = {h0
1, h

0
2, h

0
3, h

0
4, v

0
1 , v

0
2} = {7.873cm, 8.187cm, 7.720cm, 8.039cm, 4.0V,

3.5V}. Linearising around P 0 and using Euler’s approximation, for a sampling
period Ts, the linear model in the discrete state space can be represented by
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Figure 2.7: Quadruple-tank system.

xk+1 = Axk +Buk,

A =


−β1+βx

A1
+ 1 βx

A1
0 0

βx

A2
−β2+βx

A2
+ 1 0 0

β1
A3

0 − β3
A3

+ 1 0
0 β2

A4
0 − β4

A4
+ 1

 ,

B =


0 (1−γ2)k2

A1
Ts

(1−γ1)k1
A2

Ts 0
γ1k1
A3

Ts 0
0 γ2k2

A4
Ts

 , βi = ai

√
g

2h0
i
Ts, βx = a12

√
g

2|h0
1−h0

2|Ts

where Ai = 144 cm2, a1, a2, a12 = 0.352 cm2, a3, a4 = 1.006 cm2; k1, k2 =
33.333cm3/Vs; γ1 = 0.6, γ2 = 0.7; g = 981cm/s2, Ts = 5 s.

The constraints |x3|, |x4| ≤ 1.5cm, |u1|, |u2| ≤ 1.0V must be satisfied, and the
process has additive disturbances w in its states, with normal distribution w ∼
N (0,Σw)cm with zero mean and covariance matrix Σw = diag(0.12, 0.12, 0.12,
0.12), which are truncated |wi| ≤ 0.3cm and G = diag(1, 1, 1, 1).
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Table 2.4: Performance indices.

Controller Ns ps Nv IAEavg IAUavg tavg σmax POavg COCP

MPC w/c 2 0.02 263 78.63 21.51 6.7 ms 0.218 5.76% 40
SCMPC

(
p=0.6
C=133

)
87 0.87 15 78.40 21.22 12.3 ms 0.218 1.55% 5320

SCMPC
(

p=0.7
C=177

)
88 0.88 14 78.39 21.21 14.2 ms 0.218 1.60% 7080

SCMPC
(

p=0.8
C=266

)
91 0.91 10 78.38 21.18 18.1 ms 0.218 1.78% 10640

SCMPC
(

p=0.9
C=531

)
93 0.93 7 78.36 21.15 30.3 ms 0.217 1.06% 21240

SCMPC
(

p=0.95
C=1062

)
94 0.94 6 78.35 21.14 57.3 ms 0.217 0.48% 42480

To analyse the effect of the desired probabilities p of constraints satisfaction,
on the number of considered scenarios C and on the different performance in-
dicators, this example compares the performance of a SCMPC for five values of
p(0.6, 0.7, 0.8, 0.9, 0.95), β = 10−9 with a constrained classic MPC (MPC w/c).
For each scheme, Nr = 100 runs were carried out on the nonlinear model (2.53),
each one with NTs = 40 sampling times of duration, starting from the initial state
x0|0 = x̂0 = [−5.5 − 6.9 − 0.5 − 0.2]⊤ towards the origin as the desired state.

For all controllers, N = 5 (thus, each OCP consists of 10 decision variables),
Q = diag(10, 10, 1, 1), R = diag(1, 1). Matrices K and P are

K =
[
−0.745 −0.649 −0.153 0.054
−0.556 −0.662 0.045 −0.245

]
,

P =


13.275 3.341 −0.839 −0.811
3.341 13.438 −0.884 −0.809

−0.839 −0.884 1.870 0.140
−0.811 −0.809 0.140 1.689

 .

Results

Table 2.4 shows the performance indices of the MPC w/c and the SCMPC, for
the Nr = 100 runs, while Figure 2.8 depicts the closed loop simulations. SCMPCs
showed the lowest violations, in both quantity Nv (15, 14, 10, 7 and 6) and per-
centage of deviation POavg (1.55%, 1.60%, 1.78%, 1.06% and 0.48%) compared
to the MPC w/c (Nv = 263 and POavg = 5.76%).
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(a) MPC w/c (b) SCMPC (p = 0.6, C = 133)

(c) SCMPC (p = 0.7, C = 177) (d) SCMPC (p = 0.8, C = 266)

(e) SCMPC (p = 0.9, C = 531) (f) SCMPC (p = 0.95, C = 1062)

Figure 2.8: Quadruple-tank system controlled with a constrained MPC and a SCMPC
for multiple p values, for 100 Monte Carlo simulations. Trajectories of the real states and
inputs (thin solid lines), mean value (thick solid lines), mean value with standard deviation
(dotted lines), minimum and maximum values (blue dashed lines) and constraints (black
dashed lines) |x3|, |x4| ≤ 1.5, |u1|, |u2| ≤ 1.0.
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Furthermore, the stochastic scheme shows high values of successful runs Ns (87,
88, 91, 93 and 94) and probabilities of success ps (0.87, 0.88, 0.91, 0.93 and 0.94),
which increase in line with p. However, this improvement in ps leads to an increase
in the number of scenarios C (133, 177, 266, 531 and 1062) to be considered in
the OCP (2.38), and hence an increase in the average time that the algorithm
takes to find a solution at each instant k (tavg (12.3 ms, 14.2 ms, 18.1 ms and 30.3
ms).

Regarding the indices IAEavg, IAUavg and σmax, despite not observing a consid-
erable difference between controllers, it can be concluded that the higher the p,
the higher the performance values.

As can be seen in the Figure 2.8, all the Nr = 100 trajectories made by the states
(thin solid lines) start from Nr = 100 towards the origin, where the mean trajec-
tories (thick solid lines) of the SCMPCs are considerably far from the constraints
(black dashed lines), opposite to that of the MPC w/c that passes very close and
even violates them (that’s why the highest POavg = 5.76% of them).

On the other hand, for SCMPCs, the average trajectories that include the stan-
dard deviations (dashed lines) are within the limits. It means that the probability
that a state is within the allowed limits is 68%. As for the applied inputs, they
start at their maximum allowed values and decrease as the states converge towards
the origin

2.5 Chapter Conclusions

In this chapter, an overview of the main concepts of stochastic model predic-
tive control was provided. Likewise, two stochastic model predictive control ap-
proaches were compared; one based on analytical methods (CC-MPC) and the
other based on scenarios (SCMPC). The low computational cost of the CC-MPC
is because the statistical information on uncertainties is used offline to adjust the
states constraints. However, if this information changes, it cannot be considered
during operation. On the other hand, this new statistical information can be
incorporated into the SCMPC to generate the scenarios online, but it leads to a
high computational cost.

It is shown that the CC-MPC can be summed up in a deterministic OCP (2.33)
whose structure is similar to that of a classic MPC with constraints (2.10), with
similar computational cost tavg, but with a considerable increase in the probability
of success ps, due to offline constraint adjustment.
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Scenario-based approaches SCMPC and robust SCMPC, compared to the others,
gave the highest probabilities of success, at the expense of a high computational
cost, since they need to solve an OCP with C random scenarios for each control
period. From results shown in Table 2.4, can be concluded that an increase
in the parameter p, related to the desired probability of constraints satisfaction
for the state constraints, produces an increase in the probability of success ps.
However, this improvement results in an increase in the number of C scenarios to
be considered in the OCP and therefore an increase in the average time tavg that
the algorithm takes to find a solution at each sampling time.

It is clear that the consideration of statistical information of the uncertainties of
the process, through its inclusion in the OCP, significantly improves the prob-
ability of success ps. This can be verified in Figures 2.4–2.6 and 2.8, where it
is observed that only stochastic approaches reached mean trajectories with stan-
dard deviations within the limits or barely exceeding them. Thus, for a normal
distribution, it means that the probability a state is within the allowed limits is
68%.

Scenario-based schemes are attractive in the sense that they have a greater prob-
ability of success and the inclusion of new statistical information online without
necessarily known probability distributions. However, due to the randomness of
the scenarios, their solutions may exhibit undesirable behaviour in the system
as the number of scenarios to be considered in the OCP decreases. Simultane-
ously, the computational cost increases as the number of scenarios does. These
drawbacks would prevent their implementation for the control of systems with
fast dynamics such as the two-mass spring system in the example, which has Ts
(0.1 s) close to the lowest tavg (79.0 ms) of the SCMPCs of the three cases. In
line with the above, improvements on issues such as reducing computational ef-
fort and the effect of improbable scenarios in scenario-based MPC schemes are of
great interest.
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Chapter 3

Conditional Scenario-Based
Model Predictive Control

(CSB-MPC)

This chapter introduces a scenario-based MPC approach called
conditional scenario-based model predictive control (CSB-MPC), de-
veloped for discrete-time linear systems affected by parametric uncer-
tainties and/or additive disturbances, which are correlated and with
bounded support. At each control period, a primary set of equiprob-
able scenarios is generated and subsequently approximated to a new
reduced set of conditional scenarios, each with their respective prob-
abilities of occurrence. This new set is considered for solving an op-
timal control problem in whose cost function the predicted states and
inputs are penalised according to the probabilities associated with the
uncertainties on which they depend in order to give more importance
to predictions that involve realisations with a higher probability of
occurrence. The first section presents the highlights of the proposed
CSB-MPC. The second section addresses the type of system to be
considered and the formulation of the scenario-based MPC. The third
section presents the concept of conditional scenario, its adaptation
to MPC context and the CSB-MPC approach. In the fourth section,
the proposed MPC strategy is validated by means of two numerical
examples, and its performance is contrasted with that of a standard
scenario-based MPC. Finally, the fifth section presents the conclu-
sions of this chapter.
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3.1 Introduction

Challenges such as improving the constraint satisfaction probabilities and the
computational tractability of a scenario-based MPC (SCMPC), mentioned in in-
troduction chapter and in the previous chapter’s Conclusions, motivated the de-
velopment of the new scenario-based MPC approach introduced in this chapter.
In summary, the main highlights of the proposal are as follows

• Most stochastic MPC approaches consider systems with either strictly ad-
ditive or parametric uncertainties; and whose realisations are independent
or correlated in time. This proposal addresses discrete-time linear systems
with bounded parametric and/or additive uncertainties featuring a correla-
tion between some or the whole set of random variables.

• An algorithm that adapts the conditional scenario (CS) reduction method
to the SMPC framework to approximate a primary set of equiprobable sce-
narios into a reduced set of CSs (that preserve the main characteristics of
this primary set) with their probabilities of occurrence. The CS concept was
proposed as an approximation to the two-stage stochastic mixed-integer lin-
ear programming problems, where a scenario consists of a realisation of the
random vector composed of the existing set of uncertainties, which are cor-
related. In contrast, in the MPC context, a scenario consists of a sequence
of various realisations of that vector.

• A cost function where the probabilities of occurrence of the realisations of
the uncertainties are used as weights that penalise the states and inputs
associated with these realisations. This mitigates the effect of unlikely sce-
narios on the optimal control problem by giving more relevance to states
and inputs with higher probabilities of occurrence.

• The CSB-MPC has a higher probability of constraints satisfaction than a
standard scenario-based MPC for the same number of scenarios and offers a
similar solution time, sometimes shorter, when a smaller sized primary set
is used. With the above in mind, using a CSB-MPC with a smaller number
of scenarios is a viable option when a quicker solution time is required but
with no performance loss.
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3.2 Problem Statement

In this section, the model of the system to be considered and the formulation of
a Scenario-based MPC are described.

3.2.1 System Dynamics

Consider an uncertain linear time-invariant (LTI) system whose discrete state-
space dynamic is given by (3.1a) in which its input u ∈ Rnu is ruled by the
state feedback control law (3.1b), and subject to constraints in states (3.1c) and
inputs (3.1d), for a given instant of time i ∈ N0

xi+1 = A(δi)xi +B(δi)ui +Gw(δi) (3.1a)
ui = Kxi + vi (3.1b)

x ∈ X (3.1c)
u ∈ U (3.1d)

where vectors x ∈ Rnx , w(δ) ∈ Rnw and vk ∈ Rnu represent the state, exogenous
disturbances and the decision variables, respectively. A(δ) ∈ Rnx×nx is the state
matrix, B(δ) ∈ Rnx×nu is the system input matrix, G ∈ Rnx×nw is a matrix that
reflects the effect of w(δ) on the system states, and K ∈ Rnu×nx is a feedback
matrix that stabilises the system. Constraints (3.1c)-(3.1d) are expressed as linear
inequalities (e.g., Hx ≤ h for (3.1c), and Du ≤ d for (3.1d)).

Vector δ ∈ Rnδ is a random vector, composed of each of the parametric and ad-
ditive uncertainties present in the system, represented by the random variable ξn

∀n ∈ {1, 2, . . . , nδ}. Each ξn is assumed bounded ξn ∈ Wn, normally distributed
ξn ∼ N (µn,Σn) and with zero mean µn = 0; and there is a correlation between
some or the whole set of uncertainties {ξ1, ξ2, . . . , ξnδ

}. In other words, vector δ
has a multivariate normal distribution δ ∼ Nnδ

(µ,Σ) with mean vector µ, covari-
ance matrix Σ and bounded support δ ∈ Wδ where

δ =


ξ1
ξ2
...
ξnδ

 , µ =


µ1
µ2
...
µnδ

 , Σ =

 Σ1,1 · · · Σ1,nδ

... . . . ...
Σnδ,1 · · · Σnδ,nδ



with Σn,m = Cov(ξn, ξm) ∀n,m ∈ {1, 2, . . . , nδ}. Thus, A(δ), B(δ) and w(δ) are
random and bounded since all or some of their elements are functions of δ, where,
any sequence {δ0, δ1, . . .} is independent and identically distributed (i.i.d.).
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Assumption 3.1. For a given instant of time i ∀i ∈ {0, 1, . . .} some or the
whole set of uncertainties {ξ1,i, ξ2,i, . . . , ξnδ,i} of the random vector δi are
correlated in that instant. The vector δ has a multivariate normal distri-
bution δ ∼ Nnδ

(µ,Σ) and bounded support Wδ. Any sequence {δ0, δ1, . . .}
is independent and identically distributed (i.i.d.) and can be obtained from
experimental data or by means of a random number generator.

3.2.2 Scenario-based MPC

As outlined in the previous chapter, at each sampling time and with the availabil-
ity of the current state measure, stochastic MPC strategies use a process model
such as (3.1a), whose uncertainties are stochastic in nature and with known prob-
ability distributions, to solve an optimal control problem. This OCP solution
generates the sequence of future controls to lead states toward the origin or a
desired operating point.

According to the above, let k be the current time, x̂k the state measured at that
moment andN the prediction horizon. Model (3.1a) and its input (3.1b), based on
dual paradigm, mentioned in the previous chapter, are used to predict the future
states xi+1|k ∀i ∈ {0, 1, . . . , N − 1} and inputs ui|k, for N steps ahead of k; where
the subscript i|k indicates the predicted value of the variable for the instant i,
based on the information available at time k, and x0|k = x̂k

xi+1|k = A(δi|k)xi|k +B(δi|k)ui|k +Gw(δi|k) (3.2a)
ui|k = Kxi|k + vi|k. (3.2b)

As discussed in section 2.3, predictions (3.2a) and (3.2b) in stochastic MPC
schemes are commonly incorporated into the cost function based on the expected
value, denoted by E, in which ∥y∥2

W = y⊤Wy

J(x̂k,vk) = E
[N−1∑

i=0

(
∥xi|k∥2

Q + ∥ui|k∥2
R

)
+ ∥xN |k∥2

P

]

and that in the scenario-based approaches, this expected cost function is approxi-
mated by the sample average (3.3), similar to (2.37), which consists of an average
of the predicted trajectories of the states over a horizon N , for a finite number of
C realisations of the uncertainties called scenarios

Ĵ(x̂k,vk) = 1
C

C∑
j=1

[N−1∑
i=0

(
∥x[j]

i|k∥2
Q + ∥u[j]

i|k∥2
R

)
+ ∥x[j]

N |k∥2
P

]
(3.3)
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where matrices {Q ∈ Rnx×nx |Q ≥ 0}, {R ∈ Rnu×nu |R > 0} and {P ∈ Rnx×nx |P >
0} penalise the states, inputs, and the terminal state xN |k, respectively.

