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Abstract

When an analysis of the 3-D crack behavior in LEFM is performed, usually only the
first term of the Williams series expansion, which corresponds to the r−

1

2 singularity,
is taken into account. However, it is well known that tij stresses (second order
terms) have still influence. Even when tij stress terms are introduced, the only term
usually taken into account corresponds to the t11 factor, generally called T -stress. If
a correct 3-D description has to be done, the t33 term has also to be considered. In
this work, the relevance of the t33 stress term in the analysis of a mode I corner crack
is shown in contrast to other approaches that use certain ad hoc parameters, such
as the so called Tz-constraint factor proposed by Guo and co-workers. The analysis
is carried out for elliptical corner cracks with different aspect ratios, showing that
the introduction of the t33 description avoids the approximations inherent to the Tz

approach.

Key words: t33-stress; Tz constraint factor; T -stress; quarter-elliptical corner
crack; finite element analysis.

∗ Corresponding author. Tel.: +34-96-3877621; fax: +34-96-3877629.
Email address: eginerm@mcm.upv.es (E. Giner).

Preprint submitted to Engng Fract Mech 26 October 2010



NOMENCLATURE

a Crack length (minor axis of the quarter-elliptical crack)

Ai, Bij Fitted parameters of the Tz distribution

c Crack length (major axis of the quarter-elliptical crack)

E Young’s modulus

fij(θ) Angular function related to the singular term of σij

f33,Tz
(θ) Angular function generated with Tz(θ=0)

h Specimen half height

J Pointwise value of the J-integral at a given location of the crack front

KI Stress intensity factor under mode-I loading

r In-plane radial distance to the crack front (polar coordinate)

t Specimen thickness

t11 Constant stress in the x1-direction (second order term of σ11)

t33 Constant stress in the x3-direction (second order term of σ33)

tij Generic notation for the constant stress components

T ≡ t11 T -stress (constant stress in the x1-direction)

Tz Out-of-plane constraint factor

Tz(θ=0) Out-of-plane constraint factor estimated at θ = 0

u3 Out-of-plane displacement

V Integration volume for Jvol

w Specimen width

W Strain energy density

δij Kronecker’s delta

ε33 Out-of-plane normal strain

ϕ Parametric angle used to define the crack front location

ν Poisson’s ratio

σ Uniform applied stress

σ11, σ22 In-plane components of σij

σ33 Out-of-plane component of σij

θ In-plane orientation angle (polar coordinate)

O(r1/2) Generic higher order terms in Williams expansion
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1 INTRODUCTION

Three-dimensional (3-D) corner cracks typically occur at stress concentra-

tions, such as the surfaces of bolted or riveted joints, the edges of fastener

holes in lugs, stiffeners and other aircraft components and mechanical struc-

tures [1–3]. The growth of such cracks usually causes premature failure and

therefore, much attention has long been paid to the fatigue crack propagation

analysis and damage tolerance design [4,5]. In these situations, the triaxial

stress field near the crack front has an important role in a fracture mechan-

ics framework [6–9]. Basically, the existing triaxial constraints are the in-plane

and out-of-plane constraints and both are related to the geometry and loading

configuration of the cracked structure.

The in-plane constraint is essentially dominated by the dimensions in the

normal plane to the crack front and the out-of-plane constraint is mainly de-

termined by the dimensions parallel to the crack front (i.e. in the thickness

direction), together with the boundary conditions. Constraints have an im-

portant effect on the observed toughness of the structural components in 3-D,

as is shown in [10] through a finite element study, analyses of round bars [11]

or in statistical studies on the effect of constraints on standardized specimens

[9]. Consequently, it is important to gain a better understanding of the stress

field around the crack front including 3-D constraint components.

The crack stress state is usually described using the local reference coordinate

system shown in Fig. 1, where 1 is the direction normal to the crack front

contained in the crack plane, direction 2 is normal to the crack surface and
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direction 3 is tangent to the crack front.

 

1direction 

3direction 

surfacecrack 

2direction 

r

Fig. 1. Local reference coordinate system for a crack front.

