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ABSTRACT Pose estimation assesses the 6D pose of one or many objects in a scene. Considerable
attention has been dedicated to the advancement of pose estimation algorithms capable of identifying the
orientation of multiple objects within a scene in cases where partial occlusion occurs. However, only a
few works focus on developing a parallelizable hypotheses-based estimator that naturally handles object
symmetries. These algorithms should also tackle some issues: meaningless perspectives, objects with
multiple uncertain local poses but a single global correct pose, and multiple correct poses. This paper
proposes a novel probabilistic algorithm for pose estimation that addresses these issues. This probabilistic
algorithm combines the information from multiple cameras to achieve a unique prediction that assembles
global object information. The algorithm is tested over synthetic objects that simulate these issues. It achieves
a rotation error below 1.5◦, and a translation error of 1.5 pixels in the datasets used. Those results suggest
that the algorithm can handle the mentioned issues up to a certain accuracy. Additionally, the method is
compared against a state-of-the-art methodology of the LineMOD dataset. This comparison shows that our
algorithm can compete against state-of-the-art algorithms in terms of accuracy.

INDEX TERMS Convolutional neural networks, deep learning, graph neural networks, pose estimation,
orientation estimation.

I. INTRODUCTION
Pose estimation is a widespread research topic with many
useful applications [1], [2], [3]. It is focused on assessing the
6D pose (rotation and translation) of one or many objects in
a scene. Usually, pose estimation is performed using RGB
or RGB-D images, or even complete 3D scenes, as input
to some previously trained algorithm. However, the proce-
dure is frequently shared for any kind of data. Mostly, some
key reference points are extracted from the inputs based on
previous knowledge about the scene, acquired during the
training phase. Then, employing these reference points and
their position, the 6D pose can be inferred.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mehul S. Raval .

As stated previously, pose estimation has several applica-
tions, ranging from industrial processes to Virtual Reality
(VR) and Augmented Reality (AR) reconstructions, and
human pose estimation [4], [5]. For instance, robotic arms
get leverage from it to adjust themselves to improve their grip
over the objects to pick up. VR and AR use pose estimation
to enhance the experience and utility of simulations, such as
the ones used to train pilots.

In particular, this paper aims to estimate the pose of
free-falling objects captured simultaneously from several
cameras. Such a system [6] allows quality inspection of any
object without occluded areas, allowing a holistic quality
assessment. The pose estimation processmust have the ability
to be performed concurrently to increase throughput. Thus,
every camera must separately compute a hypothesis of the
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pose. These hypotheses are refined in a central node to calcu-
late the estimated pose of the object.

Moreover, each camera hypothesis should have an attached
confidence value. Thus, the least confident hypothesis can
weigh less in the combination or even be discarded in
the final estimation refinement. This is critical to reduc-
ing the effect of possible symmetries and misleading
predictions.

Not only does this paper consider possible symmetries
within the shape of the assessed object but also in their
texture. Many studies [3], [7], [8], [9], [10], [11], [12] address
pose estimation from a texture-less object perspective. How-
ever, our approach must also consider texture alignment,
which is somewhat included in [13]. For instance, from a
holistic view, a die becomes asymmetric, and we can process
even sphere-shaped objects if at least a key reference point is
present and visible within the texture.

The datasets employed are made of 3D object views seen
from different angles at a fixed distance captured simultane-
ously. Also, each simultaneous capture includes the object’s
pose at capturing time, i.e., the groundtruth of the dataset.
Therefore, this paper hypothesizes that, given such datasets,
we can build an algorithm that effectively predicts the pose
of the 3D objects from all their views’ estimations. For the
hypotheses to be true, the algorithm must achieve an average
estimation error of less than 5◦ for all test captures. This
requirement is qualitatively and visually assessed, as the
research team considers an error lower than 5◦ acceptable,
and other authors [14], [15] report rotation errors above 10◦

for other pose estimation datasets. Moreover, an error lower
than this is acceptable for the further quality assessments per-
formed by the system described in [6]. Regarding translation,
an error lower than 5 pixels is acceptable for the targeted use
cases.

The contributions of this paper can be summarized as
follows:

• Presenting an algorithm that achieves an acceptable
error for the different datasets.

• To the best of our knowledge, describing a novel
approach to pose estimation in which texture processing,
multi-view inference, and symmetry robustness are key
features of the algorithm proposed.