The jth scenario, denoted by ∆[j]
k , represent the jth predictions of the uncertain-

ties for N steps

{∆[1]
k ,∆[2]

k , . . . ,∆[C]
k },

∆[j]
k = {δ[j]

0|k, δ
[j]
1|k, . . . , δ

[j]
N−1|k},

δ
[j]
i|k = [ξ[j]

1,i|k, ξ
[j]
2,i|k, . . . , ξ

[j]
nδ,i|k]⊤,

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C}.

Thus, the jth predicted trajectories of states and inputs are obtained by eval-
uating (3.2a)-(3.2b) with ∆[j]

k , fulfilling x
[j]
0|k = x̂k and the same decision vari-

ables vk = {vk|k, vk+1|k, . . . , vk+N−1|k} for all C. This is

x
[j]
i+1|k = A(δ[j]

i|k)x[j]
i|k +B(δ[j]

i|k)u[j]
i|k +Gw(δ[j]

i|k), x
[j]
0|k = x̂k (3.4a)

u
[j]
i|k = Kx

[j]
i|k + vi|k. (3.4b)

For every time k, the control problem in the scenario-based MPC framework is
to minimise the cost function (3.3), fulfilling the constraints on states (3.1c) and
inputs (3.1d) for all x[j]

i+1|k and u
[j]
i|k, and in the terminal state x[j]

N |k [40], [104] if
required

x
[j]
i+1|k ∈ X,

u
[j]
i|k ∈ U,

x
[j]
N |k ∈ XT ,

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C}.
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The aforementioned is addressed in OCP (3.5), whose solution yields the optimal
controls v∗

k = {v∗
0|k, v

∗
1|k, . . . , v

∗
N−1|k}

min
v0|k,v1|k,...,vN−1|k

Ĵ(x̂k,vk) (3.5a)

s.t.

x
[j]
i+1|k = A(δ[j]

i|k)x[j]
i|k +B(δ[j]

i|k)u[j]
i|k +Gw(δ[j]

i|k) (3.5b)

u
[j]
i|k = Kx

[j]
i|k + vi|k (3.5c)

x
[j]
i+1|k ∈ X (3.5d)

u
[j]
i|k ∈ U (3.5e)

x
[j]
N |k ∈ XT (3.5f)

x
[j]
0|k = x̂k (3.5g)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C} (3.5h)

where, using the receding horizon (RH) strategy [21], only the first element of v∗
k

is applied to the process in that time (i.e., uk = u0|k = Kx̂k + v∗
0|k), repeating

the OCP at the next sampling time.

Assumption 3.2. Matrices Q and R are defined by the designer. For the
uncertain system (3.1a) K and P can be obtained by solving an eigenvalues
problem (EVP)(3.1a) from a quadratic stability analysis using Lyapunov’s
approach [19], [23], [90], that makes the A(δi) + B(δi)K matrix strictly
stable. The sets X, U and XT ⊂ X are convex sets that contain the origin
in their interiors. For any instant of time the current state x̂k is assumed
to be measurable, the set ∆[j]

k ∀j ∈ {1, 2, . . . , C} is generated according to
Assumption 3.1, and the OCP is assumed to find a feasible solution at that
instant.

About the Number of Scenarios and Samples Features

As outlined in the conclusions of the previous chapter, establishing an appropri-
ate number of C possible realisations of uncertainties to be considered to solve
the OCP (3.5) is essential. This is because optimal solutions can be obtained for
a large number of realisations but at the expense of an excessive computational
burden. On the other hand, if a small number of realisations is used to achieve
tractability, an accurate model or approximation of the uncertainty cannot be
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achieved, and due to the randomness of the scenarios, the OCP solutions, com-
puted with unlikely scenarios, may exhibit undesirable behaviour in the closed
loop. For this reason, a certain balance between the numerical tractability and
quality of its solution is required.

According to subsection 2.3.2, this number can be calculated according to a de-
fined probability level p ∈ [0, 1] of constraint satisfaction, a very low confidence
level or probability of a bad event occurring β ∈ [0, 1] (e.g., β = 10−9) and the
number of decision variables d; where C can be obtained as the minimum value
that satisfies (2.43), that is

d−1∑
j=0

(
C

j

)
(1 − p)jpC−j ≤ β (3.6)

where, in the context of the OCP (3.5), P[xi+1|k ∈ X] ≥ p is desired and d = nuN .
According to Theorem 3.1 in [51], it holds that any optimal solution v∗

k obtained
by the scenario program (3.5), using C scenarios, with C defined using (3.6), has
a guaranteed level 1 − β of feasibility, in a probabilistic sense, of meeting the
probabilistic constraints P[xi+1|k ∈ X] ≥ p.

Despite a very low defined β, such a bad event can occur. As pointed out in [36],
a drawback to this random generation of scenarios is that some may be far from
the reality of the process, and consequently, the optimal controls v∗

k calculated
can cause erroneous behaviour in the closed-loop system.

Sampling and discarding approaches [52], can be used to improve the cost function
while P[xi+1|k ∈ X] ≥ p holds for a sufficiently high number of C generated
scenarios, D scenarios can be discarded, based on a defined removal rule, from
the total of C scenarios constraints. As an example, in this context the scenario
program (2.41) would be as follows

min
x
c⊤x (3.7)

s.t.
f(x, γ[j]) ≤ 0, ∀j ∈ CC − DD

here x is the vector of decision variables of dimension d, γ is the vector of random
variables; CC = {1, . . . , C} is the set of indices of the C scenarios generated,
DD = {d1, . . . , dD} is the set with the indices of the D scenarios to be discarded
from the constraints. D can be computed as the maximum value that meets the
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following inequality(
D + d− 1

D

)
D+d−1∑

j=0

(
C

j

)
(1 − p)jpC−j ≤ β (3.8)

or by its approximation

D ≤ (1 − p)C − d+ 1 −

√
2(1 − p)C ln

(((1 − p)C)d−1

β

)

According to Theorem 2.1 in [52], it holds that any optimal solution x∗ =
x∗
({
γ[1], γ[2], . . . , γ[C]

})
obtained by the scenario program (3.7), has a guaran-

teed level 1 − β of feasibility of meeting the probabilistic constraints P[f(x, γ) ≤
0] ≥ p in the chance-constrained optimisation problem (2.40); or referring to (3.7)
P[V (x∗) ≤ 1 − p] ≥ 1 − β, where V (x∗) is the probability of constraint violation
with x∗, i.e., V (x∗) = P[f(x∗, γ[j]) > 0]. The above states that any optimal
solution v∗

k obtained by the scenario program (3.5), in which the constraints of
D scenarios are discarded in (3.5d)-(3.5f), with C and D defined using (3.8), has
a guaranteed level 1 − β of feasibility of satisfying the probabilistic constraints
P[xi+1|k ∈ X] ≥ p.

In [36], a sample-removal pair is proposed for MPC, and consists of calculating
the pair (C, D) based in a defined risk acceptability level of constraint viola-
tion (1−p) such that P[xi+1|k ∈ X] ≥ p, where C is the number of scenarios to be
considered in the OCP, D is the number of scenarios that can be discarded from
the constraints in the states and ρ is a parameter related to the dimension of the
unconstrained subspace of the search space Rd∫ 1

0
U(v) dv ≤ 1 − p, (3.9)

U(v) = min
{

1,
(
D + ρ− 1

D

)
D+ρ−1∑

j=0

(
C

j

)
vj(1 − v)C−j

}
.

Nevertheless, the use of these scenario removal schemes represents an increase
in the solution time, which could result in an OCP that is expensive to solve
computationally. This is because of the need for large values for C to continue
fulfilling P[xi+1|k ∈ X] ≥ p with the remaining C − D scenarios; in addition to
requiring an appropriate algorithm [36], [52] to identify unlikely scenarios to be
removed from the constraints to reduce conservatism, which could result in an
extra optimisation stage.
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3.3 Model Predictive Control via Conditional Scenarios

In this section, a novel scenario-based MPC approach is presented. At each
sampling time, a primary set of equiprobable scenarios is generated and is sub-
sequently approximated to a reduced set of conditional scenarios, each with its
probability of occurrence. This reduced set is used to solve an OCP whose struc-
ture is similar to that of a scenario-based MPC (3.5), but considers a new cost
function in which the predicted states and inputs are penalised according to the
probabilities of occurrence associated with the realisations of the uncertainties on
which they depend.

3.3.1 Conditional Scenario Approach

The conditional scenario (CS) concept was presented in [105] as an approximation
to the two-stage stochastic mixed-integer linear programming (SMILP) problem,
where the expected value of the second stage cost is commonly stated in terms
of scenarios defined as realisations of a random vector δ ∈ Rnδ , made up of nδ

random variables ξ, such that δ = [ξ1, ξ2, . . . , ξnδ
]⊤. The purpose of this method is

to seek a compromise between the computational tractability of the problem and
an accurate representation of uncertainty by generating a number C of so-called
conditional scenarios (CSs), denoted by {δ̂[j]}, each with its associated probability
of occurrence p̂[j]

δ̂[j] = [ξ̂[j]
1 , ξ̂

[j]
2 , . . . , ξ̂[j]

nδ
]⊤, ∀j ∈ {1, 2, . . . , C}.

The above considering that each random variable ξn ∀n ∈ {1, 2, . . . , nδ} in δ
has a known normal distribution ξn ∼ N (µn, σn) and bounds In (e.g., In =
[µn − 3σn, µn + 3σn[), and there may be a correlation between it and any or
all other variables in the set {ξn}. Therefore, δ has a known multivariate normal
distribution δ ∼ Nnδ

(µ,Σ) with mean vector µ, covariance matrix Σ and bounded
support Wδ.

The number of C conditional scenarios depends on the number of random vari-
ables ξ that constitute δ and a defined number E of discretisation points ∀e ∈
{1, 2, . . . , E} for each bound In of ξ, that is C = nδE. In this way, the calcula-
tion of each δ̂[j] and its p̂[j] is made using the information from each ξ; and the
probability density function ϕ and the cumulative distribution function Φ of a
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standard normal random variable among others; such that

δ̂[(n−1)E+e] = E
[
δ | ξ̃n,e

]
,

p̂[(n−1)E+e] = P[ξn ∈ In,e],
∀n ∈ {1, 2, . . . , nδ}, ∀e ∈ {1, 2, . . . , E}.

in which each CS consists of approximating δ by the conditional expectation
E
[
δ | ξ̃n,e

]
, where ξ̃n,e is the eth representative point of discretising the random

variable ξn and In,e is the eth interval of In such that In =
⋃E

e=1 In,e.

The aforementioned CS approach was adapted in [82] as a scenario reduction
method in which δ can have any type of distribution and not necessarily be
bounded. This reduction is performed on a given large primary set S of S scenarios

{δ̃[1], δ̃[2], . . . , δ̃[S]} ∈ S

whose lth scenario and its probability are δ̃[l] and p̃[l], respectively, in which

δ̃[l] = [ξ̃[l]
1 , ξ̃

[l]
2 , . . . , ξ̃

[l]
nδ

]⊤, ∀l ∈ {1, 2, . . . , S}.

Such reduction is made based on S and a the desired number of points E to
discretise the support of each random variable ξ̃, and leading to a new set SC

of C conditional scenarios, each with its own probability of occurrence, with the
jth CS and its probability are given by δ̂[j] and p̂[j], respectively, and

{δ̂[1], δ̂[2], . . . , δ̂[C]} ∈ SC

δ̂[j] = [ξ̂[j]
1 , ξ̂

[j]
2 , . . . , ξ̂[j]

nδ
]⊤, ∀j ∈ {1, 2, . . . , C}.

The methodology of [106], [107] for the reduction of a primary set through the
CS approach is described in Algorithm 3.1, and in which the number of reduced
scenarios is C = nδE, provided that at least one scenario of S fulfills the condi-
tion ξ̃

[l]
n ∈ In,e. As can be seen in step 3, this approach, rather than filtering or

reducing scenarios, performs an approximation of S to a set of conditional expec-
tations. Also, a simplified description of how this Algorithm works is shown in
Figure 3.1.

In [107] and [82], comparisons were made of the performance of this reduction
technique and two others (such as sample average approximation (SAA) [108] and
scenario reduction based on probability distances (SRD) [109]) to solve portfolio
optimisation and capacitated facility location problems. These three techniques
yielded similar results, but with less time dedicated to the reduction by the CS (up
to eight times faster).
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Algorithm 3.1 Conditional Scenario Reduction Method
Input: the primary set of scenarios {δ̃[1], δ̃[2], . . . , δ̃[S]}, their
probability levels {p̃[1], p̃[2], . . . , p̃[S]} and a desired integer value
for E.
Output: the new set of C conditional scenarios {δ̂[1], δ̂[2], . . . , δ̂[C]}
and their respective probability levels {p̂[1], p̂[2], . . . , p̂[C]}, where C =
nδE.
Procedure:

1. For each random variable ξ̃n ∀n ∈ {1, 2, . . . , nδ} obtain its extreme
values In = [an, bn] in which

an = min{ξ̃[1]
n , ξ̃[2]

n , . . . , ξ̃[S]
n }, bn = max{ξ̃[1]

n , ξ̃[2]
n , . . . , ξ̃[S]

n }

2. Split every In into E subintervals In,e ∀e ∈ {1, 2, . . . , E} of
equal or different lengths such that In =

⋃E
e=1 In,e

{In,1, In,2, . . . , In,E} = {[an, bn,1), [bn,1, bn,2), . . . , [bn,(E−1), bn]}

3. For each In,e, construct the sets {δ̃[1]
n,e, δ̃

[2]
n,e, . . . , δ̃

[Sn]
n,e },

{p̃[1]
n,e, p̃

[2]
n,e, . . . , p̃

[Sn]
n,e } with every pair (δ̃[l], p̃[l]) ∀l ∈ {1, 2, . . . , S}

that meet the condition ξ̃
[l]
n ∈ In,e and compute its respective

CS δ̂[n,e] with probability level p̂[n,e]

δ̂[n,e] = E[δ̃ | ξ̃n ∈ In,e] = 1
Sn

Sn∑
j=1

δ̃[j]
n,e,

p̂[n,e] = 1
nδ

Sn∑
j=1

p̃[j]
n,e
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Figure 3.1: Block diagram of the operation of Algorithm 3.1.

3.3.2 Formulation of Conditional Scenarios in MPC

In the following, a procedure that adapts the CS reduction approach to the
scenario-based MPC framework is proposed. As a remark, a scenario in the
SMILP context consists of a realisation of the random vector δ of cardinality
nδ In the scenario-based MPC context, a scenario consists of a sequence of N
realisations of δ, represented by ∆k = {δ0|k, δ1|k, . . . , δN−1|k}.

In line with the above, let SS be a set, with cardinality S, of random scenarios
generated at time k

{∆[1]
k ,∆[2]

k , . . . ,∆[S]
k } ∈ SS (3.10)

∆[l]
k = {δ[l]

0|k, δ
[l]
1|k, . . . , δ

[l]
N−1|k}, ∀l ∈ {1, 2, . . . , S}

where SS is assumed to be a set of equiprobable scenarios, that is, each ∆[l]
k in SS

has a probability of occurrence p = 1/S. Hence, each element of {δ[1]
i|k, δ

[2]
i|k, . . . , δ

[S]
i|k }

60



3.3 Model Predictive Control via Conditional Scenarios

has a probability p[l]
i|k = 1/S

{p[1]
k , p

[2]
k , . . . , p

[S]
k },

p
[l]
k = {p[l]

0|k, p
[l]
1|k, . . . , p

[l]
N−1|k}, ∀l ∈ {1, 2, . . . , S},

p
[l]
i|k = 1/S, ∀i ∈ {0, 1, . . . , N − 1}.

With the above in mind, Algorithm 3.2 is proposed as a procedure to approximate
a set of equiprobable scenarios SS (3.10) to a reduced set of conditional scenarios
SC (3.11a) with probabilities of occurrence (3.11b) (where

∑C
j=1 p̂

[j]
i|k = 1) , in the

context of scenario-based MPC

{∆̂[1]
k , ∆̂[2]

k , . . . , ∆̂[C]
k } ∈ SC (3.11a)

{p̂[1]
k , p̂

[2]
k , . . . , p̂

[C]
k } (3.11b)

∆̂[j]
k = {δ̂[j]

0|k, δ̂
[j]
1|k, . . . , δ̂

[j]
N−1|k},

p̂
[j]
k = {p̂[j]

0|k, p̂
[j]
1|k, . . . , p̂

[j]
N−1|k},

∀j ∈ {1, 2, . . . , C}.

