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Abstract: In this article, we introduce a new Steffensen-type method with the advantage that its behavior
is very similar to Newton’s method; therefore, it is a very remarkable way of avoiding the drawback that
Newton’s method presents for nondifferentiable operators. In our study, we perform an exhaustive compar-
ative study between the semilocal convergence of Newton’s method and the derivative-free point-to-point
iterative process considered; in the case of differentiable operators, we use the majoring sequences and the
majorant principle. In the nondifferentiable case, we impose conditions on the starting point and on the
nonlinear operator to obtain a semilocal convergence result for the iterative process considered. In both
cases, we complete the theoretical convergence proofs with a dynamical study and a numerical test. In the
case of differentiable operators, this study confirms that the accessibility and numerical behavior of both iter-
ative processes, Newton’s method and the derivative-free point-to-point iterative process considered, are very
similar.
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1 Introduction
One of the most common problems in mathematics is the solution of a system of nonlinear equations.

F(x) = 0, (1)

where F:Ω ⊂ ℝm → ℝm is a nonlinear operator, F ≡ (F1, F2,… , Fm) with Fi:Ω ⊆ ℝm → ℝ, 1 ≤ i ≤ m, andΩ is
a nonempty open convex domain.

Many applied problems can be reduced to solving systems of nonlinear equations, which is one of the
most basic problems in mathematics. These problems arise in all scientific areas including both mathematics
and physics, especially in a diverse range of engineering applications. This task has applications in many
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scientific fields [3–5, 8, 14, 23]. Therefore, great efforts have been made by a lot of researchers, and many
constructive theories and algorithms are proposed to solve systems of nonlinear equations.

This problem is not always easy to solve since we cannot frequently obtain an exact solution to the
previous system of nonlinear equation as in Eq. (1) so that we usually look for a numerical approximation to a
solution. In this case, we use approximationmethods, which are generally iterative. The best known iteration
to solve nonlinear equations is undoubtedly the Newton’s method.{

x0 given inΩ,
xn+1 = xn −

[
F′(xn)

]−1 F(xn), n ≥ 0.
(2)

The low operational cost and the quadratic convergence of the method guarantee a good computational
efficiency. Inaddition, thismethodhasgoodaccessibility such that thedomainof startingpointsof themethod
is large. However, the Newton’s method has a serious shortcoming: the operator Fneeds to be differentiable
for the method to be applied. This points out that this method is not applicable to nondifferentiable system
of nonlinear equations.

Our main goal in this work is to consider an iterative process that has the characteristics of Newton’s
method in the case that the operator F is differentiable, but is also applicable in situations where the operator
F is not. By maintaining the nondifferentiable situation, the important properties that the iterative process
considered is verified in the differentiable case. To achieve this goal, the first step is to approximate the
operator F′ when the operator F is nondifferentiable. For this, it is common to approximate the derivatives by
divided differences using a numerical derivation formula, and as a consequence, iterative processes that use
divided differences instead of derivatives are obtained. Remember that the operator [u, 𝑣; F]:Ω ⊂ ℝm → ℝm,
u, 𝑣 ∈ Ω, with u ≠ 𝑣, is a first-order divided difference, ([2, 13]) if the following conditions are verified:

[u, 𝑣; F] ∈ (ℝm,ℝm) and [u, 𝑣; F](u− 𝑣) = F(u)− F(𝑣), (3)

where (ℝm,ℝm) is the set of bounded linear operators in ℝm. Note that in ℝm, there are several divided
differences that can be considered (see [7, 13]).

If d1(xn) and d2(xn) are known data at the point xn, then we can consider the approximation F′(xn) ∼
[d1(xn), d2(xn); F] and define the following iterative process, [16]{

x0 given inΩ,
xn+1 = xn − [d1(xn), d2(xn); F]−1F(xn), n ≥ 0,

(4)

Obviously, this approximation will improve depending on the data considered. We can see examples
of the choice of these data in the Steffensen method (d1(xn) = xn and d2(xn) = xn + F(xn)) [1], the Back-
ward–Steffensen method (d1(xn) = xn − F(xn) and d2(xn) = xn) [16], and the Central–Steffensen method
(d1(xn) = xn − F(xn) and d2(xn) = xn + F(xn)) [16]. We can also consider data dependent on the previous
approximation, that is, d1(xn−1, xn) and d2(xn−1, xn). This situation appears in iterative processes with
memory, such as the Secant method (d1(xn−1, xn) = xn−1 and d2(xn−1, xn) = xn) [2], the Secant-type meth-
ods (d1(xn−1, xn) = 𝜆xn−1 + (1− 𝜆)xn−1 and d2(xn−1, xn) = xn, with 𝜆 ∈ [0, 1)) [15], or the Kurchatov method
(d1(xn−1, xn) = xn−1 and d2(xn−1, xn) = 2xn − xn−1) [24].

Symmetric divided differences generally perform better. We can see this in the Central–Steffensen and
Kurchatov methods, that is, both maintain the quadratic convergence of Newton’s method by approximating
the derivative through symmetric divided differences with respect to xn. Following this idea, in this article,
we consider the derivative-free point-to-point iterative process given by{

y0 given inΩ,
yn+1 = yn − [yn − ‖F(yn)‖Tol, yn + ‖F(yn)‖Tol; F]−1F(yn), n ≥ 0,

(5)

where Tol = (tol, tol,… , tol) ∈ ℝm for a real number tol > 0. Thus, we are considering a symmetric divided
difference to approximate the derivative in Newton’s method. Furthermore, by varying the parameter tol, we
can approach the value F′(yn).
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As we have already indicated previously, our objective in this work focuses on verifying that this iterative
process has a behavior like Newton’s method in differentiable situations and maintains this behavior for
nondifferentiable situations, where Newton’s method is not applicable.

The article is structured as follows. After introducing the method in Section 1, we dedicate Section 2 to
give lemmas and theorems needed for obtaining the semilocal convergence study in the differentiable case.
Section 3 is devoted to theoretical convergence study in the nondifferentiable case. Moreover, dynamical
studies and numerical tests are performed in each corresponding section. Finally, in Section 4, we give some
conclusions for our work.

Along the article, we denote B(x, 𝜚) = {y ∈ ℝm; ‖y − x‖ ≤ 𝜚} and B(x, 𝜚) = {y ∈ ℝm; ‖y − x‖ < 𝜚},
respectively, for the closed and open balls with center in x and of radius 𝜚 > 0.

2 A comparative study between Newton’s method and iterative
method (5)

In this section, we obtain a semilocal convergence result for the method defined by the derivative-free point-
to-point iterative process (5), assuming that the nonlinear operator F is differentiable, and we compare it
with the well-known Newton–Kantorowich result [10] that ensures the semilocal convergence of Newton’s
method. On obtaining the similarity between both results, we will test the quadratic convergence of method
(5) and verify that the computational efficiency of this method (5) coincides with that of Newton’s method.
Wewill also see, through a dynamic study and a numerical test, that the accessibility and numerical behavior
of both methods are similar.

