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Abstract: Imbalanced datasets pose pervasive challenges in numerous machine learning (ML) appli-
cations, notably in areas such as fraud detection, where fraudulent cases are vastly outnumbered by
legitimate transactions. Conventional ML methods often grapple with such imbalances, resulting
in models with suboptimal performance concerning the minority class. This study undertakes a
thorough examination of strategies for optimizing supervised learning algorithms when confronted
with imbalanced datasets, emphasizing resampling techniques. Initially, we explore multiple method-
ologies, encompassing Gaussian Naive Bayes, linear and quadratic discriminant analysis, K-nearest
neighbors (K-NN), support vector machines (SVMs), decision trees, and multi-layer perceptron
(MLP). We apply these on a four-class spiral dataset, a notoriously demanding non-linear classifi-
cation problem, to gauge their effectiveness. Subsequently, we leverage the garnered insights for
a real-world credit card fraud detection task on a public dataset, where we achieve a compelling
accuracy of 99.937%. In this context, we compare and contrast the performances of undersampling,
oversampling, and the synthetic minority oversampling technique (SMOTE). Our findings highlight
the potency of resampling strategies in augmenting model performance on the minority class; in
particular, oversampling techniques achieve the best performance, resulting in an accuracy of 99.928%
with a significantly low number of false negatives (21/227,451).

Keywords: neural networks; imbalanced datasets; resampling techniques; fraud detection;
hyperparameter optimization

1. Introduction and Overview

In the realm of machine learning (ML) and data science, addressing the challenge
of imbalanced datasets has remained a persistent challenge. Imbalanced datasets, where
the distribution of classes is not uniform, can lead to sub-optimal predictive performance,
especially for the minority class. This is a critical issue in numerous real-world applications,
such as fraud detection [1–3], medical diagnosis [4], and anomaly detection [5], where the
class of interest often represents a small fraction of the total instances.

Fraud detection, in particular, is an area where imbalanced datasets are common and
pose a significant obstacle. Fraudulent transactions are typically a small proportion of
total transactions, but detecting them is of utmost importance due to their economic and
security implications. Traditional ML algorithms have struggled with such datasets, often
leading to many false negatives, where fraudulent transactions are incorrectly classified as
non-fraudulent [6,7].

The primary objective of this study is to investigate the application and effectiveness of
various resampling strategies, specifically undersampling, oversampling, and the synthetic
minority oversampling technique (SMOTE) [8], on the task of fraud detection using a
multilayer perceptron (MLP). Furthermore, we aim to optimize the hyperparameters of the
MLP to enhance the model’s performance on imbalanced datasets.
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In addition to this, the study also involves an exploration of several supervised learn-
ing algorithms, including Gaussian Naive Bayes, linear and quadratic discriminant analy-
ses, K-nearest neighbors, support vector machines, and decision trees on a spiral dataset.
This preliminary study aims to provide insights into the behavior of these algorithms on
non-linear and non-separable data.

In the context of mobile banking, the MLP-based fraud detection approach we studied
can be integrated into mobile banking apps to monitor transaction activities in real time.
The MLP model, having been trained on a large dataset of labeled banking transactions,
can identify patterns indicative of fraud and trigger appropriate security measures. These
could range from blocking the transaction and alerting the user, to simply flagging the
transaction for later review. The rapidly evolving landscape of mobile and ubiquitous tech-
nologies, particularly in the realms of mobile banking and payment systems, presents both
opportunities and challenges. As these technologies proliferate, they become increasingly
attractive targets for fraudulent activities. Therefore, robust fraud detection methods are
needed to secure these platforms and protect their users.

With regard to mobile payment systems, which often involve smaller transactions
but a larger number of them, our approach can be applied in a similar manner. MLPs can
provide quick and accurate classifications, which are essential requirements given the high
volume and velocity of transactions in such systems. In more ubiquitous settings, such as
Internet of Things (IoT) environments, devices are increasingly being used for automated
transactions; in those settings, our approach can offer critical security safeguards. As these
devices are often designed to operate with minimal human intervention, the ability to
accurately detect fraudulent activity and respond promptly is of paramount importance.
The MLP model can be embedded into the device’s system to monitor transactional data
and flag anomalies that might indicate fraudulent activities.

Imbalanced datasets are a common problem in ML, where one class significantly
outnumbers the others in the training set [8]. This can lead to biased predictions, as the
model tends to favor the majority class [9]. Various techniques have been proposed to
tackle this issue, such as cost-sensitive learning [10], ensemble methods [11], and others.
However, the handling of imbalanced data remains an open challenge in the field of ML,
warranting further research.

Resampling techniques are widely used methods to balance the class distribution in
imbalanced datasets. They involve modifying the training data by either oversampling
the minority class, undersampling the majority class, or a combination of both [12]. One
popular technique is SMOTE, which creates synthetic minority class samples to balance
the dataset [8]. While these techniques have demonstrated effectiveness in various appli-
cations [13,14], more studies are needed to explore their potential and limitations when
applied to deep learning (DL) [15–17] models.

Fraud detection is a critical application area dealing with highly imbalanced datasets.
In scenarios such as credit card transactions, fraud instances are usually rare compared
to normal transactions, making the detection task challenging [18]. ML techniques have
been extensively employed for fraud detection, providing promising results [6,19]. More
recently, DL models have been explored for this task [7,20], demonstrating their potential
in handling complex patterns and large-scale data. Despite the progress, the challenge of
dealing with imbalanced data in the context of fraud detection remains a significant issue,
calling for more focused research in this area.

The key contributions of this study are as follows:

1. A comprehensive comparison of the impact of different resampling techniques on the
performance of an MLP in the context of fraud detection.

2. An extensive hyperparameter optimization to enhance the MLP’s performance on
imbalanced datasets.

3. An exploratory analysis of various supervised learning algorithms on a non-linear,
non-separable dataset, providing insights into their behavior and performance.
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By shedding light on these aspects, this study aims to contribute to the body of
knowledge in handling imbalanced datasets and improving the performance of predictive
models in the context of fraud detection.