In accordance with this reference system, the Williams series expansion [12–

14], generalized to 3-D, is given by

σij =
K√
2πr

fij(θ) + tij + O(r1/2) (1)

It is observed that the second terms do not depend on r. The second term in

direction 1, t11, is usually known as T -stress. In addition, the t33 component

is also present in the tangential direction. Numerically, the t11 term (T -stress)

can be obtained using the interaction integral proposed in [13] and the t33

stress term can be inferred from t11 and the elastic fields, as detailed in the

next section. These terms affect the triaxiality in the near tip stress fields and

are directly related to the in-plane and out-of-plane constraints: t11 is related

to the in-plane constraint and t33 is related to the out-of-plane constraint.

The tij-stress terms, together with the stress intensity factor (SIF), can pro-

vide a set of practical parameters for the characterization of near crack tips

fields, nominally K-tij, see e.g. [14–16]. Moreover some works [17–19] provide

comprehensive tables containing approximated tij values for specifical crack

configurations.
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Another widely extended approach used for characterizing the out-of-plane

constraint is the Tz factor, proposed by Guo [20–22]. Tz is a factor which is

used in the definition of the stress state field σ33 to reflect the out-of-plane

constraint influence. In this case, the set of characterizing parameters is K-

T -Tz [23]. Some studies on the application of the Tz factor for the quarter-

elliptical or semi-elliptical crack have been carried out [24,25]. In these works,

the Tz approach does not consider the existence of t33 and Tz is estimated

performing a least square approximation from numerical results.

If a proper study of the crack behavior is to be done, the nonzero tij terms have

to be included in the stress state description near the crack front. In this work,

t33 is considered as an alternative parameter to Tz, showing its influence on

the triaxiality. By means of numerical examples, it is shown that it has to be

considered in the stress field description to achieve accurate approximations.

The outline of the paper is as follows. In Section 2, a brief review of the stress

state around a 3-D crack front, including second order terms, is presented.

Then, a short description of the Tz approach [24] is given in Section 3. The

main results of the work are presented in Section 4, where several quarter-

elliptical corner crack analyses are performed using finite elements. The results

considering the t33-stress and the Tz parameter are compared, showing that

the use of the components of the tij tensor provides a better description of the

stress state. Finally, some conclusions are summarized in Section 5.
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2 STRESS STATE AROUND A 3-D CRACK FRONT

Some works on the analysis of the stress state for 3-D cracks in LEFM can be

found in the literature. To name a few, Hartranft and Sih [26] introduced a

series expansion for an infinite domain using eigenfunction methods on cylin-

drical local coordinates. In [27], Sih introduced the thickness influence on the

crack stress field as a stress state change from a plane strain to a plane stress

state. Benthem [28] took into consideration the effect of the free boundaries

on the stress state for a 3-D crack front orthogonal to the surface, whereas

in [29], Pook considered the effect of the angle between the crack front and

the free boundary. Kwon and Sun [30] discussed the divergence of the crack

3-D stress state from the corresponding plane strain state, which is commonly

accepted as hypothesis. These and other works provide insights into the 3-D

crack problem, although, unfortunately, it is commonly accepted that the 3-D

crack problem remains unsolved in a general way.

The main practical developments on this field still rely on concepts and results

obtained from 2-D solutions, as the plane strain and plane stress state assump-

tions. However, nowadays it is accepted that the plane strain and plane stress

concepts cannot be directly generalized to 3-D crack problems [27]. Moreover,

under LEFM assumptions, the so-called corner singularity exists at the inter-

section of the crack front with the free surface, whose order depends of the

Poisson’s ratio [28]. As the effect of this singularity is assumed to be limited

to a short ranged distance [29–31], we will accept that it happens sufficiently

far from the region where the fields are studied and it is not taken into con-
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sideration in this work. Therefore, we will use the description of the singular

stress fields in the vicinity of the crack front in accordance to the Williams

series expansion. As mentioned in the introduction, second order terms in

this expansion cannot be, in general, neglected in a region close to the crack

front. Although the in-plane T -stress is usually considered in the 2-D and 3-D

studies, the out-of-plane component t33 also plays an important role in the

constraint effects [14,15,17] and it has to be considered, as proposed in this

work.