Assumption 3.3. Defining the integers C and E such that C = nδE.
At every control period, a new primary set of equiprobable scenarios SS is
generated in accordance with Assumption 3.1 and is later approximated to
the CSs reduced set SC applying the steps of Algorithm 3.2.

A graphic description of the operation of this Algorithm is also illustrated in Fig-
ure 3.2. Note that, to do this, the integers C and E, corresponding to the number
of desired CSs and the number of subintervals, respectively, must first be defined
taking into account that they must satisfy the condition C = nδE. It is also noted
that implementing this procedure is straightforward, since Algorithm 3.2 does not
require an optimisation stage or knowledge about how the random variables are
distributed to perform the reduction.
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Algorithm 3.2 From Scenarios to Conditional Scenarios in MPC
Input: the primary set of equiprobable scenarios (3.10) and a
desired integer E such that C = nδE.
Output: the new set of CSs {∆̂[1]

k , ∆̂[2]
k , . . . , ∆̂[C]

k } and their respective
probabilities sequences {p̂[1]

k , p̂
[2]
k , . . . , p̂

[C]
k }.

Procedure:

1. Classify all the realisations of the uncertainties into N
groups δi and pi ∀i ∈ {0, 1, . . . , N − 1}, with cardinality S so that
each pair corresponds to the ith prediction step

δi = {δ[1]
i|k, δ

[2]
i|k, . . . , δ

[S]
i|k }, pi = {p[1]

i|k, p
[2]
i|k, . . . , p

[S]
i|k}, p

[·]
i|k = 1/S

2. Apply Algorithm 3.1 to each pair (δi, pi) to obtain δ̂
[n,e]
i and

its probability p̂
[n,e]
i , ∀n ∈ {1, 2, . . . , nδ} ∀e ∈ {1, 2, . . . , E}

3. Construct the new reduced set δ̂i = {δ̂[1]
i|k, δ̂

[2]
i|k, . . . , δ̂

[C]
i|k } and its

probabilities p̂i = {p̂[1]
i|k, p̂

[2]
i|k, . . . , p̂

[C]
i|k }

δ̂i = {δ̂[1,1]
i , δ̂

[1,2]
i , . . . , δ̂

[1,E]
i , . . . , δ̂

[nδ,1]
i , δ̂

[nδ,2]
i , . . . , δ̂

[nδ,E]
i }

p̂i = {p̂[1,1]
i , p̂

[1,2]
i , . . . , p̂

[1,E]
i , . . . , p̂

[nδ,1]
i , p̂

[nδ,2]
i , . . . , p̂

[nδ,E]
i }

4. Randomly rearrange the δ̂i and p̂i sequences ensuring that any
pair (δ̂[j]

i|k, p̂
[j]
i|k) ∀j ∈ {1, 2, . . . , C} share the same positions.

5. Construct jth conditional scenario ∆̂[j]
k and its respective

sequence of probabilities p̂
[j]
k

∆̂[j]
k = {δ̂[j]

0|k, δ̂
[j]
1|k, . . . , δ̂

[j]
N−1|k},

p̂
[j]
k = {p̂[j]

0|k, p̂
[j]
1|k, . . . , p̂

[j]
N−1|k}

6. Group them such that

{∆̂[1]
k , ∆̂[2]

k , . . . , ∆̂[C]
k },

{p̂[1]
k , p̂

[2]
k , . . . , p̂

[C]
k }
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Figure 3.2: Block diagram of the operation of Algorithm 3.2.
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(a)

(b)

Figure 3.3: Illustrative example of Algorithm 3.2. (a) The primary set SS of 500 equiprob-
able scenarios (plus signs) for a prediction horizon N = 3, the new reduced set SC of 14
CSs (each with their respective single-coloured dots), and the origin (black rhombus). (b)
Probabilities of occurrence of the δ̂

[·]
i|k of each scenario at each time-step.

To illustrate how Algorithm 3.2 works, Figure 3.3a shows a primary set SS of 500
scenarios for a prediction horizonN = 3, considering a random vector δ = [ξ1, ξ2]⊤
with multivariate normal distribution δ ∼ N2(µ,Σ), mean µ, covariance Σ and
bounds given by

µ =
[
0
0

]
, Σ =

[
1.0 0.8
0.8 1.0

]
, |δ| ≤

[
2
2

]
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by setting E = 7, a new set SC of 14 CSs is obtained. For both SS and SC ,
the elements δ[·]

i|k of ∆[·]
k , and δ̂[·]

i|k of ∆̂[·]
k are plotted on its corresponding i|k-step

graph. As illustrated in Figure 3.3b, every approximation δ̂
[·]
i|k belonging to each

CS, has a probability of occurrence in accordance with the number of primary
scenarios surrounding it. Considering the first CS (coloured yellow), its values
are

∆̂[1]
k =

{[
0.0553

−0.0085

]
,

[
0.5295
0.4130

]
,

[
−1.0872
−0.8625

]}
, p̂

[1]
k = {0.118, 0.109, 0.062}.

3.3.3 Cost Function and Control Problem

As mentioned in the previous section, two of the most important drawbacks in
scenario-based MPC are the unlikely scenarios that could cause undesired be-
haviour in the closed-loop system, and the computational tractability when the
number of scenarios to be considered is large. For this reason, an approximation
of the primary set of equiprobable scenarios to a set of conditional scenarios is
suitable since it would allow addressing both the drawbacks mentioned above.

Given current instant k and according to Assumption 3.3, consider SS the primary
set of generated scenarios (3.10) for N steps, whose subsequent approximation
through Algorithm 3.2 produces the new reduced set SC given by (3.11). The
value of C can be defined according to any criterion, e.g., (3.6), (3.8) or (3.9).

Evaluating (3.4a)-(3.4b) with (3.11a), produces the predictions of the states and
inputs for such reduced scenarios, which are then incorporated in the cost function
given by

ĴCS(x̂k,vk) = 1
C

C∑
j=1

[N−1∑
i=0

(
p̂

[j]
i−1|k∥x[j]

i|k∥2
Q + p̂

[j]
i|k∥u[j]

i|k∥2
R

)
+ p̂

[j]
N−1|k∥x[j]

N |k∥2
P

]
.

(3.12)

This new function, in addition to taking into account the terms x[j]
i|k and u[j]

i|k, also
includes the set of probabilities (3.11b) as weights. This means that, the pre-
dicted state x[j]

i|k and input u[j]
i|k, which depends on the realisations δ̂[j]

i−1|k and δ̂[j]
i|k,

respectively, are penalised with the probability of occurrence p̂[j]
i−1|k and p̂[j]

i|k that
are associated with such a realisation, where p̂[j]

−1|k = 1/C since x[j]
0|k = x̂k.
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Thus, the control problem to be solved in the context of conditional scenario-based
model predictive control (CSB-MPC) is as follows

min
v0|k,v1|k,...,vN−1|k

ĴCS(x̂k,vk) (3.13a)

s.t.

x
[j]
i+1|k = A(δ̂[j]

i|k)x[j]
i|k +B(δ̂[j]

i|k)u[j]
i|k +Gw(δ̂[j]

i|k) (3.13b)

u
[j]
i|k = Kx

[j]
i|k + vi|k (3.13c)

x
[j]
i+1|k ∈ X (3.13d)

u
[j]
i|k ∈ U (3.13e)

x
[j]
N |k ∈ XT (3.13f)

x
[j]
0|k = x̂k (3.13g)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C}. (3.13h)

If sampling and removal schemes (3.8) or (3.9) are used, the OCP takes the form

min
v0|k,v1|k,...,vN−1|k

ĴCS(x̂k,vk) (3.14a)

s.t.

x
[j]
i+1|k = A(δ̂[j]

i|k)x[j]
i|k +B(δ̂[j]

i|k)u[j]
i|k +Gw(δ̂[j]

i|k) (3.14b)

u
[j]
i|k = Kx

[j]
i|k + vi|k (3.14c)

x
[r]
i+1|k ∈ X (3.14d)

u
[r]
i|k ∈ U (3.14e)

x
[r]
N |k ∈ XT (3.14f)

x
[j]
0|k = x̂k (3.14g)

∀i ∈ {0, 1, . . . , N − 1}, ∀j ∈ {1, 2, . . . , C}, ∀r ∈ CC − DD. (3.14h)

where, CC = {1, . . . , C} is the set of indices of the C conditional scenarios. The
set of D scenarios, with indices DD = {d1, . . . , dD}, to be discarded are those
with the lowest probability of occurrence calculated as p̂[j] =

∑N−1
i=0 p̂

[j]
i|k. Thus,

only scenarios with r indices r ∈ CC − DD are considered in the constraints.
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3.2

Figure 3.4: Block diagram of CSB-MPC. The Predictor block consists of Eqs. (3.4a)-(3.4b),
the Cost function is (3.12). The Optimiser and Constraints are (3.13a) and (3.13b)-(3.13h),
respectively, or (3.14a) and (3.14b)-(3.14h) depending on the CSB-MPC scheme.

As can be seen, the structure of (3.13) is similar to that of (3.5), but with the
difference that this new structure is based on a reduced set SC , obtained through
the reduction stage, and the new cost function (3.12).

The OCPs (3.13) and (3.14) of a CSB-MPC, and whose schematic diagram of its
operation is depicted in Figure 3.4, covers the topic related to unlikely scenarios
by giving more relevance to the states and inputs that involve realisations with
more probability of occurrence, and less importance given to those that are related
to unlikely realisations, by means of their associated probabilities.

Likewise, according to Theorem 3.1 in [51] and Theorem 2.1 in [52], it holds that
any optimal solution v∗

k obtained by the scenario programs (3.13) and (3.14),
using C conditional scenarios, with C defined using either (3.6) or (3.8), has
a guaranteed level 1 − β of feasibility, in a probabilistic sense, of meeting the
probabilistic constraints P[xi+1|k ∈ X] ≥ p.

On the other hand, if solving (3.13) for C conditional scenarios presents better the
probability of constraints satisfaction, compared to solving (3.5) for C random
equiprobable scenarios, the topic related to computational tractability can be
improved using a CSB-MPC with a number of conditional scenarios smaller than
C.
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Alternatively, if scheme (3.14) is used, the scenarios to be discarded are directly
identified by their probability of occurrence p̂[j] =

∑N−1
i=0 p̂

[j]
i|k, which becomes com-

putationally lightweight. This contrasts significantly with the need for removal
algorithms [36], [52] that, in MPC, usually require an extra stage of optimisation,
which can become prohibitive depending on how greedy they are.

Feasibility and Stability

Recursive feasibility and stability in MPC is to ensure that the OCP is always
feasible and that the system states, over time, converge asymptotically to a desired
operating point. Based on the dual paradigm, recursive feasibility and stability
are obtained through the terminal cost ∥xN ∥2

P , the terminal set XT and additional
conditions [18], [40].

If the initial state x0 belongs to the feasible set Xf ⊂ X, there will exist a
parametrised control law ui = Kxi + vi (∀i ∈ {0, 1, . . . , N − 1}), whereby the
states converge asymptotically to the origin, such that xN ∈ XT . For instants
from N , the system is governed by the law ui = Kxi (∀i ∈ {N,N + 1, . . .}), for
which XT is positively invariant, ensuring that the OCP is feasible indefinitely.

In a Scenario-based MPC in the current form of (3.5) or (3.13), recursive feasi-
bility and stability remains a subject of research. This is because (3.1a) considers
both parametric and additive uncertainties, with a δ of stochastic nature, where
all elements of the sequence of uncertainties {δ0, δ1, . . .} are assumed to be inde-
pendent and identically distributed (i.i.d.), i.e., independent in time; and whose
δ characteristics can be time-varying in nature.

An unbounded δ can produce realisations with very large values of the uncer-
tainties, making the OCP unable to find a solution that satisfies the constraints,
while a bounded δ, as proposed here and as is the case in most real processes,
prevents these large and unlikely realisations from appearing, besides allowing
the calculation of an appropriate cost ∥xN ∥2

P and a robust invariant set XT to be
obtained.

A practical way to ensure that the OCP (3.13) is always feasible is by introducing
slack variables that soften the constraints [35], [37]. These new decision variables
are incorporated and penalised in the cost function to force their values to be zero
if an optimum solution can be obtained without violating the softened constraints.

On the other hand, a combination (through Algorithm 3.2 to extract the most
representative scenarios of SS) with approaches based on offline uncertainty sam-
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pling [30], [33], [34], [41] (which in general use either (3.6) or (3.8)) can be used
to guarantee the recursive feasibility and stability of (3.13) but require that the
characteristics of the uncertainties (mean, covariance, bounds) remain invariant,
thus missing the attractiveness of the approach, which is the possibility to include
new uncertainty data online, which may be the case for several processes.

For example, in [30], a first-step constraint DR and a terminal set XT are pro-
posed, considering that (3.1a) has only parametric uncertainties, bounded and
with i.i.d. sequences. In [41], a constraint for MPC initialisation, and a termi-
nal robust invariant set XT are proposed employing probabilistic reachable sets
(PRS), considering that (3.1a) has only additive uncertainties, whose sequences
are time-correlated (non-i.i.d.) and possibly unbounded. In [34], a system (3.1a)
with only additive and unbounded uncertainties with i.i.d. sequences is consid-
ered. As in [41], it uses PRS to address probabilistic constraints; feasibility and
stability are addressed by incorporating slack variables in the initial state con-
straints (called therein as flexible initial state constraint) and a robustly invariant
terminal set, respectively.

For the proposed CSB-MPC scheme, in order to maintain the classical formulation
of a scenario-based MPC, the feasibility of the OCP at each time-step is assumed
according to Assumption 3.2.
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3.4 Numerical Examples

In this section, two numerical examples are presented to illustrate and compare
the behaviour of a scenario-based MPC (3.5) and a CSB-MPC (3.13) for Nr =
1000 Monte Carlo simulations each. In both techniques, at each control period,
a primary set SS of scenarios is generated where the OCP (3.5) in the scenario-
based MPC (for simplicity, hereafter referred to as SCMPC) is solved by con-
sidering C scenarios taken randomly from SS . The CSB-MPC (3.13) is solved
for C conditional scenarios obtained from the reduction of SS by applying Algo-
rithm 3.2. In each simulation, the purpose of each MPC strategy is to control the
system and steer its states from the initial point x[j]

0|k = x̂0 to the origin (assuming
that the current state is measurable).

All Nr simulations were carried out using Matlab R2018b, installed on a standard
computer and the control actions were calculated with the quadprog toolbox [110]
available in the Mosek 9.2. optimisation software. Through a stability analysis
of Lyapunov’s [19], [23], K and P matrices were computed using YALMIP [111]
to solve a problem based on linear matrix inequalities; and the robust invariant
set XT , consisting of a polytope, was computed using the multi-parametric tool-
box (MPT) [112]. Readers can reproduce the simulation results here presented
or simulate an CSB-MPC with the specialised software conditional scenario-based
MPC toolbox as developed by the authors and available at MATLAB Central [113].

The behaviour of both MPC strategies is analysed by means of performance in-
dices, which were computed based on the Nr closed-loop state responses and
inputs. These are:

• ps = 100 (Ns/Nr): probability (in percentage) of success of a simulation,
where Ns is the number of simulations out of all Nr where no constraints
were violated.

• pc: the minimum probability (in percentage) that all states do not violate
the constraints.

• Nv: the total number of constraints that were violated in all simulations.

• PDavg: average percentage of deviation of violated constraints in the states.

• IAEavg: mean value of the integral absolute error of all states.

• IAUavg: mean value of the integral of the absolute value of the applied
inputs.
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• tavg: average time taken by the MPC algorithm to obtain a solution. For
SCMPC and CSB-MPC, this time also includes the times it takes to generate
the primary set SS , plus select C or approximate to C scenarios, depending
on the case.

• COCP: number of OCP constraints.

