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Background: Segmentation of computed tomography (CT) is important for many
clinical procedures including personalized cardiac ablation for the management of
cardiac arrhythmias. While segmentation can be automated by machine learning
(ML), it is limited by the need for large, labeled training data that may be difficult
to obtain. We set out to combine ML of cardiac CT with domain knowledge,
which reduces the need for large training datasets by encoding cardiac
geometry, which we then tested in independent datasets and in a prospective
study of atrial fibrillation (AF) ablation.
Methods: We mathematically represented atrial anatomy with simple geometric
shapes and derived a model to parse cardiac structures in a small set of N= 6
digital hearts. The model, termed “virtual dissection,” was used to train ML to
segment cardiac CT in N= 20 patients, then tested in independent datasets and
in a prospective study.
Results: In independent test cohorts (N= 160) from 2 Institutions with different CT
scanners, atrial structures were accurately segmented with Dice scores of 96.7% in
internal (IQR: 95.3%–97.7%) and 93.5% in external (IQR: 91.9%–94.7%) test data,
with good agreement with experts (r=0.99; p < 0.0001). In a prospective study
of 42 patients at ablation, this approach reduced segmentation time by 85%
(2.3 ± 0.8 vs. 15.0 ± 6.9 min, p < 0.0001), yet provided similar Dice scores to
experts (93.9% (IQR: 93.0%–94.6%) vs. 94.4% (IQR: 92.8%–95.7%), p=NS).
Conclusions: Encoding cardiac geometry using mathematical models greatly
accelerated training of ML to segment CT, reducing the need for large training
sets while retaining accuracy in independent test data. Combining ML with
domain knowledge may have broad applications.
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1. Introduction

Segmentation of cardiac imaging data is central to several

aspects of clinical care, but can be challenging and time

consuming. This may hinder the development of large reference

databases. In atrial fibrillation (AF), early rhythm control by

ablation reduces morbidity and mortality (1), yet segmenting

computed tomography (CT) for ablation by annotating the left

atrium, pulmonary veins (PVI) and other target sites (2) still

requires substantial human intervention even with current

cardiac mapping systems (3), which can be time consuming and

introduce errors (4).

Machine learning (ML) can automate image segmentation

(5). However, one of the biggest challenge in ML applications

is the lack of large annotated ground truth data sets

identified by LeCun and others (5). This issue is particularly

critical in medicine and healthcare applications (6–8) due to

technical, privacy, and regulatory concerns. Many publicly

available labeled datasets contain ∼100 cases (9–11), yet

traditional ML studies typically use large cohorts (∼70 cases)

for training and thus test in only ∼30 cases (12–15),

which may limit generalizability and hinder wider application

(16, 17).

Methods such as transfer learning showed advances in

alleviating the need for large training datasets (18, 19).

However, many are tailored for medical image classification
FIGURE 1

Concept and overview. (A) Conventional machine learning (top) can learn p
datasets which may be difficult to obtain. Conversely, our proposed appro
anatomical concepts encoded mathematically of domain knowledge, to lear
segment heart CT scans via ML of small datasets. We represented heart struc
ML on a small dataset (N= 20) and was able to accurately segment hearts in
study (N= 42), the model segmented cardiac CT scans faster, but as accura
vein; LIPV, left inferior pulmonary vein; RSPV, right superior pulmonary vein; R
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instead of segmentation (20) or exhibit inconsistent

segmentation performance across tasks and datasets (21).

Other techniques such as synthetic data generation (22) and

data augmentation (23) can artificially enlarge training

sets, but risk lacking real-world diversity (24) or introducing

bias due to overfitting (25). Indeed, atlases that leverage

anatomic knowledge have long been used for image

segmentation (26, 27), but their performance will be

compromised when faced with anatomic variants unrepresented

in the training data (28).