• Showing two different implementations of the algorithm,
i.e., using Graph Neural Networks (GNNs) and Con-
volutional Neural Networks (CNNs), which achieve
similar results.

• Comparing the results against a state-or-the-art
algorithm for LineMOD dataset, a dataset to evaluate
6D pose estimation models.

In Section II, relevant topics related to the task and
how other authors have addressed them are presented.
Section III presents the methodology and datasets used
in this work. In Section IV more detail about the imple-
mentation is given and the results are presented and
discussed.

II. RELATED WORK
This section gathers some valuable concepts regarding pose
estimation, divides them into different subsections, and
describes how some authors have addressed them to give
insight into the choices made in this work.

A. ROTATION ENCODING
There are many possible types of rotation encoding. The
most common ones are quaternions, Euler angles, axis-angle,
and rotation matrices. Usually, the decision is left to the
authors whether to use one or another. However, [16] studies
how each encoding affects the training phase of a neural
network. It argues that rotationmatrices are the only encoding
that satisfies continuity and bijection. Quaternions and Euler
angles either break the continuity constraint or more than
one encoded rotation represents the same real rotation. For
instance, one of the attributes of quaternions is that a quater-
nion q equals −q.

Even so, many works have used quaternions and Euler
angles to train neural networks and achieved good results.
For instance, [11], [14], [15], [17], [18] used Neural Net-
works along with quaternions or axis-angle encoding to
estimate the pose of datasets such as (LineMOD, Occlu-
sion, T-Less). Reference [8] did the same using Euler
angles.

Depending on the encoding used, some issues should be
addressed. For instance, quaternion and axis-angle encodings
should have at least one of their four dimensions restricted
to a hemisphere, thus allowing bijection at the expense of
continuity. Euler angles and RPY (roll, pitch, yaw) encoding
suffer from the Gimbal lock, which entails that, for some rota-
tion values, one degree of freedom is lost. Rotation matrices
are 9-dimensional, but one of the 3D vectors can be inferred
using the other two thanks to the orthonormal property of the
matrix, as pointed out in [16]. Thus, the 9D rotation matrix
can be compressed to 6D without losing information. In [16],
they further compressed the matrix to 5D but highlighted that
this did not increase the accuracy of the models. Despite com-
pressing the rotation matrix, it requires the highest amount
of dimensions to encode the SO(4) rotations compared to
4D quaternions and 3D Euler angles. Nonetheless, as stated
before, it has the benefit of continuity and bijection. Hence,
it is the encoding used in this work.

B. CLASSIFICATION VS REGRESSION
Regarding the accuracy of the estimation, there is not a
clear gap between algorithms trained for regression or clas-
sification. Usually, the authors’ decision seems to be more
technical rather than accuracy-oriented. For instance, [13]
argues that classification is better than regression, whilst [8]
argues otherwise.

The implementation in [15] allows hypotheses combi-
nation, which is the goal of our probabilistic perspective,
using an algorithm trained with regression. Hypotheses
combination will be further discussed in section II-D.
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However, this regression approach is limited and doesn’t
fit the requirements of the probabilistic perspective we
sought.

C. FEATURE EXTRACTORS
Traditionally, many authors [19], [20] have addressed the
problem of pose estimation using feature extraction tech-
niques such as Scale-Invariant Feature Transform (SIFT)
or Speeded Up Robust Features (SURF). They extracted
significant features from the objects under inspection and
found correspondences between the original and captured
models. Using these correspondences, they can estimate
the pose. Nevertheless, these feature extractors cannot usu-
ally handle texture-less objects. Authors have recently
turned their attention to Deep Learning approaches to solve
this problem. Many possible structures have been used,
such as single-shot detector architectures (EfficientNet [21],
Single-Shot Detector (SSD) [22]), AutoEncoders, and
plain CNNs.

The first ones [7], [8], [11], [13], [15], [23] have the
advantage that they can handle multiple objects in a scene but
strictly depend on a good detection phase that must be robust
under occlusions.

The second approach, the AutoEncoder [12], seeks to com-
press and restore the input image to generate a meaningful
reduced latent space. A codebook is generated from the
reduced latent space of rotated images. In the testing phase,
a test image is assigned the rotation of the train image with
the closest latent space.