3.4.1 Example 1: Double Integrator System

Consider the second order discrete system in the form (3.1a), given by

xi+1 =
[
1 0.93
0 1

]
xi +

[
0.28
0.82

]
ui +

[
1 0
0 1

]
w(δi).

The sampling time is Ts = 0.5 s, the system state and input constraints are |x2| ≤
1 for the second state and |u| ≤ 0.8, respectively. The two random variables, ξ1
and ξ2, contained in the vector of additive disturbances w (δi) = [ξ1,i, ξ2,i]⊤ make
up the random vector δ = [ξ1, ξ2]⊤ (nδ = 2), which has a truncated multivariate
normal distribution δ ∼ N2(µ,Σ) with mean vector µ, covariance matrix Σ and
bounds

µ =
[
0
0

]
, Σ =

[
0.0004 0.0017
0.0017 0.01

]
, |δ| ≤

[
0.05
0.2

]
.

Simulation Setup

The performances in this example of a SCMPC and a CSB-MPC for various C
used to solve the OCP are compared for the cases of primary sets SS , consisting
of 5000 and 1200 scenarios

C = {100, 80, 60, 40, 20}

all elements in this sequence meet the condition C = nδE (see Assumption 3.3),
and through (3.6), with β = 10−9, their theoretical probabilities of constraints
satisfaction P[xi+1 ∈ X] ≥ pt are

pt(C) = {57.5%, 49.5%, 37.5%, 20.2%, 0.52%}.

The duration of each of the Nr simulations in both MPCs is 20 sampling periods,
starting from the initial state x[j]

0|k = x̂0 = [8, 0.7]⊤. The prediction horizon is N =
15, yielding 15 decision variables; the cost function weights are Q = diag(1, 1) and
R = 0.1; the terminal set XT consisting of a polytope of 6 linear inequalities and
K and P matrices are
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K =
[
−0.7421 −1.5891

]
, P =

[
2.3026 0.8572
0.8572 1.6983

]
.

Table 3.1: Performance Indices of the MPCs in Example 1 for a SS of 5000 Scenarios.

Controller ps pc Nv PDavg IAEavg IAUavg tavg COCP

SCMPC100 92.8% 98.8% 74 1.22% 69.054 4.239 22.0 ms 6400
CSB-MPC100 98.1% 99.6% 19 0.20% 69.554 4.198 43.8 ms 6400
SCMPC80 91.0% 98.6% 93 1.34% 68.925 4.251 19.1 ms 5120
CSB-MPC80 97.7% 99.6% 23 0.26% 69.492 4.201 38.2 ms 5120
SCMPC60 87.8% 98.0% 127 1.53% 68.728 4.268 16.3 ms 3840
CSB-MPC60 96.9% 99.3% 31 0.35% 69.399 4.207 31.7 ms 3840
SCMPC40 81.4% 96.5% 201 1.88% 68.387 4.300 13.1 ms 2560
CSB-MPC40 95.1% 99.1% 49 0.52% 69.216 4.217 25.0 ms 2560
SCMPC20 63.9% 94.6% 424 2.81% 67.643 4.390 10.1 ms 1280
CSB-MPC20 87.7% 98.2% 131 0.98% 68.649 4.250 18.3 ms 1280

Table 3.2: Performance Indices of the MPCs in Example 1 for a SS of 1200 Scenarios.

Controller ps pc Nv PDavg IAEavg IAUavg tavg COCP

SCMPC100 91.6% 98.5% 87 1.27% 69.051 4.238 18.3 ms 6400
CSB-MPC100 98.5% 99.7% 15 0.24% 70.180 4.173 26.6 ms 6400
SCMPC80 89.4% 98.3% 111 1.46% 68.924 4.250 15.7 ms 5120
CSB-MPC80 97.9% 99.6% 21 0.27% 69.843 4.190 22.2 ms 5120
SCMPC60 86.2% 97.9% 144 1.72% 68.721 4.270 13.1 ms 3840
CSB-MPC60 96.9% 99.5% 31 0.38% 69.509 4.207 18.1 ms 3840
SCMPC40 80.3% 97.1% 217 2.13% 68.380 4.304 10.6 ms 2560
CSB-MPC40 95.0% 99.2% 50 0.57% 69.207 4.218 14.1 ms 2560
SCMPC20 66.0% 94.5% 415 2.83% 67.652 4.396 8.2 ms 1280
CSB-MPC20 87.4% 98.0% 133 1.04% 68.624 4.251 10.5 ms 1280
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Figure 3.5: Graphs of the performance indices ps, pc, Nv and tavg from Tables 3.1 (SS(5000),
orange lines) and 3.2 (SS(1200), blue lines), corresponding to SCMPC (dashed lines) and
CSB-MPC (solid lines), for 20, 40, 60, 80 and 100 scenarios.

Results

Tables 3.1 and 3.2 show the performance results of each MPC for the primary sets
SS(5000) and SS(1200), respectively. The first column corresponds to the type
of controller, whose subscript indicates the number of scenarios used to solve its
respective OCP. The subsequent columns indicate the performance indices, as
defined at the beginning of this section and which were computed based on the
Nr closed-loop responses. Furthermore, these indices are depicted in Figures 3.5-
3.6, in which the orange and blue lines represent those in Tables 3.1 and 3.2,
respectively.
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Figure 3.6: Graphs of the performance indices PDavg, IAEavg and IAUavg from Ta-
bles 3.1 (SS(5000), orange lines) and 3.2 (SS(1200), blue lines), corresponding to
SCMPC (dashed lines) and CSB-MPC (solid lines), for 20, 40, 60, 80 and 100 scenarios.

Both tables reveal that for the two cases of SS primary sets, CSB-MPCs obtained
higher constraint satisfaction probabilities ps and pc than SCMPCs; where, ac-
cording to Figure 3.5 a greater difference is noted as the number of scenarios
decreases. Likewise, it is verified that the empirical probabilities ps of the CSB-
MPCs satisfy the theoretical probabilities pt, presenting values significantly above
the estimated ones. Moreover, this improvement in the probability of constraint
satisfaction by CSB-MPCs produces lower numbers of violated constraints Nv
and lower percentages of deviations from constraints PDavg than SCMPCs, being
almost one-third of those reported by SCMPCs (e.g., SCMPC20 and CSB-MPC20
in Table 3.1).

In addition, Figure 3.7 shows the closed-loop state trajectories and applied inputs
for C = 20 in Table 3.2, contrasted with those of a standard MPC with constraints
(in which ps = 0.1% and pc = 46.5%) that is based on the nominal model of the
system. As can be seen in the detailed view, the state trajectories of the SCMPC
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(Nv = 415, PDavg = 2.83%) transgress the limits, more times than those of the
CSB-MPC (Nv = 133, PDavg = 1.04%), which has better probabilities ps and pc.

�0

Figure 3.7: 1000 system closed-loop responses and applied inputs to a standard MPC with
constraints (light brown solid lines), SCMPC20 (light blue solid lines) and CSB-MPC20 (light
red solid lines) controllers, for a SS of 1200 Scenarios. The brown dotted line, blue dashed
line, and red dash-dotted line represent the mean trajectories of standard MPC, SCMPC
and CSB-MPC, respectively; and the system constraints, |x2| ≤ 1.0, |u| ≤ 0.8, represented
by black dashed lines.
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Note that for both primary sets SS = 5000 and SS = 1200 (see Figures 3.5-
3.6), the CSB-MPC do not show considerable variations in indicators ps, pc,
Nv and PDavg, as is the case for indicator tavg, which decreases with SS(1200),
approaching those of the SCMPC. This decrease in tavg is because the time used
in the additional scenario-reduction stage of the CSB-MPC, is less as the primary
set to approximate is smaller. With this in mind and with an appropriately
sized SS , a CSB-MPC against a SCMPC with the same number of scenarios is a
good option due to its higher probabilistic feasibility of constraints satisfaction,
with similar solution times tavg. Furthermore, in case of needing a decrease in
the solution time tavg, a CSB-MPC with a smaller number of scenarios than a
SCMPC could be used.

For example, considering the MPCs in Table 3.2, if similar performance indices to
those of the SCMPC100 (tavg = 18.3 ms) are required, but with a lower solution
time, the CSB-MPC60 (tavg = 18.1 ms) or CSB-MPC40 (tavg = 14.1 ms) could be
used. Note that the others SCMPC reported in Table 3.2 do not offer similar or
superior characteristics to those required, as do the mentioned CSB-MPCs, which
even offer higher probabilities, lower violated constraints Nv and lower PDavg.

Regarding indicators IAEavg and IAUavg, both controllers presented similar values
with slight variations and close to 69 and 4.2, respectively, which compared to
those of a MPC with a perfect forecast (IAEpf = 60.969 and IAUpf = 4.304),
they are close to IAUpf but, because of uncertainties, considerably above IAEpf.
In some moments, in all the MPC simulations, the states exceeded their allowed
limits. This was not the case for the applied inputs, which reached their allowed
values without violating them.

3.4.2 Example 2: Quadruple-Tank Process

This example consists of the quadruple-tank process presented in the subsec-
tion 2.4.2, whose schematic diagram is depicted in Figure 3.8 and whose control
objective is to maintain the liquid level in the tank Ti ∀i ∈ {1, 2, 3, 4} at a desired
setpoint hi by means of the flow rates Q1 and Q2 delivered by pumps 1 and 2,
respectively. These flows are proportional to the applied voltage Q1 = k1v1,
Q2 = k2v2 and are subsequently split by the valves in proportions determined by
the parameters γ1, γ2 ∈ [0, 1].
By linearising the nonlinear equations of the system (2.53), around the operating
point

P o ={ho
1, h

o
2, h

o
3, h

o
4, v

o
1, v

o
2}

={7.873 cm, 8.187 cm, 7.720 cm, 8.039 cm, 4.0 V, 3.5 V}
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Figure 3.8: Quadruple tank process schematic diagram.

with Ai = 144 cm2; a1, a2, a12 = 0.352 cm2; a3 = 1.006 + ξ1 cm2, a4 = 1.006 +
ξ2 cm2; k1, k2 = 33.333 cm3/(V.s); γ1 = 0.6, γ2 = 0.7, g = 981 cm/s2; and
discretising for a sampling time Ts = 5 s the resulting equations using Euler’s
approximation, and taking into account additive disturbances caused by other
hydraulic connections, we obtain the discrete time model of the form (3.1a)

xi+1 = A(δi)xi +Bui +Gw(δi)

with

A (δi) =


0.421 0.483 0 0
0.483 0.422 0 0
0.097 0 0.722 − 0.277ξ1,i 0

0 0.095 0 0.727 − 0.271ξ2,i

 ,

B =


0 0.347

0.463 0
0.694 0

0 0.810

 , G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


where the state x = [x1, x2, x3, x4]⊤ and input u = [u1, u2]⊤ vectors represent
the deviations of the liquid levels in centimetres and voltages from the selected
operating point, respectively.
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The constraints on the system states, corresponding to the deviations in the liquid
levels in tanks 3 and 4, are [−1.2,−1.2]⊤ ≤ [x3, x4]⊤ ≤ [1.2, 1.2]⊤ cm. Similarly,
the constraints on the inputs are [−1.0,−1.0]⊤ ≤ [u1, u2]⊤ ≤ [1.0, 1.0]⊤ V, which
corresponds to the variations in the voltages applied to the pumps 1 and 2.

All uncertainties (nδ = 6) are stacked in the random vector δ = [ξ1, ξ2, . . . , ξ6]⊤,
which has a truncated multivariate normal distribution δ ∼ N6(µ,Σ), with mean
vector µ, covariance matrix Σ and bounds with values

µ =



0
0
0
0
0
0

 , Σ = 10−3 ×



0.0250 0.0225 0 0 0 0
0.0225 0.0250 0 0 0 0

0 0 6.40 0 0 5.12
0 0 0 6.40 5.12 0
0 0 0 5.12 6.40 0
0 0 5.12 0 0 6.40

 , |δ| ≤



0.01
0.01
0.17
0.17
0.17
0.17

 .

Simulation Setup

In this example, the performances of a SCMPC and a CSB-MPC for a primary
set SS consisting of 10000 and a smaller set of 1300 scenarios are compared. The
numbers of scenarios selected are

C = {330, 240, 150, 90, 60, 42}

which fulfil the condition C = nδE (see Assumption 3.3), and through (3.6), with
β = 10−9, their theoretical probabilities of constraints satisfaction P[xi+1 ∈ X] ≥
pt are

pt(C) = {81.3%, 74.9%, 62.0%, 42.5%, 24.2%, 9.0%}.

The duration of each simulation is 40 sampling periods for both MPCs and the
nonlinear system initial state is x[j]

0|k = x̂0 = [−6.7,−6.5,−1,−1]⊤. The MPCs
parameters are prediction horizon N = 12 (thus, each OCP consists of 24 deci-
sion variables), cost function weights matrices Q = diag(3, 3, 1, 1) and R = I2.
The robust invariant set XT consisting of a polytope of 54 hyperplanes, and
K and P matrices are

K =


−0.4824 −0.2867
−0.4075 −0.3645
−0.2635 0.0402

0.0484 −0.3402


⊤

, P =


5.0037 2.0305 −0.5713 −0.4862
2.0305 5.0796 −0.6271 −0.4581

−0.5713 −0.6271 1.7320 0.1207
−0.4862 −0.4581 0.1207 1.5524

 .
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Table 3.3: Performance Indices of the MPCs in Example 2 for a SS of 10000 Scenarios.

Controller ps pc Nv PDavg IAEavg IAUavg tavg COCP

SCMPC330 92.0% 96.6% 88 1.40% 76.702 18.772 678 ms 48180
CSB-MPC330 92.7% 96.9% 79 1.32% 76.699 18.760 780 ms 48180
SCMPC240 90.9% 96.2% 99 1.45% 76.703 18.777 463 ms 35040
CSB-MPC240 92.5% 96.9% 82 1.37% 76.699 18.761 554 ms 35040
SCMPC150 89.5% 95.6% 115 1.55% 76.707 18.789 314 ms 21900
CSB-MPC150 91.2% 96.7% 95 1.40% 76.700 18.764 393 ms 21900
SCMPC90 86.7% 94.8% 144 1.78% 76.712 18.804 205 ms 13140
CSB-MPC90 89.0% 95.9% 118 1.51% 76.704 18.771 267 ms 13140
SCMPC60 83.9% 94.0% 175 1.94% 76.718 18.823 154 ms 8760
CSB-MPC60 85.9% 94.8% 152 1.68% 76.708 18.779 203 ms 8760
SCMPC42 80.1% 92.8% 220 2.03% 76.728 18.848 78 ms 6132
CSB-MPC42 80.8% 93.0% 213 1.84% 76.713 18.789 124 ms 6132

Results

Tables 3.3 and 3.4 show the performance results of each MPC for cases SS(10000)
and SS(1300), respectively; where, as in Example 1, the first column corresponds
to the type of controller and the subsequent columns indicate the performance
indices as defined at the beginning of this section (which were computed based on
the Nr closed-loop responses of the nonlinear system). Furthermore, these indices
are depicted in Figures 3.9-3.10, in which the orange and blue lines represent
those in Tables 3.3 and 3.4, respectively.

As in Example 1, it is verified that the CSB-MPCs obtained higher empirical
probabilities of constraint satisfaction ps and pc than SCMPCs; and their ps
are significantly above the theoretical probabilities of constraint satisfaction pt,
signifying higher feasibility of an OCP solution, in a probabilistic sense. Moreover,
the CSB-MPCs reported better Nv and PDavg indices than the SCMPCs, except
for the case C = 240 in Table 3.4, where the CSB-MPC obtained a slightly higher
PDavg, but with fewer constraints violated.
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Table 3.4: Performance Indices of the MPCs in Example 2 for a SS of 1300 Scenarios.