One novel approach is to train ML with conceptual domain

(expert) knowledge to potentially reduce the need for massive

amounts of data for training (29, 30) (Figure 1A), analogous to

how humans learn (30). Lake et al. used this approach to

generate handwritten characters with human-level performance

from 1 exemplar, by parsing characters into simple primitives

that were composited to create new characters (31). However,

domain knowledge for medical applications is rarely sufficient to

reduce training sizes for ML (32, 33).

We hypothesized that ML models could be trained using very

small datasets if combined with some mathematical knowledge of

the task at hand, or domain knowledge encoding. Specifically, we

developed mathematical digital models of the cardiac anatomy

(the atria) from generic publicly available databases. While we

had access to a large dataset of 232 cases, we leveraged domain

knowledge to train ML models in a deliberately small cohort,
atterns in complex data, but requires laborious manual labeling, in large
ach (bottom) used natural intelligence to replace manual labeling with
n rapidly from small datasets. (B) We applied mathematical encoding to
tures as geometric primitives (“virtual dissection”). This was used to train
2 larger cohorts from different institutions (N= 100, 60). In a prospective
tely as experts. Acronyms: LA, left atrium; LSPV, left superior pulmonary
IPV, right inferior pulmonary vein; LAA, left atrial appendage.
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setting aside more cases for testing from 2 large independent

datasets. We also tested our model prospectively in a clinical

study (Figure 1B).
2. Materials and methods

Figure 1B outlines our study design, containing the following

steps: (1) We developed algorithms that encode atrial and

pulmonary vein anatomies; (2) The algorithm was used to train

ML to segment cardiac CT, using a small development cohort;

(3) The trained ML was tested in 2 external cohorts from

different institutions; (4) The combined domain encoded/ML

model was tested prospectively to segment CTs in patients

undergoing AF ablation, compared to a panel of 3 experts.
2.1. Development and testing clinical cohort

We identified N = 130 consecutive patients who had undergone

AF ablation, had CT scans at Stanford Health Care from October

2014 to July 2019, each of whom provided written informed

consent. We split this data set randomly into N = 30 for

algorithm deriving and model training (Development cohort),

and N = 100 patients as a hold-out cohort (Internal Test cohort).

To further evaluate our approach, we utilized an external publicly

available dataset [MM-WHS (10), N = 60] from a different

institution and different CT scanners (External Test cohort).
2.2. Deriving virtual dissection algorithm

We derived our mathematical encoding model from N = 6

publicly available 3D heart models (Figure 2A-1), built

using Gaussian process morphable models (34). We employed

these digital models solely as simplified yet accurate templates to

facilitate the development, analysis, and tuning of our algorithm.

Inspired by computer graphics (CG) modeling, this “virtual

dissection” method identifies critical structures using

mathematical encoding (Figure 2). CG uses simple geometrical

shapes (‘primitives’) to represent complex objects such as human

bodies, that form the basis for techniques such as kinematic

modeling that learns 3D human poses from YouTube videos (35)

to generate animations. We represented the left atrium (LA) as

an ellipsoid; pulmonary veins (PVs) as circular cylinders; and left

atrial appendage (LAA) as a paraboloid (Figure 2A-1).

We then reasoned that heart structures can be geometrically

parsed by separating the ellipsoidal convex LA from the complex

concave whole heart. We used mathematical erosion, dilation

(36) and subtraction for this purpose (Figure 2A). First, we

dissected digital shells by a novel application of erosion of

concave junctions between tubular PVs and paraboloidal LAA

with the ellipsoidal left atrium. We propose an Erosion Index,

which indicates erosion progression toward a convex shape and

can be used to identify the optimal number of erosion iterations

(Figure 2B). We then applied dilation to ensure the LA retained

its original size after erosion and introduced a Dilation Index to
Frontiers in Cardiovascular Medicine 03
track the restoration process, which helps determine when to

stop dilation before PVs and LAA are re-attached (Figure 2C).

