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Abstract: Online fault detection in industrial machinery, such as induction motors or their com-
ponents (e.g., bearings), continues to be a priority. Most commercial equipment provides general
measurements and not a diagnosis. On the other hand, commonly, research works that focus on fault
detection are tested offline or over processors that do not comply with an online diagnosis. In this
sense, the present work proposes a system based on a proprietary field programmable gate array
(FPGA) platform with several developed intellectual property cores (IPcores) and tools. The FPGA
platform together with a stray magnetic flux sensor are used for the online detection of faults in the
outer race of bearings in induction motors. The integrated parts comprising the monitoring system
are the stray magnetic flux triaxial sensor, several developed IPcores, an embedded processor for
data processing, and a user interface where the diagnosis is visualized. The system performs the
fault diagnosis through a statistical analysis as follows: First, a triaxial sensor measures the stray
magnetic flux in the motor’s surroundings (this flux will vary as symptoms of the fault). Second, an
embedded processor in an FPGA-based proprietary board drives the developed IPcores in calculating
the statistical features. Third, a set of ranges is defined for the statistical features values, and it is used
to indicate the condition of the bearing in the motor. Therefore, if the value of a statistical feature
belongs to a specific range, the system will return a diagnosis of whether a fault is present and, if
so, the severity of the damage in the outer race. The results demonstrate that the values of the root
mean square (RMS) and kurtosis, extracted from the stray magnetic field from the motor, provide a
reliable diagnostic of the analyzed bearing. The results are provided online and displayed for the user
through interfaces developed on the FPGA platform, such as in a liquid crystal display or through
serial communication by a Bluetooth module. The platform is based on an FPGA XC6SLX45 Spartan
6 of Xilinx, and the architecture of the modules used are described through hardware description lan-
guage. This system aims to be an online tool that can help users of induction motors in maintenance
tasks and for the early detection of faults related to bearings.

Keywords: embedded systems; intelligent systems; industrial applications; FPGA; reconfigurable
computing

1. Introduction

Currently, equipment used for monitoring industrial processes is still of research
interest, specifically for the topic of fault detection and classification, since it is continuously
being improved thanks to the development of new methodologies for data processing [1].
These systems are very helpful in providing information about a process’s status, for
instance, indicating whether fault conditions exist, generating alarms, performing error
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corrections, logging data, and executing critical decisions, among others [2]. Thanks to
these systems, corrective actions are avoided, giving way to preventive actions applied in
the practice of scheduled maintenance, and, in terms of the benefits, the costs savings are
increased and the stopping times of the process are reduced [3]. Most of the monitoring
systems are commercial equipment that generally measure common variables, such as
the voltage or current, for performing a diagnostic, but they require the knowledge or
experience of an expert in the field [4]. Commercial equipment is characterized by being
completely closed architectures in hardware and software, and the functionality is also
restricted; in fact, the actual tendency in commercial products is to pay for access to the
full resources or extra functions [5]. The general scopes of existing monitoring systems
are limited because the methodologies implemented for fault detection are insufficient for
online implementation [6] or are very complex, requiring many computational resources
that need to be implemented offline [7]. Along this same line, the industry has evolved
toward a new concept, known as Industry 4.0, that today represents the integration of
physical objects, machines, systems, and processes throughout interconnexion networks [8].
The idea is to exploit the full potential of these evolved technologies for performing more
than simple measurements through instrumentation techniques. In this sense, to follow
the philosophy of Industry 4.0 and achieve smart systems with high profits, monitoring
systems are still important elements that must integrate sensors, data processing units,
and communication modules for the detection of problems in industrial processes [9]. For
these systems, it is very important to have adequate and high-quality information from
the processes to accurately detect problems or failures, because some machines, such as
an electric motor and its peripheral components, are the most used in industry, since they
provide movement and transmit power to the processes, representing between 60% and
80% of the total power consumption [10,11]. In addition, it is worth mentioning that among
the elements integrated in an induction motor, the most frequent faults represent between
41 and 42% for rolling bearings, between 28 and 36% for stator winding damages, between
8 and 9% for rotor-related damages, and between 14 and 28% for other types of dam-
ages [12,13]. These metrics emphasize that the most common failures in motors appear in
the rolling bearings, where several works have focused their efforts on developing method-
ologies for the detection of problems, considering mainly outer–inner race faults [14,15],
ball defects [16], and cage damage [17]. For these reasons, the development of industrial
equipment for online fault detection through dedicated methodologies implemented into
embedded systems that overcome the limitations and restrictions of existing commercial
systems is still an area of opportunity.