Sufficiently close to the crack front to neglect higher order terms and ignoring

the effects of corner singularities, the expressions for the normal components

of the near tip stress fields corresponding to symmetric (mode-I) loading are:

σ11(r, θ) =
KI√
2πr

cos
θ

2

(

1 − sin
θ

2
sin

3θ

2

)

+ t11

σ22(r, θ) =
KI√
2πr

cos
θ

2

(

1 + sin
θ

2
sin

3θ

2

)

σ33(r, θ) =
KI√
2πr

2ν cos
θ

2
+ t33

(2)

as given for example in [13]. Eqs. (2) are expressed in the local reference

coordinate system of Fig. 1. It is well known that KI varies along the lo-

cal coordinate 3, and so do t11, t33 as shown in [15,17–19]. Only t11 and t33

terms appear in Eq. (2), being the other tij components zero due to symmetry

considerations and the traction free condition of crack faces.
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2.1 Out-of-plane strain ε33 and t33 calculation

An expression for calculating t33 sufficiently far from the vertex corners can be

obtained in a straightforward manner, if a study of the out-of-plane strain ε33

is done, as in [15,16]. Assuming the validity of the Williams series expansion

for the out-of-plane component σ33 as in Eq. (2), the σii stresses in the vicinity

of the crack front particularized for the direction θ = 0 are given by

σ11(r, 0) =
KI√
2πr

+ t11

σ22(r, 0) =
KI√
2πr

σ33(r, 0) = 2ν
KI√
2πr

+ t33

(3)

By application of the Hooke’s law for an isotropic material, the out-of-plane

strain ε33 at a given position of the crack front is:

ε33 =
1

E
[σ33 − ν (σ11 + σ22)] (4)

After substitution of (3) in (4), we obtain

ε33 =
1

E

[

2ν
KI√
2πr

+ t33 − ν

(

KI√
2πr

+ t11 +
KI√
2πr

)]

(5)

Since ε33 = ∂u3/∂x3, the out-of-plane displacement u3 at the crack front is

given by

u3|r=0 =
∫

ε33|r=0 dx3 (6)
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and since u3 must be bounded, ε33 cannot include a singular term on r and

that is the reason why the singular terms of σ11, σ22 and σ33 cancel out in

Eq. (5). Therefore, the following relationship is obtained:

ε33 =
1

E
[t33 − νt11] (7)

It can be seen that, at crack front, ε33 is dominated by second order terms

that cannot be neglected. As a consequence, ε33 is, in general, nonzero and

strictly speaking, a true plane strain condition with ε33 = 0 is not achieved

[15].

The latter expression is of practical application, since it enables the compu-

tation of t33 as:

t33 = Eε33 + νt11 (8)

The values of ε33 and t11 have to be known in advance to calculate t33. In

this work, they are extracted from the finite element approximation: ε33 cor-

responds directly to the finite element solution at a given position of the

crack front, whereas t11 is computed using the interaction integral proposed

by Nakamura and Parks in [13]. This interaction integral uses the elastic fields

associated with a unit line load tangent to the crack front as auxiliary fields.

3 THE Tz OUT-OF-PLANE CONSTRAINT FACTOR APPROACH

The out-of-plane constraint factor Tz was proposed by Guo in [20–22] and its

goal is to describe the effect of the out-of-plane constraint on the 3-D stress
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field. Guo and co-workers assume the following approximation to the stress

field under a pure mode I loading:

σij(r, θ) =
K√
2πr

fij(θ) + Tδ1iδ1j (9)

and the constraint factor Tz is defined as

Tz =
σ33

σ11 + σ22

(10)

Note that Tz is a function of the polar coordinates, Tz(r, θ), given a normal

plane to the crack front. For an isotropic linear elastic body, we have as lim-

iting values Tz = 0 for plane stress and Tz = ν for plane strain conditions 1 .

Therefore, the Tz factor provides a measure of the degree of triaxiality of the

stress state around the crack front. The fij terms in Eq. (9) are the trigono-

metric functions of the Williams series expansion, except f33(θ) that, to be

consistent with the Tz definition, is expressed as

f33,Tz
(θ) = Tz(θ) (f11(θ) + f22(θ)) (11)

where the T -stress has been neglected in comparison with the singular terms.