To encode the variability of LA geometries across patients, we

optimized the virtual dissection algorithm using small clinical seed

data from N ¼ {0, 5, 10, 20, 30} patients in the Development

cohort. We trained support vector machines (SVMs) with

manually segmented images in patients from the seed sets to

predict the optimal number of erosion and dilation iterations.

After the left atrium body is isolated after erosion and dilation,

we refined boundaries between the LA body and the PVs and LAA

(Figure 2A-3) by calculating centerlines from the LA centroid to

the centroid of each virtually dissected structure using the

Voronoi diagram (37), a method previously used in aorta and

great vessels segmentation (9, 38, 39). The original boundaries

from the erosion-dilation phase were then refined using a plane

aligned perpendicularly to these centerlines. Accuracy of virtual

dissection was assessed by centroid-boundary distance and other

metrics outlined below in Statistical Analysis.
2.3. Small cohorts of virtually dissected atria
can train ML for CT segmentation

We used virtually dissected atria of N = 20 patients from the

Development cohort to train ML to segment chest CT scans. We

trained a deep neural network architecture, nnU-Net

(Supplementary Figure 1), which has been widely used in 23

public datasets (40). For training, we normalized then augmented

raw CT scans as input, with the virtual dissected atria as ground

truths. We ensured similar voxel spacing for test and training

samples. The training protocol is detailed in Supplementary

Methods. We applied the trained ML to the independent

Internal Test and the External Test cohorts, neither of which was

used for training. Accuracy of ML segmentation was assessed by

Dice similarity coefficient and other metrics outlined below in

Statistical Analysis.
2.4. Prospective study

We prospectively compared our ML approach to experts for

segmenting cardiac CT scans in patients prior to AF ablation.

The primary endpoints were annotation time and accuracy as

assessed by Dice similarity coefficient. The study was approved

by the review board of Stanford University Human Subjects

Protection Committee, and all subjects gave written informed

consent (NCT02997254).

Patient entry criteria were patients undergoing ablation for

symptomatic AF refractory to at least one anti-arrhythmic

medication between January 1st, 2022, and March 30th, 2022

(N = 96). The predefined exclusion criteria were (1) no valid

DICOM files (25 cases), (2) CT performed >90 days before

ablation (21 cases), and (3) with LAA closure procedures (8

cases). We identified N = 42 consecutive patients (Prospective

cohort). CT images in our prospective study were scanned using

the third-generation dual-source CT system (Somatom Force;
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FIGURE 2

Virtual Dissection algorithm. (A) The detailed pipeline. (B) The progress of the iterative erosion. The automatically selected iteration for erosion is highlighted in
red. (C) The progress of the iterative dilation. The automatically selected iteration for dilation is highlighted in red. Acronyms: LA, left atrium; LSPV, left superior
pulmonary vein; LIPV, left inferior pulmonary vein; RSPV, right superior pulmonary vein; RIPV, right inferior pulmonary vein; LAA, left atrial appendage.
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Siemens AG). The CT images had axial sections of 0.7 mm

thickness and typical in-plane pixel size of 0.42 × 0.42 mm.

A panel of 3 experts manually annotated raw CT scans with 3D

slicer (41) independently. Each expert had first practiced on several

run-in cases, separate from the study cohort, to become familiar

with the workflow. During annotation, a bounding box was

initially created to identify the LA (including the main branches

of PVs and LAA). Several foreground/background seeds were

added to these regions, and the region-growing algorithm was

applied to get the initial LA geometry. Manual corrections were

performed as needed with no further constraints. The final LA

segmentation was smoothed using default parameters and

exported as a NIFTI file for evaluation. The time taken from

loading the CT to exporting the file was recorded for comparison.
2.5. Statistical analysis