Lastly, CNNs [14], [17], [24], [25] take the images as input
and estimate the rotation of the object under inspection. The
way to compute the rotation varies among authors. Some [24]
train the network to predict each pixel’s coordinates and
infer the rotation using them. Others [14] train the network
to directly predict the rotation and ignore the translation
component.

This work is grounded in the CNN approach and expands
it to achieve a hypotheses-based algorithm.

D. SYMMETRIES AND UNCERTAINTIES
Due to random factors or the object’s geometry, objects might
have many possible associated poses. For instance, for every
pose, a texture-less cube has 23 additional poses that look the
same. Algorithms should be robust when this scenario arises.
Some authors [8], [13] directly avoid this problem by elimi-
nating possible symmetries from the training phase, or know-
ing a priori the relationships between possible symmetric
poses and considering these within the algorithm’s loss func-
tion. Others [15], [20] could solve this problem by allowing
for noisy estimations using a hypotheses-related approach,
especially from different perspectives of the object. Such is
the case of this paper. The multiple hypotheses should agree,
when the object is globally asymmetric, upon a single rota-
tion, or cluster into the possible rotations if the object is not
globally asymmetric like, for instance, the texture-less cube.

E. TEXTURES IN POSE ESTIMATION AND DATASETS
Effective and efficient solutions exist for the problem of
pose estimation of textured objects without symmetries or
occlusions. However, pose estimation in real environments
is still often a challenging task. Thus, many researchers have
been trying to face harder scenarios. For instance, when there
are several objects in the scene, the objects under inspection
have no clear reference keypoints, or the objects are sym-
metric. Thus, new datasets have been built to tackle more
realistic cases. Such datasets include LineMOD, Occlusion,
and T-Less.

Most of those datasets have more than one object in the
scene. Also, the objects have no texture, so texture keypoints
cannot be extracted. This work estimates the pose of a sin-
gle object in the scene, independently of its geometry and
without manually providing its symmetries to the algorithm.
Therefore, the scenarios described in public datasets are
beyond the scope of this paper, and suitable datasets had
to be created. These datasets are described in Section III-
A. Remark that this approach, despite not having complex
escenarios, it is not abstract and is applicable for industrial
inspection.

In summary, the focus of this paper is to design an
algorithm that, unlike other authors [3], [20], [26] whose
focus is on complex scenes withmany objects and occlusions,
can face any object shape seamlessly with no manual con-
figuration. The object may be either textured or texture-less,
with any kind of symmetry, i.e., a discrete symmetry along
one axis, a continuous symmetry along one axis, or multiple
discrete or continuous symmetries along more than one axis.

III. MATERIALS AND METHODS
First and foremost, suitable datasets must be created to
address the problem. As the problem is quite specific, these
datasets must be prepared to study the requirements imposed
by the task. Commonly used datasets, such as LineMOD [1]
and YCB-Video [11], are complex datasets as they present
partially occluded objects in cluttered scenes. However,
the objects themselves are not symmetric; therefore, these
datasets do not allow us to assess the algorithm’s shape
robustness we seek. However, to compare the performance
of our algorithm with other methods, we chose to include
LineMOD’s duck mesh.

A. DATASETS
Four synthetic datasets, seen in Figure 1, have been designed
to exploit the algorithm’s key features to be evaluated. These
are:

• Sphere with a T. This dataset consists of a sphere with a
‘‘T’’ letter that marks the object’s reference point. Most
cameras capturing the object will not see the reference
point. Thus, these cameras should give lower confidence
in their predictions. When combining the predictions
from multiple cameras, the ones that will contribute
most must be the ones that captured the reference
point.
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FIGURE 1. Synthetic dataset. From left to right: sphere with a T, cube,
cylinder with a triangle and a square, and LineMODs duck.

• Cube. This dataset consists of a cube with no reference
points; thus, any possible symmetric cube rotation is a
valid pose.

• Cylinder. This dataset is made of cylindrical objects
whose bases contain a triangle painted on one side and
a square on the other. The square and the triangle are
aligned to create the object’s reference point, albeit no
camera can see both simultaneously. Therefore, the pose
of the cylinder can only be calculated by combining
the predictions from the cameras that could see both
polygons separately. On the one hand, the cameras that
captured the triangle are expected to return a unique
X-axis prediction and three equally likely Y-axis pre-
dictions. On the other hand, the cameras that captured
the square should return a unique X-axis prediction and
four equally likely Y-axis predictions. Then, after com-
bining all the local predictions, a single Y-axis prediction
should result.