Particularly for bearing faults, over time several methodologies have been proposed
for detecting such problems. For instance, in the work presented in [18] vibration signa-
ture analysis is used together with continuous wavelet transform (CWT) for identifying
patterns associated with the vibration signals from bearings in rotating machines. The
conditions analyzed were inner and outer race faults, ball faults, and cage faults. The
signals were acquired through a very low-cost commercial development platform based
on a microcontroller and using a low-cost accelerometer. In addition, the data processing
was performed offline with a personal computer (PC) in MATLAB 2013R due to the limited
capability of the microcontroller. On the other hand, an acoustic signal analysis was applied
offline in [19] for detecting bearing faults in induction motors. In such a proposal, the
measured sound of the motor is considered contaminated by other surrounding sources,
which have degraded the signal-to-noise ratio (SNR). Therefore, to overcome this situation,
a lock-in amplification (LIA) is synchronized to the machine shaft’s frequency by means of
a fractional phase-locked loop (PLL) frequency synthesizer, yielding the frequency asso-
ciated to bearing faults. The signals acquisition is performed using a PCIe-6346 National
Instruments board and the processing by means of the synthesizer, but the graphical results
are presented on the PC. In another case, the use of infrared thermal images demonstrates
that fault diagnosis can be performed offline over a rotor-bearing system of a kinematic
chain [20]. In that research, several thermal images are acquired from healthy states of the
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rotor-bearing system and then an exponential linear unit together with stochastic pooling
is used to construct an enhanced convolutional neural network (ECNN). In addition, the
model parameters of a convolutional auto-encoder (CAE), previously trained with unbal-
anced images, are transferred to the ECNN; thus, the small labeled thermal images serve to
train the ECNN and for the diagnosis of faults. All of the processing was carried out with a
PC Core (TM) i7-8550U CPU with 12 GB RAM using the software MATLAB 2016b. The
considered conditions for the analysis were normal state, inner and outer race faults, ball
faults, and a combination of shaft unbalance with ball faults. On another topic, machine
learning and deep learning methodologies have been proposed for fault diagnosis in bear-
ings of rotating machinery. For example, in the research described in [21], raw vibration
signals from a kinematic chain are converted into a two-dimensional image in gray scale
through their resampling and normalization. In addition, in that work, the use of two
dropout layers and two fully connected layers improves the performance of a convolutional
neural network (DFCNN) that finally learns the fault patterns, yielding a final diagnostic.
The DFCNN methodology was implemented offline on a Ryzen 5 1600X CPU computer
with 16 GB RAM and a GTX1060 GPU using MATLAB 2018a software through the neural
network toolbox, and the conditions considered were normal state, inner and outer race
faults, and ball faults. In other works, such as in the comparative analysis developed in [13],
the implementation (on a PC) of deep learning (DL) algorithms to determine which of
them were more efficient in detecting bearing faults in mechanical systems was studied
and tested. The conclusion from that comparative analysis was that the most popular
DL techniques are convolutional neural networks (CNNs) [22], recurrent neural networks
(RNNs) [23], auto-encoders (AEs) [24], and generative adversarial networks (GANs) [25].
However, in all previously discussed cases, the implementation of the methodologies was
conducted offline using software tools on a PC because of the effort required for the data
processing and due to the techniques’ complexity, mainly in those data-driven works based
on machine learning and deep learning. Currently, there exist some solutions in the field
of fault detection in bearings that have been implemented into hardware. For example,
the work described in [26] presents an algorithm implemented into a field programmable
gate array (FPGA) that performs signature extraction in the time–frequency domain to-
gether with a one-against-all multiclass support vector machine for online fault diagnosis
in bearings, but a limitation was the computational complexity that restricted the use of the
system in real-time applications. Such a methodology uses emitted acoustic signals from a
sensor located near the bearing. The analyzed faults were inner and outer race cracks and
roller cracks in a cylindrical bearing. In summary, from an analysis of the works reported in
the literature, it can be concluded that several methodologies have been developed for fault
detection in rolling bearings, but their implementation is limited to offline applications
because of the algorithms’ complexity. Therefore, to overcome such limitations, FPGAs can
be viable alternative solutions for the online processing of algorithms.