In what follows, we consider this method (5) in the following form:{
y0 given inΩ,
yn+1 = yn − [yn − 𝜙n, yn + 𝜙n; F]−1F(yn), n ≥ 0,

(6)

where 𝜙n = ‖F(yn)‖Tol, such that Tol = (tol, tol,… , tol) ∈ ℝm for a real number tol > 0.

2.1 Semilocal convergence
Under certain conditions, Newton’s method (2), for a given x0, gives a sequence {xn} which converges to a
solution x∗ of F(x) = 0. We know as a majorant sequence [10], a sequence of scalar numbers {tn}majorizes a
sequence {xn} defined in ℝm if ‖xn+1 − xn‖ ≤ tn+1 − tn, n ≥ 0. (7)

The interest of themajorizing sequence is that the convergence of {xn} inℝm is deduced from that of the scalar
sequence {tn}. Indeed, if {tn} converges to t∗, then there exists x∗ ∈ X, so that the sequence {xn} converges
to x∗ and ‖x∗ − xn‖ ≤ t∗ − tn, n ≥ 0.

Next, we focus our attention on the version of the Newton–Kantorovich theorem given by Ortega [20],
which is also known as the Newton–Kantorovich theorem and established under the following conditions:
(K1) For x0 ∈ ℝm, there exists Γ0 =

[
F′(x0)

]−1 ∈ (ℝm,ℝm), where (ℝm,ℝm) is the set of bounded linear
operators from ℝm to ℝm, with ‖Γ0‖ ≤ 𝛽 and ‖Γ0F(x0)‖ ≤ 𝜂.

(K2) There exists L > 0 such that ‖F′(x)− F′(y)‖ ≤ L‖x − y‖, for x, y ∈ Ω.

Theorem 1. (The Newton–Kantorovich theorem). Let F:Ω ⊆ ℝm → ℝm be a continuously differentiable oper-
ator defined on a nonempty open convex domain Ω. Suppose the conditions (K1) and (K2) are satisfied and
if L𝛽𝜂 ≤

1
2 , then Newton’s method, given by (2), converges to a solution x∗ of equation F(x) = 0, starting
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at x0, and xn, x∗ ∈ B (x0, t∗), for all n ∈ ℕ, where t∗ = 1−
√
1−2L𝛽𝜂
L𝛽 is the smallest positive zero of polynomial

p(t) = L
2 t

2 − t
𝛽
+ d 𝜂

𝛽
.

We can see in [10] that we can interpolate conditions (K1)–(K2) of the Newton–Kantorovich theorem
to define the polynomial p. Then, we construct the majorizing sequence used to prove the convergence of
Newton’s method inℝm from the applying method

t0 = 0, tn+1 = tn −
p(tn)
p′(tn)

, n ≥ 0, (8)

to the polynomial p appearing in the previous theorem. To obtain this polynomial, we consider p(t) =
a0 + a1t + a2t2. In order to obtain ‖x1 − x0‖ = ‖Γ0F(x0)‖ ≤ t1 − t0 = − p(t0)

p′(t0)
, we will demand that

‖Γ0‖ ≤ 𝛽 ≤ − 1
p′(t0)

and ‖Γ0F(x0)‖ ≤ 𝜂 ≤ − p(t0)
p′(t0)

,

taking t0 = 0, we obtain that a0 = 𝜂

𝛽
and a1 = − 1

𝛽
. On the other hand, to set the value of a2, we can consider,

for example, that it is verified that ‖F(x1)‖ ≤ p(t1). However,

F(x1) = F(x0)+ F′(x0)(x1 − x0)+
1

∫

0

(F′(x0 + 𝜏(x1 − x0))− F′(x0)) d𝜏(x1 − x0)

=
1

∫

0

(F′(x0 + 𝜏(x1 − x0))− F′(x0)) d𝜏(x1 − x0),

and then ‖F(x1)‖ ≤
L
2 ‖x1 − x0‖2.

Analogously,
p(t1) = p(t0)+ p′(t0)(t1 − t0)+

p′′(t0)
2! (t1 − t0)2 =

a2
2! (t1 − t0)2, (9)

then itmustbeverified thata2 = L. Therefore,weobtain thepolynomialp(t) given in theNewton–Kantorowich
theorem.

Toanalyze the semilocal convergenceof the iterativeprocess given in (6),we consider the characterization
of divided difference of the first order of the function F at the points x, y ofΩ ⊆ ℝm (x ≠ y), introduced in [21],
given by

[x, y; F] =
1

∫

0

F′(𝜏x + (1− 𝜏)y) d𝜏. (10)

Notice that [x, x; F] = F′(x), if F is differentiable.
From now, we establish the semilocal convergence of the sequence {yn}, given by the iterative process

as in (6), by using the majorant principle (see [10, 17]). For this, we are going to define a second-degree
polynomial q(t) that allows us to define a real majorizing sequence. Our idea is to consider
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𝜉0 = 0, 𝜉n+1 = 𝜉n −
q(𝜉n)
q′(𝜉n)

, n ≥ 0. (11)

Then, considering the same conditions that we have demanded for the semilocal convergence of Newton’s
method, that is (K1) and (K2), we have

‖I − Γ0[y0 − 𝜙0, y0 + 𝜙0; F]‖ ≤ ‖Γ0‖‖F′(y0)− [y0 − 𝜙0, y0 + 𝜙0; F] ‖
≤ ‖Γ0‖

‖‖‖‖‖‖‖F
′(y0)−

1

∫

0

F′(𝜏(y0 − 𝜙0)+ (1− 𝜏)(y0 + 𝜙0))d𝜏
‖‖‖‖‖‖‖

≤ ‖Γ0‖
‖‖‖‖‖‖‖

1

∫

0

[
F′(y0)− F′(y0 − (1− 2𝜏)𝜙0)

]
d𝜏

‖‖‖‖‖‖‖
≤ 𝛽L

1

∫

0

|1− 2𝜏|‖𝜙0‖d𝜏 ≤
tol𝛽L𝛿

2 , (12)

where ‖F(y0)‖ ≤ 𝛿, with which we can consider 𝜂 = 𝛽𝛿. Then, if tol L𝛽𝛿 < 2, there exists the operator [y0 −
𝜙0, y0 + 𝜙0; F]−1 ∈ (ℝm,ℝm), for y0 − 𝜙0, y0 + 𝜙0 ∈ Ω, and if

‖‖[y0 − 𝜙0, y0 + 𝜙0; F]−1‖‖ ≤
2𝛽

2− tol 𝛽L𝛿 ,

we denote 𝛽 = 2𝛽
2−tol𝛽L𝛿 .