• Duck. It has the property of not having symmetries, thus
allowing us to compare our model with state-of-the-art
algorithms from other datasets. In particular, this paper
is compared against EfficientPose [8].

These datasets are generated using Blender 2.82. The scene
contains the object randomly translated and rotated within
a bounded working space and 14 cameras with perspective
emulation enabled and equidistantly spaced over a sphere,
whose normal optical vectors point towards the object. Dif-
fuse background lighting was used to avoid shadow casting
and reflections. Each simulated capture contains 14 512×512
RGB images (one for each camera) and a single groundtruth
rotation and translation.

For each dataset, different object instances were created
wherein changes in color and material were added to measure
generalization in a synthetic environment. Each dataset has
a single validation and test object variant. The number of
training object variants varied for each dataset depending on
the complexity of the shape. The cylinder and sphere datasets
have three different object variants for training, whilst the
cube and the duck datasets have just one. For each object
variant, 6000 simulated captures were performed for training
and 3000 for validation and testing. Therefore, there are
252000 training images for the cylinder and sphere datasets
and 42000 for the cube dataset. Each dataset has 42000 vali-
dation and test images.

Data preprocessing should be performed for data reduction
and to ease the training of the networks. In particular, we
chose image background cropping. The square that contains
the object whose center is the center of mass of the image is
cropped from the image and resized to 128 × 128 pixels. u
and v image coordinates and the scaling factor (the original
size of the square divided by 128) are stored for each image.
This information is then provided to the network during the
training and inference.

The dataset was uploaded to Kaggle to allow experiment
replication.1

B. POSE ESTIMATION NETWORK
This section presents the proposed algorithm structure and its
training procedure. Figure 2 shows the different functional
modules of the algorithm. These are:

• A feature extraction module where the images are pro-
cessed and the pose-relevant features extracted.

• A perspective correction module to make the features
perspective-independent (as if an orthographic camera
captured the image).

• A rotation distribution predictor. There are two alterna-
tives in this module: CNN and GNN.

• A translation prediction network that predicts an offset
to the center of the segmented bounding box that esti-
mates the camera projection of the object’s centroid.

C. FEATURE EXTRACTION NETWORK
A VGG16 CNN [27], pre-trained with Imagenet [28] and
cropped after the last pooling layer, was used to extract
features from the input images. These layers were frozen until
the first convergence of the algorithm. Two 3 × 3 convolu-
tional and a global average pooling layer were appended to
the end of the network to compress the features to 64 dimen-
sions. The structure can be seen in Figure 7a.

D. PERSPECTIVE CORRECTION NETWORK
To some degree, every image captured by a perspective cam-
era is affected by perspective distortion. The further the object
is located from the camera center point, the more distorted it
is. Hence, to increase precision, the extracted features should
be transformed to correct perspective distortion.

A network consisting of two fully connected layers with
64 hidden dimensions takes the features and the position of
the object’s bounding box center in the image (u and v coordi-
nates) and is trained to return the transformed 64-dimensional
undistorted features. More detail can be seen in Figure 7b.

Once the features are extracted, and the perspective distor-
tion is corrected, rotation and translation must be predicted.
Regarding rotation, this paper addresses the problem in two
alternative ways: using CNNs to predict two 2D maps that
encode the rotation matrix and using GNNs to predict the
probability of two sets of discrete points that encode the

1https://www.kaggle.com/itiresearch/pose-estimation
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FIGURE 2. Algorithm’s training pipeline.

rotation matrix. There is more detail on this in the following
sections.

E. MAP ROTATION PREDICTION
As discussed above, we encode the rotation R of an object
using theR6 compressed version of its rotationmatrix. Unlike
other authors who estimate the rotation directly, we train the
algorithm to predict the probability density function of the
axes Rx and Ry of R. In this implementation, each probability
density function is encoded into two 2D maps Mx and My of
BxB pixels. The pixels of these two maps correspond to the
discretized spherical coordinates elevation φ and azimuth θ

for each of the axes. This 2D representation has the drawback
that the azimuth component θ is cyclic, i.e.:

lim
θ→2π

M (φ, θ) ≈ lim
θ→0

M (φ, θ) ∀φ ∈ [0, π] (1)

Both the rotation map encoding function and its inverse
must allow for this.