Controller ps pc Nv PDavg IAEavg IAUavg tavg COCP

SCMPC330 91.8% 96.5% 89 1.46% 76.703 18.770 577 ms 48180
CSB-MPC330 95.1% 98.1% 52 1.36% 76.682 18.725 572 ms 48180
SCMPC240 90.3% 95.8% 104 1.35% 76.702 18.775 415 ms 35040
CSB-MPC240 92.4% 96.9% 83 1.40% 76.698 18.759 407 ms 35040
SCMPC150 89.6% 95.7% 113 1.62% 76.707 18.784 238 ms 21900
CSB-MPC150 90.7% 96.4% 100 1.40% 76.702 18.768 247 ms 21900
SCMPC90 87.0% 94.7% 141 1.83% 76.713 18.800 141 ms 13140
CSB-MPC90 88.5% 95.8% 123 1.53% 76.705 18.775 149 ms 13140
SCMPC60 84.1% 93.8% 175 2.01% 76.723 18.820 95 ms 8760
CSB-MPC60 85.7% 94.8% 155 1.73% 76.709 18.782 100 ms 8760
SCMPC42 79.8% 92.0% 225 2.10% 76.730 18.844 67 ms 6132
CSB-MPC42 80.3% 92.7% 217 1.86% 76.714 18.792 71 ms 6132

The closed-loop trajectories of the nonlinear system and the applied inputs for
SCMPC330, CSB-MPC330, and CSB-MPC42 in Table 3.4 are shown in Figures 3.11a,
3.11b and 3.11c, respectively. In Figures 3.11a and 3.11b, very similar behaviours
are observed by both controllers; however, the best performances are presented
by the CSB-MPC330 (see Figures 3.9-3.10). Comparing the performances of CSB-
MPC330 con CSB-MPC42, it is noted that a decrease in the number of scenarios
use to solve the OCP leads to an increase in the number of trajectories that
violate the limits. Nevertheless, the mean trajectories with standard deviations
(dotted lines) are kept within the limits (black dashed lines), indicating that the
probability that a state is within the allowed limits is at least 68 %.

As in Example 1, it is observed for a CSB-MPC that the solution time tavg
decreases significantly as the primary set becomes small, but does not signifi-
cantly alter the probabilities ps and pc. This can be seen for the SS(1300) case
in Figure 3.9, where the tavg times of the CSB-MPC are very close to those of a
SCMPC, in some cases lower; e.g., CSB-MPC240 and CSB-MPC330 in Table 3.4.
These CSB-MPCs mentioned, in addition to having shorter solution times tavg
than their corresponding SCMPC, have better ps, pc and Nv. In this way, with
suitable size of SS , if an improvement of the time tavg is required, a CSB-MPC
is a viable alternative compared to a SCMPC. For example, if similar or superior
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performance indices to those of the SCMPC330 (tavg = 577 ms) in Table 3.4 are
required, but with a lower solution time, the CSB-MPC240 (tavg = 407 ms) with
a 170 ms quicker solution time could be used.

Figure 3.9: Graphs of the performance indices ps, pc, Nv and tavg from Ta-
bles 3.3 (SS(10000), orange lines) and 3.4 (SS(1300), blue lines), corresponding to
SCMPC (dashed lines) and CSB-MPC (solid lines), for 42, 60, 90, 150, 240 and 330 scenarios.

The lowest IAEavg and IAUavg indicators where obtained by the CSB-MPCs,
although very similar to those of SCMPC at values close to IAEavg = 76.7 and
IAUavg = 18.8, which compared to those of a MPC with a perfect forecast, they
are close to IAEpf = 74.908 and IAUpf = 19.440. In the same way as in Example
1, the closed-loop trajectories exceeded their allowed limits at some moments in
all the simulations in both controllers. The inputs applied initially reached their
allowed maximums without transgressing them.
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Figure 3.10: Graphs of the performance indices PDavg, IAEavg and IAUavg from Ta-
bles 3.3 (SS(10000), orange lines) and 3.4 (SS(1300), blue lines), corresponding to
SCMPC (dashed lines) and CSB-MPC (solid lines), for 42, 60, 90, 150, 240 and 330 scenarios.

(a)
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(b)

(c)

Figure 3.11: Nonlinear system responses to a SCMPC330, CSB-MPC330 and CSB-MPC42
controllers, for a SS of 1300 Scenarios. The 1000 closed-loop trajectories and applied
inputs (thin solid lines), mean trajectory (thick solid lines), mean trajectory with stan-
dard deviation (dotted lines), minimum and maximum values (blue dashed lines) and con-
straints (black dashed lines) |x3|, |x4| ≤ 1.2, |u1|, |u2| ≤ 1.0. (a) SCMPC330. (b) CSB-
MPC330. (c) CSB-MPC42.
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3.5 Chapter Conclusions

A new scenario-based model predictive control approach was introduced in this
chapter. This MPC scheme, called conditional scenario-based model predictive
control (CSB-MPC), is designed for discrete-time linear systems affected by cor-
related and bound parametric uncertainties and/or additive disturbances. In this
approach, a primary set of equiprobable and randomly generated scenarios is ap-
proximated to a set of conditional scenarios with their respective probabilities of
occurrence. These are incorporated in the cost function of an optimal control
problem where the predicted states and inputs are penalised according to the
probabilities associated with the uncertainties on which they depend.

The performances of the CSB-MPC and those of a scenario-based MPC were
compared using two numerical examples, whose results showed greater empirical
probabilities of constraints satisfaction, above the theoretical one, by the former,
increasing the feasibility of an OCP solution, in a probabilistic sense. Also, the
CSB-MPC showed a decrease in the number of times constraints are violated,
with less distance outside the constraints, even when have a smaller number of
scenarios than the scenario-based MPCs.

Finally, for a smaller primary set, the CSB-MPC offers similar solution times, in
some cases shorter than those of a standard scenario-based MPC. Consequently,
if a trade-off between the level of constraints satisfaction and the computational
tractability is required, using a CSB-MPC with a smaller number of scenarios
than a scenario-based MPC is a viable option.

84



Chapter 4

CSB-MPC for Energy
Management in Microgrids

with Correlated Forecasts
This chapter presents a conditional scenario-based model predic-

tive control (CSB-MPC) for energy management in a microgrid with
correlated power generation and demand forecasts. The microgrid in-
cludes renewable energy sources such as photovoltaic generators and
wind turbines, as well as a battery-based energy storage system. At
each sampling time, a large set of scenarios of possible evolutions of
power generation and demand forecasts are generated and further ap-
proximated to a reduced set of conditional scenarios, with their prob-
abilities of occurrence. Then, the set of reduced scenarios and their
probabilities are used to solve a feasible scenario-based mixed-integer
linear program (MILP) with finite horizon, where the cost of the en-
ergy consumed from the main grid and the discarded generated power
are minimised. The first section presents the highlights of the proposed
CSB-MPC as an energy management system (EMS) in a microgrid.
The second section describes the structure of the microgrid under con-
sideration, its mathematical model, and how uncertainties influence
RES power generation and demand forecasts. The third section dis-
cusses the CSB-MPC adaptation to the context of energy management
in a microgrid, and the optimal control problem to be solved, as well
as its numerical and probabilistic feasibility. In the fourth section, a
case study is proposed and its results are discussed. Finally, the fifth
section presents the conclusions of this chapter.
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4.1 Introduction

Photovoltaic and wind power generation forecasts, and possibly demand forecast,
are strongly influenced by meteorological conditions that can be highly fluctuat-
ing, which can also affect the type or distribution of uncertainties. Therefore, a
energy management based on a scenario-based MPC is desirable, given its pos-
sibility to include updated statistical information in real-time, to make better
decisions consistent with the actual situation of the system. Additionally, there
are cases, due to working hours, off-hours, activity in a household, etc., where
there is a high correlation between powers [83]–[87], either between the output
powers of RES generators, PV-wind, PV-demand, wind-demand, or between var-
ious loads on the demand side.

The challenges mentioned above motivate the adaptation of the conditional scenario-
based model predictive control (CSB-MPC), introduced in the previous chapter,
to manage energy in a microgrid with correlated forecasts. The CSB-MPC strat-
egy, developed for uncertain linear systems with correlated uncertainties, where
such uncertainties characteristics are exploited in the solution of a OCP that as-
signs greater importance to predictions with a higher probability of occurrence.
In summary, the main highlights of the proposal are as follows

• A mathematical model of a standard microgrid that includes uncertainties
in power generation and demand forecasts, with the possibility of being
correlated. This model can improve EMS performance in a microgrid with
these characteristics.

• A CSB-MPC adapted to the framework of energy management in a MG
with correlated forecasts. These correlation features are exploited in the
solution of a OCP with guaranteed numerical and probabilistic feasibilities,
that assigns greater importance to predictions with a higher probability of
occurrence.

• To validate improvements in the probability of constraint satisfaction of the
CSB-MPC, a case study of the simulation of the behaviour of a microgrid
whose energy management is performed by a CSB-MPC. Additionally, as a
baseline, the performance of the microgrid with the proposed CSB-MPC is
compared with that of a deterministic MPC, that of a stochastic MPC of the
deterministic group and that of a scenario-based MPC, whose feasibilities
of the OCPs, in a probabilistic sense, and other performance indices are
provided.
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Nomenclature

Parameters
Emin, Emax Minimum/maximum energy storage of the ESS (kWh)
P max

c , P max
d Maximum ESS charging and discharging powers (kW)

P max
g Maximum main grid power (kW)

ηc, ηd ESS charging and discharging efficiencies
nq, nr Numbers of PV generators and wind turbines, respectively
Ts Sampling time (h)
N Prediction horizon (number of sampling instants)
S, C Number of scenarios of the primary SS and reduced SC sets, respectively
α1, · · · , α5 Objective function weights
Nξ, Dξ Number of random variables ξ, and number of divisions to discretise

the support of each ξ

State and other variables
xk State vector
Ppvg,q, P̄pvg,q Generated and forecasted powers of the qth PV generator (kW)
Pwg,r, P̄wg,r Generated and forecasted powers of the rth wind turbine (kW)
Ppv, Pw PV power (kW) and wind power consumed (kW)
Pg Power consumed from the main grid (kW)
Pl Power consumed by load (kW)
E ESS state of charge (kWh)
Cg Electricity price (e/kWh)
P̂pvg,q, P̂wg,r Current powers available from RES generators (kW)
P̂l, Ê Current demand (kW) and SOC (kWh)
Ψ[m]

k , p
[m]
k mth equiprobable scenario and probabilities of its elements

Ψ̃[j]
k , p̃

[j]
k jth conditional scenario and probabilities of its elements

ξ, γ Random variable (kW) and random vector
µ, Σ,W Mean, covariance and support of random vector γ

Decision variables
Lpv, Lw Discarded available PV and wind power levels
Pc, Pd ESS charging and discharging powers (kW)
δc, δd ESS charging and discharging modes (binary)
ρe, ρg Slack variables of ESS energy (kWh) and main grid power (kW)
dk Vector of decision variables

Indices
k, i Current time instant and time step ahead of k, respectively
m, j Equiprobable scenario and conditional scenario indices
q, r PV generator and wind turbine indices, respectively
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4.2 Microgrid Modelling

The schematic diagram of the microgrid (MG) considered here and its components
are illustrated in Figure 4.1, where the arrows indicate the flow of power between
its components, which includes power penetration produced by renewable energy
sources (RES) such as solar and wind; and an energy storage system (ESS) based
on a battery energy storage system (BESS). Furthermore, the proposed MG model
considers that that only energy can be imported from the main grid, without the
possibility of reselling stored or produced energy that is not consumed. However,
in the case of also assuming the sale of energy, its inclusion in the MG model and
OCP is straightforward.

In accordance with this, being Ts the sampling period and i the discrete-time
index, the mathematical models of the microgrid components are described below.

4.2.1 Renewable Energy Sources (RES)

The photovoltaic (PV) power Ppv(i) consumed by the MG in the instant of time
i is given in (4.1a), where Ppvg,q(i) is the PV power generated by the qth ∀q ∈
{1, 2, . . . nq} PV generator at that instant, which is a function of the efficiency of
the PV generator, its array area and the solar irradiance [114]

Ppv(i) = (1 − Lpv(i))
nq∑

q=1
Ppvg,q(i) (4.1a)

0 ≤ Lpv(i) ≤ 1 (4.1b)

Lpv(i) is a decision variable that determines the level of the total PV power
generated that is not consumed, and is bounded by the constraint (4.1b).

On the other hand, the wind power consumed Pw(i) is given in (4.2a), where
Pwg,r(i) is the generated power by the rth ∀r ∈ {1, 2, . . . nr} wind turbine (WT),
wich depends on the wind speed, the air density, the area swept by blades and
the rotor power coefficient [115]

Pw(i) = (1 − Lw(i))
nr∑

r=1
Pwg,r(i) (4.2a)

0 ≤ Lw(i) ≤ 1 (4.2b)

Constraint (4.2b) is a constraint on the decision variable Lw(i), which determines
the level of the total wind power generated that is not consumed.
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Figure 4.1: Microgrid schematic diagram. The arrows indicate the power flow between its
components.

4.2.2 Energy Storage System (ESS)

The energy storage is performed by a battery energy storage system (BESS) [61],
[116]. The prediction of the state of charge (SOC) E(i + 1) for instant i + 1 is
given by the dynamic model (4.3a), which is a function of the previous SOC E(i),
and the charging power Pc(i) and discharging power Pd(i) decision variables

E(i+ 1) = E(i) + ηcTsPc(i) − 1
ηd
TsPd(i) (4.3a)

Emin ≤ E(i+ 1) ≤ Emax (4.3b)
0 ≤ Pc(i) ≤ Pmax

c δc(i) (4.3c)
0 ≤ Pd(i) ≤ Pmax

d δd(i) (4.3d)
δc(i), δd(i) ∈ {0, 1} (4.3e)
δc(i) + δd(i) ≤ 1 (4.3f)

where ηc and ηd are the charging and discharging efficiencies of the storage system,
respectively.

The set of constraints on the BESS SOC (4.3a) are stated in (4.3b)-(4.3d). In this,
(4.3b) are the constraints on the energy storage capacity; (4.3c) and (4.3d) are the
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constraints on the charging and discharging powers, respectively, conditioned by
the binary decision variables δc(i) (charging mode) and δd(i) (discharging mode)
to avoid simultaneous charging and discharging of the battery through constraints
(4.3e)-(4.3f).

4.2.3 Power Balance

The balance between the delivered power Pdel(i) and the consumed power Pcon(i)
in the MG, for all i, must satisfy

Pdel(i) = Pcon(i)
Pg(i) + Ppv(i) + Pw(i) + Pd(i) = Pl(i) + Pc(i)

where Pg(i) is the power imported from the main grid and Pl(i) is the power
demanded by the load.

By rearranging the previous power balance equation, the power delivered by the
main grid is expressed as (4.4a), and its constraints as (4.4b)

Pg(i) = Pl(i) − Ppv(i) − Pw(i) + Pc(i) − Pd(i) (4.4a)
0 ≤ Pg(i) ≤ Pmax

g . (4.4b)

4.2.4 System Uncertainties

Considering that both the power generated by each RES generator and the power
demand have uncertainties, each Ppvg,q(i), Pwg,r(i) and Pl(i) in (4.1a), (4.2a) and
(4.4a), respectively, can be split and expressed as the sum of two components. One
known component representing the forecasted power (P̄pvg,q(i), P̄wg,r(i), P̄l(i))
and one stochastic component representing the forecast error (ξpvg,q(i), ξwg,r(i),
ξl(i)), this is

Ppvg,q(i) = P̄pvg,q(i) + ξpvg,q(i) (4.5a)
Pwg,r(i) = P̄wg,r(i) + ξwg,r(i) (4.5b)

Pl(i) = P̄l(i) + ξl(i). (4.5c)

Furthermore, each random variable is normally distributed and with zero mean.
Some or all the set of random variables ξpvg,q, ξwg,r and ξl are correlated (e.g.
there is a correlation between powers [83]–[85], [87], either between generators in
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the RES, or between demand and generated power) and make up the random
vector γ ∈ Rnq+nr+1, that is

γ(i) = [ξpvg,1(i), . . . , ξpvg,nq (i), ξwg,1(i), . . . , ξwg,nr (i), ξl(i)]⊤

This vector has a multivariate normal distribution γ(i) ∼ Nnq+nr+1(µ(i),Σ(i))
with zero mean vector µ(i) = [0, . . . , 0]⊤, a known covariance matrix Σ(i), and un-
bounded or with bounded support (if exist) Wγ(i). Any sequence {γ(0), γ(1), . . .}
is independent and identically distributed (i.i.d.). Additionally, uncertainties in
the BESS (4.3a), such as parametric (e.g., in ηc and/or ηd) and/or in the current
SOC E(i), can also be considered by including them in γ.