As shown in the previous situation of Newton’s method, we need that ‖y1 − y0‖ = ‖[y0 − 𝜙0, y0 +
𝜙0; F]−1F(y0)‖ ≤ 𝜉1 − 𝜉0 = − q(𝜉0)

q′(𝜉0)
, and we will demand that

‖[y0 − 𝜙0, y0 + 𝜙0; F]−1‖ ≤ 𝛽 ≤ − 1
q′(𝜉0)

and ‖[y0 − 𝜙0, y0 + 𝜙0; F]−1F(y0)‖ ≤ 𝜂 ≤ − q(𝜉0)
q′(𝜉0)

,

taking 𝜉0 = 0, and proceeding as in the case of Newton’s method, we obtain the majorant polynomial

q(𝜉) = K𝜉2 − 𝜉

𝛽
+ 𝛿

Now, we have to obtain K, the director coefficient of the polynomial. For this, from the algorithm of the
iterativemethod (6), we have

F(y1) =
1

∫

0

(F′(y0 + 𝜏(y1 − y0))− F′(y0))d𝜏(y1 − y0)+
(
F′(y0)− [y0 − 𝜙0, y0 + 𝜙0; F]

)
(y1 − y0), (13)

and then, it follows

‖F(y1)‖ ≤
L
2 ‖y1 − y0‖2 + tol L𝛿

2 ⋅ ‖y1 − y0‖
≤
L
2
(𝜉1 − 𝜉0)2 +

tol L
2

⋅ (−q′(𝜉0))(𝜉1 − 𝜉0)2

≤
L
2

(
1+ tol

𝛽

)
(𝜉1 − 𝜉0)2.

Taking into account (9) for the polynomial q(t), we obtain K = L
(
1+ tol

𝛽

)
.
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Now, we define the polynomial
q(𝜉) = K

2 𝜉
2 − 𝜉

𝛽
+ 𝛿. (14)

Note that polynomial (14) has two positive roots, 𝜉∗ = 1−
√

1−2K𝛽𝜂
𝛽K

and 𝜉∗∗ = 1+
√

1−2K𝛽𝜂
𝛽

, such that 𝜉∗ ≤ 𝜉∗∗ if

K𝛽𝜂 ≤
1
2 . Therefore, we consider 𝜉 ∈ [0, 𝜉′] with 𝜉′ > 𝜉∗∗.

Now, by the usual reasoning for the majorizing polynomials, as shown in [10], the following result is
easily proved.

Lemma 2. Let q(𝜉) be the polynomial given by q(𝜉) = K
2 𝜉

2 − 𝜉

𝛽
+ 𝛿 and consider the real iterative process

𝜉0 = 0, 𝜉n+1 = 𝜉n −
q(𝜉n)
q′(𝜉n)

, n ≥ 0. (15)

If K𝛽𝜂 ≤
1
2 , the real sequence {𝜉n} increases and converges to 𝜉

∗. □

Next, we will prove that the sequence {𝜉n}majorizes the sequence {yn} given by method (6).

Lemma 3. If yn, yn − 𝜙n, yn + 𝜙n ∈ Ω, for all n ∈ ℕ, it follows
(i) ‖F(yn)‖ ≤ q(𝜉n),
(ii) There exists [yn − 𝜙n, yn + 𝜙n; F]−1, with ‖[yn − 𝜙n, yn + 𝜙n; F]−1‖‖ ≤ − 1

q′(𝜉n)
, and

(iii) ‖yn+1 − yn‖ ≤ 𝜉n+1 − 𝜉n.

Proof. We prove these conditions by means of an inductive procedure. In the first place, (i) is trivially verified
since it has been used to define K. To prove (ii), as in (12), we have

‖I − Γ0[y1 − 𝜙1, y1 + 𝜙1; F]‖ ≤ ‖Γ0‖ ‖‖‖∈ 𝜉10
[
F′(y0)− F′(y1 − (1− 2𝜏)𝜙1)

]
d𝜏‖‖‖

≤ 𝛽L
⎛⎜⎜⎝‖y1 − y0‖+

1

∫

0

|1− 2𝜏|‖𝜙1‖d𝜏⎞⎟⎟⎠ ≤ 𝛽

(
L(𝜉1 − 𝜉0)+

tol L
2 q(𝜉1)

)

≤ 𝛽L
(
(𝜉1 − 𝜉0)+

tol
2 (−q′(𝜉0)(𝜉1 − 𝜉0))

)
< 𝛽K(𝜉1 − 𝜉0) = 𝛽

(
q′(𝜉1)+

1
𝛽

)
= 𝛽

𝛽
+ 𝛽q′(𝜉1) < 1+ 𝛽q′(𝜉1) < 1. (16)

Then, by the Banach Lemma for inverse operators [17], the operator [y1 − 𝜙1, y1 + 𝜙1; F]−1 exists and is such
that ‖[y1 − 𝜙1, y1 + 𝜙1; F]−1‖ ≤ − 1

q′(𝜉1)
.

Therefore, from (i) and (ii) for n = 1, it is easy to follow (iii).
Now, suppose (i)–(iii) hold for n = 1,… , k − 1, then let’s see whether it holds for n = k. Following (13),

we have

‖F(yk)‖ ≤
L
2 ‖yk − yk−1‖2 +

‖‖‖‖‖‖‖
1

∫

0

[
F′(yk−1)− F′(yk−1 − (1− 2𝜏)𝜙k−1)

]
d𝜏

‖‖‖‖‖‖‖ ‖yk − yk−1‖

≤
L
2 ‖yk − yk−1‖2 + L

1

∫

0

|1− 2𝜏|‖𝜙k−1‖d𝜏‖yk − yk−1‖
≤
L
2 (𝜉k − 𝜉k−1)2 +

tol L
2 q(𝜉k−1)(𝜉k − 𝜉k−1)
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≤
L
2 (𝜉k − 𝜉k−1)2 +

tol L
2 − q′(𝜉k−1)(𝜉k − 𝜉k−1)2

≤
L
2 (𝜉k − 𝜉k−1)2 +

tol L
2 ⋅ (−q′(𝜉0))(𝜉k − 𝜉k−1)2

≤
L
2

(
1+ tol

𝛽

)
(𝜉k − 𝜉k−1)2 = q(𝜉k),

which proves (i) for n = k.
To prove (ii) for n = k, as in (16), we have

‖I − Γ0[yk − 𝜙k, yk + 𝜙k; F]‖ ≤ ‖Γ0‖
‖‖‖‖‖‖‖

1

∫

0

[
F′(y0)− F′(yk − (1− 2𝜏)𝜙k)

]
d𝜏

‖‖‖‖‖‖‖
≤ 𝛽L

⎛⎜⎜⎝‖yk − y0‖+
1

∫

0

|1− 2𝜏|‖𝜙k‖d𝜏⎞⎟⎟⎠ ≤ 𝛽

(
L(𝜉k − 𝜉0)+

tol L
2 q(𝜉k)

)

≤ 𝛽L
(
(𝜉k − 𝜉0)+

tol
2
(−q′(𝜉0)(𝜉1 − 𝜉0))

)
< 𝛽K(𝜉k − 𝜉0) = 𝛽

(
q′(𝜉k)+

1
𝛽

)
= 𝛽

𝛽
+ 𝛽q′(𝜉k) < 1+ 𝛽q′(𝜉k) < 1.

