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Abstract
Eating is a complex action. When it is performed, lots of facial movements that depend on food and consumer character-
istics take place. Several techniques and methodologies are available to evaluate them, and some are used to describe food 
texture. Employing facial skin markers and direct descriptors, and studying the tracking of their movements during the eat-
ing process are a simple non-invasive technique, but with limitations. This study aimed to use the technique and compare 
two data processes using direct or indirect descriptors to minimize limitations (panelist effect) and to increase its ability 
to classify muffins, coffee cookies, and toasted bread according to the descriptions provided by textural techniques. Eight 
participants (four men, four women) ate the three products 5 times over a 2-week period. Six skin markers were placed on 
certain points of their faces. Chewing and swallowing were characterized by applying the technique. The panelist effect was 
evidenced by employing direct descriptors, while products were described in the same way as using textural techniques by 
indirect descriptors.

Keywords  Skin markers · Chewing · Swallowing · Food texture · Oral food processing

Introduction

Chewing and swallowing involve complex behaviors associ-
ated with the volitional and reflexive activities of more than 
30 nerves and muscles (Matsuo & Palmer, 2009). While 
chewing, cyclic jaw movement during processes is closely 
coordinated with tongue, cheek, soft palate, and hyoid bone 
movements. While swallowing, different movements take 
place in the soft palatal walls of the pharynx, tongue, hyoid 
bone, larynx, suprahyoid and thyrohyoid muscles, and the 
epiglottis (Matsuo & Palmer, 2009). Thus, chewing and 
swallowing involve a large number of body components in 
motion, moved mainly by the most important muscles for 

this purpose: temporal (anterior and posterior), masseter 
(superficial and deep), medial pterygoid, lateral pterygoid 
(superior and inferior), and digastric muscles. However, eat-
ing involves far more muscles (Koolstra, 2002).

All these movements depend on food characteristics. Phys-
ical, chemical, rheological, and mechanical food properties 
substantially determine oral processing behavior (Ketel et al., 
2019). During oral processing, food products undergo major 
and dynamic transformations (Panouillé et al., 2016) that pro-
vide texture perception changes throughout the oral process-
ing time because food is broken down by chewing and is lubri-
cated by saliva incorporation (Devezeaux de Lavergne et al., 
2015). Oral processing movements also depend on consumer 
characteristics, such as age, gender, and ethnicity (Bartkiene 
et al., 2019; Ketel et al., 2019; Kostyra et al., 2016).

Several techniques and methodologies can be applied to 
evaluate chewing and swallowing, and some are used to be 
related to food texture. The main studied techniques are vide-
ofluoroscopy, endoscopy, computed tomography, ultrasound, 
electromagnetic articulography, electromyography, manom-
etry, and electropalatography (Álvarez et al., 2019), but they 
are very expensive, and some are even invasive and inter-
fere with the sensory experience. Employing skin surface 
markers to track the movement of the chin or other facial 
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features involved in jaw movement is another technique. The 
3D reconstruction of jaw movement is possible by combin-
ing a simple camera and a mirror, or by using many cameras. 
Unlike the previous techniques, this one is simpler (speedier 
setup), less invasive, and cheaper (Wilson et al., 2016), but 
sacrifices accuracy because of the differences in displacement 
between the skin and the chin, jaw, teeth, etc.

The studies that employ these techniques and methodolo-
gies normally focus on obtaining direct descriptors from the 
tracking of chewing and swallowing or muscle response. 
Descriptors like time to chew, chewing cycles, frequency, 
swallowing time, and tongue movements, among others, are 
the most widely studied (Le Révérend et al., 2016; Remijn 
et al., 2016; Rivera et al., 2020; Wilson et al., 2016). To 
develop descriptors, not all the data obtained during tests 
are used. Only some data are selected, transformed into 
descriptors, and studied with traditional statistical tools. The 
information skew could be the reason for the wide within-
subject variability between sessions that Remijn et al. (2016) 
observed and Sodhi et al. (2019) described, which reduces 
the use of the proposed methodology to characterize foods.

Other data processing can be done by using multivariate sta-
tistical tools. With these tools, facial movement tracking can be 
utilized as indirect descriptors, and a fingerprint that describes 
food can be developed by isolating it from the panelist factor. 
The development of this technology can help to describe food 
by taking into account its interaction with the mouth, teeth, 
saliva, etc., and to do so dynamically: that is to say, taking into 
account the transformation that food undergoes during oral pro-
cessing. The results could be interesting for the food industry 
because, among others, foods could be developed based on con-
sumer perceptions noted while eating them. Nowadays, descrip-
tions are done by sensory characterization employing panelists, 
usually consumers, who describe foods subjectively according 
to their perception (Forker et al., 2012; Waglay & Karboune, 
2020; Monnet et al., 2022; Espert et al., 2023) because to cre-
ate and to maintain well-trained and calibrated sensory panels 
can be economically challenging and time consuming (Cardoso 
et al., 2022). With the proposed technique, the description could 
be objective, obtaining quantified results and reducing the num-
ber of panelists without the accuracy lost.

