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The ConstrainedMixture Model (CMM) is a novel approach to describe arterial wall
mechanics, whose formulation is based on a referential physiological state. The
CMM considers the arterial wall as a mixture of load-bearing constituents, each of
themwith characteristic mass fraction, material properties, and deposition stretch
levels from its stress-free state to the in-vivo configuration. Although some reports
of this model successfully assess its capabilities, they barely explore experimental
approaches to model patient-specific scenarios. In this sense, we propose an
iterative fitting procedure of numerical-experimental nature to determinematerial
parameters and deposition stretch values. To this end, the model has been
implemented in a finite element framework, and it is calibrated using reported
experimental data of descending thoracic aorta. The main results obtained from
the proposed procedure consist of a set of material parameters for each
constituent. Moreover, a relationship between deposition stretches and
residual strain measurements (opening angle and axial stretch) has been
numerically proved, establishing a strong consistency between the model and
experimental data.
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1 Introduction

Numerous investigations have reported the presence of residual stresses on arteries
(Chuong and Eason, 1986), whose effect is relevant to maintaining the homeostatic state in
the cardiovascular system, preventing significant intramural stress gradients on the arterial
wall (Rachev and Hayashi, 1999; Wang and Gleason, 2010; Peña et al., 2015; Sigaeva et al.,
2019). Its presence may be explained by non-uniform growth and remodeling processes
(Fung, 1991; Bellini et al., 2014), where the stress distribution and magnitude can be altered
with respect to normal levels, in face of diseases, aging or injuries (Fung, 1991; Cardamone
et al., 2009; Horný et al., 2017). The residual stresses on an artery are manifested when it is
extracted from its physiological state and subsequently cut, evidencing geometrical changes
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concerning its initial shape. Specifically, a shortening is experienced
in the axial direction and, when the arterial ring-shape in an ex-vivo
state is cut along the thickness, an opening movement can be
observed. These changes from the initial configuration of the
artery proves the presence of residual stresses. In practice,
experimental information about residual deformation is obtained
via pre-stretching and ring-opening tests (Navarrete et al., 2020;
Rivera et al., 2020) where, by assuming a stress-free geometry as
referential configuration, the residual stresses can be determined by
an indirect way through numerical modeling of the closure ring
simulation (García-Herrera et al., 2016). The artery shortening and
radial cut generate a nearly complete residual strain and stress
release. However, different authors questioned this statement,
adding alternative measures to characterize a complete stress-free
state, by either measuring a longitudinal opening (Wang and
Gleason, 2010), separating arterial layers (Peña et al., 2015) or
formulating novel constitutive theories that do not require an
experimental stress-free state due to the physical impracticality of
generating a full release of residual stresses (Ciarletta et al., 2016).

The Constrained Mixture Model (CMM) appears as a
phenomenological approach for soft tissue mechanics in which
different aspects related to growth and remodeling (G&R)
phenomena are considered. These aspects are mainly referred to
the time-dependent production of arterial constituents to different
stressed configurations, whose activity is driven by a
mechanobiological response of cell activity (Humphrey and
Rajagopal, 2002). Unlike classical approaches, which consider
stress-free as a referential configuration (Maes et al., 2019), the
CMM is based on an in-vivo referential geometry (pressurized and
axially loaded). This reference configuration avoids the questioning
mentioned above about the stress-free state and the lack of
information about the compressive response of each specific
constituent (Bellini et al., 2014). A fundamental feature of this
model is the consideration that the artery wall is composed of
different load-bearing constituents: elastin, collagen, and smooth
muscle cells (Valentín et al., 2013; Mousavi and Avril, 2017); each
one contributing to its overall behavior, using concepts related to the
theory of mixtures and homogenization (Humphrey and Rajagopal,
2002). The CMM framework allows accounting for the weighted
contribution of strain energy and stress for each constituent,
according to kinetic considerations related to their mass
evolution (production and removal). In this way, previous studies
on arteries revealed a high rate of production of elastin in the
perinatal period, followed by a low turnover rate during maturity
(Humphrey and Rajagopal, 2002). In contrast, collagen is
continuously produced and degraded (short half-life), which may
be further reduced by arterial diseases, like hypertension or
aneurysms (Cyron and Humphrey, 2017). On the other hand, the
CMM takes into consideration potential structural changes of each
component; for example, through degradation of their material
properties (Latorre and Humphrey, 2020), or alteration of its
stressed configuration over time (Laubrie et al., 2022). Particular
attention is put on this last point since, as the in-vivo configuration is
taken as a referential state, the definition of a characteristic
deposition stretch (pre-strain) by each constituent is necessary,
which quantifies its deformation from a stress-free (natural)
configuration to the referential state. The theoretical basis of the
CMM explains the presence of residual stresses as a result of the

difference in stress states between constituents deposited to the
material and those of the material itself (Humphrey and Rajagopal,
2002).

As stated by the overview work performed by (Morin and Avril,
2015), which is focused on inverse-nature problems applied to the
arterial mechanical behavior, the proper calibration of the
mechanobiological model parameters is a challenge to be
addressed. One of the main tasks concerning models that
consider an in-vivo reference state is the determination of its pre-
stress field via pre-strain, due to the assumption of material elasticity
(Maas et al., 2016). Therefore, it is necessary to conceive methods to
determine the desired parameters, with the limitation associated to
the lack of information about the stress-free state. Related to this
point, different authors have developed computational frameworks
to solve this problem (Weisbecker et al., 2014). utilized information
about the in-vivo reference configuration (geometry and loads) to
determine pre-stretch gradients present in this configuration, based
on an iterative procedure that involves solving an inverse finite
element problem. The work of (Maas et al., 2016) was focused on
determining pre-stresses and pre-strains of biological tissues in a
finite element context by an algorithm that verifies equilibrium in
the face of potential incompatibilities concerning initial pre-strain
values.