Then, by the Banach Lemma for inverse operators, the operator [yk − 𝜙k, yk + 𝜙k; F]−1 exists and is such that

‖[yk − 𝜙k, yk + 𝜙k; F]−1‖ ≤ − 1
q′(𝜉k)

,

which proves (ii) for n = k.
As (iii) is easily followed from (i) and (ii), the result is proved. □

Now, from the previous results, we prove the semilocal convergence of iterative process given in (6).

Theorem 4. Let F:Ω ⊆ ℝm → ℝm be a continuously differentiable operator defined on a nonempty open con-
vex domain Ω of ℝm. Suppose, conditions (K1) and (K2), with tol < 2

L𝛽𝛿 , are satisfied and if K𝛽𝜂 ≤
1
2 and

B (y0, 𝜉∗ + tol 𝛿) ⊂ Ω, then method (6) converges to a solution x∗ of the equation F(x) = 0, starting at y0, and
yn, yn − 𝜙n, yn + 𝜙n, x∗ ∈ B (y0, 𝜉∗ + tol 𝛿), for all n ≥ 0.

Proof. To prove the semilocal convergence of the method given by (6), we use an inductive process.
In the first place, it is obvious that ‖y0 − 𝜙0 − y0‖ = ‖y0 + 𝜙0 − y0‖ < 𝜉

∗ + tol 𝛿. Moreover,

‖y1 − y0‖ ≤ 𝛽𝛿 = 𝜉1 − 𝜉0 < 𝜉∗ + tol 𝛿.

Therefore, it follows that y0 − 𝜙0, y0 + 𝜙0, y1 ∈ B (y0, 𝜉∗ + tol 𝛿) ⊂ Ω and then, we can define y2. Next, from
Lemma 3, ‖F(y1)‖ ≤ q(𝜉1) ≤ q(𝜉0) = 𝛿. Then, we get

‖y1 − 𝜙1 − y0‖ ≤ ‖y1 − y0‖+ tol ‖F(y1)‖ < 𝜉∗ + tol q(𝜉0) = 𝜉∗ + tol 𝛿,‖y1 + 𝜙1 − y0‖ ≤ ‖y1 − y0‖+ tol ‖F(y1)‖ < 𝜉∗ + tol q(𝜉0) = 𝜉∗ + tol 𝛿.

Moreover, from Lemma 3, there exists the operator [y1, z1; F]−1, andwe can to define y2. As a consequence,

‖y2 − y1‖ ≤ ‖[y1, z1; F]−1‖‖F(y1)‖ ≤ − q(𝜉1)
q′(𝜉1)

≤ 𝜉2 − 𝜉1,

‖y2 − y0‖ ≤ ‖y2 − y1‖+ ‖y1 − y0‖ ≤ 𝜉2 − 𝜉0 < 𝜉∗ − 𝜉0 < 𝜉∗ + tol 𝛿,

y2 ∈ B (y0, 𝜉∗ + tol 𝛿) ⊂ Ω.
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Now, we suppose that yn − 𝜙n, yk + 𝜙n, yn+1 ∈ B (y0, 𝜉∗ + tol 𝛿) and ‖yn+1 − yn‖ < 𝜉n+1 − 𝜉n, for n =
1,… , k − 1.

Next, fromLemma 3 and proceeding as in the first step, we obtain that yk − 𝜙k, yk + 𝜙k ∈ B (y0, 𝜉∗ + tol 𝛿)
and ‖yk+1 − yk‖ ≤ ‖[yk − 𝜙k, yk + 𝜙k; F]−1‖‖F(yk)‖ ≤ − q(𝜉k)

q′(𝜉k)
= 𝜉k+1 − 𝜉k, (17)

‖yk+1 − y0‖ ≤ ‖ykn+1 − yk‖+ ‖yk − y0‖ ≤ 𝜉k+1 − 𝜉0 < 𝜉∗ − 𝜉0 < 𝜉∗ + tol 𝛿,

proves the induction.
After that, as {𝜉n} converges to 𝜉

∗, from (17), it follows that the sequence {yn} is convergent. Let
lim
n
yn = x∗ ∈ B (y0, 𝜉∗ +m𝛿), to see that x∗ is a solution of F(x) = 0, it is enough to note that ‖F(yn)‖ ≤ q(𝜉n),

and by the continuities of F and q, it follows that F(x∗) = 0. □

Remark 5. Note that, if we consider tol small enough, the values of K and L are close, as is the case with 𝛽

and 𝛽. Therefore, the convergence condition required for method (6) in Theorem 4 is close to the convergence
condition required for Newton’s method in Theorem 1. Therefore, the behavior of both methods turns out to
be similar with regard to semilocal convergence.

Next, we get a unique result for method (6).

Theorem 6. In the conditions of the previous theorem, the solution x∗ is unique in B(y0, r) ∩Ω, where r =
2
L𝛽 − (𝜉∗ + tol 𝛿), provided that L𝛽(𝜉∗ + tol 𝛿) < 2.

Proof. To prove the uniqueness of the solution y∗, we suppose that we have a solution z∗ ∈ B(y0, r) ∩Ω of
F(x) = 0 such that z∗ ≠ y∗. Consider

F(z∗)− F(y∗) =
z∗

∫
y∗

F′(x)dx =
1

∫

0

F′(y∗ + 𝜏(z∗ − y∗))d𝜏(z∗ − y∗) = 0

and the operator J = ∫
1
0 F

′(y∗ + 𝜏(z∗ − y∗))d𝜏. If

‖I − Γ0J‖ ≤ ‖Γ0‖
1

∫

0

‖F′(y∗ + 𝜏(z∗ − y∗))− F′(y0)‖d𝜏 <
L𝛽
2 (𝜉∗ + tol𝛿 + r) = 1,

then the operator J is invertible, provided L𝛽(𝜉∗ + tol 𝛿) < 2. Therefore z∗ = y∗. □

2.2 A numerical comparative study
We consider a special case of nonlinear Fredholm integral equation [12]

x(s) = f (s)+ 𝜆

b

∫
a

G(s, t)H(x(t))dt, s ∈ [a, b], (18)

where 𝜆 ∈ ℝ and −∞ < a < b < +∞; the function f (s) is continuous on [a, b] and, given, the kernel of (18)
is a Green’s function defined as follows:

G(s, t) =
{
(1− s)t, t ≤ s,
s(1− t), s ≤ t,

which is a continuous function in [a, b] × [a, b], H is a known continuous function inℝ, and x is a solution to
be determined in [a, b], the set of continuous functions in [a, b].
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These equations are related to boundary value problems for differential equations, since they can be
reformulated as two-point boundary value problems or elliptic partial differential equations with nonlinear
boundary conditions [9].Moreover, these equations appear in several applications to the realworld: the theory
of elasticity, engineering, mathematical physics, potential theory, electrostatics, and radiative heat-transfer
problems [6].