To build the groundtruth maps, we transform each pixel in
the map, which is related to some elevation φ and azimuth θ ,
to the 3D coordinate space of the Ri vectors. Then, given a
Gaussian probability distribution P ∼ N (Ri, 3e−2) centered
in Ri, and with an acceptable standard deviation experimen-
tally set, we compute the mapMi so that:

Mi(φ, θ) = P(S(φ, θ)) ∀φ ∈ [0, π], θ ∈ [0, 2π ], (2)

where S is the transformation function from spherical coordi-
nates to 3D coordinates. Instead of the traditional Euclidean
distance to compute the probability density function, this
work uses the cosine distance, which is more meaningful for
this spherical topology.

The goal is to develop a networkF such that, given a set of
input image features X , it returns a map M̂ (the concatenation
of M̂x and M̂y) that predicts the rotation R̂ minimizing the
cross-entropy loss function L:

M̂ = F(X ) (3)

L(M , M̂ ) = −

∑
φ

∑
θ

(M (φ, θ) log M̂ (φ, θ)

+ (1 −M (φ, θ)) log(1 − M̂ (φ, θ))) (4)

This function is implemented with a Deconvolutional Neu-
ral Network. It takes the 64-dimensional features, projects
them to a 16 × 16×16 tensor using a fully connected layer,

FIGURE 3. 3D undirected graph that represents the valid discretized
rotations of Ri (which are points in a unitary sphere) connected with
their 8 nearest neighbors to emulate the connections of a 3 × 3 image
convolution.

and 4 deconvolution layers upsample the tensor to 256 ×

256×2 dimensions. Therefore, for our experiments, B is set
to 256. A softmax function is applied over each channel
of the 256 × 256×2 tensor to restrict the area under the
distribution to 1. An example of these maps can be seen
in Figure 4 and Figure 5. These maps allow multiple local
maxima, enabling the representation of several hypotheses at
once. More information about this structure can be seen in
Figure 7c.

F. GRAPH ROTATION PREDICTION
An alternative implementation is designed to predict a proba-
bility distribution over the real discretizedR3 space ofRi. The
goal is to substitute the convolutional layers with graph con-
volutions over the real topology. This modification allows for
the cyclical structure of the topology and evenly distributes
the sampling points over the unitary sphere of possible Ri.
An example of the mesh of possible discretized rotations and
their connections to perform the convolutions is shown in
Figure 3.
2Dmaps and graph encoding are valid methods to compute

the encoded rotation matrix, albeit using GNNs has addi-
tional benefits. Any 2D map conveys a projection from a 3D
space into a plane. These projections are widely used, for
instance, to create world maps. In particular, the one used
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FIGURE 4. Rotation predicted by the algorithm for images with and
without discriminative information. The input image is shown on the
left, and the predictions for X and Y-axes are on the center and right,
respectively. The upper region of the image without reference
information has a low probability since an axis located in that region
implies that the object’s reference point would be visible. The maps are
equalized for visualization purposes, so the brightness levels are not to
scale.

in this paper is known as Mercator’s projection. However,
this projection does not maintain the relative distances among
points. Therefore, the fact that discretization points are not
evenly distributed results in varying precisions depending
on the rotation. The proposed GNN solves this problem by
keeping the topology of the 3D unitary sphere and performing
the operations in that context.

This paper uses two different graph layers to create the
rotation prediction network: graph convolutions and graph
resampling layers. The first consists of a dense layer that
projects the features of a given point in the graph into another
dimensionality and combines the features from connected
nodes using the mean. The second resamples the current
topology to a given number of nodes. The new nodes check
their closest neighboring nodes of the original graph and
compute their features using an averageweighted by distance.

The network takes the 64-dimensional features and
projects them to 256 points with 16-dimensional features
using a fully connected layer. Subsequently, these points are
upsampled and the graph convolutions are applied. More
information about the structure can be seen in Figure 7d.

G. TRANSLATION
The algorithmmust also compute the translation of the object.
Therefore, a fully connected network with three layers is
designed to take the 64-dimensional uncorrected features and
the scaling factor and predict a δu, δv, and depth. The scaling
factor and the depth are highly correlated, but the image
features are also crucial to predict the depth precisely. Given
u+ δu, v+ δv, and the depth, we can compute the translation
X , Y , and Z values.