For quarter and semi-elliptical cracks, it is shown in [24,25] that the agreement

between the numerical results for σ33 and the estimation using Eq. (11) is

fairly good in the range 0o ≤ θ ≤ 90o (approximately), whereas differences

are observed in the range 90o ≤ θ ≤ 180o at the same radial distance (as

1 The plane stress and plane strain terms are used here as customary, although
they are not strictly applicable to 3-D cracks, see [15,16].
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further verified in Section 4). This is the consequence of approximating Tz(θ)

as Tz(θ = 0) in [24,25]. In these references, it is claimed that the differences

in the range 90o ≤ θ ≤ 180o are of little importance because this region

has little effect on the crack propagation. In Section 4, it is verified that the

consideration of the t33-stress enables a much better agreement in the whole

θ-range and enables a proper description of the stress state around a 3-D crack.

In [24], the functional form of Tz as a function of the tangent coordinate x3

and radial distance r is constructed as a continuous change from a theoretical

plane stress on the free surfaces to a theoretical plane strain behavior at points

of the crack front sufficiently far from the corner points. Consequently, Tz must

satisfy the following boundary conditions on the free surface [22]

Tz = 0,
∂Tz

∂x3

= 0 (12)

In addition, the distribution of Tz far from the free boundaries and when r → 0

has a limiting value of ν in isotropic elasticity [24]. Hence, the exact functional

form of Tz will be determined by the geometry of the problem considered.

The main difficulty of this approach relies on the estimation of Tz, which

must be fitted to a numerical solution. As a general analytical expression

is still not available, least square methods have been adopted to obtain ad

hoc coefficients for different Tz distributions which fulfil the boundary and

symmetry conditions for a given problem, as is carried out in [24] for the

particular case of the quarter-elliptical corner crack. On a given plane normal

to the crack front, the Tz distribution in the radial direction for the quarter
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elliptical corner crack provided in [24] is:

Tz = A1

(

1 − A2

(

r

a

)0.5
)

exp

(

−B1

(

r

a

)B2

)

(13)

where a is the minor axis of the quarter-elliptical corner crack, as defined in

Fig. 2. According to [24], the coefficient values are given by:

A1 = ν; A2 = 0

B1 =
B11

ϕB12

+
B13

(90 − ϕ)B14

B2 = B21exp
(−ϕ

B22

)

+ B23 +
B24

ϕ
,

(14)

where ϕ defines the position of a point s along the crack front, according to

the customary convention for elliptical cracks shown in Fig. 2. The empirical

parameters Bij (i = 1, 2; j = 1, 2, 3, 4), fitted for θ = 0 and extrapolated for

different a/c ratios, with a range of validity defined by r/a < 1.3, are [24]:
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B11 =0.48717 + 52.10523 (a/c)

B12 =0.36432 + 5.96582 (a/c) − 20.47590 (a/c)2 + 31.58187 (a/c)3

− 23.20260 (a/c)4 + 6.63021 (a/c)5

B13 =164.24201 − 794.55228 (a/c) + 2055.33886 (a/c)2

− 2247.54832 (a/c)3 + 874.10216 (a/c)4

B14 =1.39811 − 2.88308 (a/c) + 5.35687 (a/c)2 − 4.0019 (a/c)3

+ 0.99387 (a/c)4

B21 = exp (28.97521 − 33.74222 (a/c + 0.30026)) + 0.46763

B22 = exp (41.78754 − 110.34886 (a/c + 2.05693)) + 4.06779

B23 = − exp (−2.87411 − 0.47004 (a/c − 1.07951)) + 0.60000

B24 = exp (5.83517 − 6.98071 (a/c + 0.20000)) + 0.00496

(15)

Fig. 2. Angle ϕ that defines the location of a point s along the elliptical crack front.

In the next section and by means of the reconstruction of σ33, this engineering

approach involving Tz will be compared with the use of t33. It will be shown

that the introduction of t33 enables an accurate description of the out-of-plane

stress state.
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4 NUMERICAL VERIFICATION

4.1 Geometric and finite element models

The geometric configuration of the corner crack problem coincides with the one

studied in [24]. This makes it possible to compare and assess the differences

between the consideration of t33 and the use of Tz. The crack studied is a

quarter-elliptical corner crack embedded in an isotropic elastic plate subjected

to uniform tension loading. A sketch of the loads and geometry is given in

Fig. 3.

Fig. 3. Sketch of the geometry and loads of the problem.

The elasticity modulus and Poisson’s ratio are 200 GPa and 0.3 respectively

and the applied stress is σ = 1000 Pa. Three corner crack geometries with

different aspect ratios have been studied: a/c = 0.2, a/c = 0.5 and a/c = 1.0.