The remainder of this paper is structured as follows: In Section 2, we provide a detailed
overview of the methods used in the study. Section 3 discusses resampling techniques.
Section 4 discusses the experimental setup, including the datasets and evaluation metrics
used. In Section 5, we present the results and findings of our study, followed by a com-
prehensive discussion in Section 6, where we consider the possible applications of the
framework to mobile technologies, their performance and scalability, and privacy consid-
erations. We conclude the paper in Section 7 with a summary of the study and potential
directions for future work.

2. Performance Analysis of Supervised Learning Algorithms with Synthetic Data

The spiral dataset under study is a synthetic, four-class dataset where each class forms
a concentric spiral in the Cartesian plane. The selection of this dataset is primarily due to
its non-linear and non-separable nature, which presents a challenging scenario for many
learning algorithms and hence is more representative of real-world problems. The Cartesian
coordinates (x, y) of each point in the dataset are given by:

x = r · cos(θ) (1)

y = r · sin(θ) (2)

where r represents the distance from the origin and θ is the angle from the positive x-axis.
The class of a point is determined by the number of full rotations φ that θ makes around
the origin. For example, if φ ∈ [0, 1), the point belongs to the first class; if φ ∈ [1, 2), the
point belongs to the second class, and so on. The spirals are defined, such that the points of
each class are densely located near the corresponding spiral, as depicted in Figure 1.

Figure 1. Spiral dataset.

This preliminary study serves as a foundation for the subsequent sections by providing
insights into the behaviors of different supervised learning algorithms under challenging
conditions. It sets the stage for the application of these algorithms in the context of fraud
detection on imbalanced datasets, where the inherent complexity and non-linearity of the
data present similar challenges as the spiral dataset.
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2.1. Supervised Learning Algorithms
2.1.1. Gaussian Naive Bayes

The Gaussian Naive Bayes classifier assumes that the likelihood of the features
x1, x2, . . . , xn given a class y is Gaussian:

P(xo|y) =
1√

2πσ2
y

exp

(
−
(xo − µy)2

2σ2
y

)
(3)

where µy is the mean of the features for class y and σ2
y is the variance.

For Gaussian Naive Bayes, the decision boundaries are very complex due to the
assumption that all features are conditionally independent given the class. This is a strong
(and often not entirely correct) assumption, which does not work well for the spiral dataset,
where the class labels are highly dependent on the combination of features rather than
individual features.

From the accuracy scores (see Table 1) and the confusion matrix (see Table 2), we
find that Gaussian Naive Bayes does not perform very well on this dataset. The accuracy
on the test set is around 24.75%, which is low. The confusion matrix also indicates a
significant number of misclassifications. Given the nature of the dataset (spirals), this
is not surprising. The data are not linearly separable and the conditional independence
assumption of Naive Bayes is violated because the class positions are highly dependent on
both x and y coordinates together.

Table 1. Training and test accuracies for Gaussian Naive Bayes.

Training Accuracy 0.294375

Test Accuracy 0.2475

Table 2. Confusion matrix for Gaussian Naive Bayes.

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 15 27 27 33

Actual Class 2 32 37 10 31

Actual Class 3 32 35 23 9

Actual Class 4 18 23 24 24

Our results suggest that Naive Bayes struggles with this type of problem, mainly
due to its underlying assumptions, as shown in Figure 2. Naive Bayes assumes feature
independence and generally performs well when this assumption holds. However, in the
case of the spiral dataset, this assumption is violated since the x and y features are not
independent given the class label.

Despite these limitations, Naive Bayes still has its merits. It is a simple and efficient
algorithm that performs remarkably well on large datasets and in situations where the
feature independence assumption is reasonably met. Examples of these situations include
spam email detection, where the presence of certain words (features) are relatively inde-
pendent of each other, and certain types of medical diagnosis problems, where symptoms
can often be considered independent.
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Figure 2. Decision boundary of Gaussian Naive Bayes.

2.1.2. Linear and Quadratic Discriminant Analysis

Linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) are
statistical classifiers. They assume that the observations from each class are drawn from a
Gaussian distribution, and they estimate the parameters of this distribution. The decision
boundaries are linear for LDA and quadratic for QDA.

The decision boundaries of a linear discriminant analysis (LDA) classifier are linear
because LDA is a linear method. These boundaries are determined by the means and
variances of the features within each class. LDA tries to find a decision surface that
maximizes the distance between the means of the classes and minimizes the variance
within each class. However, for the spiral dataset, linear decision boundaries are not
suitable due to the intertwined nature of the two classes.

From the accuracy scores (see Table 3) and the confusion matrix (see Table 4), we find
that the LDA classifier does not perform well on this dataset. The accuracy on the test set
is approximately 24.75%, which is low. The confusion matrix also indicates a significant
number of misclassifications.

Table 3. Training and test accuracies for linear discriminant analysis (LDA).

Training Accuracy 0.255

Test Accuracy 0.2475

Table 4. Confusion matrix for linear discriminant analysis (LDA).

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 24 29 24 25

Actual Class 2 27 27 21 35

Actual Class 3 27 28 24 20

Actual Class 4 17 25 23 24

This is to be expected as the spiral dataset is not linearly separable, and LDA is a linear
method. The poor performance here suggests that the assumptions made by LDA (such as
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the Gaussian distribution of the classes and equal covariance matrices) do not hold for this
dataset, as shown in Figure 3. Specifically, the linearity assumption of LDA does not work
well with the spiral structure of this dataset.

Figure 3. Decision boundary of LDA.

The decision boundaries of a quadratic discriminant analysis (QDA) classifier are
quadratic because, unlike LDA, QDA does not assume that the covariance of each class is
identical. This allows the classifier to model quadratic decision boundaries, thus enabling
it to model more complex relationships between the features.