We utilized a newly designed metric, the centroid-boundary

distance, along with two standard metrics for segmentation tasks

(9–15)—Dice similarity coefficient and average surface distance, to

evaluate our model’s accuracy in capturing 2D LA-PV/LAA

boundaries, the global 3D structures, and the local 3D shapes and

contours, respectively. Mathematically, the centroid-boundary
Frontiers in Cardiovascular Medicine 04
distance is calculated as the average of all the distances from the

centroid of the heart to points on the LA-PV/LAA boundary. The

Dice similarity score measures spatial overlap between the model

prediction and the ground truth, while 0 indicates no overlap and 1

indicates complete overlap, which can be mathematically expressed as

Dice Similarity Score ¼ 2� True Positive
2� True Positiveþ False Positiveþ False Negative

:

The average surface distance is calculated as the average of all the

distances from points on the boundary from model prediction to

the ground truth boundary. We also measure the success rate of

the virtual dissection algorithm, where a heart model is successfully

parsed if the Intersect over Union (IoU) between the algorithm

prediction and expert manual annotation is larger than 0.5. This

metric has been widely used for detection tasks (42).

We expressed continuous data by mean ± SD and categorical

data by percentages. The distance and Dice scores were

summarized as medians and interquartile range (IQR). Pearson

correlation’s test was used to assess the similarity of LA volumes

and LA sphericity Index estimated from model prediction and

ground truth. Student’s t-test, Chi-square test, or McNemar’s test

was applied as appropriate. p < 0.05 was considered as significant.
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3. Results

3.1. Study populations

The demographics of the development, internal test and

prospective cohorts are shown in Table 1. There were no

statistical differences in demographics between cohorts except for

a higher incidence of diabetes mellitus in the Development vs.

Internal Test cohorts.
3.2. Virtual dissection can automatically
parse cardiac geometry

In digital hearts, our developed virtual dissection approach

separated the PVs and LAA from left atrial bodies (Figure 3A)

with a mean difference for the centroid-boundary distances of

−0.27 mm (95% CI: −3.87–3.33; r = 0.99; p < 0.0001; Figure 3B).

We randomly selected 5 shells of seed data from the

Development cohort for tuning, with LA sizes from 71 to 140 ml

that cover a broad range of patients (43).

In our Internal Test cohort (N = 100), we compared the

optimized-virtual dissection to expert annotation using

commercially available software (EnSite Verismo Segmentation

Tool; Abbott/St Jude Medical, Inc., St. Paul, Minnesota) refined

using 3D Slicer (41). Figure 3E shows the success rate of

dissection. Accuracy increased from 67% (no tuning) to 94% by

tuning with N = 5 shells of seed data (p = 0.034; McNemar’s test),

then showed only modest changes when tuning in 10–30 shells

(92%–94%). Tuned with N = 5 seed data, virtual dissection

produced mean difference and limits of agreement for the

centroid-boundary distance of 1.46 mm (95% CI: −5.58–8.49;
r = 0.99; p < 0.0001; Figure 3D). Figure 3C presents two virtually

dissected (left) and manually annotated (right) atria.
3.3. ML trained by virtual dissection can
accurately segment CT

Figure 4 shows comparisons between ML prediction (left) and

manually labeled (right) atria from select samples, representing the
TABLE 1 Clinical demographics of retrospective and prospective study.

Retrospective cohort (N = 130)

Entire
cohort (N = 130)

Development
cohort (N = 30)

Inte
cohor

Age, year, mean ± SD 64.8 ± 9.8 65.6 ± 10.1 6

Male gender, N (%) 95 (73.1%) 21 (70.0%) 74

Non-paroxysmal AF, N (%) 69 (53.1%) 16 (53.3%) 53

BMI, kg/m2, mean ± SD 29.7 ± 5.7 30.5 ± 5.0 29

Diabetes, N (%) 16 (12.3%) 7 (23.3%) 9

CHA2DS2-VASc score,
mean ± SD

2.2 ± 1.4 2.3 ± 1.2 2

Smokers, N (%) 51 (39.2%) 16 (53.3%) 35

Enlarged LA, N (%) 77 (59.2%) 19 (63.3%) 58
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25th, 50th, and 75th percentile accuracy in the hold out Internal