The plate dimensions relative to the major semi-axis of the quarter-elliptical
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crack are w/c = 30, t/c = 7.5, h/c = 15 and, therefore, the crack size can

be considered small compared to the rest of dimensions. Only half model is

analyzed due to the model symmetry with respect to the crack plane.

Finite element meshes with a structured element distribution in the vicinity

of crack front have been built. The structured zone is meshed with 20-node

hexahedrons around the crack front. Next to the boundaries, the hexahedrons

have normal sides to the crack front and crack surface. The rest of the domain

is meshed using quadratic tetrahedrons. A general view of one of the meshes

can be observed in Fig. 4, the minimum element size being approximately

a/1000.

Fig. 4. View of the partially structured mesh with quadratic hexahedrons around
crack front.

4.2 KI, t11 and t33 results

First of all, the variation of KI and the second order stresses t11 and t33
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along the crack front has been evaluated. The t33-stress is calculated through

Eq. (8), which in turn needs a computation of t11 (using the interaction inte-

gral proposed in [13]) and an explicit evaluation of ε33. All these magnitudes,

conveniently normalized, are plotted in Figs. 5 to 8 for the different a/c ratios.

In Fig. 5, a comparison for the SIFs with the approximated solution given by

Newman & Raju [32,33] is also provided. The slight differences shown by the

results of our study are also reported by other authors presented in Newman

& Raju [32] and can be ascribed to the effect of the finite boundaries. Another

source of discrepancy between both solutions is their approximate nature (the

error of the Newman-Raju solution is less than 5%).

It is interesting to remark that the magnitude of t33 is greater than t11, because

the contribution of the term Eε33 in Eq. (8) is dominating (note that ε33

and t33 exhibit a similar trend along the crack front, as can be observed in

Figs. 6 and 8). The accuracy of the FE solution near the corner intersections

of the crack front with the free boundaries is questionable due to the corner

singularity exhibited by ε33. Furthermore, the extraction field used in the

interaction integral for the computation of t11 assumes a plane strain behavior,

a condition that it is not fulfilled in the vicinity of the corner points. Note that

mesh distortions due to high curvature impose difficulties to compute smooth

solutions for t11 using interaction integrals. However, the t11 behavior obtained

is similar to the one shown by Qu and Wang in [17]. Further details of the

behavior of the t11 stress terms for semi-elliptical and quarter-elliptical cracks

can be found in [17–19].
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Fig. 5. Klocal and KNewman-Raju [32,33]. Normalized variation along crack front for
cases a/c = 0.2, 0.5 and 1.0.
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4.3 Stress state description using Tz and t33

In what follows, a study of the stress state description using Tz and t33 is

presented. As in [24], the stress state is studied at points located at a very small

(but finite) radial distance to the crack front. A small radius circle centered

at a given crack front location (see Fig. 9) is used as a path to compare the

stress state descriptions given by Tz and t33. The small circle has a radius r

and the polar angle θ is varied between 0◦ and 180◦.

Fig. 9. Circle centered at a crack front location used to study the crack stress state.

The stress components along the circular paths close to the crack front are

plotted at five locations defined by the angle ϕ (see Fig. 2) for each a/c ratio.

These locations are approximately 2 ϕ = 0.9◦, 22.5◦, 45◦, 67.5◦ and 88◦. Note

that the first and last values correspond to locations very close to the free

boundaries. The radial distance r/a of the sampled values of stresses along the

small circle has been varied for the different aspect ratios a/c to emphasize

the generality of the approach.

The plots of results are given in Fig. 10 to Fig. 12 for the aspect ratios a/c =

0.2, 0.5 and 1.0, respectively. Note that the stress components are conveniently

normalized by the stress associated with the local stress intensity factor at that

2 Values of ϕ are slightly different for each a/c ratio due to the different FE dis-
cretizations.
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location. The functions fij(θ) are the trigonometric functions of the Williams

expansion. From Eq. (2), where higher order terms are neglected since the

circular path is very close to the crack front, the following relationship must

be verified:

σii − tii

KI/
√

2πr
= fii(θ) (16)

with

f11(θ) = cos
θ

2

(

1 − sin
θ

2
sin

3θ

2

)

f22(θ) = cos
θ

2

(

1 + sin
θ

2
sin

3θ

2

)

f33(θ) = ν (f11(θ) + f22(θ)) = 2ν cos
θ

2

(17)

and being t22 = 0 as commented in Section 1. In Figs. 10 to 12, the func-

tion f33,Tz
is the expression estimated in [24] using the Tz approach, i.e.

f33,Tz
= Tz(θ=0)(f11 + f22) as in Eq. (11). It can be observed that when σ33 is

reconstructed using the Tz approach, the approximation to σ33 is only correct

at θ = 0◦ (as can be also observed in the analogous figures in [24]). Note that

in [24], t33 is not taken into account and the coincidence with f33 = ν(f11+f22)

is not detected for the whole range of θ. Instead, Tz(θ=0) is taken for the gen-

eration of f33,Tz
= Tz(θ=0)(f11 + f22), reducing its applicability to the range

θ = [0◦, 90◦] (approximately) where the deviation from σ33 is not so notice-

able. This is because the trigonometric functions (f11+f22) are zero at θ = 180◦

and f33,Tz
necessarily deviates from the expected solution when θ 6= 0 because

t33 is not subtracted. Note that in Figs. 10 to 12, the plots of σ33 and σ33 − t33

are shifted a constant magnitude that obviously corresponds to t33 at that

location.

On the other hand, we observe that the consideration of t33 leads to a proper
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description of the out-of-plane stress for the whole θ range and virtually any

location ϕ along the crack front sufficiently far from the free surfaces. In

general, the agreement between σ33− t33 and f33 = ν(f11 +f22) is very good at

the analyzed locations ϕ and for the whole range of θ (Figs. 10 to 12). There

are only small discrepancies at locations very close to the free surface, where

the rapid change in the front curvature affects the quality of the discretization.

Other reasons that hinder good estimations in the vicinity of the corner points

are that ε33 varies very steeply in this zone and that the computation of t11

through the interaction integral given in [13] involves a plane strain extraction

field. Anyway, it can be observed in Figs. 10 to 12 that this effect is so localized

that reasonably good results are obtained at locations very close to the free

boundaries, such as ϕ ≈ 0.9◦ and ϕ ≈ 88◦.

As a consequence, the consideration of the t33-stress enables the correct de-

scription of the σ33 stress and the relationship f33 = ν(f11 + f22) holds at

the crack front for all the locations analyzed. This relationship, although is

generally assumed as a plane strain condition, does not necessary imply that

ε33 = 0, as explained in [15,16]. In fact ε33 6= 0 as clearly shown in Fig. 6. This

analysis suggests that a tensor approach that incorporates the second order

components tij [15] instead of the three-parametric approach K-T -Tz can be

an alternative for characterizing the 3-D stress state around the crack front.

It is also worth remarking that the approach presented here is a good choice

to be used in engineering applications, since some approximated expressions

are available in the bibliography for the corner crack problem (e.g. SIF values

are presented in [32] and tij in [17]).
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Fig. 10. Stress state along the circular path close to the crack front for five locations
ϕ. Case a/c = 0.2 and r/a = 0.010.
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Fig. 11. Stress state along the circular path close to the crack front for five locations
ϕ. Case a/c = 0.5 and r/a = 0.002.
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Fig. 12. Stress state along the circular path close to the crack front for five locations
ϕ. Case a/c = 1.0 and r/a = 0.004.
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5 CONCLUSIONS

In this work, an analysis of the description of the out-of-plane constraint

around a quarter elliptical crack has been performed. The study compares

two approaches for characterizing the constraint: an approach that uses the

empirical Tz factor as proposed in [24] and a description based on t33 proposed

in this work.

The results show that the consideration of the components t11 and t33 of the tij

tensor is necessary to obtain a correct description of the stress state near the

crack front. Instead, the approach that uses K-t11-Tz shows some divergences

with respect to the expected values in a wide range of θ. These errors can be

ascribed to ignoring the influence of t33 and the proper Tz dependence on θ.

Therefore, if a factor like Tz is needed, it should take into consideration the

t33-stress to provide a more accurate description of the stress state near the

crack front. Furthermore, expressions for estimating t11 and t33 for quarter

elliptical cracks are avalaible in [17], which together with the expressions for

the SIFs given in e.g. [32], become a natural choice for the characterization of

the crack stress state from an engineering point of view.
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