Some other multivariate statistical tools, such as principal 
component analysis (PCA) and partial least squares-discriminant 
analysis (PLS-DA), are widely used in food statistical analy-
ses (Granato et al., 2018; Lee et al., 2018; Verdú et al., 2019a, 
b, 2020, 2021). PCA is a multivariate unsupervised statistical 
method applied to describe and reduce the dimensionality of a 
large set of quantitative variables to a few new variables called 
principal components (PCs), which are the result of linear 
combinations of the original variables (Verdú, et al., 2019a). 
PLS-DA is a versatile algorithm that can be used for predictive 
and descriptive modeling, and also for discriminative variable 
selection. PLS-DA combines dimensionality reduction and the 

discriminant analysis in one algorithm, and is especially applica-
ble for modeling high-dimensional (HD) data (Lee et al., 2018). 
In some cases, like when a multivariant analysis is applied, the 
selectivity in variables is insufficient to easily certain aspects 
like backgrounds or other signals that interfere with a multivari-
ate model. In these cases, using multivariate filtering methods 
before model calibration (pretreatment data methods) can help 
to simplify the end model. Multivariate filters identify some 
undesirable covariance structures (i.e., how variables change 
together) and remove these sources of variance from data prior 
to calibration or prediction. Among others, generalized least 
squares weighting (GLSW) is a “multivariate filters” method 
that identifies patterns in the variables of data that should be 
downweighted or removed (Wise et al., 2006).

This study aimed to evaluate data from tracking facial 
movements during chewing and swallowing processes by 
employing skin surface markers as a fingerprint to character-
ize textural food product properties. For this purpose, two 
different data processes are proposed depending on the use 
of direct or indirect descriptors.

Materials and Methods

Samples

Three commercial bakery products (coffee cookies, toasted 
bread, and muffins) were evaluated. They were all pur-
chased in a local supermarket. Samples were cut into pieces 
(2 × 2 × 1 cm). Products were selected because they all had 
similar characteristics; wheat flour was the main component, 
air incorporation into dough by using either a rising agent 
or whipping (coffee cookies and muffins) or by fermenta-
tion (bread) and oven cooking. Yet they also had different 
characteristics linked with their composition (fat, sugar or 
water content; Table 1) and processing, both of which gen-
erated their final physical characteristics; glass state related 
to fracture point (toasted bread and cookies) or apparent 
density (Table 1).

Table 1   Approximate food composition obtained from the commer-
cial label

*  Obtained by dehydration in an oven until constant weight
**  Obtained from measuring samples’ weight and volume

Muffins Toasted bread Coffee cookies

Wheat flour (%) 23 80 30
Fat (%) 23 1.5 26
Sugars (%) 25 4.9 25
*Water (%) 12 2 2.8
**Apparent density (kg/

m3)
0.92 0.48 1.68
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Participants

The study was carried out with eight healthy participants 
(four men and four women aged 24–49 years), with nor-
mal occlusion and a continuous dental arch according to 
the information they reported. All the participants were 
informed about the study objectives, the products to be 
eaten, the methodology of proof, and their anonymity.

Texture Measurements

The texture of each sample was determined by running the 
Kramer shear test and the texture profile analysis (TPA), 
both in a TA.XT2 Texture Analyzer (Stable Micro Systems, 
Surrey, UK) with a 25-kg load cell. Ten samples of each 
product, all of the same dimensions, were prepared and ana-
lyzed. For the Kramer shear test, a cell HDP/MK05 with a 
5-bladed head was used at the deformation rate of 2 mm/s. 
The evaluated parameters were maximum force (Fmax (N)) 
and work (N·mm). For the TPA, a 35-mm diameter probe was 
employed. Test speed was set at 1.7 m/s to compress samples 
to 50% of their previous height. The time between compres-
sions was 5 s. For coffee cookies and toasted bread, only 
the first compression was taken into account because they 
reached their fracture point and the evaluated parameter was 
fracture force. For muffins, two compressions were used. The 
studied parameters were hardness, springiness, cohesiveness, 
gumminess, and resilience (Rahman et al., 2021).