Test cohort (N = 100). Our ML model revealed LA structure, and

successfully captured the shape and details of PVs, LAA, and their

ostia. The mitral valve plane in the 50th- and 25th-percentile

samples showed slight qualitative inconsistencies between ML

prediction and ground truth, possibly due to variations in image

quality such as density of contrast. Slight differences in LSPV and

RSPV measurements were found in the 25th-percentile sample, but

the ostia position differences between ML and expert annotations

are limited, with LA-LSPV and LA-RSPV boundary errors in a

range of 3.54 mm and 0.49 mm, respectively; these differences may

not be clinically relevant. Overall, Dice scores were 96.7% (IQR:

95.3% – 97.7%) (Figure 5A, left), a median error in surface

distance of boundaries of 1.51 mm (IQR: 0.72 – 3.12)) (Figure 5B)

with a mean boundary distance of 1.16 mm (95% CI: −4.57–6.89)
again similar to experts (r = 0.99; p < 0.001, Figure 5C-D).

In our External Test cohort (N = 60) of patients from another

Institution with different scanners (10), the model segmented

structures with a Dice score of 93.5% (IQR: 91.9% to 94.7%)

(Figure 5A, right) again comparing favorably to experts (r = 0.99;

p < 0.0001).

Thus, this approach enabled a > 10-fold reduction in the

relative size of training to test cases for ML, inverting the ratio of

training: test cases less than 1:3, from a typical ratio of >3:1.
3.4. Analysis of Anatomical Variants

Despite not pre-screening to eliminate anatomic variants,

segmentation accuracy from our virtual dissection technique was

maintained for variant anatomy. Overall, 100% cases with 4 PV

ostia (the most common configuration, representing 66 cases)

were parsed with mean difference and limits of agreement for

the centroid-boundary distance of 1.26 mm (95% CI: −5.15–7.68;
r = 0.99; p < 0.0001). We identified 29 cases with one of the

3 main variants: (1) common left PV ostia (N = 8;

Supplementary Figure 2A); (2) LAA occlusion by a closure

device (N = 1; Supplementary Figure 2B); and (3) supplemental

PVs or ostial-branch PV (N = 20; Supplementary Figures 2C,D,

G,H). The remaining 5 cases have a combination of these 3 main

variants (Supplementary Figures 2E,F).
Prospective
cohort (N = 42)

p-value

rnal test
t (N = 100)

Development
vs. internal test

Development
vs. prospective

4.6 ± 9.7 65.2 ± 10.6 0.64 0.88

(74.0%) 24 (57.1%) 0.39 0.05

(53.0%) 18 (42.9%) 0.97 0.38

.43 ± 5.9 29.6 ± 6.9 0.33 0.52

(9.0%) 5 (11.9%) 0.04 0.20

.2 ± 1.8 2.1 ± 1.3 0.38 0.37

(35.0%) 14 (33.3%) 0.08 0.07

(58.0%) 19 (45.2%) 0.60 0.13
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FIGURE 3

Virtual dissection performance. (A) Representative samples of digital atria geometrically parsed by un-optimized algorithm. (B) Bland-Altman plots of the
centroid-to-boundary of un-optimized algorithm vs. experts in 6 digital atria. After optimizing Virtual Dissection with N= 5 patient cases from the
development cohort, (C) Representative patient atria from optimized algorithm in independent Test cohort (N= 100). (D) Bland–Altman plots of the
centroid-to-boundary distance of optimized algorithm vs. experts in the Test cohort. (E) Success rate of virtual dissection algorithm using N={0, 5,
10, 20, 30} cases. Acronyms: LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; RSPV, right superior pulmonary vein; RIPV, right
inferior pulmonary vein; LAA, left atrial appendage.
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In summary, 28/34 of identified variants were successfully parsed

with anatomic agreement within 1.95 mm (95% CI: −6.34–10.25)
which again was in line with experts (r = 0.99; p < 0.0001), despite

lack of specific training in variants. In the remaining 6 cases,

errors arose mostly from missing PVs or branches relative to the 4

PV mathematical model (Figure 2A-1), which could be addressed

by geometric models that adapt to a range of PVs.
3.5. Prospective validation: using virtual-
dissection trained ML to segment left atria