Now, our aim is to apply the theoretical result obtained in previous section in order to solve a nonlinear
problem. We consider the nonlinear integral Eq. (18) defined in [0, 1] with the max norm, as shown in [3],
where f (x) = −1, 𝜆 ∈ ℝ, H(x(t)) = x(t)3 and s, t ∈ [0, 1].

First of all, we have to discretize the problem for transforming it into a finite dimensional system in ℝm.
For this purpose, we approximate the integral by means of Gauss–Legendre quadrature:

b

∫
a

Φ(t)dt =
m∑
j=1

𝑤 jΦ(t j),

where 𝑤j and t j are the corresponding weights and nodes, respectively. Therefore, by denoting the approx-
imation x(si) by xi for i = 1,… ,m and x = (x1, x2,… , xm), we can define the following nonlinear operator
F:Ω ⊆ ℝm → ℝm describing our problem:

Fi(x) = xi − 1− 𝜆

m∑
j=1

𝑤i jx3j , i = 1, 2,… ,m

where𝑤ij = 𝑤jG(ti, t j), i, j = 1,… ,m, that is,

F(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 − 1− 𝜆

m∑
j=1

𝑤1 jx3j

x2 − 1− 𝜆

m∑
j=1

𝑤2 jx3j
...

xm − 1− 𝜆

m∑
j=1

𝑤mjx3j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The Jacobian matrix of F can be expressed as

F′(x) = I − 3𝜆W diag
(
x21 , x

2
2,… , x2m

)
whereW = (𝑤ij), i, j = 1,… ,m. Therefore, by choosing 𝜆 ∈ ℝ and the starting guess x0 ∈ ℝm such that

3‖W‖ |𝜆| ‖diag (x21 , x22,… , x2m
) ‖ ≤ 1,

by applying Banach lemma, we found that Γ0 exists and

‖Γ0‖ ≤
1

1− 3‖W‖ |𝜆| ‖diag (x21 , x22,… , x2m
) ‖ .

On the other hand, we have that

‖F′(x)− F′(y)‖ ≤ 3 |𝜆| ‖W‖‖diag(x1 + y1, x2 + y1,… , xm + ym)‖‖x − y‖
Then, by taking m = 8, y0 = (0.001,… ,0.001), 𝜆 = 0.1 and working in the domain Ω = B(0, 3∕2), with

the infinite norm, following the semilocal convergence study previously developed, we have

‖W‖ ≤ 0.1173, ‖Γ0‖ ≤ 𝛽 = 1.000000035, ‖Γ0F(y0)‖ ≤ 𝜂 = 1.001000035, L ≤ 0.10557
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Then, with these values, we can apply Theorem 1 and obtain the semilocal convergence radius for
Newton’s method. We compare this value with the radius obtained by using Theorems 4 and 6 established
for the derivative-free point-to-point iterative process introduced in this article, given by (6). The results are
shown in Table 1. It is observed that, for the iterative process (6), the convergence radius is quite similar to the
Newton’s method radius that is always the smaller value, showing a good behavior of these methods, even
in the case of the iterative process (6), where we do not need the condition of differentiability for operator F.
Moreover, as it was expected, when the value of the parameter tol decreases for the iterative process (6), both
the radius of convergence and that of uniqueness improve.

Finally, we approximate the solution of this nonlinear system by using the iterative methods men-
tioned. We run the algorithms in Matlab 2019 by using variable precision arithmetic with 100 digits
and stopping criteria 10−50. In Tables 2–6, we can observe that k is the number of iterations needed,
the distance between the last two iterates, ‖yn+1 − yn‖, and the value of the operator F at the approxi-
mated solution ‖F(yn+1)‖. We have considered different starting points and different values for parameter
tol. The results show that the behavior of the iterative process (6) analyzed in this article gets practi-
cally the same results as the Newton’s method. The solution of the problem with six decimal digits is
yn+1 = (1.000426, 1.003878, 1.011652, 1.024517, 1.033415, 1.025248, 1.042486, 1.031837).

2.3 Efficiency and accessibility analysis
Next, we compare the computational efficiency of iterative processes (2) and (6). As shown in [25], it is well-
known that the computational efficiency index of an iterative process is CE = q1∕q21 , where q1 is the order

Table 1: Semilocal convergence radius: Newton versus iterative process (6).

Method (2) (6) (6) (6) (6) (6)
Newton tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

𝛽 1.0216 1.0161 1.0107 1.0053 1.0005
𝜉∗ 1.0902 1.0824 1.0748 1.0675 1.0611
t∗ 1.0603
Radius 1.0603 1.4906 1.38268 1.2750 1.1676 1.0710
Uniqueness radius 17.8844 17.4542 17.5621 17.669 17.7772 17.8737

Table 2: Numerical results with starting guess y0 = (0.001,0.001,… ,0.001)T.

Method (2) (6) (6) (6) (6) (6)
Newton tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

k 7 6 7 7 7 7‖yn+1 − yn‖ 8.9634 × 10−83 2.0316 × 10−51 2.3494 × 10−98 1.2074 × 10−87 7.8274 × 10−84 8.7558 × 10−83‖F (yn+1)‖ 8.2521 × 10−83 1.8747 × 10−51 2.1631 × 10−98 1.1116 × 10−87 7.2063 × 10−84 8.0610 × 10−83

Table 3: Numerical results with starting guess y0 = (0.1,0.1,… ,0.1)T.

Method (2) (6) (6) (6) (6) (6)
Newton tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

k 7 6 7 6 6 6‖yn+1 − yn‖ 3.9050 × 10−83 5.9943 × 10−58 6.8271 × 10−93 1.2677 × 10−86 6.3478 × 10−84 3.8368 × 10−83‖F (yn+1)‖ 3.5952 × 10−83 5.5243 × 10−58 6.2855 × 10−93 1.1671 × 10−86 5.8440 × 10−84 3.5323 × 10−83
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Table 4: Numerical results with starting guess y0 = (1, 1,… , 1)T.

Method (2) (6) (6) (6) (6) (6)
Newton tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

k 6 6 6 6 6 6‖yn+1 − yn‖ 8.9642 × 10−83 7.9135 × 10−83 8.3581 × 10−83 8.6899 × 10−83 8.8948 × 10−83 8.9635 × 10−83‖F (yn+1)‖ 8.2528 × 10−83 7.2855 × 10−83 7.6948 × 10−83 8.0003 × 10−83 8.1890 × 10−83 8.2521 × 10−83

Table 5: Numerical results with bigger Tol and y0 = (1, 1,… , 1)T.