From the accuracy scores (see Table 5) and the confusion matrix (see Table 6), we find
that the QDA classifier does not perform very well on this dataset. The accuracy on the
test set is approximately 21.5%, which is quite low. The confusion matrix also indicates
a significant number of misclassifications. This is likely due to the fact that, although
QDA can model more complex relationships than LDA, it may still struggle with the spiral
structure of the dataset, as depicted in Figure 4, which is even more complex.

Table 5. Training and test accuracies for quadratic discriminant analysis (QDA).

Training Accuracy 0.26375

Test Accuracy 0.215

Table 6. Confusion matrix for quadratic discriminant analysis (QDA).

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 28 13 33 28

Actual Class 2 40 18 11 41

Actual Class 3 38 36 19 6

Actual Class 4 16 29 23 21
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Figure 4. Decision boundary of QDA.

2.1.3. K-Nearest Neighbors

The K-nearest neighbors (K-NN) algorithm assigns a point x to the class that is most
common among its k-nearest neighbors. The distance between two points x and y is
computed using the Euclidean distance:

d(x, y) =

√
n

∑
o=1

(xo − yo)2 (4)

The results of the hyperparameter search shown in Figure 5 show that the K-nearest
neighbors (K-NN) classifier, with k set to 15, provides the best accuracy on this dataset. It is
noteworthy that the performance of the model improved significantly compared to when k
was set, for instance, to 2, as seen by the increase in both the training and test accuracies.

This makes sense as K-NN is a non-parametric method, meaning it does not make any
assumptions about the underlying distribution of the data. By increasing the number of
neighbors considered, the model becomes more resilient to noise and outliers in the data,
leading to a better generalization performance on unseen data.

Graphically, the decision boundary becomes smoother with an increase in k. This
is expected, as the decision of a larger number of neighbors tends to result in a more
“consensus”-based decision, reducing the variance of the model and making the decision
boundaries less susceptible to individual noisy instances.

The decision boundaries depicted in Figure 6 for K-NN with k equal to 15 are complex,
as this algorithm has the flexibility to adapt to the complex structure of the data. This makes
sense, given the intertwined spiral shapes of the data, which cannot be easily separated by
a linear or simple non-linear boundary.

The predictions obtained on the test set are quite accurate, with a test accuracy of 0.79,
see Table 7. The confusion matrix, see Table 8, shows good performance across all classes,
indicating that the K-NN model with k equal to 15 is capable of effectively classifying
points in this spiral dataset.
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Figure 5. Accuracies for different values of k: mean cross-validation test scores.

Figure 6. Decision boundary of K-NN with optimal k (15).

Table 7. Training and test accuracies for K-nearest neighbors (K-NN) with k = 15.

Training Accuracy 0.83125

Test Accuracy 0.79

2.1.4. Support Vector Machines

Support vector machines (SVMs) find the hyperplane that maximizes the margin
between the two classes. The decision function is given by:

f (x) = wTφ(x) + b (5)

where φ(x) is the feature vector, w is the weight vector, and b is the bias term.
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The search for the best hyperparameters for the SVM resulted in a C of 50 and a gamma
of 1, as shown in Figure 7. The C parameter controls the trade-off between achieving a
high classification accuracy on the training data and maximizing the margin of the decision
boundary. In this case, a C of 50 means that the model leans more towards correctly
classifying all training examples, even if it means having a smaller margin, which might
lead to a more complex decision boundary.

Table 8. Confusion matrix for K-nearest neighbors (K-NN) with k = 15.

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 75 9 2 16

Actual Class 2 8 93 9 0

Actual Class 3 5 7 82 5

Actual Class 4 10 3 10 66

Figure 7. Accuracy heatmap for different values of C and gamma.

The gamma parameter defines how far the influence of a single training example
reaches. With a value of 1, the influence of the training examples does not reach very far;
hence, the model is quite flexible and can adjust well to more complex decision boundaries.

Looking at the decision boundaries, as depicted in Figure 8, they seem to make
sense considering the SVM used. As we know, SVMs attempt to find the hyperplane
that maximally separates the classes in the dataset. When the classes are not linearly
separable, SVMs use a kernel trick to map the input into a higher-dimensional space where
a hyperplane can be found. This is reflected in the decision boundaries, which appear to
have been effectively drawn to separate the different classes.
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Figure 8. Decision boundary of SVM with optimal C = 50 and gamma = 1.

The predictions on the test set were made by feeding the test set features into the
trained SVM model. The model then uses the learned hyperplane to predict the class of
each instance in the test set. The training accuracy is 85.25% and the test accuracy is 77%,
see Table 9. This suggests that the model has learned the data quite well, but may be
slightly overfitting given the drop in accuracy from the training set to the test set. However,
the model still generalizes fairly well to unseen data, achieving a decent test accuracy. The
confusion matrix (see Table 10) further shows that the model has a balanced performance
across different classes, albeit some classes are predicted better than others.

Table 9. Training and test accuracies for support vector machines (SVMs) with C = 50 and gamma = 1.

Training Accuracy 0.8525

Test Accuracy 0.77

Table 10. Confusion matrix for support vector machines (SVMs) with C = 50 and gamma = 1.

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 74 10 1 17

Actual Class 2 8 89 12 1

Actual Class 3 4 7 82 6

Actual Class 4 6 2 18 63

2.1.5. Decision Trees

Decision trees partition the feature space into regions. At each internal node of the
tree, a decision is made based on a feature value, splitting the data accordingly. The process
is repeated recursively.

The search for the best hyperparameters, as shown in Figure 9, resulted in a maximum
depth of 10 and a minimum sample split of 2. This means that the tree will have a maximum
of 10 levels and a node will only be split if it contains at least 2 samples.
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Figure 9. Accuracy for different hyperparameter values.