Many efforts have been put into the numerical implementation of
the CMM and its application in G&R. The increasing need to
characterize the material parameters to achieve practical use of this
model applied to specific patients has contemporary significance. One
of the main limitations is the difficulty at the time of determining
material parameters and deposition stretch values directly from
experimental data, because of the macroscopic nature of the most
commonly used testing methods. In this regard (Latorre and
Humphrey, 2018), developed a progressive nonlinear regression to
determine elastic and G&R parameters of a CMM using experimental
data from (Wu et al., 2014; Bersi et al., 2016) for a particular mouse
model of hypertension for which information was available on the time
course of changes in blood pressure, wall composition, material
properties, and inflammation (Mousavi and Avril, 2017). developed
a finite element implementation to determine the pre-strain tensor of
elastin, which is subjected to high stretches due to its initial deposition in
the perinatal period in conjunction with its long half-life. This
implementation was applied to obtain residual stresses and to
validate the opening angle on an idealized geometry, using
experimental data of a murine artery segment. In addition, the
determination of the residual stress field and material parameters
using the CMM was evaluated on the patient-specific model of a
human ascending thoracic aorta. Within the study performed by
(Laubrie et al., 2022), an algorithm based on (Maas et al., 2016) was
implemented to derive the spatial distribution of pre-strain, considering
the combined effect of elastin and ground substances of extracellular
matrix on a patient-specific aortic arch (Maes et al., 2019). introduced
an iterative fitting method, determining a set of material parameters for
the CMM under the assumption of fixed deposition stretch values.

In this context, taking previous studies as a basis, we propose in
the present work a numerical approach to perform an integrated
characterization on these values. To achieve this objective, the CMM
has been implemented in the FEBio finite element framework (Maas
et al., 2012). The model characterization has been performed using
experimental mechanical data reported by (Rivera et al., 2021) on a
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newborn lamb-specific descending thoracic aorta. The CMM is
fitted to fulfill and correlate with experimental data obtained
from the following tests: ring-opening, pre-stretch,
pressurization-stretch and uniaxial tensile using samples in
circumferential and longitudinal directions.

The contents of the manuscript are organized as follows: Section
2 presents the CMM background, details about experimental
procedure and the information considered from it, along with
the description of the iterative-fitting procedure proposed.
Section 3 shows the main results obtained after applying this
procedure on a patient-specific case, and a sensitivity analysis of
the variation of relevant parameters. Section 4 includes an extensive
discussion and analysis of numerical results and performance of the
proposed procedure. Finally, further remarks and future research
lines are identified.

2 Material and methods

In this section, the aspects related to the mathematical
formulation of the Constrained Mixture Model (CMM) (Section
2.1) along with the procedure to perform the corresponding fitting
(Section 2.3) are exhibited below. It is worth mentioning that
experimental data used for this aim is totally obtained from
previous studies (detailed in Section 2.2), and this work is
particularly focused on the numerical analysis of this data.

2.1 Constrained mixture model (CMM)

According to Figure 1, the CMM considers that the arterial wall
mechanics is influenced by a mixture of the major families of load-
bearing constituents (α): elastin (e), collagen (c) and smooth muscle

(m) (Wang et al., 2016), each one associated with its corresponding
mass fraction (ϕα; α = e, c, m). Each constituent is deposited into the
mixture, from its theoretical stress-free (natural) configuration to
the in-vivo configuration (with pressurization and axial stretch at
physiological levels). The deformation gradient experienced by each
family of constituents α is, under this condition, named as
deposition stretch (Gα). These constituents are constrained to
deform with the mixture in the face of subsequent changes in the
mechanical loads on the whole arterial wall, whose deformation
gradient is denoted by F. Therefore, it is possible to define the
deformation gradient of each specific constituent (Fα) when the
arterial wall changes its configuration with reference to homeostatic
conditions as:

Fα � FGα α � e, c,m (1)
The arterial wall is often considered an incompressible

hyperelastic material (Chagnon et al., 2015). In this sense, the
theory of hyperelasticity establishes that the stress-strain
relationship is adequately modeled with a consistent strain
energy function (W). To enforce incompressibility in the finite
element context, the formulation of W is considered in its
nearly-incompressible expression (Mousavi and Avril, 2017;
Latorre and Humphrey, 2020). This condition is associated with
an isochoric-volumetric decomposition of W, whose
particularization to the CMM is stated by:

W � ∑
α�e,c,m

ϕα �Wα �C
α( ) + U J( ) (2)

where the overall isochoric contribution corresponds to the sum
of each specific-constituent strain energy function (left term of Eq.
(2)), which in turn is dependent on the isochoric part of the right
Cauchy-Green strain tensor �Cα � �FαT�Fα and �Fα � J−1/3Fα, with J as
the determinant of deformation gradient F (J � det(F)). The

FIGURE 1
Schematic representation of CM model.
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volumetric contribution (right term of Eq. (2)) is defined by an
appropriate penalty strain energy function (U(J)) as:

U J( ) � 0.5κ
J2 − 1
2

− ln J( )( ) (3)

where κ is a penalty parameter related with the bulk modulus
which, in a near incompressibility condition, is considered much
greater than the shear modulus defined within the isochoric
term of W.