Regarding technologies that can be used for developing embedded systems focused
on monitoring applications, FPGAs are very advantageous hardware-based development
platforms because of their features such as configurability, flexibility, portability, design
of modular cores, design of concurrent structures, high speed, high performance, very
dedicated design, and hardware description, among others [27]. As an example of the
aforementioned, in [28] the power quality issue is addressed through a methodology
capable of detecting voltage and current swells by implementing into the FPGA spline
interpolation and Otsu segmentation. In such an online implementation, the time-span
measurement of the swell disturbance reaches up to 81.3 µs. Through its part, the research
described in [29] presents a methodology for measuring the synchronous relationship
between electric signals (phase) through a hardware architecture described for an FPGA.
This architecture allows to register phase shift changes per minute with a minimum sam-
pling time in the range of picoseconds. This way, the phase measurement core logic unit
is based on the subsampling accumulation principle though a systematic sampling over
a phase detector. However, this core was validated under a mathematical model. On
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another topic, the review developed in [30] introduces the evolution and application of
different hardware architectures for processing medical imaging through specific technolo-
gies. Among the technologies considered in that study of FPGAs are central processing
units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), and
application-specific integrated circuits (ASICs), and a discussion of the options according
to the application is provided. Recently, a review and survey were presented assessing the
implementation of different intelligent techniques, as well as machine learning techniques,
for classification tasks in FPGAs [31,32]. In these works, an overview of the wide variety
of classification techniques and intelligent techniques is presented, and then the existing
FPGA-based implementations of the techniques are discussed; later, the challenges and
strategies adopted for the optimization are analyzed, and architectures for hardware ac-
celerators are mentioned. Another survey addressing sensor systems implemented into
FPGAs for different applications was developed in [33]. In that work, the assessment was
performed for three types of wireless sensor nodes: standalone, combinations of FPGAs
with a microcontroller, and FPGA coprocessors for experimental nodes. The objective of
the survey was to demonstrate how the features of FPGAs, such as configurability, power
consumption, and smart architectures, play a key role in the construction of sensor nodes.
An interesting concept that makes use of the potential and advantages provided by FPGAs
are called hardware-in-the-loop (HIL) simulations; for instance, in [34] an overview of
the engineering advances involving system simulation based on hardware for automotive
applications, power electronic systems, and even for industrial drivers is provided. The
analysis in that work demonstrates that HIL simulations can reduce the effort during the
development and testing of digital systems. On another note, the work described in [35]
demonstrates that FPGAs allow for the implementation of reconfigurable architectures
in filtering applications under acoustic environments for cancelling noise. To achieve
this, the implementation of hardware of flexible finite impulse response (FIR) filters in
adaptive linear element (ADALINE) structures are complemented with dedicated multiply
accumulate (MAC) units and optimized using least mean square (LMS) and recursive least
square (RLS) algorithms. Naturally, the hardware description was optimized, reducing the
number of resources in comparison with other implementations. All of these discussed
works provide the antecedent that hardware architectures can be implemented into FPGAs
for online applications because of their advantages and potential. Therefore, it is desirable
to explore the development of an online tool applied for fault diagnosis in bearings based
on FPGAs.

The contribution of this work is a methodology for developing a dedicated system
based on a field programmable gate array, and it uses stray magnetic flux signals for
the online fault detection of the outer race of rolling bearings in induction motors. The
monitoring system integrates a proprietary FPGA board and a stray magnetic flux triax-
ial sensor (which measures the motor’s surroundings) for performing data acquisition,
processing, and fault detection, making the system nonintrusive. The system performs
the fault diagnosis through statistical analysis by measuring the stray magnetic flux in
the motor’s surroundings (which varies due to the presence of a fault) through a triaxial
sensor. Next, the signal is processed through an FPGA-based proprietary board in which
an embedded processor drives developed IPcores that calculate the statistical features.
After, a set of ranges is defined for the values of the statistical features, and this is used to
indicate the condition of the bearing in the motor, considering from a normal condition
(without a fault) to the highest severity level. Therefore, if the value of a statistical feature
belongs to a specific range, the system will return a diagnosis: whether a fault is present
and severity of the damage in the outer race. The developed system can be seen as a digital
tool, portable, and nonintrusive for industrial applications that takes advantage of the
features of FPGAs for detecting graduality in the faults of bearings. For the validation of
the system, it was subjected to tests on damaged bearings whose failures were represented
by holes drilled in the outer race; but these holes can represent more than a single fault,
for instance, surface breakage and electrical erosion according to the International Orga-
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nization for Standardization’s (ISO) standard. The system developed has the advantages
of being configurable, with an open architecture in hardware and software, portable for
FPGA technologies and vendors, with a high operating frequency, modularity in the cores’
functionalities, and efficiency. The output of the system is adequate from the viewpoint
of an industrial product, because it provides to the final users, clearly and concretely, the
information of the status detected, for instance, if the bearing is healthy or if it has a fault
and its type. However, the information generated by the system can also be used for a
deeper analysis, since the acquired signals can be sent to a PC for graphical analysis and
other types of data processing, if required. The obtained results demonstrate that the
system can provide accurate diagnostics of faults detected in outer races of rolling bearings.