H. MULTIPLE CAMERAS
So far, we have described the operations performed by a
single camera. However, the complete method involves a
combination of the information from several cameras to infer

the real pose since we see in Figure 4 that a single camera
cannot always assess the true rotation R of the object by itself.
Furthermore, the combination can reduce the effect of noise,
remove uncertain spikes in the distributions and strengthen
the confidence around the true values of Ri. Thus, from now
on, we will consider M̂ c as the hypothesis of the rotation
R from camera c. We define the final prediction M̂ of the
distribution of R as

M̂ =
1
C

∑
c

Xc(M̂ c), (5)

where Xc is the function that rotates the map or graph points
using the extrinsic parameters of camera c.
M̂ contains information about the discretized space coor-

dinates S of both axes and their probability P . Hence, the
function Xc is defined as a rotation of the axis coordinates
S using the camera extrinsic parameters Rc (only rotation
is considered). Unfortunately, as the space is discretized, the
original coordinates S should be kept in order to compare
and blend with other cameras easily. Therefore, the new
probability distribution of S can be estimated, e.g., as the
weighted average of the 4 nearest points inRS rotated space.

Likewise, we can calculate the final predicted translation
as the mean of the individual camera translations corrected
with the known camera extrinsic parameters.

I. TESTING PHASE
During test and normal operation, R̂ must be extracted from
the predicted M̂ . To do so, the N maximum probabilities of
each map M̂x and M̂y must be computed. The well-known
Watershed algorithm has been used to extract conditionally
independent maximums. Denoting byW theWatershed func-
tion, we apply:

R̂i = W(M̂i) ∀i ∈ [x, y] (6)

This approach has a drawback. It suffers from a
low-dimensional projection problem. The real space of R is
R6 and we compressed it into two separate R3 predictions
to reduce the spatial cost of discretizing a true R6 space.
Therefore, noisy combinations can be drawn when extracting
the maxima. Figure 5 shows amap M̂ with 6 activated regions
per axis. Each activation is related to a correct prediction of
the space axes. However, not every combination is valid. For
instance, the leftmost blob in the map M̂x cannot be combined
with the blob in the same position in the map M̂y. Both blobs
are translated to the same 3D vector, so they are not orthogo-
nal. Hence, after extracting all the possible combinations, the
algorithm should discard the non-orthogonal ones.

IV. RESULTS AND DISCUSSION
This section contains the results of the approaches proposed
on the datasets described in Section III-A along with some
implementation details.

The algorithm was implemented using Tensorflow
2.4 [29]. We use the Adam optimizer with a learning rate
of 7e-4 and an L2 regularization β of 1e-5. The training
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FIGURE 5. Example of a map M̂ predicted by the network for a cubic
object with no texture. Each map M̂x and M̂y has 6 activated regions
that match the 6 possible configurations of each axis.

TABLE 1. Pose estimation error for each dataset’s rotation and
translation components.

phase encompassed 1000 epochs in an NVIDIA Tesla V100.
Random color shifts and noise were included as data augmen-
tation preprocesses.

A. METRICS
We evaluate the rotation error of the prediction using the
geodesic distance metric described in [14]. The geodesic
distance dg is defined by the formula:

dg(R, R̂) = 2 arccos ⟨R, R̂⟩ (7)

The experiments for datasets with globally symmetric
objects receive a particular treatment, for instance, the cube
dataset. There are up to 24 valid rotations for this object to
compute the rotation precision. Thus, two alternativemethod-
ologies are equally valid: either every single valid rotation is
gathered and compared to the algorithm’s prediction, or we
calculate the 24 most likely predictions, compare them to a
single groundtruth and take the one with the lowest error.
In this paper, we used the latter.

Regarding the translation error, Euclidean distance was
used. The rotation error was measured as an angle, and
the translation error was measured in pixels at the nominal
working distance of the camera using the intrinsic camera
parameters. Pixels were selected to dissociate the system
scale from the metric and be more comparable with other
works.

B. EXPERIMENTS ON THE SYNTHETIC DATASET
The process was divided into two phases to compute the pose
of the objects: the computation of meaningful internal repre-
sentations of the images, and the estimation of the rotation,
and the estimation of the translation.