Chewing and Swallowing Tests

Chewing and swallowing tests were carried out for 5 days 
over 2 weeks. The participants ate three products daily, and 
rinsed their mouths before and after each one. The order in 
which products were provided differed every day and also 
per panelist. The order of panelists was also different on each 
sampling day.

The procedure to capture face movement during the test 
was the following:

Six face points (P1: temporomandibular joint, P2: jaw 
angle, P4: mental protuberance, P3: the midpoint between 
P2 and P4; P5: hyoid bone; P6: middle of the forehead) 
(Fig. 1A) were firstly cleaned with facial alcohol solution 
in which a sticker reflective marker was placed (Fig. 1A). 
P6 was used to record translational and rotational head 
movements. Stickers were placed by palpation. Once the 
participants were seated and height was adjusted, their heads 
were immobilized by a headband. The product was placed 
on their hand. After turning the light off, they put it in their 
mouths (on the top of their tongue), closed their mouths, and 
recording started by means of an acoustic signal produced 
by them. Once they had swallowed the product, recording 
was stopped by the acoustic signal.

The capture system was a digital Logitech C920 camera 
(CMOS sensor, resolution of 2304 × 1535). Images were 
captured at 30 frames per second in the RGB (red, green, 
and blue) format and were saved as mp4 (1980 × 1080). The 
camera was placed 30 cm from faces at an angle of 45°.

Image Processing and Data Extraction

The obtained movies were cut into frames and image stacks 
were created (Fig. 1Ba). Employing the software developed 
by the group, coordinates X and Y of the track of each 
facial point during chewing and swallowing were obtained 
(Fig. 1Bb). To process them, first the values of X and Y from 
P1 to P5 were amended with those from P6 to minimize any 
translational and rotational head movements that could have 
occurred. Then the two data processes were employed. In 
the first one, eight direct descriptors used by other authors 
were obtained from the X and Y coordinates (Table 2 and 
Fig. 1C.1) (Iguchi et al., 2015; Le Révérend et al., 2016; 
Remijn et al., 2016; Rivera et al., 2020; Wilson et al., 2016) 
with a software developed by the group. For that purpose, 
start of chewing was defined as the first jaw opening to occur 
and was evaluated in P4. End of swallowing was evaluated 
in P5, when the thyroid cartilage went back to the initial 
point (after swallowing). Chewing cycles were evaluated in 
P4 with the number of down and up jaw movements (points 
2 in Fig. 1C.1). The swallowing process was detected in P5 
by looking for the highest value and the points at both sides 
with the median value (area with the blue lines in Fig. 1C.1).

During the second data process, indirect descriptors were 
obtained by employing another software developed by the 
group. This process can help to minimize the effect of pan-
elist attributes to enhance the effect of food on common facial 
movements. For each X and Y tracking value obtained at all 
the five facial points (Fig. 1B), the maximum and the mini-
mum values of each oscillation during chewing and swallow-
ing were obtained, and the number of frames between both 
(X-axis distance = □F) and pixels (Y-axis distance = □P) 
was extracted (Fig. 1C.2). Then as the time for each chewing 
and swallowing test differed, the □F and □P values were 
normalized with the total frames of the test. With normaliza-
tion, the time factor was minimized to once again enhance 
the effect of food on facial movements. Two histograms 
were developed. In the first one, the □F values were clus-
tered into 10 intervals, which were obtained by segmenting 
the maximum □F value into 10 equal units. The histogram 
was obtained with the number of □F within each interval. 
The procedure was similar for the second histogram, but the 
maximum □P was divided into 40 equal segments. The sec-
ond histogram was obtained with the number of □P in each 
one (Fig. 1C.2). Histograms were generated by employing 
information not only from the entire eating time (TT), but 
also for the four quartiles of time into which each eating test 
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was divided (T1, T2, T3, T4) (Fig. 1Bb). This was done to 
evaluate different chewing and swallowing periods. Mastica-
tory performance is adapted not only cycle by cycle, but also 
throughout the bolus formation process (Iguchi et al., 2015). 