Focusing on the definition of �Wα by each constituent, the
isochoric strain energy function of the elastin (e) is defined as a
neo-Hookean material:

�We �C
e( ) � ce

2
�C
e
: I − 3( )

� ce

2
�Ie1 − 3( ) (4)

where I is the identity tensor, ce represents the shear modulus,
and �Ie1 is the first invariant of �Ce. Here, κ is defined five hundred
times ce to enforce the incompressibility condition (det F = J ≈ 1)
(Latorre and Humphrey, 2020).

The strain energy function of the isochoric term of the collagen
(c) ( �Wc) is defined in relation to its characteristic arrangement of
fibers as:

�Wc �C
c( ) � kc1

2kc2
exp kc2 �C

c0
: dc0 ⊗ dc0( ) − 1( )2[ ] − 1

+ kc1
2kc2

exp kc2 �C
c1
: dc1 ⊗ dc1( ) − 1( )2[ ] − 1

� kc1
2kc2

∑
i�4,6

exp kc2 �Ici − 1( )2[ ] − 1( )
(5)

where kc1 and k
c
2 are material parameters; dc0 and dc1 define the

mean orientation of two families of fibers symmetrically
arranged. In cylindrical coordinates (r, θ, z): dc0 �
[0 sin(β) cos(β)] and dc1 � [0 − sin(β) cos(β)], with β

being the angle measured with respect to the longitudinal
direction (z) in the zθ plane. Finally, �Ic4 and �Ic6 are the
pseudoinvariants of �Cc0 and �Cc1 respectively, each one of them
related to one specific fiber family (�Ic4 � �Cc0

: dc0 ⊗ dc0 and
�Ic6 � �Cc1

: dc1 ⊗ dc1) (Maes et al., 2019). It is worth mentioning
that the fiber definition is performed on the referential geometry
established in the CMM (in-vivo state), see Figure 1 and that
other works consider two additional fiber families in axial and
circumferential directions to define a 4-fiber-family model
((Bellini et al., 2014; Latorre and Humphrey, 2018)).

The strain energy function of the isochoric component of the
smooth muscle (m) ( �Wm) models it as an anisotropic fibrous
material (such as in the case of collagen) oriented exclusively in
the circumferential direction. Its expression is given by:

�Wm �C
m( ) � km1

2km2
exp km2 �C

m
: dm ⊗ dm( ) − 1( )2[ ] − 1

� km1
2km2

exp km2 �Im4 − 1( )2[ ] − 1
(6)

where km1 and km2 are material parameters; dm corresponds to the
smooth muscle orientation, where in this particular case dm �
[0 1 0] in cylindrical coordinates, and �Im4 � �Cm

: dm ⊗ dm is
the pseudoinvariant of �Cm related to the fiber direction.

The deposition stretch tensor of each constituent (Gα) is defined
symmetrically and volume-preserving (det(Gα) � 1). According to
the nature of each constituent, Gα must be configured appropriately.
In this context, the elastin matrix has characteristic values of
deposition stretch in the circumferential (Ge

θ) and longitudinal
(Ge

z) directions, whereas the radial direction is stated to satisfy
the isochoric condition. The Ge tensor is defined in cylindrical
coordinates as:

Ge �

1
Ge

θG
e
z

0 0

0 Ge
θ 0

0 0 Ge
z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

The deposition stretch tensor of each family of collagen fibers
(Gci, i = 0, 1) and smooth muscle (Gm) are defined in reference to
their mean orientation (dci i = 0, 1 and dm, respectively) in cylindrical
coordinates, according to (Maes et al., 2019):

Gci � Gc dci ⊗ dci( ) − 1���
Gc

√ I − dci ⊗ dci( ) i � 0, 1 (8)

Gm � Gm dm ⊗ dm( ) − 1���
Gm

√ I − dm ⊗ dm( ) (9)

where Gc and Gm correspond to the deposition stretch values
along the respective fiber directions.

The definition of the different deformation gradients related to
the CMM allows us to define the Second Piola-Kirchhoff stress
tensor (S) as:

S � 2
∂W
∂C

� 2ϕe∂ �W
e

∂�Ie1

∂�Ie1
∂C

+ 2ϕc ∂ �Wc

∂�Ic1

∂�Ic1
∂C

+ ∂ �Wc

∂�Ic4

∂�Ic4
∂C

+ ∂ �Wc

∂�Ic6

∂�Ic6
∂C

[ ]
+2ϕm ∂ �Wm

∂�Im4

∂�Im4
∂C

[ ] + 2
∂U J( )
∂J

∂J
∂C

(10)
Finally, from the expression 10, the Cauchy-stress tensor can be

written as:

σ � 1
J
FSFT (11)