Method (2) (6) (6) (6) (6) (6)
Newton tol= 3 tol= 2 tol= 1 tol= 0.75 tol= 0.5

k 6 6 6 6 6 6‖yn+1 − yn‖ 8.9642 × 10−83 2.1116 × 10−83 4.7903 × 10−83 7.6817 × 10−83 8.2200 × 10−83 8.6259 × 10−83‖F (yn+1)‖ 8.2521 × 10−83 1.9441 × 10−83 4.4102 × 10−83 7.0721 × 10−83 7.5677 × 10−83 7.9414 × 10−83

Table 6: Numerical results with starting guess y0 = (2, 2,… , 2)T.

Method (2) (6) (6) (6) (6) (6)
Newton tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

k 7 7 7 7 7 7‖yn+1 − yn‖ 2.0551 × 10−58 2.2262 × 10−56 3.4756 × 10−57 7.6853 × 10−58 2.8851 × 10−58 2.0622 × 10−58‖F (yn+1)‖ 1.8922 × 10−58 2.0498 × 10−56 3.2001 × 10−57 7.0762 × 10−58 2.6564 × 10−58 1.8987 × 10−58

of convergence and q2 is the number of operations (products and divisions) needed to apply it, which is
defined as the computational cost of doing an iteration of the algorithm. This computational efficiency index
represents a good measure of the efficiency of the iterative process.

Regarding the value of q1, it is known [12] that the Newton’s method has R-order of convergence [11] of at
least two if t∗ ≠ t∗∗ or at least one if t∗ = t∗∗. Therefore, Newton’s method has at least quadratic convergence
if t∗ ≠ t∗∗[10]. Now, we prove that the iterative process (6) verifies the same conditions as Newton’s method
and, therefore, it has the same value for q1 as Newton’s method.

Theorem 7. Method (6) has R-order of convergence of at least two if 𝜉∗ ≠ 𝜉∗∗ or at least one if 𝜉∗ = 𝜉∗∗.

Proof. It is clear that q(𝜉) = K
2 (𝜉 − 𝜉∗)(𝜉 − 𝜉∗∗). Then, it is known by the Ostrowski’s technique for a priori

error estimates (see [12, 22]) that
– If 𝜉∗ < 𝜉∗∗, then

𝜉∗ − 𝜉n =
(𝜉∗∗ − 𝜉∗)𝜃2n

1− 𝜃2n
, where 𝜃 = 𝜉∗

𝜉∗∗
< 1. (19)

– If 𝜉∗ = 𝜉∗∗, then
𝜉∗ − 𝜉n =

𝜉∗

2n
. (20)

First, from (17), it follows that {𝜉n} is a majorizing sequence of {yn}. Then, for n ≥ 1 andm ≥ 1, we have

‖yn+m − yn‖ ≤

n+m−1∑
i=n

‖yi+1 − yi‖ ≤

n+m−1∑
i=n

(𝜉i+1 − 𝜉i) = 𝜉n+m − 𝜉n,
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so that, ifm→∞, from the convergence of {yn} and {𝜉n}, it follows

‖y∗ − yn‖ ≤ 𝜉∗ − 𝜉n.

Therefore,
(a) If 𝜉∗ < 𝜉∗∗, then ‖y∗ − yn‖ ≤ 𝜃2

n (𝜉∗∗ − 𝜉∗)
1− 𝜃2n

, where 𝜃 = 𝜉∗

𝜉∗∗
< 1. (21)

(b) If 𝜉∗ = 𝜉∗∗, then ‖y∗ − yn‖ ≤
1
2n
𝜉∗. (22)

Now, from (a) and (b), the result is proved. □

On the other hand, it is clear that both methods (2) and (6) need to perform an LU factorization and
solve the corresponding triangular system at each step. Therefore, both methods have the same operational
cost. Therefore, they also have the same value of q2. Thus, Newton’s method and method (6) have the same
computational efficiency.

Now, we study the accessibility of the previous iterative processes (2) and (6) using similar procedures as
in [18, 19]. For this purpose, we will analyze the dynamical behavior of both iterative processes. We will apply
methods (2) and (6) to the complex polynomial equation p(z) = 0 where

p(z) = z3 − z

with three different roots z = ±1 and z = 0. We paint in red, blue, and yellow the convergence after 100
iterations to the roots of the polynomial with a tolerance of 10−3; in other cases, the point is painted in black.

As shown in Figure 2, the dynamical behavior of method (6) for different values of Tol, when the value of
Tol is close to 0, is similar to the behavior of the Newton’s method, see Figure 1.

Once the accessibility has been graphically analyzed and showing thatmethod (6) has similar accessibil-
ity thanmethod (2), we want to prove it in a numerical way, and for that purpose, we compute the percentage
of points which converges after 200 iterationswith a tolerance of 10−3 to any of the roots, and this information
is tabulated in Table 7.

Figure 1: Newton’s method applied to p(z) = z3 − z.
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Figure 2: Basins of attraction associated to method (6) applied to polynomial p(z) = z3 − z with different values for tolerance.

Table 7: Percentage of convergence points for
p(z) = z3 − z.

Method Percentage of convergent points

(6) with Tol= 0.02 99.97%
(6) with Tol= 0.002 99.99%
(6) with Tol= 0.0002 100.00%
(2) 100.00%

Therefore, we can conclude that the Newton’s method and the iterative process given in (6) have similar
accessibility, taking into account the variability of the parameter Tol.

3 The iterative method (6) for nondifferentiable systems of
equations

Next, for the semilocal convergence of iterative process (6) for nondifferentiable systems of equations, we will
give conditions for the starting point y0 and the operator F in such a way that we can ensure the existence
of a solution y∗ of the system of Eq. (1), providing a ball of existence of solution of (1), B(y0,R), called the
existence ball. We will also obtain a result of uniqueness of solution.

3.1 The semilocal convergence
In order to prove the semilocal convergence for the iterative process (6), we will denote Dn = [yn − 𝜙n, yn +
𝜙n; F] and assume the following conditions
(I) There exists D−1

0 , for some y0 ∈ Ω ⊆ ℝm, with ‖D−1
0 ‖ ≤ 𝛽, ‖D−1

0 F(y0)‖ ≤ 𝜂 and ‖F(y0)‖ ≤ 𝛿.
(II) ‖[x, y; F]− [u, 𝑣; F]‖ ≤ L+ K(‖x − u‖p + ‖y − 𝑣‖p); L,K ≥ 0; with x, y, u, 𝑣 ∈ Ω; x ≠ y; u ≠ 𝑣, and

p ∈ [0, 1].

First, we get a technical Lemma, the proof of which is immediate.