4.3 CSB-MPC Energy Management System

This section discusses how the conditional scenario-based MPC (CSB-MPC) strat-
egy is adapted to propose a control strategy for energy management in a MG with
forecast uncertainties. At each instant of time k, the MPC predicts the evolutions
of the states and inputs of the process, across a prediction horizon N . This using
a model of the process and assuming that the current measures of its states and
inputs at that instant are available. These predictions are used to solve an optimal
control problem (OCP) subject to constraints on the predicted states and inputs,
whose solution is the sequence of future inputs that steer the process towards a
target operating point while satisfying the constraints. According to the receding
horizon principle (RH) [21], only the first element of the optimal input sequence
is applied, executing the OCP in the next time instant k + 1 again.

The CSB-MPC is a strategy that belongs to the scenario-based group [35], [36] of
stochastic MPC (SMPC) [54], [117], where the uncertainties present in the system
are considered to have a stochastic nature and whose characteristics, such as mean,
covariance and bounds (if they exist), are known. With this knowledge, a primary
set SS of S equiprobable scenarios is generated and further approximated to a
reduced set SC of C conditional scenarios (CS), with their respective probabilities
of occurrence. This reduced set and its probability of occurrence are incorporated
into the prediction model to solve an OCP with constraints that must be fulfilled
for all C scenarios, and in whose quadratic objective function the predicted states
and inputs are penalised according to their probabilities of occurrence.

In the framework of a MG energy management system (EMS) [66], [68], the OCP
consists of an objective function that minimises the cost of energy consumed,
based on energy tariffs, from the main grid. Typically, this function incorporates
the predictions of the SOC, predictions of the power delivered by the main grid,
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and the forecast of the power demand and power generated by the RES. The de-
cision variables are the power used of the total power generated by the RES and
the charging/discharging powers of the ESS. When uncertainties exist, for exam-
ple, in generation and demand forecasts, an OCP that takes them into account is
most appropriate.

4.3.1 Scenario Generation and Reduction

In the following, the notation x[m](i|k) is interpreted as the predicted value of the
variable x of scenario m, for the time step i ahead of the current time instant k.
Since uncertainties are present in the powers generated by RES and demand, as
noted in (4.5), a set of scenarios {Ψ[1]

k ,Ψ[2]
k , . . . ,Ψ[S]

k } ∈ SS in the EMS proposed
here consists of S possible evolutions of Ppvg,q, Pwg,w and Pl, for N time steps
ahead of k, in which the mth scenario Ψ[m]

k ∀m ∈ {1, 2, . . . , S} has the structure

Ψ[m]
k =

{
ψ[m](1|k), ψ[m](2|k), . . . , ψ[m](N |k)

}
(4.6)

=





P
[m]
pvg,1(1|k)

...
P

[m]
pvg,nq (1|k)
P

[m]
wg,1(1|k)

...
P

[m]
wg,nr (1|k)
P

[m]
l (1|k)


,



P
[m]
pvg,1(2|k)

...
P

[m]
pvg,nq (2|k)
P

[m]
wg,1(2|k)

...
P

[m]
wg,nr (2|k)
P

[m]
l (2|k)


, . . . ,



P
[m]
pvg,1(N |k)

...
P

[m]
pvg,nq (N |k)
P

[m]
wg,1(N |k)

...
P

[m]
wg,nr (N |k)
P

[m]
l (N |k)




.

Assumption 4.1. Given the current time instant k, updated forecasts of
power generation P̄pvg,q(i|k), P̄wg,r(i|k) and demand P̄l(i|k) for a window
∀i ∈ {1, . . . , N} of N steps ahead of k, together with the characteristics
µ(i|k), Σ(i|k), Wγ(i|k) of the random vector γ are available.

In line with Assumption 4.1, each Ψ[m]
k is calculated using (4.5), which consists

of the sum of a known part Ψ̄[m]
k = {ψ̄[m](1|k), ψ̄[m](2|k), . . . , ψ̄[m](N |k)} with a

stochastic part Γ[m]
k = {γ[m](1|k), γ[m](2|k), . . . , γ[m](N |k)}

Ψ[m]
k = Ψ̄[m]

k + Γ[m]
k ,

ψ[m](i|k) = ψ̄[m](i|k) + γ[m](i|k).
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The known part of Ψ[m]
k are the forecasts P̄pvg,q(i|k), P̄wg,r(i|k) and P̄l(i|k), which

will be the same for all scenarios P̄ [m]
pvg,q(i|k) = P̄pvg,q(i|k), P̄ [m]

wg,r(i|k) = P̄wg,r(i|k)
and P̄

[m]
l (i|k) = P̄l(i|k)

Ψ̄[m]
k =

{
ψ̄[m](1|k), ψ̄[m](2|k), . . . , ψ̄[m](N |k)

}

=





P̄pvg,1(1|k)
...

P̄pvg,nq (1|k)
P̄wg,1(1|k)

...
P̄wg,nr (1|k)
P̄l(1|k)


,



P̄pvg,1(2|k)
...

P̄pvg,nq (2|k)
P̄wg,1(2|k)

...
P̄wg,nr (2|k)
P̄l(2|k)


, . . . ,



P̄pvg,1(N |k)
...

P̄pvg,nq (N |k)
P̄wg,1(N |k)

...
P̄wg,nr (N |k)
P̄l(N |k)




.

In addition, since the data µ(i|k), Σ(i|k) and Wγ(i|k) of the forecast errors vec-
tor γ are known, S realisations {Γ[1]

k ,Γ[2]
k , . . . ,Γ[S]

k } of γ, for N steps each, are
performed (e.g. by means of a random number generator), thus constituting the
stochastic part

Γ[m]
k =

{
γ[m](1|k), γ[m](2|k), . . . , γ[m](N |k)

}

=





ξ
[m]
pvg,1(1|k)

...
ξ

[m]
pvg,nq (1|k)
ξ

[m]
wg,1(1|k)

...
ξ

[m]
wg,nr (1|k)
ξ

[m]
l (1|k)


,



ξ
[m]
pvg,1(2|k)

...
ξ

[m]
pvg,nq (2|k)
ξ

[m]
wg,1(2|k)

...
ξ

[m]
wg,nr (2|k)
ξ

[m]
l (2|k)


, . . . ,



ξ
[m]
pvg,1(N |k)

...
ξ

[m]
pvg,nq (N |k)
ξ

[m]
wg,1(N |k)

...
ξ

[m]
wg,nr (N |k)
ξ

[m]
l (N |k)




.

As discussed in the conclusions of the chapter 2 and in subsection 3.2.2, the main
limiting factor of randomised schemes resides in the size of the set SS used to solve
the OCP, which defines the optimal solution and its computational tractability.
The latter because a huge SS better represents the characteristics of the uncer-
tainties present in the system, but may result in a numerically intractable OCP.
In contrast, a very small SS decreases the computational burden, but may have
improbable scenarios far from the reality of the system. One way to decrease the
computational burden when SS is large lies in solving the OCP for a reduced set
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SC , which is obtained using scenario reduction techniques; where the technique
selected will determine how closely the reduced set represents the statistical mo-
ments of the random vector γ, and the time used for the reduction.

The CSB-MPC, developed for discrete-time linear systems with both additive
and/or parametric uncertainties, which are correlated, exploits the conditional
scenario (CS) concept [105] and its reduction method [82] in the two-stage stochas-
tic mixed-integer linear programming (SMILP) context and extends it to the MPC
framework. In CSB-MPC, SS is referred to as the primary set of equiprobable
scenarios, that is, each element ψ[m](i|k) in Ψ[m]

k , has a probability of occurrence
p[m](i|k) = 1/S. The number of conditional scenarios C, desired for SC , must be
defined such that C = NξDξ is satisfied, where Nξ = nq + nr + 1 is the number
of random variables ξ present in the system and Dξ is the number of divisions to
discretise the support of each ξ.

Via Algorithm 3.2, with the primary set SS and C as inputs, SS is approximated
to a reduced set SC of C conditional scenarios (4.7a), with their probabilities of
occurrence (4.7b){

Ψ̃[1]
k , . . . , Ψ̃[C]

k

}
∈ SC , Ψ̃[j]

k =
{
ψ̃[j](1|k), ψ̃[j](2|k) . . . , ψ̃[j](N |k)

}
(4.7a){

p̃
[1]
k , p̃

[2]
k , . . . , p̃

[C]
k

}
, p̃

[j]
k =

{
p̃[j](1|k), p̃[j](2|k), . . . , p̃[j](N |k)

}
(4.7b)

∀j ∈ {1, . . . , C}

where each CS Ψ̃[j]
k has the same equiprobable scenario structure (4.6), hence

ψ̃[j](i|k) =



P̃
[j]
pvg,1(i|k)

...
P̃

[j]
pvg,nq (i|k)
P̃

[j]
wg,1(i|k)

...
P̃

[j]
wg,nr (i|k)
P̃

[j]
l (i|k)


, ∀i ∈ {1, . . . , N}

and keeping in mind that, in contrast to other techniques, the reduction is carried
out without requiring an optimisation stage.

94



4.3 CSB-MPC Energy Management System

4.3.2 Prediction Model and Constraints

Before defining the prediction model, the following assumption must be addressed

Assumption 4.2. For any current instant k, the real values of the PV
production, wind production, demand and ESS SOC for that instant are
assumed to be known and are denoted by P̂pvg,q(k), P̂wg,r(k), P̂l(k) and
Ê(k), respectively.

Using the MG model presented in the previous section and replacing SC (4.7a)
in (4.1a), (4.2a) and (4.4a), the prediction model (4.8) can be derived ∀i ∈
{0, . . . , N}, where, with real information available, predictions for instant i = 0
will be the same for all scenarios, i.e. P̃

[j]
pvg,q(0|k) = P̂pvg,q(k), P̃ [j]

wg,r(0|k) =
P̂wg,r(k), E(0|k) = Ê(k) and P̃

[j]
l (0|k) = P̂l(k), this in line with Assumption 4.2

P̃ [j]
pv (i|k) = (1 − Lpv(i|k))

nq∑
q=1

P̃ [j]
pvg,q(i|k) (4.8a)

P̃ [j]
w (i|k) = (1 − Lw(i|k))

nr∑
r=1

P̃ [j]
wg,r(i|k) (4.8b)

E(i+ 1|k) = E(i|k) + ηcTsPc(i|k) − 1
ηd
TsPd(i|k) (4.8c)

P̃ [j]
g (i|k) = P̃

[j]
l (i|k) − P̃ [j]

pv (i|k) − P̃ [j]
w (i|k) + Pc(i|k) − Pd(i|k). (4.8d)

A model of the BESS less close to the real one may result in a real SOC outside
the defined operating limits [118]. Usually, the Emin and Emax limits of the SOC
are set at a percentage within those supplied by the manufacturer (e.g. between
15-20%) to extend the life of the BESS [61], [118].

Likewise, Pmax
g is set as the value of the contracted power, or a smaller value

when a reduction in consumption from the main grid is required at peak hours
through load curtailment [68]. Hence an unusual peak in demand may cause the
power delivered by the RES and ESS to be insufficient, making it necessary to
use a power above Pmax

g to maintain the power balance.

In accordance with the aforementioned, to ensure the feasibility of the OCP at
any instant, the hard constraints on SOC (4.3b) and delivered power (4.4b) are
reformulated as new soft constraints, by incorporating the slack variables ρe and
ρg. Therefore, all predictions in (4.8) must satisfy the operational constraints
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(4.1b), (4.2b), (4.3b)-(4.3f) and (4.4b), which are listed below

0 ≤ Lpv(i|k) ≤ 1 (4.9a)
0 ≤ Lw(i|k) ≤ 1 (4.9b)

Emin − ρe(i|k) ≤ E(i+ 1|k) ≤ Emax + ρe(i|k) (4.9c)
0 ≤ Pc(i|k) ≤ Pmax

c δc(i|k) (4.9d)
0 ≤ Pd(i|k) ≤ Pmax

d δd(i|k) (4.9e)
δc(i), δd(i) ∈ {0, 1} (4.9f)
δc(i|k) + δd(i|k) ≤ 1 (4.9g)

0 ≤ P̃ [j]
g (i|k) ≤ Pmax

g + ρg(i|k) (4.9h)
0 ≤ ρe(i|k) (4.9i)
0 ≤ ρg(i|k) (4.9j)

where the new decision variables ρe and ρg are restricted to be zero or positive
through (4.9i) and (4.9j), and are penalised in the objective function to force their
values to be zero if an optimum solution can be obtained without violating the
softened constraints.

The state vector of the jth scenario for instant i ∀i ∈ {0, . . . , N} is denoted by
x[j](i|k), and the states of all instants are grouped in x

[j]
k , this is

x[j](i|k) = [P̃ [j]
pvg,1(i|k), . . . P̃ [j]

pvg,nq
(i|k), P̃ [j]

pv (i|k),

P̃
[j]
wg,1(i|k), . . . P̃ [j]

wg,nr
(i|k), P̃ [j]

w (i|k),

E(i|k), P̃ [j]
l (i|k), P̃ [j]

g (i|k)]⊤,

x
[j]
k = {x[j](0|k), . . . , x[j](N |k)}.

Similarly, the vector d(i|k) groups the decision variables of the instant i, and dk

groups the full set of decision variables of the OCP, which are the same for all C
scenarios

d(i|k) = [Lpv(i|k), Lw(i|k), Pc(i|k), Pd(i|k), δc(i|k), δd(i|k), ρe(i|k), ρg(i|k)]⊤,
dk = {d(0|k), . . . , d(N |k)}.
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4.3.3 Objective Function and Optimisation Problem

Originally, as stated in section 3.3, the OCP in CSB-MPC consists of a quadratic
programming problem (QP) with constraints, in whose quadratic objective func-
tion the predicted states and inputs for each scenario are penalised by their
associated probabilities of occurrence to give higher weight to the most likely
realisations.

The objective function considered in this context, is a linear function of dk, which
consists of an average of all C scenarios, in terms of the cost of energy consumed
from the main grid and the power generated by RES that is discarded, and is
given by

J(dk) = 1
C

C∑
j=1

N∑
i=0

[
p̃[j](i|k)

(
α1Cg(i|k)P̃ [j]

g (i|k)

+ α2Lpv(i|k)
nq∑

q=1
P̃ [j]

pvg,q(i|k)

+ α3Lw(i|k)
nr∑

r=1
P̃ [j]

wg,r(i|k)

+ α4ρg(i|k) + α5ρe(i|k)
)]

(4.10)

where {α1, . . . , α5} are user-defined weights.

The first term within the parenthesis penalises the cost of energy consumed from
the main grid through α1 and electricity prices Cg, whose values or forecasts are
considered to be known {Cg(0|k), . . . , Cg(N |k)}.

In the second and third terms, α2 and α3 penalise the power that is discarded
from the power generated by the PV generators and wind turbines to reduce the
use of the ESS.

The last two terms, corresponding to the slack variables ρg and ρe, are penalised
with the weights α4 and α5, which are often set to high values compared to the
remaining weights, to make their values close to zero.

For each j, the above five terms are penalised via their respective probabilities
p̃

[j]
k given in (4.7b), where, based on Assumption 4.2, where accurate current

information is available, p̃[j](0|k) = 1/C is defined.
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Figure 4.2: Schematic diagram of the microgrid with a CSB-MPC acting as EMS.

Since the vector of decision variables dk includes the discrete variables δc and
δd, strictly of binary type δc, δd ∈ {0, 1}, the OCP in the energy management
of the MG under consideration is to minimise J(dk) by solving the following
scenario-based mixed-integer linear program (MILP) with finite horizon

min
dk

J(dk) (4.11)

s.t.
(4.8a) − (4.8d),
(4.9a) − (4.9j),
P̃ [j]

pvg,q(0|k) = P̂pvg,q(k),
P̃ [j]

wg,r(0|k) = P̂wg,r(k),

P̃
[j]
l (0|k) = P̂l(k),
E(0|k) = Ê(k),
p̃[j](0|k) = 1/C,
∀i ∈ {0, 1, . . . , N}, ∀j ∈ {1, 2, . . . , C}
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Algorithm 4.1 Operation of the Microgrid CSB-MPC
1. Define the number S of scenarios in the primary set SS and

the desired number C of CS in the reduced set SC, where
C = NξDξ.