2.2 Experimental procedure

The procedure described below considers the experimental data
of a descending thoracic aorta of a 30-day-old newborn lamb (Ovis
Aries) available in the works of (Rivera et al., 2020; Rivera et al.,
2021). Further information about protocols and methods of
measurement are detailed in both references. Figure 2 shows a
scheme with the different mechanical loads and deformations to
which an arterial specimen is subjected from its in-vivo state, to
uniaxial stretch in longitudinal and circumferential directions. In
this sense, the experimental procedure accounts for information of
these states, via appropriate mechanical and residual deformation
tests. The physiological arterial stretch λz related to in-vivo and zero-
pressure states (steps (1) and (2), respectively) was obtained via the
pre-stretching test, measuring the longitudinal shortening between
the zero-pressure and ex-vivo states (steps (2) and (3)) (Navarrete
et al., 2020). The outer diameters dinvivoout and dzpout were registered
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from in-vitro inflation-extension tests (Rivera et al., 2021), where
dinvivoout was considered under the reference pressure value, which in
this case was set as the diastolic pressure (p = 10 kPa (Maes et al.,
2019)), and dzpout was measured at zero pressure. The experimental
data of the inner (dexvivoin ) and outer (dexvivoout ) diameters in ex-vivo
state (step (3)) was obtained from images of ring shape specimens.
The inner diameter of the geometrical configuration of steps (1)
(dinvivoin ) and (2) (dzpin ) were obtained through the incompressibility
condition (Carew et al., 1968). Step (4) represents the ring opening
test (Cañas et al., 2018), from which a measure of the residual
circumferential deformation described by an opening angle α can be
calculated. Finally, from step (4), two rectangular specimens were
extracted in order to perform the aforementioned uniaxial tensile
test (step (5)) and obtain different sample dimensions (lz, wz, ez, lθ,
wθ, eθ). It is worth mentioning that the mass fraction of the arterial
wall constituents have been considered as fixed parameters based on
referential values in the literature, specifically according to the
animal model and age. Within this context, the study performed
by (Wells et al., 1999) measures relative aortic elastin (ϕe) and
collagen (ϕc) mass contents of 21-day-old lambs; meanwhile smooth
muscle (ϕm) has been considered as the remaining mass fraction. All
numerical values of the parameters defined above are indicated in
the supplementary material file.

2.3 Iterative numerical-experimental fitting

Taking as basis the iterative procedure followed by (Maes et al.,
2019), the material parameters (mp � [ce, kc1, kc2, β, km1 , km2 ]) and
deposition stretch (ds � [Ge

θ Ge
z Gc Gm]) values are

characterized. Both the parameters attached to mp and ds are
defined in Section 2.1. This procedure takes experimental
information detailed in Section 2.2, which is used as both input
and validation for the numerical part of the iterative procedure.

To provide a clear description of the iterative procedure, we
first distinguish two main stages (Figure 3), each of them aiming
to the determination of: the set of materials parameters mp (Stage

1, Figure 3A) and the deposition stretch values ds (Stage 2,
Figure 3B).

2.3.1 Stage 1
In Stage 1, the individual constituents are deposited from its

natural configuration to the artery in its in-vivo state through a given
set of ds (input parameters). Since the uniaxial test configuration is a
flat strip of tissue, a series of deformation gradients, that allow to
account for the changes occurred between the in-vivo and uniaxial
flatten-strips, are applied to the uniaxial problem. Those gradients
account for the loads release (Frelease), radial opening (Fopening) and
strip flattening (Fflatten), where this last step is considered to produce
near-zero strains on the sample strip (Fflatten ≈ I), due to its negligible
value with respect to the deformation experienced in the previously
mentioned steps (Maes et al., 2019). During the first iteration, both
deformation gradients Frelease and Fopening are considered to be equal
to an identity tensor (I), as well as the deposition stretch parameters
ds. However, in the consecutive iterations, those tensors and
parameters are updated from the second stage of the proposed
algorithm. The mentioned tensors, defined in cylindrical
coordinates (r, θ, z), are given by the following expressions:

Frelease �
λrrelease 0 0
0 λθrelease 0
0 0 λzrelease

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ Fopening

�
λropening 0 0

0 λθopening 0
0 0 λzopening

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

Finally, the deformation gradient of each constituent from its
natural configuration to the stretching applied in the uniaxial
tensile test (Funiaxj j � z, θ) is stated by the following expression,
according to the nomenclature of Figure 3A:

Fi
j � Funiax

j FflattenFopeningFreleaseG
i i � e, c,m j � z, θ (13)

Through this procedure, a set of final material parameters mp
can be computed (output parameters). To this end, the experimental

FIGURE 2
Mechanical loads and deformations to which the artery is subjected under different states: (1) in-vivo; (2) zero-pressure; (3) ex-vivo; (4) arterial
opening; (5) uniaxial stretch.
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longitudinal and circumferential stress-strain relationships are taken
as target curves, where the optimal parameters mp are determined
by solving the inverse finite element problem associated with the
numerical uniaxial tensile test in both directions.

2.3.2 Stage 2
As shown in Figure 3B, Stage 2 considers fixed material

parameters (mp) obtained as an output from Stage 1, and the in-
vivo arterial geometry as the referential configuration, according to
the fact that the constituents are deposited from its stress-free state
to the mentioned state. Thus, the procedure of Stage 2 considers the
reference geometry in the diastolic pressure stage, experimentally
obtained by the inflation-extension test. Then, the artery is
pressurized and axially constrained to reproduce in-vivo loads.
However, geometrical dimensions reached in this step are not

compatible with any real configuration. Then, the next step
consists of applying the corresponding set of deposition stretches
(ds), such that these values enable us to obtain the initial dimensions
at which the analysis of Stage 2 began, ideally producing a near-zero
dimensional change in the reference configuration. Therefore, at the
end of this step, the artery has reached the referential geometry with
its corresponding in-vivo stress field. Stage 2 ends with the release of
the in-vivo loads, assumed to be a numerical ex-vivo configuration.
The determination of parameters ds is performed via a finite element
inverse approach, in which dinvivoout , dexvivoin , dexvivoout and λz are the target
parameters, previously reported experimental data (Figure 2). Once
the parameters ds have been established, they are used to perform
the simulation of arterial ring-opening. At the end of the fitting
procedure, Frelease and Fopening are calculated, and utilized for the
Stage 1 in the next iteration.