Lemma 8. Let {yn} be the sequence generated by method (6) and yn+1 ≠ yn with yn, yn+1 ∈ Ω. Then

F(yn+1) =
(
[yn+1, yn; F]− Dn

) (
yn+1 − yn

)
. (23)

□
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Theorem 9. Under the conditions (I)–(II), if the equation

t = 𝛽𝛿(1− 𝛽(L+ K(2tp + 2𝛿ptolp)))
1− 𝛽(L+ K(2tp + 2𝛿ptolp))−M

+ 𝛿tol, (24)

whereM = 𝛽(L+ K𝛿p(𝛽p + 2Tolp)) has at least one positive real root, and the smallest positive real root denoted
by R satisfies

M + 𝛽(L+ K(2Rp + 2𝛿ptolp)) < 1,

and B (y0,R) ⊂ Ω, then the sequence {yn} generated by (6) is well-defined and converges to y∗, a solution of
F(x) = 0, with yn, y∗ ∈ B(y0,R). Moreover, y∗ is unique in B(y0,R) ⊂ Ω.

Proof. First, we will prove that the sequence {yn} generated by (6) is well-defined and yn ∈ B(y0,R). Note that
the smallest positive real root R of (24) satisfies

R = 𝛽𝛿

1− S + 𝛿tol, (25)

where S = M
1−𝛽(L+K(2tp+2𝛿 pTolp)) ∈ (0, 1). If y0 ∈ Ω satisfies condition (I), then y1 is well-defined and ‖y1 − y0‖ ≤‖D−1

0 ‖‖F(y0)‖ ≤ 𝛽𝛿 < R. Therefore, y1 ∈ B(y0,R). Using Lemma 8, we get

F(y1) =
(
[y1, y0; F]− [y0 − 𝜙0, y0 + 𝜙0; F]

)
(y1 − y0).

Taking norms on both sides, we get

‖F(y1)‖ ≤ ‖‖[y1, y0; F]− [y0 − 𝜙0, y0 + 𝜙0; F]‖‖ ‖y1 − y0‖
≤ (L+ K (‖y1 − y0‖p + ‖𝜙0‖p + ‖𝜙0‖p)) ‖y1 − y0‖
≤
(
L+ K

(
𝛽 p𝛿p + 2𝛿pTolp

))
𝛽𝛿

≤ M𝛿,

whereM = 𝛽
(
L+ K(𝛽 p𝛿p + 2𝛿ptolp)

)
. AsM < 1, ‖F(y1)‖ < 𝛿. Using (25), we get ‖y1 ± 𝜙1 − y0‖ ≤ ‖y1 − y0‖+‖𝜙1‖ ≤ 𝛽𝛿 + 𝛿Tol < R and hence y1 ± 𝜙1 ∈ B(y0,R). Again by using (II), we have

‖I − D−1
0 D1‖ ≤ ‖D−1

0 ‖‖D1 − D0‖
≤ 𝛽‖[y1 − 𝜙1, y1 + 𝜙1; F]− [y0 − 𝜙0, y0 + 𝜙0; F]‖
≤ 𝛽 (L+ K (‖y1 − 𝜙1 − y0‖p + ‖𝜙0‖p + ‖y1 + 𝜙1 − y0‖p + ‖𝜙0‖p))
≤ 𝛽

(
L+ K(2Rp + 2𝛿ptolp)

)
< 1.

Hence, by the Banach Lemma for inverse operators, D−1
1 exists and

‖D−1
1 ‖ ≤

𝛽

1− 𝛽(L+ K(2Rp + 2𝛿pTolp)) .

Therefore, ‖y2 − y1‖ ≤ ‖D−1
1 ‖‖F(y1)‖ ≤

𝛽

1− 𝛽(L+ K(2Rp + 2𝛿pTolp))M𝛿 = S𝛽𝛿.

Since S < 1, ‖y2 − y1‖ < 𝛽𝛿 and ‖y2 − y0‖ ≤ ‖y2 − y1‖+ ‖y1 − y0‖ ≤ (1+ S)‖y1 − y0‖ < 𝛽𝛿

1−S < R. Therefore,
y2 ∈ B(y0,R). Using Lemma 8 and conditions (II), we have

‖F(y2)‖ ≤ ‖[y2, y1; F]− [y1 − 𝜙1, y1 + 𝜙1; F]‖‖y2 − y1‖
≤ (L+ K (‖y2 − y1‖p + 2‖𝜙1‖p)) ‖y2 − y1‖
≤
(
L+ K(Rp + 2𝛿pTolp)

) ‖y2 − y1‖.
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Also, ‖y2 ± 𝜙2 − y0‖ ≤ ‖y2 − y0‖+ ‖𝜙2‖ < 𝛽𝛿

1−S + 𝛿Tol = R and y2 ± 𝜙2 ∈ B(y0,R).
Now,

‖y3 − y2‖ ≤ ‖D−1
2 ‖||F(y2)‖

≤
𝛽(L+ K(Rp + 2𝛿pTolp))

1− 𝛽(L+ K(2Rp + 2𝛿pTolp))‖y2 − y1‖
= S‖y2 − y1‖.

Therefore, ‖y3 − y2‖ ≤ S2‖y1 − y0‖ < ‖y1 − y0‖ < R.
In a similar manner, by using the principle of mathematical induction, we can establish the following

recurrence relations.

‖D−1
n ‖ ≤

𝛽

1− 𝛽(L+ K(2Rp + 2𝛿pTolp)) ,

‖F(yn)‖ ≤
(
L+ K(Rp + 2𝛿pTolp)

) ‖yn − yn−1‖,‖yn+1 − yn‖ ≤ S‖yn − yn−1‖ ≤ Sn‖y1 − y0‖ < 𝛽𝛿,

‖yn+1 − y0‖ ≤
1− Sn+1
1− S ‖y1 − y0‖ < 𝛽𝛿

1− S < R,

‖yn+1 ± 𝜙n+1 − y0‖ < 𝛽𝛿

1− S + 𝛿Tol = R,

Now, using S < 1, we have

‖yn+ j − yn‖ ≤

j∑
i=1

‖yn+i − yn+i−1‖ ≤

j∑
i=1

Sn+i−1‖y1 − y0‖ < Sn
1− S‖y1 − y0‖. (26)

Hence, {yn} is a Cauchy sequence that converges to y∗. Since

‖F(yn)‖ ≤
(
L+ K(Rp + 2𝛿pTolp)

) ‖yn − yn−1‖,
and ‖yn − yn−1‖→ 0 as n→∞, then F(y∗) = 0 by using the continuity of F.