2. Theoretical Foundations

In this section, the theoretical foundations regarding the following topics are described:
(i) failures in rolling bearings, (ii) statistical features, and (iii) proprietary boards based on a
field programmable gate array.

2.1. Failures in Rolling Bearings

Rolling bearings are important elements used for a wide variety of purposes in indus-
try. However, from all of their possible applications, their implementation in induction
motors is the topic of interest of this work, since they are the elements with approximately
40% of the faults in these machines [12,13]. According to [36], bearings are used for trans-
mitting rotating mechanical power in industrial processes through induction machines, and
they must accomplish the exacting demands of having a load-carrying capability, running
accuracy, noise levels, friction and frictional heat, and life and reliability. Despite the effort
in the design and the careful manufacturing of rolling bearings, sometimes their useful
lifespan is not fully achieved. As a complement, there exists a standard that explains and
classifies the damage and failures occurring in the service of rolling bearings made of
standard steels, which is ISO 15243 [37]. From this standard, it is explained that damage
and/or failures of these elements can be the result of different circumstances, such as
several mechanisms operating simultaneously; improper transport, handling, mounting,
and maintenance; faulty manufacturing (of the bearing and adjacent parts); operating
conditions; environmental effects; premature failures; aging; cracking; wearing; and corro-
sion. The consequences are reflected in damage to the elements, economic losses caused by
production stoppages, and maintenance and reparation costs. The general classification of
the failure modes according to ISO 15243 can be observed in Table 1. It must be specified
that the shadowed rows in the table mark the specific failures addressed in this work, which
are electrical erosion and fracture/cracking. Outer race failures are common during the
operation of rolling bearings, and aging and temperature changes can induce fractures and
cracks in the surface. However, current leakage can also cause microspalls in the surface;
this phenomenon is also called pitting [36].

Table 1. Damage and failures in rolling bearings according to ISO 15243 [37].

Failure Mode Failure Subtype

Fatigue Subsurface initiated fatigue
Surface initiated fatigue

Wear
Abrasive wear
Adhesive wear

Corrosion
Moisture corrosion
Frictional corrosion

Excessive current erosion
Electrical erosion 1

Current leakage erosion

Plastic deformation
Overload deformation

Indentations from debris
Forced fracture
Fatigue fractureFracture and cracking 1

Thermal cracking
1 Failure modes addressed in this work.
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2.2. Statistical Features

A methodology for performing adequate monitoring and detection of faults necessarily
requires processing measured signals acquired from the physical system. For such a task, it
is very common to carry out the extraction of features from a signal that provide useful
information related to the looked for faults. There are many techniques that perform
feature extraction; however, in this work, the use of statistical indicators was adopted
because they have proven their effectiveness in the development of methodologies for
monitoring systems [38,39]. Therefore, in Table 2, a summary of the eleven statistical
indicators used in this research is presented. These indicators were obtained directly in
the time domain of the measured signals by the monitoring system based in the FPGA.
It is worth mentioning that the selection of these features was because they can easily
be computed into a hardware structure and provide meaningful information that could
be related to faults through patterns, signatures, profiles, and data distribution (central
tendencies, dispersion, asymmetries, geometry, and form), which are not always directly
visible from the signals.

Table 2. Statistical indicators adopted for this analysis.

Feature Equation

Mean x = 1
N ·∑

N
i=1

(xi) (1)

Mean of absolutes xa = 1
N ·∑

N
i=1
|xi| (2)

Root mean square xrms =

√
1
N ·∑

N
i=1

(xi)
2 (3)

Standard deviation σ =

√
1
N ·∑

N
i=1

(xi − x)2 (4)

Variance σ2 = 1
N ·∑

N
i=1

(xi − x)2 (5)

RMS shape factor SFrms =
xrms
xa

(6)

Maximum value xp = max|xi| (7)

Crest factor xCF =
xp

xrms
(8)

Impulse factor xIF =
xp
xa

(9)

Skewness 1 xskew =
1
N ∑N

i=1(xi−x)3

σ3
(10)

Kurtosis 1 xkurt =
1
N ∑N

i=1(xi−x)4

σ4 (11)

1 High-order moments.

From the table, x is the input data vector from which the statistical features are to be
extracted; N is the total number of data in the sample set; and i is the corresponding ith
sample, which takes values from i = 1, 2, 3, . . . , N.