For each test, information was obtained by the summation 
of TT + T1 + T2 + T3 + T4 on each X and Y of the five facial 
points. Thus, by means of this process, the chewing and swal-
lowing tests were described by 2500 values (Fig. 1C.2.1).
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Fig. 1   Imaging capture, processing, and data extraction. A Facial point location. B Tracking of each facial point during chewing (a) to obtain the 
X and Y coordinates (b) and their processing (c). (C.1) Scheme of the variables (values) cataloged as indirect descriptors

Table 2   Direct descriptors obtained from the X and Y coordinates of the five facial points during chewing and swallowing. The numbers on 
descriptors are represented in Fig. 1C.1

Descriptor Description

1Chewing time (s) Interval time between start of chewing and end of swallowing
2Chewing cycles Number of down and up jaw movements
3Cycle time (s) Mean time of one cycle
4□y vertical (mm) Mean of the displacement on the Y-axis during the first 2/3 of chewing at P4
□x horizontal (mm) Mean of the displacement on the X-axis during the first 2/3 of chewing at P4
Chewing velocity (mm/s) Mean time for □Y vertical
5□y swallowing Mean of the displacement on the Y-axis during swallowing. Distance between the median and the highest value in P5 

(Fig. 1.C1)
6Swallowing time Time needed for swallowing. Distance in pixels (transformed into seconds) between the median values on both sides 

of the highest value in P5 (Fig. 1C.1)
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Statistical Analysis

The Kramer and TPA texture parameters (fracture force, 
work, hardness, springiness, cohesiveness, gumminess, 
chewiness, and resilience) of the three products were evalu-
ated by an ANOVA. In those cases with a significant effect 
(p < 0.05), the average was compared by Fisher’s least sig-
nificant difference (LSD). To evaluate how the texture param-
eters described each product in relation to the others and their 
capacity to classify the three products, PCA and PLS-DA 
analyses with the pretreatment “GLSW filter” were applied.

The results of the direct descriptors obtained by the image 
processing of the chewing/swallowing tests were statistically 
analyzed by a multifactorial ANOVA, where panelists and 
products were the two factors. In those cases in which the 
product was significant (p < 0.05), a one-way ANOVA was 
run and the average was compared by Fisher’s LSD. As with 
the texture parameters, PCA and PLS-DA with a GLSW 
filter were also applied to evaluate the capacity of direct 
descriptors to develop a model capable of describing and 
classifying the three products.

For indirect descriptors, PCA and PLS-DA analyses 
with a GLSW filter were also applied. To study the differ-
ent periods of chewing and swallowing processes, six PLS-
DA were applied: one employed all the generated data 
(TT + T1 + T2 + T3 + T4); the remaining five were one per 
quartile from T1 to T4, and the last one for the total eating 
time (TT).

To assess whether the imaging data were related to tex-
tural food characteristics, a partial least squares regression 
(PLS) analysis was performed. For the three products, the 
relation was evaluated by Kramer Fmax and work, and hard-
ness and work from the first compression of the TPA. The 
relation with fracture point was evaluated only for coffee 
cookies and toasted bread.

The PLS-DA results were expressed as the sensitivity and 
specificity of the cross-validation (CV) results. The method 
followed for the CV process was “Venetian blinds” and 
employed three data splits. For the PLS, “Venetian blinds” 
was also used and accuracy was expressed as root mean 
square error (RMSE CV) and the coefficient of determina-
tion as R2 CV.

These procedures were run with the PLS Toolbox, 6.3 
(Eigenvector Research Inc., Wenatchee, Washington, USA), 
a toolbox extension in the Matlab 7.6 computational envi-
ronment (The Mathworks, Natick, Massachusetts, USA).

Results and Discussion

Texture Characterization

Table 3 shows the results of the texture parameters for 
the three tested products. The results evidenced the 
large difference for muffins with the lowest values for 
the Kramer parameters (Fmax and work) and the com-
pression test (hardness and work), and with no fracture 
point. The complex mixture of interacting ingredients for 
muffins (basically sugar and variable levels of fat, flour, 
eggs, and baking powder) generated the typical porous 
structure and a large volume to contribute to their soft, 
spongy, and tender crumb texture with a certain degree of 
resistance to crumbling (cohesiveness) (Öztürk & Mutlu, 
2018). According to the authors (Hadnadev et al., 2018), 
two factors are essential for muffins’ characteristics and to 
distinguish them from coffee cookies and toasted bread. 
The high water content (Table 1), and the two generated 
networks responsible for cell wall to gas retain: (1) a con-
tinuous egg protein gel network, formed during baking; 
(2) starch gel, formed while cooled (not evaluated in the 

Table 3   Means and standard 
deviations for the texture 
analysis (Kramer test and TPA) 
and the PLS scores of the 
models developed to observe 
the relation between imaging 
data at T4 and the texture 
parameters

A parameter with superscript 1: obtained from the Kramer test; superscript 2: obtained from the first com-
pression of the TPA test; superscript 3: from all the TPA tests
A different letter in the same row means differences (p < 0.05)