2. At the current instant k, obtain the current MG data
P̂pvg,q(k), P̂wg,r(k), P̂l(k), Ê(k); the updated forecasts of
powers P̄pvg,q(i|k), P̄wg,r(i|k), P̄l(i|k), and the characteristics
µ(i|k),Σ(i|k),Wγ(i|k) of their uncertainties, for N steps
∀i ∈ {1, . . . , N} ahead of k. Also, the updated electricity
prices forecasts Cg(i|k).

3. Use P̄pvg,q(i|k), P̄wg,r(i|k), P̄l(i|k) to obtain the known part Ψ̄[m]
k

of Ψ[m]
k in (4.6), and generate S realisations of γ for N steps

each to obtain its stochastic part Γ[m]
k .

4. Construct mth scenario Ψ[m]
k = Ψ̄[m]

k + Γ[m]
k according to the

structure in (4.6), and group the scenarios {Ψ[1]
k , . . . ,Ψ[S]

k } to
build the primary set SS.

5. Use Algorithm 3.2 to obtain the reduced set SC (4.7a) and its
probabilities (4.7b).

6. Replace SC in (4.8), (4.9) and (4.10) and obtain the optimal
solution vector d∗

k by solving the MILP (4.11).
7. Apply the first value d∗(0|k) of vector d∗

k to the MG. Set
k = k + 1, wait until Ts has elapsed and then return to Step
2.

where, using the receding horizon strategy, OCP (4.11) is solved at each instant
k, and only the values of d∗(0|k) for the instant i = 0 of the obtained optimal
vector d∗

k are applied to the MG, i.e.{
L∗

pv(0|k), L∗
w(0|k), P ∗

c (0|k), P ∗
d (0|k), δ∗

c (0|k), δ∗
d(0|k), ρ∗

e(0|k), ρ∗
g(0|k)

}
.

The implementation and solution of MILP (4.11) can be carried out using com-
mercial software such as Mosek, Gurobi or Cplex among others. Figure 4.2 illus-
trates the schematic diagram of the proposed CSB-MPC for the MG. In addition,
the steps in the operation of the CSB-MPC as a EMS are summarised in Algo-
rithm 4.1, and a simplified description of such an Algorithm in Figure 4.3.
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Figure 4.3: Block diagram of the operation of Algorithm 4.1.

The number of C scenarios defining the size of SC can be determined by (3.6), or
either by (3.8) or (3.9) if constraints of D scenarios are considered to be discarded.
The equation (3.8) is used for the EMS proposed, where, p is the desired minimum
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level p ∈ [0, 1] of probabilistic feasibility of constraints satisfaction P[x[j]
k ∈ X] ≥ p

by the C scenarios in (4.11), β ∈ [0, 1] is the low confidence level, and d is the
number of decision variables, the dimension of dk

d−1∑
j=0

(
C

j

)
(1 − p)jpC−j ≤ β (4.12)

where, according to Theorem 3.1 in [51], it holds that any optimal solution d∗
k

obtained by the scenario-based MILP (4.11), using C scenarios, with C defined
using (4.12), has a guaranteed level (1 − β) of feasibility, in a probabilistic sense,
of meeting the probabilistic constraints P[x[j]

k ∈ X] ≥ p. The results obtained
in the numerical examples in the previous chapter reveal that a CSB-MPC has
a higher empirical probability of constraint satisfaction than the theoretical p.
Such empirical probabilities also exceed those of a equiprobable scenario-based
MPC (SCMPC) with the same (even higher) number of scenarios.

4.4 Case Study

In this section, the performance of the proposed CSB-MPC is tested by simula-
tions on a microgrid as illustrated in Figure 4.1, for different operating conditions.
All simulations were performed on a standard computer using Matlab R2021a
and the OCP solutions were computed with the intlinprog toolbox [110] of the
Mosek 10.0.38 optimisation software.

The irradiance and wind speed data used for the RES generation forecasts were
collected from the U.S. Climate Reference Network (USCRN) [119]. Those used
for demand forecasts were selected from UK Power Networks [120]. In particular,
the energy prices data used for electricity price predictions were taken from Red
Eléctrica de España [121], corresponding to the Spanish market scenario, where
electricity prices are highly volatile and among the highest in Europe. The above
data were adjusted for a sampling period of 0.5 h and corresponds to the 24 hours
of a full day and the first 6 hours of the next day in July, and are depicted in
Figure 4.4.

The generation side consist of one PV generator (nq = 1) and two wind turbines
(nr = 2), whose power forecasts P̄pvg,1, P̄wg,1 and P̄wg,2 are shown in Figure 4.4.
The BESS parameters related to the SOC are Emin = 0.5 kWh for its minimum
level and Emax = 4.5 kWh for its maximum level. The maximum charging and
discharging powers, and the charging and discharging efficiencies are Pmax

c =
Pmax

d = 3 kW and ηc = ηd = 0.85, respectively. The demand forecasts P̄l and
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Figure 4.4: Forecasts of power generation, demand and electricity prices.

electricity prices Cg are also plotted in Figure 4.4, and the maximum power
consumption from the main grid is Pmax

g = 5 kW.

Correlation is assumed between the PV generation and demand forecasts, and
between the forecasts of the two wind turbines. The uncertainties (Nξ = 4)
information is stacked in the random vector γ(i|k), which has a multivariate
normal distribution γ(i|k) ∼ N4(µ(i|k),Σ(i|k)), where the mean vector µ(i|k),
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covariance matrix Σ(i|k) and bounds |γ(i|k)| ≤ γmax are given by

µ(i|k) =


0
0
0
0

 , Σ(i|k) =


0.040 0 0 0.028

0 0.0100 0.0108 0
0 0.0108 0.0144 0

0.028 0 0 0.040

 , |γ(i|k)| ≤


0.42
0.21
0.25
0.42

 .

The function of the CSB-MPC controller is to manage the energy in the MG
by calculating the control signals with updated information every Ts = 0.5 h for
24 hours (k ∈ {0, 1, . . . , 48}). Its parameters were set to N = 12 steps for the
prediction horizon, equivalent to 6 hours; [α1, α2, α3, α4]⊤ = [10, 1, 1, 10000]⊤ for
the objective function weights, where, only the constraint (4.9i) on the power
supplied by the main grid is considered a soft constraint. α5 is not included as
(4.3a) is assumed to be an accurate model of the real BESS. Therefore, the OCP
consists of 91 decision variables. The primary set SS is constituted by S = 10000
equiprobable scenarios, which is reduced to a set SC of C conditional scenarios,
used to solve (4.11).

4.4.1 Simulation Case 1: Microgrid Behaviour

In Figure 4.5 is plotted the behaviour of the MG under the control of a CSB-MPC
of C = 600 CS, for which the initial state of the SOC of the BESS was set to
its minimum value, that is Ê(0) = 0.5 kWh. The top chart shows the power
flow, where the power flowing out of the MG, such as the demand and the BESS
charging power, are plotted with negative values. The yellow and blue solid lines
correspond to the PV and wind power consumed, respectively; the green one to
the charging power (negative values) and discharging power (positive values) of
the BESS, the red one to the power demanded, and the purple one to the power
delivered by the main grid. The bottom chart in Figure 4.5 shows the evolution
of the SOC.

In the beginning, the demand is covered only by the main grid and wind turbines
because the BESS does not have enough stored energy, and the PV generation
is null due to the early hours of the day. From 8 h to 14 h, the highest PV
and wind power generation, and some of the highest electricity prices occur (see
Figure 4.4), so the power delivered by the main grid is reduced, and the remaining
power from the RES is used to charge the BESS. Between 14 h and 18 h, given
that electricity prices are lower, the use of main grid power increases to cover
part of the demand, in addition to recharging the BESS, anticipating the period
from 18 h to 22 h when electricity prices are again very high and photovoltaic
production decreases. Hence, the BESS energy is consumed during this period,
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Figure 4.5: Behaviour of the power flow (top chart) and BESS state of charge (bottom
chart) of the microgrid under a CSB-MPC of 600 CS.

reducing it to its minimum value where, from 20 h onwards, the demand is covered
again between grid power and available wind power.

Furthermore, Figure 4.6 shows the real values measured at instant k of the de-
mand P̂l(k), power generated by the PV generator P̂pvg,1(k), and the two wind
turbines (WT) P̂wg,1(k) and P̂wg,2(k), represented by dark-coloured lines. As can
be noticed, such values are within the region formed by the 600 CS (light-coloured
lines), predicted in the previous instant (i.e., k− 1) for the instant corresponding
to k (i.e., P̃ [j]

pvg,1(1|k−1), P̃ [j]
wg,1(1|k−1), P̃ [j]

wg,2(1|k−1), P̃ [j]
l (1|k−1)), which were

used to solve the OCP (4.11) in such instant k − 1.
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Figure 4.6: Real values of generated power and demand (dark-coloured lines) versus their
respective forecasted CS (light-coloured lines).

During the entire day of operation of the CSB-MPC, the total energy delivered
by the main grid was 19.14 kWh with a total cost of e3.01. If the MG does
not include the BESS, these values are 20.42 kWh and e3.35. Similarly, if the
MG does not include the RES, these values increase to 52.54 kWh and e8.54. In
all the cases mentioned above, the purchased energy and its cost are still lower,
compared to the case in which the MG does not incorporate BESS and RES
(50.39 kWh and e8.90), even being e0.36 more costly than in the case where
only BESS is considered and which starts at its minimum SOC.

This indicates, that an EMS that includes at least the ESS has an advantage in
terms of monetary savings.
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4.4.2 Simulation Case 2: Effectiveness of CSB-MPC as an EMS

The effectiveness of the proposed CSB-MPC for EMS, in terms of probabilistic
feasibility, is validated using reduced sets SC of various sizes

C = {700, 600, 500, 400, 300, 200, 100}

and whose theoretical probabilities p(C), using (4.12) with β = 10−9 are

p(C) = {78.2%, 74.8%, 70.2%, 63.4%, 52.7%, 34.0%, 1.0%}.

For each SC case, 1000 Monte Carlo (MC) simulations were performed, all starting
with an initial BESS SOC Ê(0) = 1.5 kWh; and the maximum capacity of the
main grid was tightened to Pmax

g = 1.5 kW. Based on the results of each case,
the following controller performance indices were calculated

• EPR: average cost of energy consumed from the main grid in a simulation.

• NBESS: average number of instants, out of 49 instants in a simulation, in
which the BESS was either charging or discharging.

• ps: probability (in percentage) that the whole trajectory traced by P̂g(k) in a
simulation satisfies the constraint P̂g(k) ≤ Pmax

g . Where ps = 100 (Ns/1000),
and Ns is the number of trajectories of the 1000 MC that fulfilled the con-
straints.

• Nv: number of violations of constraint P̂g(k) ≤ Pmax
g in the 1000 MC sim-

ulations.

• PD: average percentage of deviation of P̂g(k) outside the constraints on the
maximum capacity of the main grid Pmax

g .

• tOCP: average time spent at each instant k to generate the primary set SS ,
plus perform the reduction to the set SC , plus solve the MILP (4.11).

The results of the simulations for all cases are reported in Table 4.1, including the
number of OCP constraints COCP. As a baseline, this Table also includes the re-
sults of various MPC strategies adjusted to the OCP (4.11) structure. These are a
deterministic MPC, which does not consider uncertainties; and those of stochastic
MPC strategies belonging to the deterministic group [44], [71] (chance-constrained
MPC, referred to as CC-MPC hereafter), set with a minimum probability p = 0.8
of satisfying the probabilistic constraints P[Pg(i|k) ≤ Pmax

g ] ≥ p; and a scenario-
based MPC [36], [57] (referred to as ScMPC hereafter) which randomly selects C
scenarios from SS .
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Table 4.1: Performance Indices of the MPCs of Simulation Case 2.

Controller EPR (e) NBESS ps (%) Nv PD (%) tOCP (s) COCP

nominal MPC 2.74 36 3.1 2840 19.7 0.02 247
CC-MPC 2.77 31 49.0 670 9.6 0.02 247
ScMPC700 3.27 43 63.6 392 10.5 2.97 18421
CSB-MPC700 2.90 37 79.7 238 7.0 3.10 18421
ScMPC600 3.25 43 64.4 380 10.4 2.53 15821
CSB-MPC600 2.88 37 80.2 231 6.9 2.65 15821
ScMPC500 3.22 42 62.9 395 9.5 2.10 13221
CSB-MPC500 2.87 37 79.3 232 6.4 2.18 13221
ScMPC400 3.20 41 66.6 365 9.4 1.69 10621
CSB-MPC400 2.86 37 79.7 234 6.7 1.74 10621
ScMPC300 3.17 41 67.5 357 9.0 1.31 8021
CSB-MPC300 2.85 37 78.6 241 6.4 1.35 8021
ScMPC200 3.11 39 67.9 372 9.4 0.94 5421
CSB-MPC200 2.84 37 77.5 255 6.4 0.95 5421
ScMPC100 3.02 38 59.0 516 10.6 0.58 2821
CSB-MPC100 2.82 37 75.1 289 6.5 0.58 2821

Also, the plots of the indicators in Table 4.1, corresponding to those of controllers
ScMPC and CSB-MPC, are shown in Figures 4.7 and 4.8.

The nominal MPC had the lowest EPR indicator, however, as expected, it has the
lowest probability ps (3.1%) and the highest number of violated constraints Nv
(2840). Concerning the CC-MPC, as the OCP takes into account the uncertainties
present in the forecasts, such indicators are improved Nv = 670 and ps = 49%,
but this empirical probability is far below the desired theoretical one p = 80%,
and also all the empirical probabilities of the ScMPCs and CSB-MPCs. Since the
inclusion of the uncertainties is performed offline by constraints tightening, the
times tOCP of this algorithm are similar to those of the nominal MPC (0.02 s),
also, given the same number of constraints COCP = 247.
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Figure 4.7: Plots of the performance indices EPR and NBESS of the ScMPC (blue lines)
and CSB-MPC (red lines) in Table 4.1.

On the other hand, in all cases, CSB-MPCs presented lower costs for energy
drawn from the main grid EPR and lower number of times BESS is used NBESS,
than those reported by ScMPCs (see Figure 4.7). These lower indices of the CSB-
MPC are beneficial in monetary terms, as it has lower operational costs, and in
less degradation of the BESS as it is used less times.

Furthermore, the empirical probabilities ps of the CSB-MPCs are above their
corresponding theoretical probabilities p(C) (solid black line in Figure 4.8), and
in addition, are higher than those of the ScMPCs, which, in some cases are lower
than the theoretical ones; indicating that with a CSB-MPC the probability of
constraint satisfaction is improved.

It was also found that increasing the number of possible scenarios C (thus in-
creasing the number of OCP constraints COCP) in the CSB-MPCs, results in an
increase in both the probability ps and the time tOCP required to solve the OCP
at each iteration, with the reported values of the latter indicator being very close
to those of the ScMPCs, those of CSB-MPC being slightly higher, given the addi-
tional time required by its scenario reduction stage. However, for this case where
the sampling period is 0.5 hours, the computation times of the MPCs analysed
are not a limitation as the most significant time of all cases was the one reported
by the CSB-MPC700, which was 3.10 s.

The lowest indicators, such as the number of constraints violated Nv and its
percentage of deviation PD, were also reported by the CSB-MPCs, which makes
sense given their higher probabilities ps, which are obtained due to the greater
weight given in the OCP to the most likely uncertainties realisations.
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Figure 4.8: Plots of the performance indices ps, Nv, PD and tOCP of the ScMPC (blue lines)
and CSB-MPC (red lines) in Table 4.1, and their theoretical probabilities (black line) p(C).

The plots of the evolutions of the power consumed from the main grid for the
nominal MPC, CC-MPC, ScMPC200 and CSB-MPC200 controllers are shown in
Figure 4.9. It is observed that the CSB-MPC200 stays longer within its bounds,
and the values of its trajectories within the high price intervals are lower than
those of the other controllers.