Three separate training phases, one for each dataset,
were first performed to minimize the rotation training loss
described in (4). Transfer learning was used to train the
initial steps until convergence. Then, a fine-tuning step was

FIGURE 6. Difference of 1.5◦ between two different rotations. The
image is divided in a checkerboard fashion, where a square belongs to
one image and its neighbors to the other. A color shift was applied to
one image to show where the image shifts occur.

performed to update the first layers of the network with a
learning rate of 1e-5.

Once the fine-tuning had converged, the translation net-
work was trained using the internal representation of the
images given by the rotation network. This procedure allowed
a faster training phase for this network.

A comparison between the deconvolutional network and
the graph network is performed, and the results for each
dataset can be seen in Table 1. The graph network achieved
lower error rates on the cylinder and the T-painted sphere but
slightly higher on the cube dataset.

Regarding translation, an error of around 1.5 px was
achieved for all the datasets, being the lowest 0.81 px for the
T-painted sphere and 1.74 px for the cylinder. This difference
in error is directly related to the geometry of the object. The
cylinder has the most uneven geometry as, unlike the cube
and the sphere, its points do not lie equidistant to the object’s
center of mass.

Although the comparison cannot be straightforward since
the conditions, goals, and requirements are different, other
authors report error rates on synthetic objects above 10◦ [14],
[15]. As shown in Figure 6, a rotation error of 1.5◦ is per-
ceptible but not substantial. The alignment can be followed
by further comparisons between the captured and reference
models, such as texture difference computation to compen-
sate for possible anomalies. However, no texture anomalies
were included during this work, so the algorithm’s robust-
ness against them has not been explicitly tested. Many data
augmentation techniques can be added to ensure this gener-
alization, but its effects on the accuracy were not measured.
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FIGURE 7. Structure of the networks used in the paper. A. Feature extractor, B. Perspective
corrector, C. deconvolutional network, D. GNN, and E. translation network.

One of the strengths of this algorithm is that the input from
each camera is not bound to a specific position, therefore
allowing new cameras to be included in the system without
building a new training set and conducting a new training
phase. This feature is convenient for industrial environments
as it can adapt to any configuration theoretically. Just by
knowing the extrinsic parameters of the camera, as many
cameras as needed can be easily added to the system.

Even so, during the training phase, onemust ensure that the
groundtruth rotations are adequately distributed. As it learns
the probability distribution of a given view, this algorithm
is quite sensitive to uneven groundtruth distributions. For
rotations that are uncertain among three possible Y axis
predictions, as in some views within the cylinder dataset,
the algorithm might assign more confidence to one of them
if there was a bias in the data set. We studied including a
weight value that proportionally increases the loss of views
whose groundtruth has not the highest confidence in the pre-
dicted probability distribution. This weight should become
progressively more meaningful as the training converges.
However, it did not significantly impact our training phase
as the groundtruth was guaranteed to be equally distributed.

C. COMPARISON AGAINST EfficientPose
This section compares EfficientPose, currently the LineMOD
dataset’s state-of-the-art algorithm, with our methodology.
For the following experiments we selected GNN approach as
it outperformed the alternative deconvolution network. Both
estimators are inherently different: one estimates the pose

from a single image, whilst the other is designed to estimate
it using several perspectives. However, this experiment is
divided into several prediction metrics for a fair comparison.
These metrics include:

• ADDs (original EfficientPose paper’s metric for ref-
erence [8]). It measures the percentage of predictions
that made the average closest distance between points
in the meshes transformed with the predictions and the
groundtruth below a 10% of the diameter of the mesh.

• Rotation error considering separate images, i.e., taking
the likeliest prediction from our algorithm’s predicted
distribution and EfficientPose’s single prediction. Some
post-processes were added to both algorithm predictions
to allow for object symmetries. Namely, each prediction
was rotated 90◦ in each axis for the cube, and the one
closest to the groundtruth was chosen. For the sphere
and cylinder, predictions from perspectives that were not
meaningful were filtered out, i.e., captures without the
‘‘T’’ for the sphere and captures that could not see the
triangle or the square for the cylinder.

• Rotation error considering an image batch and combin-
ing predictions after the likeliest prediction from the
distribution is computed, i.e., after our algorithm has
already extracted the likeliest candidate and the respec-
tive post-processes stated above were applied.