Means SD PLS scores

Muffins Coffee cookies Toast bread RMSE C RMSE CV R2 C R2 CV

1Fmax (N) 7.41 ± 2.04c 127.94 ± 2.36a 104.06 ± 2.58b 5.578 19.05 0.99 0.87
1Work (N·mm) 71.1 ± 17.67c 945.19 ± 20.41a 486.32 ± 18.89b 38.036 111.278 0.99 0.9
2Hardness (N) 11.03 ± 4.84c 255.28 ± 5.59b 281.47 ± 5.59a 13.761 46.17 0.98 0.87
2Fracture (N) ––– 255.28 ± 5.59b 281.47 ± 5.59a 0.297 2.974 0.99 0.9
2Work 35.56 ± 17.20c 1071.72 ± 21.76a 733.94 ± 19.86b 50.74 141.782 0.98 0.89
3Springiness 0.699 ± 0.031 ––– ––– ––– ––– ––– –––
3Cohesiveness 0.449 ± 0.02 ––– ––– ––– ––– ––– –––
3Gumminess 5.08 ± 0.87 ––– ––– ––– ––– ––– –––
3Chewiness 3.55 ± 0.65 ––– ––– ––– ––– ––– –––
3Resilience 0.137 ± 0.007 ––– ––– ––– ––– ––– –––
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study). Unlike bread dough, the abundant amount of water 
in muffins batter allows all the starch granules to be com-
pletely gelatinized to, thus, form a structure that entraps 
air bubbles (Hadnadev et al., 2018).

The differences between coffee cookies and toasted 
bread were smaller and dependent on the applied test-
ing method. In the Kramer test, both maximum force and 
work were greater for coffee cookies, perhaps because of 
its higher apparent density. Behavior was not the same in 
the compression test because Fmax, which reached the 
fracture point, was higher for toasted bread, while work 
was higher for coffee cookies. The higher wheat flour con-
tent, which implies a bigger starch network, and the lower 
sugar content, which breaks down the network, confer the 
toasted bread dough greater binding. Instead, the higher 
apparent density of coffee cookies could be the reason for 
the obtained higher work value.

The PCA was done to evaluate how the three products 
were described when compared to one another based on 
the texture parameters and by taking a value of 0 for those 
not measured (fracture force for muffins; springiness, 
cohesiveness, gumminess, chewiness, and resilience for 
toasted bread and coffee cookies) (Fig. 2A). PC1 with 
94.26% of total variance discriminated muffins (positive 
X-axis) from both coffee cookies and toasted bread (nega-
tive X-axis). PC2 with 4.14% of total variance discrimi-
nated coffee cookies (positive Y-axis) from toasted bread 
(negative Y-axis).

Image Analysis

During oral food processing (chewing and swallowing), 
lots of facial movements take place. By way of example, 

only during swallowing does the mandibular anchorage to 
the cranium occur as a primary physiologic event. It allows 
the action of the tongue and the suprahyoid muscles on the 
hyoid bone in all the swallowing phases. The hyoid bone 
moves upward in the first swallowing phase; at the same 
time, the jaw also moves upward to reach occlusal contact. 
At the end of deglutition, the hyoid bone moves downward 
and the jaw, by leaving occlusal contact, also moves down-
ward to occupy its rest position (Monaco et al., 2008). 
During tests, some facial movements took place at the five 
evaluated facial points, but they did not occur with the 
same intensity and showed differences for the three prod-
ucts and panelists (Ketel et al., 2019; Woda et al., 2006). 
By way of example, Fig. 3 depicts the tracking coordinates 
(X and Y) at P1. It was initially possible to observe chew-
ing cycles (one marked by a gray band), the first maximum 
jaw aperture that could express the first bite (blue dashed 
line with number 1), the swallowing point (red dashed 
line with number 3), start of the chewing process and end 
of swallowing (green number 4 and 5, respectively), and 
how the chewing process was not constant. From the X 
and Y coordinates of the tracking of the five facial points, 
two different data processes were followed to describe the 
products.

Direct Descriptors

Having obtained the direct descriptors, and according to that 
described in Table 2, a multifactorial analysis was applied. 
Its results showed a statistical effect (p < 0.05) for the pan-
elist-product factors interaction, except for chewing time, 
cycle time, and swallowing time (Table 4). The panelist fac-
tor was significant (p < 0.05) for all the descriptors, but □y 
swallowing was not for the product factor. According to these 