FIGURE 3
Numerical stages followed to determine: (A) material parameters; (B) deposition stretch values.
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2.3.3 Integrated procedure
The two stages described above (Section 2.3.1 and Section 2.3.2) are

part of the iterative procedure proposed in this work, whose goal
consists of simultaneously determining material parameters (mp) and
deposition stretch values (ds). As Figure 4 states, consecutive iterations
from both stages are computed in a custom inverse implementation of
Python’s LMFit library (Newville and Stensitzki, 2018) using FEBio
results together with the standard Levenberg-Marquardt algorithm of
this implementation. An experimental-numerical residual
minimization approach was used to characterize both material
parameters and the deposition stretches. A stop criterion on the
material parameters is set to a 5% variation between the
optimization iterations. The objective function f(x) used to optimize
the material parameters in Stage 1 is defined as follows:

minimize
x∈mp

f x( ) � J σcirc, σ̂circ( ) + J σ long, σ̂ long( ) (14)

J y, ŷ( ) � 1
n
∑n
i�1

y − ŷ( )2
max y( ) (15)

, where J is the standardization function for the stress-strain residual,
n represents the number of discrete points in each curve, y is the
experimental value, and ŷ the model-predicted value. In the
objective function f(x), σi and σ̂ i are the experimental and model-
predicted uniaxial stresses, respectively, where the subscript i
represents the direction of the test (circumferential or longitudinal).

By another side, the objectve function g(x) utilized to optimize
the desposition stretch values in Stage 2 is defined as:

minimize
x∈ds

g x( ) � K dinvivoout , d̂
invivo

out( ) + K dinvivoint , d̂
invivo

int( )
+ K dexvivoout , d̂

exvivo

out( ) + K λz, λ̂z( ) (16)
K y, ŷ( ) � y − ŷ( )2 (17)

, where the K function defines the quadratic error used to calculate
the in vivo and ex-vivo geometry error between experimental and
numerical values.

The ring-shaped finite element mesh used in the numerical
simulations is composed of 8-node hexahedra, with a total of
900 elements and 1952 nodes (15 radial elements, 60 circumferential
elements, and one element in the axial direction). The formulation
considers a three-field implementation in order to avoid numerical
locking of nearly-incompressible materials (Maas et al., 2012).
Moreover, the numerical simulation of the uniaxial tensile test is
performed, due to the development of homogeneous stress and
strain fields, by considering a single 8-noded hexahedral element.

3 Results

3.1 Patient-specific study on newborn lamb
aorta

Taking the experimental results of the in-vivo geometry, whose
values are detailed in Section 2.2, the descending thoracic aorta is
modeled considering a straight cylindrical shape (Karšaj et al., 2010;

FIGURE 4
Algorithm proposed to determine the set of material parameters (mp) and deposition stretches (ds).
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Valentín et al., 2011). From the output parameters of the fitting
procedure (detailed in Section 2.3), a set of material parameters mp
and deposition stretch values ds were obtained. Table 1 shows the
parameters used as input and those obtained from the numerical
procedure (output values).

Focusing on the characterization procedure, Figure 5 denotes
the percentage difference of each parameter, concerning the values
of the previous iteration. Figure 5A, refers to the material parameters
mp that quickly approach to the 0% variation level (red line). On this
basis, a remarkable case is visualized for kc1. The percentage
difference regarding the first iteration corresponds to 351%,
experiencing an enormous drop in the next iteration (13%) and
finishing in an absolute difference of 0.3% to the sixth iteration. In
general, a similar trend can be observed in the remaining material
parameter values, where at the end of the last iteration performed the
highest percentage difference is close to 3% (kc2). Similarly,
variations of deposition stretch values ds are shown for each
iteration (Figure 5B). As in the previous case, a fast convergence
towards the ideal target value (red line) can be observed. According
to the iterative procedure (Figure 4), the percentage difference of
these values is not directly considered. However, the convergence to
ds denotes consistency concerning the set of determined parameters.
Specifically, the maximum absolute percentage difference at the first

iteration is 36% for the Gm parameter, while in the sixth iteration, Ge
z

reaches a 0.08% variation.
As stated in the description of Stage 1 (Section 2.3.1), a release

and opening deformation gradient is obtained and utilized for the
uniaxial extension. After the sixth iteration, the average values
(average ±SEM)) across the thickness of the tissue are:
λrrelease � 1.51 ± 0.02, λθrelease � 0.76 ± 0.02, λzrelease � 0.88 ± 0.01,
λropening � 1.04 ± 0.01, λθopening � 1.00 ± 0.03 and
λzopening � 0.98 ± 0.01. Due to the small variation of average
values along the thickness (see SEM values), the consideration of
a constant value along the thickness is justified.

Concerning to the target information used in Stages 1 and 2 of
the iterative procedure, Figure 6A shows experimental and
numerical Cauchy stress-stretch curves in circumferential and
longitudinal directions, which are used in Stage 1 (Figure 3A).
The numerical results are obtained from the set of material
parameters (mp) after the last iteration performed. A good fit
between both curves is reflected by the R-squared values: R2

circ �
0.9979 and R2

long � 0.9989. On the other hand, the geometrical
dimensions considered as target values in Stage 2 (Figure 3B),
namely, dinvivoout , dexvivoout , dexvivoin and λz, have been redefined for a
better visualization of the ds parameters’ optimization. In this sense,
the ratios between in-vivo and ex-vivo measurements: outer
diameter (dinvivoout /dexvivoout ) and thickness (einvivo/eexvivo), along with
longitudinal stretch (λz), are shown in Table 2.