In order to prove the uniqueness part, suppose x∗ is another solution of (1) inB(y0,R) and if P = [x∗, y∗; F]
is invertible, then x∗ = y∗ since P (x∗ − y∗) = F(x∗)− F(y∗). But, ‖I − D−1

0 P‖ ≤ ‖D−1
0 ‖‖D0 − P‖ < 1, therefore

x∗ = y∗. □

3.2 On the accessibility
Now, we compare the accessibility of the previous iterative process (6) and different derivative-free
point-to-point iterative processes such as the Steffensen method, Backward–Steffensen method, and Cen-
ter–Steffensen method.

For this purpose, we will analyze the dynamical behavior of both iterative processes. We will apply the
methods to the nondifferentiable complex polynomial

p(z) = z3 + z|z|− 2z,

with three different roots z = ±1 and z = 0. We paint in red, blue, and yellow the convergence after 100
iterations to the roots of the polynomial with a tolerance of 10−3; in other case, the point is painted in black.

As shown in Figures 3 and 4 the dynamical behavior of method (6) with Tol = 0.02 and the Steffensen,
Backwards–Steffensen, and Center–Steffensen method, it can be seen that the new method is really better
than the other ones.
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Figure 3: Method (6) with Tol = 0.02.

Figure 4: Basins of attraction to polynomial p(z) = z3 + z|z|− 2z.

Once the accessibility has been graphically analyzed, showing that method (6) is really better than the
other ones, we have to prove it in a numerical way and, for that purpose, we compute the percentage of points
which converges after 200 iterations with a tolerance of 10−3 to any of the roots. This information is tabulated
in Table 8.

Table 8: Percentage of convergence points for
f (z) = z3 + z|z|− 2z.

Method Percentage of convergent points

(6) with Tol= 0.02 99.97%
Steffensen 8.31%
Backward–Steffensen 7.10%
Center–Steffensen 9.71%
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3.3 A numerical study
In this section, we consider a nondifferentiable problem. For this, we consider the nonlinear integral Eq. (18),
where f (x) = −1, 𝜆 ∈ ℝ, G(s, t) is the Green’s function, H(x(t)) = |x(t)|, and s, t ∈ [0, 1].

By following the same process of discretization as in Section 2.2 and by using again the Gauss–Legendre
quadrature, where𝑤j and t j are the corresponding weights and nodes, respectively, and denoting the approx-
imation x(si) by xi for i = 1,… ,m and x = (x1, x2,… , xm), the nonlinear operator F :Ω ⊆ ℝm → ℝm modelizes
our problem:

Fi(x) = xi − 1− 𝜆

m∑
j=1

𝑤i j|x j|, i = 1, 2, . .,m

where𝑤ij = 𝑤jG(ti, t j), i, j = 1,… ,m.
Obviously, this nonlinear operator F is nondifferentiable, and the divided difference operator for

approximating the Jacobian can be expressed as

[u, 𝑣, F] = I − 𝜆C, (27)

for u, 𝑣 ∈ [0, 1], where Ci j = (𝑤i j)
‖u j‖−‖𝑣 j‖
u j−𝑣 j

, i, j = 1,… ,m. Therefore, by choosing m = 8, 𝜆 = 1
2 , and the

starting guess y0 = (0.5,… ,0.5), in the domain Ω = B(0, 3) ⊆ [0, 1]. We have condition (I) in Section 3.2
and it is verified since ‖W‖ ≤ 0.1173 and 𝜆‖C‖ ≤ 0.05865. Then, by applying the Banach Lemma for inverse
operators, D−1

0 exists and ‖D−1
0 ‖ ≤ 𝛽 = 1.0623, so that ‖D−1

0 F(y0)‖ ≤ 𝜂 = 1.6246.
Moreover, by (27), we deduce that

‖[x, y, F]− [u, 𝑣, F]‖ ≤ 2‖𝜆‖‖W‖,
and then, in Section 3.2 condition (II) with p = 1, it is verified for L = 2‖𝜆‖‖W‖ = 0.1173 and K = 0. Thus, the
parameterM defined in Theorem 9 for all values of tol isM = 0.1246, and by applying the theoretical results,
we obtain the semilocal convergence radius for the nondifferentiable case. The values are shown in Table 9.

It can be observed that for this particular problem, in which K = 0 and taking into account (24) and (25),
as tol increases, the semilocal convegence radius also increases, as shown in Table 9.

Finally, we approximate the solution of this nonlinear system by using the iterative methods mentioned
with conditions expressed in Section 2.2. In Tables 10–12, we can observe the results showing very good
behavior of the iterative process given in (6); for almost all values of tol, the stopping criteria is reached in
two iterations. The solution of the problem with four decimal digits is

yn+1 = (1.0022, 1.0203, 1.0621, 1.1304, 1.1744, 1.1336, 1.2227, 1.1671).

Table 9: Semilocal convergence radius of New Steffensen-type for.

Method (6) (6) (6) (6) (6)
tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

Radius 1.2825 1.4354 1.5883 1.7413 1.8789

Table 10: Numerical results with starting guess y0 = (0.5,0.5,… ,0.5)T .

Method (6) (6) (6) (6) (6)
tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

k 3 2 2 2 2‖yn+1 − yn‖ 3.4064 × 10−108 5.9000 × 10−108 8.3439 × 10−108 5.9000 × 10−108 5.1322 × 10−107‖F (yn+1)‖ 2.7874 × 10−108 5.7270 × 10−108 6.9946 × 10−108 4.4831 × 10−108 4.9335 × 10−107



2798 | M. A. Hernández-Verón et al.: Iterative processes with central divided differences

Table 11: Numerical results with starting guess y0 = (1, 1,… , 1)T .

Method (6) (6) (6) (6) (6)
tol= 0.4 tol= 0.3 tol= 0.2 tol= 0.1 tol= 0.01

k 2 2 2 2 2‖yn+1 − yn‖ 3.4064 × 10−108 3.4064 × 10−108 3.4064 × 10−108 4.8173 × 10−108 1.4452 × 10−107‖F (yn+1)‖ 2.7874 × 10−108 2.7874 × 10−108 2.7874 × 10−108 3.1247 × 10−108 1.4156 × 10−107

Table 12: Numerical results with bigger tol and y0 = (1, 1,… , 1)T .

Method (6) (6) (6) (6) (6)
tol= 3 tol= 2 tol= 1 tol= 0.75 tol= 0.5

k 3 2 2 2 2‖yn+1 − yn‖ 0 0 3.4064 × 10−108 3.4064 × 10−108 3.4064 × 10−108‖F (yn+1)‖ 2.7874 × 10−108 2.7874 × 10−108 2.7874 × 10−108 2.7874 × 10−108 2.7874 × 10−108

4 Conclusions
This work is devoted to present a derivative-free point-to-point iterative process that allow us to obtain
approximated solutions for nonlinear systemswith similar efficiency and characteristics asNewton’smethod.
Semilocal convergence results are proved under suitable conditions of applicability in both cases, that is, the
differentiable and nondifferentiable. Theoretical results are contrasted with dynamical study and numerical
results for all cases.
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