Fig. 2   Biplot for the first two main PCs of the PCA study applied 
to the texture parameters A. Plots of the first two PCs of the PCAs 
studies done with indirect descriptors, labeling samples according 
to products B or panelists C. Green dots, coffee cookies. Blue dots, 

toasted bread. Red dots, muffin. Black dots, variables (texture param-
eters). Empty red symbols, male panelists; empty black symbols, 
female panelists
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results, not all the panelists ate the three products in the same 
way, and panelist is an important factor to describe foods. 
Consumer characteristics, such as age, gender, and ethnicity, 
alter oral behavior (Ketel et al., 2019). Oral physiology plays 
an important role in the chewing process. Oral cavity size 
varies significantly from one person to another. A normal 
mouthful for adult males can take around 30.5 ± 10.1 g of 
water, but it takes approximately 25.2 ± 8.1 g of water for 
adult females. The number of teeth is also very important. 
Nevertheless, differences exist in the force applied by teeth 
even for people with all their teeth (Chen, 2009). Tooth cusp 
angle is also important and is related to the masticatory cycle 
near the maximal intercuspal, and malocclusion is often 

thought to perturb jaw movement and rhythm (Lassauzay 
et al., 2000). The role of the tongue is also significant. Its 
size, movement, and relation with oral cavity are other rel-
evant factors, as is saliva. The tongue is essential for eating 
foods because of its interaction with them (Chen, 2009). In 
this way, gender had a statistical effect on all the descriptors, 
except for number of chewing cycles and chewing velocity. 
The one-way ANOVA applied for each descriptor evidenced 
a longer chewing time for women, with longer time for each, 
perhaps because of their greater X and Y displacements. 
Besides, they obtained lesser hyoid bone displacement and 
a longer swallowing time (Table 4).

Fig. 3   The X A and Y B coor-
dinates from the tracking at P1 
during chewing processing

Table 4   Significance of the direct descriptors for the multifactorial ANOVA. Means and standard deviations of the one-way ANOVA for product 
factor and gender

A different letter in the same row means differences (p < 0.05)

Direct descriptor Factor significance Differences between products Differences between gender

Panelist (A) Product (B) AxB Coffee cookies Muffins Toasted bread W M

Chewing time (s) 0 0 0.0536 24.73 ± 5.72a 16.87 ± 4.97b 20.18 ± 4.55c 22.21 ± 5.48a 19.55 ± 5.97b
Chewing cycles 0 0 0.047 38.82 ± 8.08a 26.24 ± 7.63b 32.34 ± 6.88c 32.36 ± 8.85a 32.58 ± 9.37a
Cycle time (s) 0 0.047 0.16 0.86 ± 0.10ab 0.88 ± 0.10b 0.83 ± 0.09a 0.93 ± 0.08a 0.80 ± 0.13b
△ y vertical (mm) 0 0 0 10.63 ± 2.86a 7.85 ± 2.80b 8.96 ± 2.80c 10.65 ± 3.58a 8.46 ± 2.29b
△ x horizontal (mm) 0 0 0.002 6.10 ± 2.29a 4.43 ± 1.87b 5.71 ± 2.54a 6.09 ± 2.07a 4.81 ± 2.40b
Chewing velocity (mm/s) 0 0 0.01 12.27 ± 2.74a 9.48 ± 3.48b 11.40 ± 3.11a 11.33 ± 3.49a 10.63 ± 2.95a
△ y swallowing 0 0.021 0.046 6.13 ± 2.39a 5.39 ± 2.84a 6.08 ± 2.75a 4.67 ± 1.59a 7.07 ± 2.98b
Swallowing time (s) 0.023 0.944 0.857 2.06 ± 0.94a 2.11 ± 0.85a 2.05 ± 0.71a 2.31 ± 0.88a 1.80 ± 0.67b
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All the descriptors, except □y swallowing and swallowing 
time (s), showed significant differences (p < 0.05) in the three 
products when the one-way ANOVA for factor product was 
run (Table 4). Differences in the three products were found 
for chewing time, chewing cycles, and □y vertical, with the 
highest values for coffee cookies and the lowest value for 
muffins. For descriptors □x horizontal and chewing velocity, 
values were the same for coffee cookies and toasted bread, 
but lower for muffins. Only cycle time had higher values for 
muffins. The lower hardness and density values can be asso-
ciated with the shorter time needed to eat, the fewer chewing 
cycles for swallowing, and the shortest jaw course (□x and 
□y) (Slavicek, 2010). Hard and dry products required more 
chewing cycles and a longer time in the mouth until swallow-
ing. It is necessary to reach sufficient breakdown and enough 
saliva needs to be added to form a coherent bolus that is safe 
for swallowing (Engelen et al., 2005). Increasing the hard-
ness and elasticity of solid foods has been shown to increase 
chews per bite and decrease bite sizes (Bolhuis & Forde, 
2020). High cohesiveness could slow down chewing velocity 
and, therefore, prolong the cycle time. Not only hardness, but 
also other parameters like cohesiveness, should be considered 
determinants of chewing behaviors, such as total chewing 
duration and number of chewing cycles before swallowing 
(Iguchi et al., 2015). As cohesiveness is the degree to which 
a material can be deformed before it breaks, it suggests that 
differences in cohesiveness have a critical effect not only on 
the whole masticatory sequence, but also on chewing perfor-
mance per cycle (Iguchi et al., 2015).