Additionally, Figure 4.10 shows the behaviour (a single simulation) of the mi-
crogrid with a CSB-MPC100 (yellow lines), a CSB-MPC400 (orange lines) and a
CSB-MPC700 (blue lines), where it is observed that the demand profiles P̂l(k)
overlap, given the same conditions for all MPCs. It is also observed, in all cases,
that the total power generated by the RES P̂pv(k) + P̂w(k) is entirely consumed,
thus being the same profiles for all MPCs. However, the power consumption pro-
files from the main grid P̂g(k) are different (having CSB-MPC700 the smallest
maximum value outside the limits of the three MPCs), and therefore, causing
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different charging/discharging powers Pc(k)/Pd(k) (Pc(k) plotted with negative
values) of the BESS, as well as the SOC Ê(k) evolutions.

Figure 4.9: Plots of 1000 evolutions (light purple solid lines) of the power consumed from
the main grid using nominal MPC, CC-MPC, ScMPC200 and CSB-MPC200 controllers. The
dark purple continuous and dashed lines are the mean trajectory and power constraints,
respectively.
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Figure 4.10: Single simulation of the MG behaviour with a CSB-MPC100 (yellow lines),
a CSB-MPC400 (orange lines) and a CSB-MPC700 (blue lines). Constraints, black dashed
lines.
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4.5 Chapter Conclusions

This chapter presented the applicability of the CSB-MPC, presented in the pre-
vious chapter, for energy management in a microgrid with renewable energy pen-
etration and energy storage system, with correlation in generation and demand
forecasts. First, at each sampling time, a large set of equiprobable scenarios of
possible evolutions of PV generation, wind, and demand over a prediction hori-
zon is generated and subsequently approximated to a reduced set of conditional
scenarios, with their respective probabilities. These reduced scenarios are incor-
porated into the microgrid prediction model to solve a feasible scenario-based
mixed-integer linear program (MILP) with finite horizon, where the objective
function penalises the predictions according to their probability of occurrence.

In summary, the results suggest that using a CSB-MPC as an EMS in a microgrid
is an appropriate solution if better operational performance is sought, both in
conserving its components and in monetary terms. Firstly, it makes less use of
the ESS, which could contribute to extending its lifetime. On the other hand,
given their lower reported costs, and higher probability of constraint satisfaction
which reduces the number of times constraints are violated and their deviation.
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Conclusions and Future
Research Directions

This chapter ends this dissertation with a summary of the main
conclusions and a statement of some future research directions.
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5.1 Conclusions

This thesis presents a new stochastic model predictive control technique, which
belongs to the group of scenario-based strategies, and its applicability in the
framework of energy management in a microgrid. This led to three main con-
tributions: a comparative study of two stochastic MPCs belonging to the deter-
ministic and scenario-based groups; a scenario-based MPC approach for linear
systems with correlated uncertainties; and a procedure for the implementation
of this MPC approach as an energy management system in a microgrid with
correlated forecasts.

In the following, the research questions stated in chapter 1 are answered through
a sweep of the main conclusions of each chapter.

A Comparative Study of Stochastic Model Predictive Controllers

The OCP in stochastic MPC minimises a cost function based on the expected
value while respecting probabilistic constraints. Such constraints are a relaxation
of the original hard constraints in the sense that they must be satisfied at least
with a desired probability. Most stochastic MPC approaches are clustered into
deterministic and scenario-based groups, depending on how they address infor-
mation related to system uncertainties.

In chapter 2, a detailed description of the theoretical background of one strat-
egy of each group is presented, where, they are compared with an emphasis on
how the OCP is set out in each strategy, i.e., consideration of uncertainties, pre-
diction model, cost function and constraints. In addition, the worst-case OCP
formulation of the second group MPC is analysed.

The MPC of the deterministic group splits the system model as the sum of two
parts, a known part which is the nominal model, and a stochastic part which
contains the system uncertainties. Then, offline, this stochastic part and the
probability distributions of the uncertainties are used to transform the probabilis-
tic constraints into deterministic ones by tightening the original hard constraints,
which consists of solving chance-constrained optimization problems or analytically
if density functions exist for the uncertainties. Hence, the original OCP becomes
a deterministic one; that is, the prediction model is now the nominal model, the
expected value cost function is substituted by one that considers the predictions
of the nominal trajectories of the states and inputs, and the constraints are the
new tightened constraints that consider the propagation of uncertainties along
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the prediction horizon and that must be satisfied for the predicted nominal states
and inputs.

The MPC of the scenario-based group, at each sampling period, uses the probabil-
ities distributions and a random number generator to generate a set of scenarios,
where a scenario consists of possible evolutions of uncertainties over the predic-
tion horizon, which are incorporated into the system model with uncertainties,
thus producing deterministic predictions of possible evolutions of its states and
inputs. Here, the original OCP is converted into a scenario-based optimisation
programme in which the cost function based on the expected value is replaced
by its sample average, which includes all the predicted trajectories of the states
and inputs produced by the scenarios. The worst-case OCP minimises the cost
function for the scenario exhibiting the worst performance. The probabilistic con-
straints are replaced by the original hard constraints, which must be fulfilled for
all the predicted states and inputs of each scenario.

The satisfaction of the probabilistic constraints in the scenario-based group for-
mulation is conditioned by the number of scenarios used, so, using random convex
programs concepts, the minimum number of scenarios needed to satisfy such con-
straints can be calculated. For this, the binomial cumulative probability function
is used, which requires the desired probability, the number of OCP decision vari-
ables and a pessimistic probability level at which such probabilistic constraints are
not satisfied at that desired level. Consequently, the number of scenarios needed
can be calculated offline, as it does not require knowledge of system information
in real-time, such as its current states and inputs.

A significant advantage of the MPC of the deterministic group is that the offline
constraints tightening provide it a similarity in OCP structure and computational
burden to those of a standard MPC. However, variations in the characteristics of
the uncertainties can cause serious problems in the behaviour of the closed-loop
system, given that new information on these could not be taken into account
during the MPC operation.

Regarding the MPC of the scenario-based group, its significant advantages are, on
the one hand, the ability to include changes that may occur in the characteristics
of the uncertainties since the scenarios are generated online and, on the other
hand, the possibility to use historical values of the uncertainties to select scenarios
from them if their probability distributions are unknown or it is not possible to
represent them with known types of distributions. However, compared to the
deterministic group MPC that only uses nominal trajectories, its OCP presents
a higher computational cost because of the time it takes to generate or build the
scenarios, plus the fact that the constraints must be fulfilled for all states and
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inputs of each scenario, which grows as the number of scenarios increases, thus,
in some cases may become intractable.

Using a small number of scenarios to improve computational tractability may
not accurately represent the original characteristics of the uncertainties, and the
randomness in the scenario selection may cause OCP solutions to be obtained
using unlikely scenarios, which could lead to possible undesired behaviour in the
closed-loop system.

It is clear that considering information about the uncertainties of the process
in the OCP significantly improves its probability of success, which means fewer
constraints are violated. This can be verified from the results of the simulation
examples which consist of a two-mass spring SISO system with parametric and
additive uncertainties and a nonlinear quadruple-tank system with additive uncer-
tainties, where controllers comparison is made by using performance indices such
as the number of successful runs, number of times the constraints are violated,
the mean value of the integral absolute error and the computational cost. There
it is observed that only stochastic approaches achieved mean trajectories with
standard deviations within or slightly exceeding the limits, which, for a normal
distribution, the probability of a state being within the allowed limits is 68%.

Results also validated the similarity in computational effort between a deter-
ministic group MPC and a standard MPC, and the considerable increase in the
probability of success (the empirical probability of constraint satisfaction in one
run) by the stochastic one when performing constraints tightening.

Also, both the scenario-based MPC and its worst-case approach yielded the high-
est probabilities of success of all controllers, because this approach computes the
number of scenarios based on the joint probability of satisfying the constraints
with all the uncertainty realisations, while in MPC of the deterministic group,
the constraints tightening is done using single probabilistic constraints. Likewise,
it is found that an increase in the number of scenarios increases the probability
of success, but as expected, it results in a growth in the time the MPC needs to
solve the OCP for all scenarios.

The work conducted to compare the two stochastic MPC algorithms was published
as research paper [117]. Also, the files created to carry out the simulations of
the two stochastic MPCs are available at MATLAB Central as a toolbox [100]
to allow the results presented in chapter 2 to be reproduced or, to tune and
simulate a MPC of the deterministic group or a MPC of the scenario-based group
for controlling multivariable systems with additive disturbances which present
Gaussian probability distributions.
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Conditional Scenario-Based Model Predictive Control (CSB-MPC)

A new stochastic MPC approach called conditional scenario-based model predic-
tive control (CSB-MPC) is introduced in chapter 3, which is designed for discrete-
time linear systems affected by correlated and bound parametric uncertainties
and/or additive disturbances.

Most scenario-based MPC approaches consider systems with either strictly addi-
tive or parametric uncertainties; and whose realisations are independent or corre-
lated in time. The CSB-MPC addresses systems with bounded parametric and/or
additive uncertainties featuring a correlation between some or the whole set of
random variables.

Two OCP structures are proposed for the CSB-MPC with guaranteed probabilis-
tic feasibilities, that is, the optimal solutions obtained will satisfy the original
probabilistic constraints within a defined probability level.

In the CSB-MPC, at each sampling period, a large primary set of equiprobable
scenarios is generated and subsequently converted into a reduced set of conditional
scenarios, each with its probabilities of occurrence, which maintains, as best as
possible, the characteristics of this primary set. The reduction is performed via a
developed algorithm that adapts the conditional scenario (CS) reduction method
to the MPC framework, that rather than filtering or reducing scenarios, this reduc-
tion method takes advantage of the correlation features between the uncertainties
to approximate the primary set by means of the conditional expectations. The
application of this procedure is straightforward and fast, as it does not require an
optimisation stage or knowledge of how the random variables are distributed to
perform the reduction.

The reduced set of CSs and their probabilities are incorporated into the quadratic
cost function of an OCP in which the predicted states and inputs are penalised
according to the probabilities associated with the uncertainties on which they
depend; and is subject to constraints on the states and inputs built up with this
reduced set, and in the terminal state through a robust invariant set.

The CSB-MPC, firstly, improves the computational effort as the OCP is based on
a reduced set; secondly, addresses the negative effect that randomness can have
on a reduced set of scenarios, as the new set represents the characteristics of the
primary set as well as possible; and finally, the OCP cost function gives more
relevance to the states and inputs that involve realisations with more probability
of occurrence and less importance given to those that are related to unlikely
realisations, by means of their associated probabilities.
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In one of the proposed OCPs, which is based on sampling and discarding ap-
proaches, the scenarios to be discarded are directly identified by their probability
of occurrence, which becomes computationally lightweight. This contrasts sig-
nificantly with the need for removal algorithms that, in MPC, usually require
an extra stage of optimisation, which can become prohibitive depending on how
greedy they are.

The performances of the CSB-MPC and those of a scenario-based MPC are com-
pared using two numerical examples consisting of a double integrator system,
and a nonlinear quadruple-tank system with parametric and additive uncertain-
ties. The results showed greater empirical probabilities of constraints satisfaction,
above the theoretical ones, and less distance outside the constraints by the CSB-
MPC, even when the CSB-MPCs have a smaller number of scenarios than the
scenario-based MPCs. The above indicates an increase in the feasibility of an
OCP solution, in a probabilistic sense.

Using a smaller primary set does not significantly affect the constraint satisfaction
probabilities of the CSB-MPC, but it may offer similar solution times, in some
cases shorter than those of a standard scenario-based MPC. Consequently, if
a trade-off between the level of constraints satisfaction and the computational
tractability is required, using a CSB-MPC with a smaller number of scenarios
than a scenario-based MPC is a viable option.

The CSB-MPC strategy was written in the format of a scientific paper and was
published in [122]. In addition, an open-access toolbox of the CSB-MPC was
developed in Matlab and is available at MATLAB Central [113].

CSB-MPC for Energy Management in Microgrids with Correlated
Forecasts

chapter 4 presents the applicability of a CSB-MPC for energy management in a
microgrid with renewable energy sources (RES) penetration and energy storage
system (ESS), with correlation in generation and demand forecasts.

The CSB-MPC as an energy management system (EMS), at each sampling time,
generate a large set of equiprobable scenarios of possible evolutions of photo-
voltaic (PV) generation, wind, and demand over a prediction horizon; and then
approximates it to a reduced set of conditional scenarios, with their respective
probabilities. These reduced scenarios are incorporated into the microgrid (MG)
prediction model to solve a feasible, numerically and probabilistically, scenario-
based mixed-integer linear program (MILP) with finite horizon, where the objec-
tive function penalises the predictions of the cost of energy consumed from the
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main grid and the forecasts of the power generated by RES that is discarded,
according to their probability of occurrence.

One significant advantage of the CSB-MPC as an EMS in a microgrid is its
ability to include online new information about uncertainties, which leads to
making better decisions consistent with the actual situation of the system. The
above given that, photovoltaic and wind power generation forecasts, and possibly
demand forecast, are strongly influenced by meteorological conditions that can be
highly fluctuating, which can also affect the type or distribution of uncertainties.

Another significant advantage of the CSB-MPC as an EMS is that it also ex-
ploits the characteristics of uncertainties, such as the correlation between them,
to obtain the reduced set. Correlation between uncertainties may be common
in the context of a microgrid. There are cases, due to working hours, off-hours,
activity in a household, etc., where there is a high correlation between pow-
ers, either between the output powers of RES generators, PV-wind, PV-demand,
wind-demand, or between various loads on the demand side.

A case study is used to simulate and analyse the behaviour of a microgrid with a
CSB-MPC. The performance of the proposed CSB-MPC is compared with those
of a standard MPC, a stochastic MPC of the deterministic group and a standard
scenario-base MPC, where the CSB-MPC showed the highest probabilities of
constraint satisfaction of all controllers.

The results further indicate that using a CSB-MPC as an EMS in a microgrid is
a suitable solution if better operational performance is sought, both in conserving
its components and in monetary terms. Firstly, it makes less use of the ESS, which
could contribute to extending its lifetime. On the other hand, given their lower
reported costs, and higher probability of constraint satisfaction which reduces
the number of times constraints are violated and their deviation. For example,
considering constraints on grid power, most electricity companies apply policies
in which power consumption above the contracted value is penalised with much
higher tariffs, so with a CSB-MPC, there would be fewer negative impacts in
financial terms.

The proposal for applying a CSB-MPC as an EMS in a microgrid was written in
the format of a scientific paper and was published in [123].
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5.2 Future Research Directions

As mentioned in chapter 3, establishing the theoretical properties of recursive
feasibility and stability of the scenario-based MPC approaches, including the CSB-
MPC introduced in this thesis, remains part of the current challenges posed by
these strategies, even more so when the uncertainties are not bounded, which
does not enable obtaining a terminal cost and a terminal set, necessary pieces for
the efficient functioning of a MPC.

Scenario-based schemes such as CSB-MPC are attractive in the sense that they
have a higher probability of satisfying constraints, plus their ability to include
new information on uncertainties in real time. However, such advantages have
the issue related to the computational effort needed in the OCP to guarantee
such a probability with the required number of scenarios, thus preventing its
application for the control of some systems with fast dynamics. One way to alle-
viate such computational effort to enable its application would be to complement
the scenario-based MPC with a technique that, before solving the OCP, quickly
detects and removes redundant constraints from current constraints. The time
existing algorithms take to detect redundant constraints is generally longer than
the time the OCP takes to obtain a solution with the full set of constraints.

Research to analyse in more detail the impact that the prediction horizon, the
cost function weights, and the sizes of the primary and reduced sets have on the
effectiveness of the CSB-MPC, in order to establish a principle for selecting these
parameters in a more straightforward way.

Accurate characterisation of uncertainties influences the efficiency of the MPC
and thereby the performance of the process. Nevertheless, depending on their
current state, some systems have alterations in uncertainties, which could lead
to poor MPC performance if these alterations are not considered. The challenge
of modelling uncertainties as accurately as possible is a current topic of study in
the area of active uncertainty learning. Thus, a scenario-based MPC, which can
include online updated uncertainty information, integrated with a technique that
constantly learns the uncertainty, would strengthen its performance.
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