Prospectively, in patients prior to AF ablation, the ML model

shortened mean left atrial/PV segmentation time by 85.0%
Frontiers in Cardiovascular Medicine 06
compared to the expert panel (2.3 ± 0.8 vs. 15.0 ± 6.9 min,

p < 0.0001; Figures 6A,B). Figure 6C shows that our model

achieved a Dice score of 93.9% (IQR: 93.0%–94.6%) compared to

a panel of 3 experts, statistically indistinguishable from the inter-

observer agreement between experts of 94.4% (IQR: 92.8%–

95.7%, p = 0.071).

To further analyze CT segmentation by our geometrically

encoded ML, we compared the left atrial volume and

sphericity index between ML and expert readings. These

indices are well reported measures of abnormal left atrial

size and shape that predict recurrence of AF after drug

therapy or ablation (44, 45). Figures 6D,E shows that

they were well correlated (r = 0.99 and 0.95, respectively; p <

0.0001).
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FIGURE 4

Comparison between the ML model predicted CT segmentation (left) and ground truth manual outlining (right) overlaid on the input CT scans in
representative samples selected using 25th, 50th and 75th percentiles of segmentation accuracy in an independent test cohort (N= 100). Our ML
model effectively captured the LA geometry, highlighting key features of PVs, LAA, and their ostia. The mitral valve plane represented in the 50th-
and 25th- percentile samples showed slight variation between ML prediction and manual labeling, likely from limited image quality. Slight differences
in PV measurements were found in the 25th-percentile sample, which may not be clinically relevant. Acronyms: LA, left atrium; LSPV, left superior
pulmonary vein; LIPV, left inferior pulmonary vein; RSPV, right superior pulmonary vein; RIPV, right inferior pulmonary vein; LAA, left atrial appendage.

Feng et al. 10.3389/fcvm.2023.1189293
4. Discussion

Mathematical encoding of geometry was able to accelerate ML

for segmentation of CT, and enable its training on very small

datasets. In our study, the training: testing ratio was <1 training

to 3 test, which indicates a far lower need for training than the

conventional published ratios of >3:1 for ML (11–15). This

“inversed training-test ratio” paradigm has recently been applied

in domains outside medicine such as for Amazon co-purchasing

product predictions (46). Our approach was then tested in two

independent test datasets and in a prospective study prior to AF

ablation, in which the model accelerated segmentation while

maintaining similar accuracy to experts. This novel approach could

broaden the ease of access and accuracy of AF ablation. More

broadly, this approach has analogies to natural intelligence, which

has the potential to reduce the need for large annotated datasets to

train ML, and could be applied for diverse imaging applications.
4.1. Benefits for clinical applications

Cardiac CT is increasingly used (12, 14, 47) to guide ablation

forAF, and to predict clinical endpoints such as the risk of

AF recurrence (45, 48). However, segmentation of these large

70–200 MB datasets manually by experts may take up to tens of
Frontiers in Cardiovascular Medicine 07
minutes (9–12) even with the latest commercial software (49, 50).

Our prospective validation demonstrated ML models reduced

segmentation time by 10–15 min, representing a reduction of

15%–20% from reported PVI case times of 60–100 min (51, 52),

and a larger reduction compared to some recently reported

segmentation times of 60–120 min (9–12).

Additionally, existing cardiac mapping systems like Carto® 3

(3) require manual input, and their segmentation varies based on

the operator’s skill and experience. In contrast, our approach

offers a fast and fully automatic solution with ensured

consistency. It also allows for manual review and editing if desired.