It is important to emphasize that the results shown in Table 2 are
obtained from the last iteration performed. The main results denote
that the difference between the numerical and experimental results,
both for the variation of the outer diameter, thickness, and length of
the artery, show differences that do not exceed 10%. Unreported
results of this work indicate that once the pressurization and
deposition stretches are applied on the arterial wall (see
Figure 3), the geometrical variation respecting the initial in-vivo
geometry is practically negligible (radial node displacement is in the
order of 10–2 mm), meaning that the equilibrium between the in-vivo
loads and the deposition process is successfully achieved.

The opening angle α is considered as an external parameter to
check the consistency of the obtained values in the procedure
followed in this work. Figure 6B exhibits the measurement of the
experimental opening angle of 95.03°. According to the set of mp
and ds values obtained via the iterative fitting procedure, the
numerical ring opening simulation (Figure 3B) results in an
opening angle of 91.39°, corresponding to an error of 3.83%.

3.2 Sensitivity analysis

Once the consistency of the experimental-numerical procedure
has been proved (Section 3.1), a sensitivity study is performed to
explore the effect of the deposition stretch and mass fraction
variations in the resulting residual strains. For this analysis, the
numerical results extracted from the longitudinal arterial shortening
and opening angle have been considered. The variation range of the
considered parameters, along with their respective referential values,
are shown in Table 3. These baseline values and the material
parameters mp have been taken from the final iteration of the
patient-specific study of the lamb aorta, according to the values
shown in Table 1. It needs to be noted that separated studies about

TABLE 1 CM model parameters, specifying those determined experimentally,
by reference and as output from iterative procedure.

Parameter Symbol Value Nature References

In-vivo geometry and loads

Outer diameter dinvivoout
10.31 mm Experimental

Inner diameter dinvivoin
8.16 mm Experimental

Length l 0.2 mm

Diastolic pressure p 10 kPa Referential Maes et al. (2019)

Mass fractions

Elastin ϕe 0.5 Referential Wells et al. (1999)

Collagen ϕc 0.2 Referential Wells et al. (1999)

Smooth muscle ϕm 0.3 Referential Wells et al. (1999)

Mechanical properties (mp)

Elastin ce 10.2 kPa Output

Collagen kc1 52.9 kPa Output

kc2 0.39 Output

β 39.7° Output

Smooth muscle km1 10.3 kPa Output

km2 0.024 Output

Deposition stretch (ds)

Elastin Ge
θ 1.05 Output

Ge
z 1.31 Output

Collagen Gc 1.10 Output

Smooth muscle Gm 1.45 Output
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the impact of mass fractions and deposition stretches are performed,
meaning that the mass fraction sensitivity is done under a constant
deposition stretch parameter set (from the last characterization

iteration), and vice versa for the deposition stretch study (under
constant mass fraction distribution, from the fixed reference values).
It is essential to highlight that the mass fraction of smoothmuscle ϕm

FIGURE 6
(A) Experimental and numerical Cauchy stress-stretch curves in circumferential and longitudinal directions. (B) experimental opening angle α.

TABLE 2 Experimental and numerical ratios between in-vivo and ex-vivo dimensions, along with its corresponding percentage difference.

Definition Formula Exp Num Diff (%)

Outer diameter variation dinvivoout /dexvivoout
1.10 1.19 8.24

Thickness variation (einvivo/eexvivo) (dinvivoout − dinvivoin )/(dexvivoout − dexvivoin ) 0.73 0.66 9.29

Longitudinal stretch λz 1.16 1.15 1.18

FIGURE 5
Percentage difference regarding to the successive iteration steps in the iterative fitting procedure. (A)material parameter relative variation (mp). (B)
deposition stretch relative variation (ds).
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is dependent on the remaining mass fractions, and Gc has been
maintained in its baseline value (1.10), due to its negligible variation
during the iterative procedure (Figure 5).

Figure 7 displays all the results from this study, according to the
different cases considered. In particular, Figure 7A shows the opening
angle α by varying the ϕe and ϕc values. According to the range of the
variation of these mass fractions, there is an inverse relationship
between them and the opening angle reached. Specifically, the
highest values of ϕe and ϕc considered in this study have resulted in
an opening angle of ≈ 80°; meanwhile, when both mass fractions adopt
the minimum values, the opening angle is close to 100°. Figure 7B also
shows the opening angle, this time with respect to the variation of Ge

θ,
Ge

z andG
m. For the six graphs displayed (each one with a constant value

of Gm), the same trend can be observed, which is referred to an
increment of the opening angle as the remaining deposition
stretches (Ge

θ and Ge
z) increase. The global minimum opening angle

(≈ 40°) is given by the lowest combination of deposition stretches,
meanwhile at the opposite condition, the highest opening angle (close to
120°) is given when the deposition stretch values go up to themaximum
level within the range set in this study. Figure 7C shows the longitudinal
stretch (λz) according to different combinations of elastin and collagen
mass fractions. From these results, an inverse pattern in respect to those
shown in Figure 7A can be observed, since higher values of the response
variable are visualized in the face of an increment of ϕe and ϕc.
Moreover, the range of λz variation is bounded between close values
(≈ 1.08 to ≈ 1.20). Finally, Figure 7D indicates a colormap of λz values
in function of the same deposition stretch values described in Figure 7B.
A similar trend concerning the former figure can be observed in the face
of an increase of longitudinal stretch to high elastin deposition stretch
levels (Ge

θ and G
e
z). For a G

m variation, it can be observed that when its
value is reached, the range of λz is getting lower. To express this trend
numerically, λz varies between ≈ 1.08 and ≈ 1.44 to Gm = 1.15; whereas
to the highest smooth muscle deposition stretch (Gm = 1.68), the
longitudinal stretch is ranged between ≈ 0.95 and ≈ 1.25.