Although there were significant differences because of 
product factor, as Fig. 4 depicts (with box-and-whisker plots), 
the chewing cycles, chewing time, chewing velocity, and □y 
vertical values were widely dispersed, even though all their 
means were higher for coffee cookies, then for toasted bread 
and finally for muffins. As previously mentioned, the weight of 
the panelist factor was considerable on chewing response and, 
therefore, on direct descriptors. This was why products did not 
cluster (data not shown) when all the data from direct descrip-
tors were used together to describe products by comparing 

each one by a PCA. In the same way, the PLSDA model devel-
oped for classifying the three products gave sensitivity and 
specificity values below 70% (Fig. 5). The worse classification 
was for coffee cookies and toasted bread because the model 
was unable to discriminate between both.

Thus, using direct descriptors can help us to somewhat 
describe food texture (mainly hardness and cohesion), but 
a description is not enough to compare foods with similar 
characteristics.

Indirect Descriptors

Like direct descriptors, indirect descriptors were also used to 
evaluate products by the PCA. The spatial representation of 
the first two components of the PCA, done by labeling sam-
ples according to products, showed the same distribution of 
products as observed when texture parameters were employed 
(Fig. 2B and A, respectively). PC1 (7.26% of total variance) 
discriminated muffins (positive X-axis) from coffee cookies 
and toasted bread (negative X-axis), while PC2 (4.73% of total 
variance) discriminated the last two (coffee cookies with a posi-
tive Y-axis; toasted bread with a negative Y-axis). The textural 
characteristics of the eaten foods produced different movements 
at the five evaluated points, which were enough to discriminate 
among them and in the same way as employing the textural 
analysis values. When the PCA was done by labeling samples 
according to panelists, five components had maximum vari-
ance (36.95% of total variance). The spatial representation of 
the two first clustered panelists was in accordance with gender 
(Fig. 2C). It is known that there are gender differences in the 
spatio-temporal parameters of chewing movement path and 
rhythm (Shiga et al., 2012). Males have significantly larger bite 
sizes, shorter chewing cycle duration, and a faster eating rate 
than females. Males also use more chewing power than females 
(Park & Shin, 2015; Woda et al., 2006). Within the 2500 values 
(descriptors), obtained from transforming tracking facial point 
movements into histograms, data were obtained to describe 
chewing and swallowing processes as a fingerprint of prod-
ucts, and also panelists. The use of all the data obtained during 

Fig. 4   Box-and-whisker plots 
for direct descriptors chewing 
cycles A, chewing time B, chew-
ing velocity C, and ∆y vertical 
D. Green, coffee cookies. Blue, 
toasted bread. Red, muffins
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the test, their transformation into histograms, and employing 
multivariant statistical tools increased the capacity of the sticker 
reflective markers and a camera for characterizing food product 
texture compared to others in a model (relation between Fig. 2A 
and B), but by taking into account both product and panelist 
effect (Fig. 2B and C, respectively).

The PCAs revealed that during chewing and swallowing 
processes, some movements were characteristic of the eaten 
food, and independently of panelist. At the same time, all the 
panelists made movements that characterized them. By way 
of example, Fig. 6 shows the histogram values of □P for the 
X and Y tracking at P1 during the last period of chewing and 

Fig. 5   Relation between the 
sensitivity and specificity for 
the PLSDA analysis. Green, 
coffee cookies. Blue, toasted 
bread. Red, muffins. Cross, 
data obtained from direct 
descriptors. Other symbols, 
data obtained from indirect 
descriptors. Filled squares, 
TT + T1 + T2 + T3 + T4. Empty 
squares, T1. Empty dots, TT. 
Filled dots, T4. Filled triangle, 
T2. Filled diamond, T3