The decision boundaries in a decision tree are axis-aligned partitions of the feature
space, i.e., all splits are perpendicular to an axis. This is because each decision in the tree
is based on a single feature. In the plot, these decision boundaries appear as vertical and
horizontal lines, dividing the space into regions, as can be seen in Figures 10 and 11. Each
region corresponds to a leaf of the decision tree and represents a class prediction.

Predictions on the test set are obtained by feeding the features of each test sample
to the decision tree. The sample goes through the tree, with each decision based on one
of its features, until it reaches a leaf node. The class associated with the leaf node is the
prediction of the decision tree for that sample.

The accuracy on the test set is lower than on the training set, which indicates that the
model may be overfitting the training data to some degree, despite the hyperparameter
tuning; see Table 11. Overfitting occurs when the model learns the noise in the training data,
causing it to perform poorly on unseen data. The confusion matrix (see Table 12) shows
how the model’s predictions on the test set distribute across different classes. It can be seen
that the model does a fair job as most of its predictions are correct (the diagonal elements),
but there are still a good number of misclassifications (the off-diagonal elements).

Figure 10. Decision boundary of the decision tree with max_depth = 10 and min_samples_split = 2.
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Figure 11. Decision tree with max_depth = 10 and min_samples_split = 2.

Table 11. Training and test accuracies for decision trees with max_depth = 10 and min_samples_split = 2.

Training Accuracy 0.854375

Test Accuracy 0.6975

Table 12. Confusion matrix for decision trees with max_depth = 10 and min_samples_split = 2.

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 66 10 10 16

Actual Class 2 9 71 30 0

Actual Class 3 0 7 85 7

Actual Class 4 8 0 24 57

2.1.6. Multi-Layer Perceptron

Toward the end of this preliminary study, we implemented an MLP model to classify
the spiral dataset. While the decision tree and SVM approaches provided valuable insights,
they can be limited in their ability to handle highly complex and non-linear data. The
MLP, on the other hand, is a type of artificial neural network model that can approximate
complex mappings from inputs to outputs. Its ability to handle non-linearity makes it a
potent tool for this dataset.

An MLP consists of at least three layers of nodes: an input layer, a hidden layer, and
an output layer. Each node in one layer connects with a certain weight to every node in the
following layer. We used an MLP with 4 hidden layers, each comprising 20 neurons.
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Given an input vector x = (x1, x2, . . . , xn), the model applies a series of transfor-
mations, typically affine transformations followed by an activation function. An affine
transformation is of the form z = Wx + b, where W is a matrix of weights and b is a
bias vector. The activation function introduces non-linearity into the model. Common
choices include the rectified linear unit (ReLU), which we use in our model, defined as
f (x) = max(0, x).

Our model is trained using the backpropagation method and the Adam optimization
algorithm, a method for stochastic gradient descent. The model learns the optimal weights
and biases that minimize the cross-entropy loss function, given by L = −∑o yo log(po),
where yo denotes the true labels and po represents the predicted probabilities.

Table 13 provides the training and test accuracies of the MLP model. The achieved
training accuracy is 0.819, and the test accuracy is 0.812. These results indicate that our
model exhibits good generalization and avoids overfitting to the training data.

Table 13. Training and test accuracies for multi-layer perceptron.

Training Accuracy 0.819

Test Accuracy 0.812

The confusion matrix for the MLP model is shown in Table 14. The model demon-
strates balanced performance across different classes, with no single class significantly
outperforming or underperforming others.

Table 14. Confusion matrix for multi-layer perceptron.

Predicted Class

Class 1 Class 2 Class 3 Class 4

Actual Class 1 74 11 0 9

Actual Class 2 12 77 7 0

Actual Class 3 1 10 88 8

Actual Class 4 3 5 9 86

Figure 12 visualizes the decision boundaries of our MLP model. As seen, the model is
capable of drawing highly non-linear decision boundaries, allowing it to correctly classify
the majority of the samples from the spiral dataset.

In summary, the MLP is a powerful tool for this task, thanks to its flexibility and
ability to model non-linear decision boundaries. The use of MLP not only enriches our
understanding of the data but also sets the stage for future exploration using more advanced
deep learning techniques.

In our study, we determined that 20 neurons per layer struck a fine balance between
the computational efficiency and model performance for our dataset. It is important to
note that while we appreciate that further optimization of this parameter could poten-
tially augment the model’s performance, our extensive hyperparameter tuning, including
techniques such as grid search or random search, yielded marginal enhancements, particu-
larly considering the escalation in model complexity. Therefore, our chosen architecture
stands as a compelling baseline, offering noteworthy results with a manageable level of
computational demand.



Electronics 2023, 12, 2674 14 of 26

Figure 12. Decision boundary of MLP using 4 hidden layers with 20 neurons.

3. Resampling Techniques

In ML, resampling techniques are often employed to handle imbalanced datasets,
where the number of instances across different classes is disproportionately distributed.
There are three common resampling techniques, namely undersampling [21], oversam-
pling [22], and SMOTE [8].

Undersampling is a technique designed to balance the class distribution by randomly
eliminating majority class examples. This is done until the majority and minority class
instances are balanced out. Mathematically, if we have a dataset D composed of two classes,
i.e., the majority Cmajority and the minority Cminority, undersampling reduces the size of
Cmajority to be equivalent to the size of Cminority.

Let nmajority and nminority represent the number of instances in Cmajority and Cminority,
respectively. Undersampling randomly selects nminority instances from Cmajority to produce
a new majority class C′majority, such that |C′majority| = |Cminority|.

Oversampling, on the other hand, is a technique that adds more examples to the
minority class. Oversampling is done by replicating the instances of the minority class to
balance the class distribution. If we use the same notation as before, oversampling increases
the size of Cminority to be equivalent to the size of Cmajority. Oversampling randomly selects
instances from Cminority with replacement to create a new minority class C′minority, such that
|C′minority| = |Cmajority|.

SMOTE is an oversampling method that creates synthetic samples from the minority
class instead of creating copies. The minority class is oversampled by taking each minority
class sample and introducing synthetic examples along the line segments, joining any/all
of the k-minority class nearest neighbors.