4 Discussion

A relevant aspect related to the CMM, particularly referred to
the consideration of the in-vivo state as the referential configuration,
is that it allows its applicability in a clinical context, where non-
invasive techniques, such as Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI), are capable of measuring

the in-vivo arterial geometry (Di Cesare et al., 2016). In these
circumstances, its implementation in the FE context arises as an
essential tool, allowing to predict the mechanical stress field on the
arterial wall, under different configurations (for instance in-vivo, ex-
vivo and zero pressure) (Mousavi and Avril, 2017). Regarding the
features of CMM, one of the main problems is the lack of
information, due to experimental limitations, about the
mechanical properties and residual deformation at a constituent
level. As proposed in this work, numerical procedures are a feasible
way to approximate these unknown parameters based on the
available experimental information. Consequently, we have
applied it to a patient-specific case, and consistency between the
obtained parameters with experimental information has been
successfully demonstrated.

Focusing the analysis on the specific aspects related to this study,
the results displayed in Figure 5 show a fast convergence of both
material parameters (mp) and deposition stretches (ds), where after
the sixth iteration, the percentage error in all cases is less than the
tolerance defined. Concerning the same analysis performed by Maes
et al., 2019 (Maes et al., 2019), the convergence to the set of their
material parameters is reached after the seventh iteration, with the
consideration of five material parameters (in this study, there were
six), and known deposition stretch values.

The parameter fitting procedure described in Section 2.3.3
involves a number of challenges to be addressed, aiming to
overcome difficulties in the iterative process and reach consistent
results, such as is obtained in this study (see Figure 5). A critical issue
to be discussed is referred to the suitable choice of parameters, mainly
because of the localized optimization nature of the gradient-based
optimization algorithms. The starting parameters have been chosen
based on those reported in the existing literature to avoid possible
non-realistic solutions. Even when the experimental measurement of
the ring-opening angle (α) does not form part of the optimization
process itself, it has been proved that the material parameters along
with the deposition stretches naturally affect this residual strain,
serving as a consistency verification measurement of the stress-
release process experienced in this test. A remark regarding this
measurement is the consistency of the curvature across the opened
tissue, suggesting possible bias regarding the idealized geometry
considered in this work. Nevertheless, considering that the
obtained error percentage between the experimental and numerical
opening angle for the final iteration is under 5%, we consider this as a
successful verification of the fitted parameters.

TABLE 3 Range of each parameter considered in sensitivity analysis and their respective referential values.

Parameter Referential value Minimum value Maximum value

Mass fraction

ϕe 0.5 0.2 0.6

ϕc 0.2 0.1 0.3

Deposition stretch

Ge
θ 1.05 1.00 1.20

Ge
z 1.31 1.05 1.50

Gm 1.45 1.15 1.68
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A physical interpretation of the determined deposition stretch
parameters needs to be analyzed. Relating to elastin (e) fibers, the
circumferential and longitudinal components of the deposition
stretch tensor determine the values reached by the radial
direction, given by the incompressibility constraint considered in
this formulation. As such, the higher the values of Ge

θ and Ge
z, the

lower the radial component Ge
r (1/ �����

Ge
θG

e
z

√ ). This last aspect is
physically remarkable, since a value of Ge

r well below the unit
triggers an excessive thickening of the arterial wall between the
in-vivo and ex-vivo configurations. For this reason, it is debatable
that certain authors report excessively high values of Ge

θ and Ge
z

(Bellini et al., 2014; Ahmadzadeh et al., 2019), since there is no
evidence of such noticeable changes in thickness. According to the
experimental results, the thickness ratio between the in-vivo and ex-
vivo states is 0.73, and to maintain a geometric consistency between
these configurations, the deposition stretch values of the elastin
matrix are strongly bounded. Another relevant aspect to be
considered is referred to the deposition stretch values in those
constituents that are modeled as fibers (collagen and smooth
muscle). In particular, for the smooth muscle (m), due to the
consideration of circumferential arrangement with respect to the
arterial duct, the established deposition stretch value Gm plays a

FIGURE 7
Opening angle in function of: (A)mass fractions; (B) deposition stretches. Longitudinal stretches λz in function of (C)mass fractions; (D) deposition
stretches.
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predominant role on diameter variation between different
configurations. From the numerical simulations of Stage 2
(Figure 3B), the muscle deposition stretch significantly
contributes to achieving the equilibrium state between the
physiological loads and the geometry-preserving constraint.
Concerning the collagen fibers (c), as they are arranged
diagonally in the longitudinal-circumferential plane, the
deposition stretch Gc value is not directly related to the other
directions. Despite establishing relationships between each
constituent separately and analyzing their influence, the
interaction of the three load-bearing components (e, c and m)
will determine the equilibrium state that satisfies all the
mechanical and geometrical behaviors experimentally measured.

Given the scarce information of the parameters that have been
established in this work and the results obtained in this context, the
deposition stretch value of the smooth muscle Gm is outstanding,
with reference to those typically reported in the literature. Most of
the works in this topic take this value in the range of 1.1–1.2 (Karšaj
et al., 2010; Bellini et al., 2014; Laubrie et al., 2022), noting that the
half-life of this component within the arterial wall is relatively low,
and it is in continuous renewal, so it is not subjected to a great extent
to the effects of growth and remodeling. However, no concrete
experimental study determines a reference in the magnitude of this
value, so the value determined in this work further motivates the
study of the mechanisms by which the deposition stretch is
physically established (Humphrey et al., 2014).