• Rotation error considering an image batch and combin-
ing the probability distributions before extracting the
likeliest prediction. This case is only applicable to our
algorithm.
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TABLE 2. Comparison between our algorithm and EfficientPose. Compares the likeliest prediction errors using separate images, the likeliest
predictions mean errors at launch level, and the combination of the predicted distributions at launch level.

The results can be seen in Table 2. Here we can prove that
our algorithm outperforms EfficientPose even in LineMOD
objects. This finding does not imply that this methodology
becomes state-of-the-art for the LineMOD dataset as it was
not evaluated on LineMOD’s test set because it contains
single images with different backgrounds, which is out of the
scope of the paper.

Furthermore, this experiment highlights that when the
model’s accuracy reaches a certain accuracy threshold, com-
bining probability distributions may yield worse results
compared to combining predicted rotations. However, in all
other cases, combining the distributions instead of the pre-
dicted rotations resulted in lower estimation errors, indicating
the advantages of delaying the extraction of the most likely
prediction.

Moreover, the ADDs score demonstrates that the models
were able to learn the estimation of the sphere’s transla-
tion. However, EfficientPose struggled to predict the rotation,
likely due to the absence of relevant pose information in the
images. This uncertainty, where the same image corresponds
to different targets, typically hinders automatic training pro-
cedures for models predicting single outputs. To overcome
this limitation, manual tuning specific to the object being
trained would be necessary to incorporate some prior knowl-
edge. This justifies the inferior performance of EfficientPose
on the sphere and the cylinder. However, in the case of
the cube, both EfficientPose and our model considered all
possible symmetric rotations and selected the one with the
minimum loss, i.e., for experiments not utilizing map com-
bination, we incorporated some prior knowledge about the
object.

The cylinder object presents a similar scenario. It specif-
ically evaluates the situation where multiple cameras have
high confidence in a few potential solutions, and after merg-
ing all candidates, only a single solution remains. This is
evident in the results presented in Table 2, where no model
could provide valid solutions for the problem when combin-
ing predictions instead of probability maps.

Additionally, the results indicate that both models were
capable of estimating most of the object poses in terms of
ADDs, which focuses on the geometric properties rather than
textures. This metric is widely used in the literature.

V. CONCLUSION
Pose estimation is a critical research topic with numer-
ous applications in quality testing systems and other fields.

However, developing a one-size-fits-all algorithm has been a
significant challenge due to the difficulties posed by different
object geometries. This work proposes a novel pose estima-
tion algorithm that can effectively estimate the pose of objects
with symmetric geometries using one ormore cameras.While
the accuracy of the algorithm is limited by the resolution
of the camera and the discretization of the rotation space,
it is still capable of estimating the pose of any object with
a reasonable level of accuracy.

Although this methodology is more focused on automat-
ically handling symmetries and combining different cam-
era information, it performed better than EfficientPose on
LineMOD’s duck object in our case scenario.

Two different approaches to predict the rotations’ dis-
tribution were compared, i.e., using graph convolutions or
deconvolutional layers. Using graph convolutions proved to
obtain better results on average than using deconvolutional
layers. This is the case because graph convolutions adapt
better to the output space’s topology.

Our best approach achieves a rotation accuracy of below
1.5◦ and an average translation error of around 1.5 pix-
els, which is a promising result. However, further research
is necessary to evaluate the robustness of the algorithm in
real-world settings, including situations with slight texture
changes or modifications in object size.

In summary, our algorithm presents a valuable contribu-
tion to the field of pose estimation, particularly in handling
symmetric objects and combining information from multiple
cameras. The results we have achieved so far are promising,
and we believe that with further research and development,
this approach could prove to be an essential tool for quality
testing systems and other applications that require accurate
pose estimation.

Among the possible limitations of this approach exists
the fact that the space of rotation solutions is discretized.
Although some interpolation is applied, in practice this usu-
ally implies a limitation in accuracy. Arguably, reasonable
accuracy rates can be achieved with the resolution presented
in this work. Moreover, another possible limitation is that the
distribution of the training samples must be balanced. This
means that, for every image that has multiple valid solutions,
this solutions must be equally sampled during train so that
no solution is preferred over another. Usually this can be
easily handled as datasets are built synthetically. As future
work, we plan to evaluate some techniques to address possible
domain gaps between synthetic and real-world samples.
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