Mathematically, for each instance in the minority class, the algorithm calculates the
k-nearest neighbors. A sample is then chosen at random from these k neighbors, and a new
instance is synthesized at a point along the line connecting the two instances. If we denote
the instance in the minority class as ~x, and the randomly chosen neighbor as ~n, then the
synthetic instance~s is created as follows:

~s = ~x + λ(~n−~x)

where λ is a random number between 0 and 1.
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These resampling techniques provide a mechanism to balance the class distribution,
which is a critical step in preparing the dataset for training an ML model.

4. Methodology
4.1. Description of the Dataset

The dataset under study is a real-world credit card transaction dataset collected over
a two-day period in September 2013 by European cardholders. The dataset is highly
imbalanced, with only 0.172% of transactions marked as fraudulent. It consists of 284,807
examples with 30 features, with features V1 to V28 having been anonymized for privacy
reasons. The “Time” feature represents the seconds elapsed between each transaction and
the first transaction, and the “Amount” is the transaction amount. The “Class” feature
represents the transaction class and is set to 1 in case of fraud, and 0 otherwise.

The frequency ratio of the class variable is highly imbalanced, as shown in Table 15.
There are significantly more non-fraudulent transactions (Class = 0) than fraudulent ones
(Class = 1). This is typical in situations, such as fraud detection, where the event of interest
is relatively rare compared to the normal situation.

Table 15. Frequency of each class in the fraud detection dataset.

Class Frequency

0 284,315

1 492

The histograms provide a distribution view of each feature, separated by class. This
can give us insight into how each feature differs between fraudulent and non-fraudulent
transactions. However, due to the high overlap and similar distributions of many features,
it is difficult to identify clear patterns just from them. In order to better visualize the
distribution of fraud versus non-fraud for each variable, we use normalized histograms,
also known as density plots, where the area under the histogram integrates to 1, as seen in
Figure 13. This allows us to compare the shapes of the distributions independent of the
number of observations.

The preprocessing step involves scaling the “Amount” feature using StandardScaler
from scikit-learn, which standardizes the feature by removing the mean and scaling to unit
variance. The “Time” feature is dropped due to its negligible relevance to the problem of
fraud detection.

4.2. Multilayer Perceptron (MLP)

Following the preliminary study of the spiral dataset, we adopted the MLP model for
the main study on credit card fraud detection due to its robust performance in handling
non-linear patterns and its versatility to fit complex data.

The spiral dataset posed challenges with its intrinsic interdependence between features
and non-linear structure. The MLP, with its universal approximation property and ability
to learn high-level abstractions, showed a significantly better ability to generalize from the
complex, spiral dataset in our preliminary study, yielding promising results with a training
accuracy of 0.819 and a test accuracy of 0.812 (as shown in Table 13).

Given that credit card fraud patterns may involve intricate relationships between
diverse factors, it was logical to presume that the MLP’s proficiency in handling non-
linear patterns, and in extracting high-level features, would serve well in detecting credit
fraud. It offers the potential to understand non-linear and complex relationships between
various factors in transaction data. Moreover, MLPs have the added benefit of being highly
customizable, allowing us to tailor the network’s complexity to the problem under study.
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Figure 13. Normalized histograms: Comparative density distributions of fraudulent and non-
fraudulent transactions for each feature in the dataset.

The MLP is a class of feedforward artificial neural networks, which includes multiple
layers of nodes in a directed graph. Each layer is fully connected to the next one. The
MLP model used in this study consists of an input layer with a number of neurons equal
to the number of features in the dataset, 4 hidden layers with 20 neurons each, and an
output layer with 2 neurons, corresponding to the 2 classes of transactions, as illustrated in
Figure 14. The neurons in the hidden layers use the rectified linear unit (ReLU) activation
function, while the output layer neurons use the sigmoid activation function. The loss
function used is binary cross-entropy.
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Figure 14. Diagram of an MLP with three input nodes, four hidden layers with three neurons each,
and two output nodes. The brown arrows represent connections from the input nodes to the first
hidden layer. Orange arrows represent connections among hidden layers. Blue arrows represent
connections from the final hidden layer to the output nodes.

The model is then compiled with the Adam optimizer (learning rate of 0.001) and
binary cross-entropy loss function. The model is then fit to the training data for 100 epochs
with a batch size of 2048, using 20% of the training data for validation. We also use
EarlyStopping from keras.callbacks to stop the training when a monitored metric (in this
case, validation loss) has stopped improving after 3 epochs, to prevent overfitting. Finally,
we plot the training and validation loss and accuracy for each epoch to check the model’s
learning progress.

The accuracy of the model on the test data is extremely high (99.94%), see Table 16,
which initially appears to be an excellent result. However, given the imbalanced nature of
the dataset (where the number of non-fraudulent transactions greatly exceeds the number
of fraudulent ones), accuracy may not be the best metric to evaluate model performance.

Table 16. Test accuracy and confusion matrix for MLP with four hidden layers and the Adam
optimizer.

Test Accuracy 0.99937

The confusion matrix (see Table 17) provides more insights into the model’s performance:

• True negative (TN): 56,851, the model correctly predicted the non-fraudulent transactions.
• False Positive (FP): 13, the model incorrectly predicted these transactions as fraudulent.
• False Negative (FN): 23, the model incorrectly predicted these fraudulent transactions

as non-fraudulent.
• True Positive (TP): 75, the model correctly identified these transactions as fraudulent.

Table 17. Confusion matrix for MLP.

Predicted: No Fraud Predicted: Fraud

Actual: No Fraud 56,851 13

Actual: Fraud 23 75

While the number of false positives is low, the number of false negatives is concerning
in this context. A false negative means a fraudulent transaction is undetected, which is a
significant issue in fraud detection.