The sensitivity analysis (Section 3.2) is performed to get a better
overview of the relative influence of the mass fractions and
deposition stretches of each constituent on residual strains
(opening angle α and axial stretch λz), which are easily
measurable experimentally. Figure 7, being formulated based on
the same geometrical and material parameters, allows linking strain
measurements with residual stresses in the circumferential and axial
directions. An important aspect to emphasize from these results is
that both α and λz are more sensitive to the variation in the
deposition stretch values than to the mass fractions. That point
supports the procedure established in Section 2.3 of this work,
regarding the consideration of referential values of mass fraction,
while the deposition stretch values were those to be determined
within the fitting procedure due to the importance of a correct
choice of their values. This aspect reinforces the effectiveness of the
iterative fitting procedure, by applying it to a patient-specific case.

In addition, some works related to CMM consider the arterial
wall as a two-layer material, according to the fact that the media and
adventitia have different composition and material properties
(Karšaj and Humphrey, 2012; Mousavi et al., 2019). However, in
most animal models taken as reference (including those used in this
work), it is not possible to separate both layers experimentally to
perform individual mechanical tests. In many cases, the parameters
considered are fictitious, and the analysis is focused on numerical
purposes. In Latorre and Humphrey, 2018 (Latorre and Humphrey,
2018), however, this distinction let account for differences in medial
versus adventitial fibrosis that resulted in marked aortic
maladaptation in hypertension. In this particular case, as the
experimental information available refers to the whole tissue, the
CMM considers homogenized parameters along the thickness,
avoiding the incorporation of different hypotheses about the
characteristic behavior by each specific layer.

The consideration about the behavior of fibers under
compressive loads, named in literature as tension-compression
switch (Latorre et al., 2016; Horgan and Murphy, 2020), has been
implemented in this study, according to the seminal works of
Holzapfel et al., 2000 and Gasser et al., 2006 (Holzapfel et al.,
2000; Gasser et al., 2006). In this regard, different objections have
been raised about this hypothesis, mainly due to the lack of
experimental evidence to back it up (Horgan and Murphy, 2020).
suggested physical contradictions concerning isotropic response
predicted by the constitutive models under a compression state,
according to the experimental results provided by Holzapfel 2006
(Holzapfel, 2006). However, there is no clear evidence on the
underlying mechanism of the fibers under compression. Some
studies, related to the CMM, incorporate the distinction of
tension and compression material properties on collagen fibers
and smooth muscle (Bellini et al., 2014; Mousavi and Avril,
2017). However, there is no clear experimental evidence to
support the values used.

The strain energy function derived within the CMM context
(Expression 2) represents a phenomenological approach of
arterial structure, through the consideration of isotropic and
anisotropic behavior in separated terms (the former
representing the integrated influence of elastin (e) and ground
substances, and the latter those of collagen (c) and smooth
muscle (m)). According to the material parameters (mp)
determination (Holzapfel, 2006), identified a critical issue,
referred to the impossibility of determining a unique set of
values from the information provided only by uniaxial tensile
tests, due to the fact that strain state of this mechanical test does
not represent the physiological biaxial condition. To overcome
this problem, it is necessary to obtain additional information
about the microstructural arrangement of the arterial wall via
histological analysis in order to characterize a physically-
consistent set of material parameters as well as to include
more experimental data from uniaxial or other experimental
tests (Latorre et al., 2016). Recent investigations have focused
on determining and evaluating non-destructive techniques for
measuring arterial wall constituents, related directly to the
determination of collagen fiber orientation and its
reorientation in the face of external loads. Several methods
have been used by different authors, as for instance, the
second harmonic generation (SHG) (Deniset-Besseau et al.,
2010; Bancelin et al., 2012; Bancelin et al., 2014; Golaraei
et al., 2019; Cavinato et al., 2020), polarized spatial frequency
domain imaging (pSFDI) (Jett et al., 2020) and quantitative-
polarized light microscopy (Q-PLM) (Greiner et al., 2021),
establishing an interesting possibility to switch from a
phenomenological approach to a microstructural-consistent one.

In general, the incompressibility of the arterial wall is commonly
accepted, and it has been widely taken as a hypothesis in multiple
numerical formulations. However, some authors questioned this
consideration, reporting volume changes in the physiological
pressure range (Yosibash et al., 2014; Yossef et al., 2017). The
work of Nolan et al., 2014 (Nolan and McGarry, 2016)
performed on an ovine aorta revealed a degree of compressibility,
given by a Poisson’s ratio value of 0.44. Therefore, constitutive
models of compressible nature could affect the accuracy of stress
prediction (Skacel and Bursa, 2019).
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5 Conclusion

In order to assess the practical applicability of theCMmodel, through
the determination of consistent parameters describing the mechanical
response of the arterial wall, a numerical-experimental framework based
on the finite elementmodel has been established and applied to a patient-
specific case. A fitting algorithm has been implemented to achieve this
goal, considering experimental information of the in-vivo and ex-vivo
geometries, along with data from uniaxial tensile tests in two directions.
This information is set as a target, and by the application of an inverse
finite element problem procedure, the material parameters (mp) and
deposition stretch (ds) values are determined. The convergence of the
procedure is evident, and the consistency of these parameters is reflected
in the good relationship between experimental and numerical data. On
the other hand, a parameter sensitivity study has established the
preponderance of the deposition stretch values concerning the
residual deformation levels. It should be noted that the CM model is
formulated to model G&R phenomena, so the parameter determination
through the procedure established in this work is contextualized as a
starting point for the incorporation of these effects in the different
numerical models to be developed.
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