Moreover, our automated segmentation approach provides an

efficient way to label and collect large databases—a feature not

available in current cardiac mapping systems like Carto® 3 and

Rhythmia, which store data in proprietary formats that are not

readily accessible to researchers, and require manual input which

hinders scalability.
4.2. Comparison to other studies for ML
segmentation of cardiac anatomy

We compared our approach with 4 recent ML studies using

traditional large training datasets to segment LA from CT scans

(12–15). Baskaran et al. and others (12–15) trained in 73–230
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FIGURE 5

Accuracy CT segmentation using ML of optimized virtual dissection in two test cohorts (A) dice score of ML-based CT segmentation in the internal test
cohort (N= 100; left) and an external test cohort from a different institution with different CT scanners (N= 60; right). (B) Boundary surface distances
between ML-prediction and expert labelling in the Test Dataset (N= 100). (C) and (D) are Bland–Altman plots and linear regression plots of the
centroid-to-boundary distance in the Test Dataset (N= 100). Acronyms: LSPV, left superior pulmonary vein; LIPV, left inferior pulmonary vein; RSPV,
right superior pulmonary vein; RIPV, right inferior pulmonary vein; LAA, left atrial appendage.
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cases using manual segmentations, and only tested in 17–37 cases

with a maximum Dice of 95.6% (14). Our model used 3–10 times

fewer training data yet outperformed on a test set 3–5 times larger.

Our model also showed superior generalizability in external and

prospective test cohorts, not included in (12–15).

Our approach circumvents the limitation that most CT studies that

segmented the LA often did not specifically segment the PVs and LAA

(12, 14). Our approach can accurately reveal other anatomical

landmarks, evidenced by our ML model’s high Dice score (96.7%)

compared to experts. Supplementary Figure 3 illustrates that our

ML model successfully identifies the roof and septal walls, which play

a significant role in cardiac mapping and AF ablation procedures (53,

54). Our approach can also be applied to other cardiac imaging

applications including segmentation of Magnetic Resonance Imaging

(MRI) to boost ML by reducing the need for large training data sets.
4.3. Limitations

This study has several limitations. We used only CT and,

although this is by far the most widely applied cardiac imaging
Frontiers in Cardiovascular Medicine 08
modality, future studies could extend our approach to MRI

through transfer learning. While we tested our approach in

cohorts from different institutions, additional studies are needed

to define its sensitivity to data from a wide variety of scanners

and spatial resolutions. We focused on improving left atrial

segmentation, because it is an important and common clinical

task, but future studies should extend to other features such as

segmenting CT scans to study the aorta for aneurysmal dilation

(55), which has a high mortality rate (56), or to plan aortic valve

replacement (57), which is commonly performed (58). One

limitation and future direction for this work is to adapt our

domain knowledge encoding algorithm for different variants,

including but not limited to a range of PVs, or congenital

variants in the ventricles or aorta (57).
5. Conclusion

Domain knowledge encoding of cardiac geometry was able to

train Machine Learning to segment cardiac CT while greatly

reducing the need for large training data sets. Our approach
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FIGURE 6

Prospective segmentation of cardiac CT scans in 42 consecutive
patients undergoing AF ablation by virtual-dissection trained ML vs.
experts. (A,B) Virtual dissection trained ML significantly shortens
segmentation time compared to experts. (C) Box plots of Dice
similarity coefficient between ML and experts were similar. (D) and (E)
LA volume and LA sphericity index marked by Virtual Dissection (red
cross) accurately tracks the mean between experts (black cross).
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(virtual dissection) derived in very small datasets was able to

accurately segment cardiac CT in 2 independent datasets of

hundreds of patients and in a prospective study prior to AF

ablation. In general, this combined domain knowledge

encoding and machine learning approach reduce the

dependence of ML on large training datasets and could be

applied broadly in imaging and benefit personalized

cardiovascular medicine.
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