That is, it is critical to note that the problem of credit card fraud detection involves
severely imbalanced classes, a challenge we must be mindful of. While our MLP model
achieved a high test accuracy of 99.94% (refer to Table 16), we should treat this result
cautiously due to the dataset’s skewed nature. Thus, other metrics, such as precision,
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recall, and the confusion matrix (Table 17), may provide a more comprehensive view of our
model’s performance.

In this study, the hyperparameters for the conducted analysis were selected with an
emphasis on establishing a strong baseline performance across the investigated techniques.
Despite the good performance demonstrated by our chosen parameters, we acknowledge
the critical role of extensive hyperparameter tuning in maximizing model performance.
Therefore, in practical applications, a more thorough fine-tuning process is advisable to
potentially achieve superior results.

4.3. Resampling Strategies

Undersampling involves randomly removing examples from the majority class, which
can lead to a loss of information. This is compensated for by a more balanced dataset that
could potentially improve the performance of the MLP.

Oversampling involves randomly duplicating examples from the minority class. Al-
though this can lead to overfitting due to the exact replication of minority examples, it
provides a more balanced dataset for the MLP.

SMOTE generates synthetic examples from the minority class. It selects two or more
similar instances (using a distance measure) and perturbs each instance one attribute at a
time by a random amount within the difference to the neighboring instances.

5. Experiments and Results

Our study’s primary objective was to develop a robust baseline model that exhibits
exceptional performance; we also aimed to assess the efficacy of various resampling strate-
gies, especially in reducing the rate of false negatives. In the context of fraud detection,
minimizing the potential for not detecting fraudulent transactions is a critical operational
requirement. Thus, our focus was to scrutinize this aspect while evaluating distinct resam-
pling strategies.

In order to assess the impact of different resampling strategies on the performance
of the MLP model, experiments were conducted with undersampling, oversampling, and
SMOTE. For each strategy, a version of the dataset was created and used to train the MLP
model. Each model’s accuracy was then evaluated on the test set.

Resampling was done only on the training data to avoid information leakage from
the test set. The aim was to create a model that generalizes well to unseen data. If we use
information from the test set during the training process, it could lead to over-optimistic
performance metrics during testing, and the model would not perform as well on truly
unseen data. This is why it is crucial to keep the test data separate and untouched until the
very end of the process.

Analyzing the results, the test accuracy seems quite high at approximately 98.5%, see
Table 18. However, looking at the confusion matrix, we can see that the model has a large
number of false positives (836), which indicates that it incorrectly classifies many normal
transactions as fraudulent. This is likely due to the fact that the model is trained on a
balanced dataset (achieved through undersampling) and, thus, may overestimate the prob-
ability of fraud when applied to the original, highly imbalanced data. The corresponding
training and validation accuracies and loss curves are shown in Figures 15 and 16.

Table 18. Performance comparison of the MLP model on undersampled, oversampled, and
SMOTE data.

Method Non-Fraud (Train) Fraud (Train) Test Accuracy True Negative False Positive False Negative True Positive

Undersampling 394 394 0.9851 56,028 836 15 83
Oversampling 227,451 227,451 0.99928 56,844 20 21 77
SMOTE 227,451 227,451 0.99909 56,838 26 26 72
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Figure 15. Accuracy for the undersampled model.

Figure 16. Loss for the undersampled model.

In terms of whether we can keep this model acceptable, it depends on the specific
use case and the cost trade-off between false positives and false negatives. In a credit card
fraud detection context, a false negative (fraudulent transaction classified as normal) could
potentially cost the company a lot of money, while a false positive (normal transaction
classified as fraudulent) would mainly cause inconvenience to the customer. However,
if the number of false positives is too high, it may also lead to customer dissatisfaction
and loss of trust in the company. Thus, while the overall accuracy of the model is high, its
practical utility may be limited due to the high number of false positives.

The primary reason we only resample the training data is to prevent information
leakage from the test set into the training set. Resampling techniques, such as oversampling
and undersampling, involve creating synthetic samples or choosing specific samples based
on the existing data [10,12]. If we were to include the test set in our resampling, the
model might gain information from the test set during training, which would give us an
overly optimistic and potentially misleading measure of how well our model generalizes
to unseen data [23].

The results from oversampling show a very high accuracy of 99.93% on the test set,
as can be seen in Table 18. The confusion matrix indicates that the model has a very high
true positive rate and a very low false positive rate, which is desirable in this context.
However, in the context of fraud detection, it is also important to minimize the number of
false negatives (fraudulent transactions that are classified as non-fraudulent). In this case,
there are 21 false negatives, which might be considered too high, depending on the context
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and the cost associated with missing a fraudulent transaction. The corresponding training
and validation accuracies and loss curves are shown in Figures 17 and 18.

Figure 17. Accuracy of the oversampled model.

Figure 18. Loss for the oversampled model.

In this case, SMOTE is applied to the training set. Using the entire dataset is an
acceptable approach when the dataset is highly imbalanced. However, there is a potential
pitfall to keep in mind: synthetic samples could be created based on information from
the future (test set), which is a form of data leakage that can lead to overly optimistic
performance estimates. The best practice is usually to apply SMOTE (or any other form of
resampling) during cross-validation within the training set, and not on the test set or the
entire dataset.

The test accuracy of the model trained with SMOTE is slightly lower than the model
trained without SMOTE, as shown in Table 18. However, accuracy alone can be a misleading
measure, particularly in the context of imbalanced datasets. It is important to look at the
confusion matrix as well. We see that the model with SMOTE has a slightly higher number
of false positives (non-fraudulent transactions that were classified as fraudulent) and false
negatives (fraudulent transactions that were classified as non-fraudulent). Depending on
the costs associated with false positives and false negatives, one model might be preferred
over the other. The choice of the model will depend on the specific business context and
the trade-off between precision and recall. The corresponding training and validation
accuracies and loss curves are shown in Figures 19 and 20.
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Figure 19. Accuracy of the SMOTE model.

Figure 20. Loss for the SMOTE model.