Fig. 6   Histogram values of 
∆P for X and Y tracking at P1 
during the last period of chew-
ing and swallowing processes 
(T4) for two panelists: A and 
B. Y-axis (∆P) is autoscaled 
for each series. Green, coffee 
cookies. Blue, toasted bread. 
Red, muffins
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swallowing processes (T4) for two panelists: A and B. For 
each one, the reproducibility of each product was high consid-
ering that tests were done for 5 days over 2 weeks. At the same 
time, and also for each one, chewing and swallowing pro-
cesses were characteristic of the eaten product, but were dif-
ferent for each panelist. In 1972, according to the geniohyoid, 
anterior belly of digastric, mylohyoid, and genioglossus mus-
cles movement, Hrycyshyn and Basmajian (1972) described 
how each individual has his/her own swallowing pattern, but 
people may swallow quite differently. More recently, Las-
sauzay et al. (2000) and Woda et al. (2006) remarked that 
there were no significant differences between the values of 
the masticatory parameters for a given individual when asked 
to chew the same food several times, but variation between 
individuals was wide.

Based on the good PCA results, six PLSDAs were devel-
oped: one employing all the data (TT + T1 + T2 + T3 + T4) 
and the remaining five from the total and at each quartile of 
the testing period. As Fig. 4 depicts, when histograms were 
obtained with information from the last quartile of chewing 
and swallowing processes (T4), the obtained result was the 
best, with sensitivity and specificity values over 95%. When 
histograms were done with the information from all the data 
(TT + T1 + T2 + T3 + T4) or from the total period (TT), the 
results were also good, but values were 90%. According to 
the results, it was during the last chewing and swallowing 
period when the main facial movement differences appeared 
because of the product factor. The degree of grinding and its 
interaction with saliva to form the bolus could be the reason. 
This final phase corresponds to food bolus preparation and no 
longer to particle size reduction (Le Révérend et al., 2016). 
It is necessary for a bolus to be prepared with a precise (pre-
determined) texture (or structure) before it can be swallowed. 
So particle size (mechanical food properties defined as the 
breakage function) and its interaction with saliva flow are 
important influential factors (Chen, 2009) that take place in 
this last stage (T4).

PLS was performed to assess whether the information 
from the imaging data at T4 was related to textural food 
characteristics (Table 3). Models were developed for the 
texture parameters obtained for the three products (Kramer 

Fmax and work, and hardness and work from the first com-
pression of the TPA,) with only fracture force for coffee 
cookies and toasted bread. Although the cross-validation 
R2 values went from 0.87 to 0.9 (Table 6), PLS was not 
applied to obtain prediction models, but to visualize the rela-
tion between the image data and the texture data. Figure 7 
shows the relation between the scores from the first latent 
variable from PLS (LV1, containing the highest proportion 
of explained variance), used as dimensionally reduced imag-
ing data, with the measured values of the texture parameters. 
As R2 reported, some linear relations evidenced the strong 
influence of food characteristics on facial movements and 
how they were captured by technology and were recorded 
in indirect descriptors.

Thus, the reduction in all the information acquired from 
chewing and swallowing processes to direct descriptors 
could partially describe the three products, mainly because 
of their hardness and cohesiveness, but were not enough 
to discriminate among them. The panelist effect strongly 
influenced descriptors by reducing their discrimination 
capacity. Instead when all the information was transformed 
into histograms as indirect descriptors, it was possible to 
characterize products with similar textures by applying 
multivariate statistical tools. In this case, information gen-
erated a fingerprint of chewing and swallowing processes 
that, despite being dependent on the panelist (Fig. 2C), 
was independent enough to generate a classification model 
with high specificity and sensitivity values (Fig. 4) that 
describes foods (Fig. 2A compared to B) given their rela-
tion to texture (Table 3 and Fig. 7).

Conclusion

The study evaluated data from tracking facial movements 
during chewing and swallowing processes by employing 
skin surface markers as a fingerprint to characterize tex-
tural food product properties.

The use of direct descriptors, obtained after transform-
ing tracking into descriptors, somewhat describes products’ 
texture (mainly hardness), but the recorded dispersion 
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hinders the classification of products with similar charac-
teristics. The panelist factor strongly impacts descriptors 
by widening data dispersion, which makes their use for 
developing models difficult.

The use of indirect descriptors, after transforming all 
the information into histograms and applying multivariate 
statistical tools, allows classification models to be devel-
oped to describe products texturally and in the same way as 
using a texturometer, even when the panelist effect is pre-
sent. Thus, for each panelist, the reproducibility of eating 
each product is high. At the same time, and also for each 
product, chewing and swallowing processes are character-
istic of the eaten product, which differ for each panelist.

Thus, using skin surface markers for tracking facial fea-
ture movements comes over as an effective technique when 
all the obtained information is processed together. New 
studies are being carried out to improve data processing 
to examine in more depth both the description of foods 
when they are eaten at different times and how panelists 
go about this.
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