In this particular case, cross-validation can be problematic due to the limited represen-
tation of the minority class. The traditional cross-validation strategy could potentially lead
to folds where the minority class is very under-represented or even entirely absent, result-
ing in poor generalization of the trained model. In our research, we used oversampling to
balance the dataset before splitting it into training and validation sets, and we ensured a
substantial representation of the minority class in both the training and validation sets. It
is worth noting that this oversampling was performed only on the training data, leaving
the validation data untouched to provide a realistic evaluation of the model performance
on imbalanced data and avoid data leakage. Hence, this approach effectively mimics the
spirit of cross-validation while accommodating the special requirements of our imbalanced
data. Lastly, we kept aside a separate test set, which was not involved in either training or
validation processes, to evaluate the final performance of the models, ensuring an unbiased
assessment of the generalization capability of our models.

We can provide the following analysis:

• Undersampling: This model, trained on a perfectly balanced dataset (with 394 in-
stances each of fraud and non-fraud cases), shows a good overall test accuracy of
98.51%. However, it appears to have struggled more than the other models in correctly
classifying cases, as indicated by the higher number of false positives (836). This
means it incorrectly classified 836 normal transactions as fraudulent, which can lead to
unnecessary alerts in a real-world fraud detection system; those are indeed annoying
for the final user, but not critical.
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• Oversampling: This model was trained on a significantly larger dataset (with 227,451 in-
stances each of fraud and non-fraud cases). The test accuracy here is very high at
99.928%, and it performed well in terms of minimizing false positives (only 20) and
false negatives (21). This shows that the oversampling model has excelled in correctly
identifying both fraudulent and non-fraudulent transactions.

• SMOTE: Similar to the oversampling model, this model was trained on a large, bal-
anced dataset (227,451 instances each). The test accuracy is very high at 99.909%,
but it has slightly more false positives (26) and false negatives (26) compared to the
oversampling model. This means that, while SMOTE has performed extremely well,
it has slightly underperformed the oversampling model in this case.

In conclusion, while all models perform well, the oversampling model appears to
provide the best results in this case, with the highest test accuracy of 99.928% and the lowest
number of false positives (20/227,451) and false negatives (21/227,451). The undersampling
model, while still performing admirably, struggles more with classifying transactions
correctly. The SMOTE model performs almost as well as the oversampling model but falls
just slightly short in terms of both accuracy and the number of incorrect classifications.

An important aspect to consider is that the SMOTE synthesizes new instances of
the minority class by interpolating between existing examples. While this strategy can
mitigate the overfitting issue that might occur with oversampling, where specific instances
are simply replicated, SMOTE carries its own risk. Specifically, it may generate synthetic
instances within regions of the feature space predominantly occupied by the majority class,
thereby inadvertently introducing noise into the dataset. This noise introduction could
plausibly explain why oversampling outperforms SMOTE in this specific context. An
alternative approach could be to use SMOTE-ENN [23], which is an excellent technique that
combines oversampling the minority (or under-represented) class instances using SMOTE
and cleaning the resultant dataset using the edited nearest neighbor (ENN) algorithm. It
could indeed help in handling the problem of noisy instances and borderline instances that
SMOTE alone might struggle with, and could potentially yield better results.

Additionally, to further strengthen the work, the following strategies could be tested:

• Nested cross-validation: While standard k-fold cross-validation can indeed be prob-
lematic for imbalanced datasets, nested cross-validation could be used to further
validate the generalizability of the model and the robustness of the results. In nested
cross-validation, the outer loop is used to evaluate the model’s performance, while
the inner loop is used to tune the model’s hyperparameters. This can provide a
more unbiased estimation of the model performance and could address concerns
about overfitting.

• Comparison with other resampling methods: While we already compared oversam-
pling, undersampling, and SMOTE, there are other resampling methods that could be
considered to broaden the scope of the work besides the already mentioned SMOTE-
ENN. This could include methods such as ADASYN (adaptive synthetic sampling) [9],
ROSE (random oversampling examples), or using distinct versions of SMOTE, such as
Borderline-SMOTE [24] or SVM-SMOTE.

• Incorporating cost-sensitive learning: Since the focus of the study is on reducing false
negatives (which is critical in fraud detection), incorporating cost-sensitive learning in
the model could be a significant addition. This is a way to provide the model with
more information about the relative importance or “cost” of different types of errors.

6. Discussion

The results of our experiments provide insights into the effectiveness of different
resampling strategies when dealing with imbalanced datasets. The comparative analysis
highlights the strengths and weaknesses of each approach. The best-performing model, in
terms of accuracy and generalization, should be chosen based on careful consideration of
the trade-offs between true positive rates, false positive rates, and model complexity.
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One of the major advantages of the approach we have studied is its adaptability. By
adjusting the resampling technique, it can be fine-tuned to deal with different levels of
class imbalance, a common issue in fraud detection. Furthermore, through hyperparameter
optimization, the performance of the MLP can be optimized for different types of datasets,
making it suitable for a wide range of applications in mobile and ubiquitous technologies.

In all these applications, it is important to note that the effective implementation of
our approach would require careful consideration of user privacy and data security issues.
The design and use of these systems must comply with relevant data protection regulations
and ethical guidelines, ensuring that personal and sensitive data are handled responsibly.

6.1. Performance and Scalability

A critical aspect of integrating ML models into mobile and ubiquitous systems is
the consideration of performance and scalability. These factors determine the feasibility
of deploying our proposed methods in real-world settings, particularly in systems with
stringent resource constraints or high data throughput requirements.

The MLP model, despite its effectiveness in handling complex classification tasks, can be
computationally intensive, especially with large datasets or complex architectures. However,
several strategies can be employed to mitigate these computational demands. First, through
careful hyperparameter tuning, we can optimize the trade-off between model complexity
and performance, ensuring the MLP is as efficient as possible. Second, techniques such as
model pruning or quantization can be employed post-training to reduce the computational
resources required for inference without significantly compromising accuracy.

In terms of memory, the MLP model, similar to other neural networks, requires
sufficient space to store weights and biases for each layer. For mobile or IoT devices with
limited memory, this may pose a challenge. However, memory-efficient techniques, such as
weight sharing or binary neural networks, can be explored to reduce the memory footprint
of the MLP.

While our study employed a relatively large dataset, in a real-world setting, mobile
banking or payment systems may deal with significantly larger volumes of data. The
scalability of our approach to such datasets depends on several factors. Training an MLP
on a larger dataset would require more computational resources and time. However,
techniques such as distributed training, or the use of more powerful hardware, can be
employed to handle larger datasets. Moreover, the use of mini-batch gradient descent
during training allows for the model to be trained on larger datasets without requiring
proportionally larger memory.

For real-time fraud detection in mobile or ubiquitous systems, the ability to process
data and make predictions quickly is vital. After training, MLPs can make predictions
relatively quickly, making them suitable for real-time applications. However, the speed of
prediction can be influenced by factors such as model complexity and the dimensionality of
the input data. Therefore, care must be taken during model design and data preprocessing
to ensure that the system can meet the required latency for real-time processing.

6.2. Privacy Considerations

In the context of fraud detection, particularly in applications such as mobile banking or
payment systems, privacy becomes a paramount concern. The resampling process, model
training, and subsequent application must all be conducted in a manner that respects and
preserves user privacy. In this section, we outline some of the key privacy considerations
associated with our approach.

Resampling techniques, including undersampling, oversampling, and SMOTE, in-
volve manipulating the original dataset to address the class imbalance. While these tech-
niques do not inherently compromise privacy, care must be taken when implementing
them. For example, in oversampling, duplicates of minority class instances are created. If
these instances contain sensitive information, their duplication could potentially increase
the risk of a privacy breach in case of data leakage. The synthetic samples generated by
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SMOTE, on the other hand, could be considered less privacy-intrusive, as they do not
directly replicate existing instances, but instead create new, synthetic instances based on
feature space similarities.

Training the MLP model requires access to user data, raising potential privacy issues.
To mitigate this, techniques such as differential privacy can be employed. Differential
privacy introduces a certain amount of noise to the data or the model’s outputs, ensuring
that the inclusion or exclusion of any single data point does not significantly affect the
results, thereby preserving individual privacy.

Additionally, to prevent potential privacy breaches during the model application
phase, the principle of data minimization should be adopted. This principle dictates that
only the minimum necessary data should be used for making predictions. By limiting the
scope of data used in the model, we can ensure that we are not unnecessarily exposing
sensitive information.

Finally, it is crucial to consider legal and ethical guidelines regarding data privacy, such
as the General Data Protection Regulation (GDPR) in the European Union. These guidelines
stipulate requirements for data consent, anonymization, and the rights of individuals,
among other things. Adherence to these guidelines is not only a legal requirement, but also
a means of ensuring ethical conduct in the handling of user data.

That is, while our proposed methodology offers promising results in addressing
imbalanced data for fraud detection, it is essential to implement it in a privacy-preserving
manner. By incorporating privacy measures at each step of the process, we can ensure that
our approach is not only effective but also respects user privacy.

7. Conclusions

This study presented a comprehensive investigation of various supervised learning
algorithms on a synthetic dataset based on four-class spirals. The findings are then applied
to a real problem task of credit card fraud detection, where we achieve a state-of-the-
art test accuracy of 99.937% using the MLP model to classify the synthetic data. Then,
we observe the effects of using resampling strategies in order to reduce the number of
false negatives; notice that this is particularly important for the task under consideration.
Hence, we tested undersampling, oversampling, and SMOTE. The results demonstrate the
importance of addressing the class imbalance in the data preprocessing phase to improve
model performance. Our findings suggest that the choice of resampling strategy should
be context-dependent, taking into consideration the specific characteristics of the dataset,
and the trade-off between model accuracy and interpretability. In particular, we achieve
a compelling overall accuracy of 99.928% using oversampling, with a significantly low
number of false negatives (21/227,451).

In conclusion, while there is no one-size-fits-all solution to handle imbalanced data
and non-linearity, a combination of carefully chosen resampling strategies and model
hyperparameter tuning can lead to significant improvements in model performance.

Our contributions in this paper include a comprehensive exploration of methodologies
for handling imbalanced datasets, with a focus on resampling strategies and their applica-
tion in fraud detection. We demonstrate that our proposed approach, which combines a
carefully selected ML model with tailored resampling strategies, significantly improves
the detection of fraudulent transactions. Moreover, we highlight the critical importance of
addressing privacy concerns when implementing such methods, underscoring the need for
incorporating privacy measures into every step of the process. Thus, our work not only
advances the state of the art in imbalanced data handling and fraud detection but also
provides valuable guidance on integrating privacy considerations into the implementation
of these methodologies.

Despite the experimentation and analysis conducted, this study has some limitations.
The choice of hyperparameters explored may not cover the entire possible search space
and, therefore, there may be room for further optimization. Moreover, the neural network
architecture used in this study was limited to a specific type, the MLP. Other types of neural
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networks or ensemble methods might yield different results, and so should be considered
in future work.

There are several avenues for future research to build upon the findings of this study.
First, additional resampling techniques and variations of existing methods can be explored
to determine their effectiveness in handling imbalanced data. Second, the impacts of
different feature engineering and selection methods on model performance can be inves-
tigated. Lastly, while alternative ML methodologies, including DL architectures, could
potentially be deployed to determine the optimal model for fraud detection within imbal-
anced datasets, it is crucial to consider the specific parameters of each use case. Indeed, the
suitability of more sophisticated models will inevitably hinge on a range of factors such as
computational resources at one’s disposal and the desired performance outcomes. Hence,
it is vital to strike a balance between achieving superior predictive accuracy and managing
computational demands efficiently.
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