2.3. Proprietary Board Based on a Field Programmable Gate Array

The FPGA-based proprietary board in which the monitoring system was implemented
has the following features. The proprietary board of 50 × 50 mm dimensions includes one
Spartan 6 XC6SLX45 FPGA running at 48 MHz and integrates the power management,
static random-access memory (RAM), flash storage, and communication ports, such as the
universal serial bus (USB) and universal asynchronous receiver transmitter (UART). The
embedded processor, xQuP01v0, and interconnection in-system bus (ISB) in the FPGA are
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described as follows, both of which are proprietary designs. The processor, xQuP01v0, is a
reduced instruction set computer (RISC) structure of a 16-bit core, with its own instruction
set architecture (ISA) that integrates a hardware floating-point co-processor for simple
precision. The ISB connection is a multiplexed bus protocol for the IPcores interconnection
that the embedded processor uses to communicate with the rest of the modules in the
system, including the processing modules, communication, and data storage. Both the
embedded processor and the ISB are designed to minimize the use of resources in the FPGA,
since their objective is to serve as the controller and communication mechanisms of the
hardware processing modules. The firmware executed in the embedded processor is used
for coordinating the data acquisition, managing the memory, transferring data to the hard-
ware processing modules, and processed data recovery. In addition, the processor is aware
of the communications and the user interface. The system uses this hardware–firmware
division in order to obtain the maximum performance of the hardware with the software’s
flexibility, which takes advantage of the versatility of the FPGA to implement fast process-
ing hardware units and complex control processes implemented in software running on
the embedded processor. This system has proven to be effective in other applications [40].

3. Proposed Fault Detector Based on FPGA and Stray Flux Applied on Bearings

In this section, the methodology followed for developing a dedicated system for
diagnosing faults in rolling bearings (considering outer race faults according to the standard
ISO 15243) of induction motors is described. The monitoring tool is implemented into
an FPGA-based proprietary board making use of stray magnetic flux signals measured
in the motor’s surroundings and by computing statistical indicators. Figure 1 presents a
block diagram of this tool, named the stray magnetic flux fault detector (SMFFD), and the
implementation can be revised in four main blocks: (i) physical system, (ii) stray magnetic
flux triaxial sensor, (iii) statistical module implemented in the FPGA-based proprietary
board, and (iv) user interface. As can be noted from the figure, the last three blocks integrate
the SMFFD system.
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Figure 1. Block diagram of the methodology for detecting faults in the outer race of rolling bearings
through the SMFFD.

3.1. Physical System

From Figure 1, the first block of the proposed methodology is the physical system con-
sisting of the electromechanical coupling between an induction motor and an automotive
alternator used as the load. The coupling is performed through a transmission belt and two
pulleys at the motor and alternator shafts. This way, the system will work under industrial
operating conditions. Inside the motor, the rolling bearing under analysis supports the rotor
frontal shaft, and during the experimental tests, this bearing is substituted by a bearing with
its respective fault condition (healthy and fault conditions). As mentioned in the standard
ISO 15243, faults in bearings are associated to different failure modes [37]. However, in this
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work, only those related with fracture and cracking affecting the outer race of the element
were considered because of their statistical importance as reported in the literature. In
addition, pitting is an outer race affectation due to the fact of electrical erosion, and this
failure mode was also considered. Although these failure modes also consider the inner
race affectations on bearings, this work begins by analyzing only outer race faults, with the
purpose of keeping a simple structure and its online implementation. Nevertheless, the
configurability of the proposed SMFFD could allow to expand its functionality, incorporate
other sensors, compute and process additional data, and implement additional algorithms
with the aim of detecting other types of faults. Thus, three standard steel bearings, model
6203 2RS, manufactured by SKF, with an external diameter of 40 mm, an internal diameter
of 17 mm, and 8 caged balls were prepared for testing the conditions considered, i.e., healthy
state and two fault conditions in the outer race with increasing severity. The preparation
of the bearings is described as follow: The rubber seals were removed from the back of
the bearings and the grease inside was completely cleaned with the help of solvents to
remove any grease residue. Next, with the help of metallic clamps, the bearing was secured
on the bed of a computerized numerical control (CNC) milling machine for drilling holes
on the outer race of each bearing, generating the following fault cases: 3 mm hole (fault
severity: 1) and 5 mm hole (fault severity: 2). Once the holes were drilled, an exhaustive
cleaning was carried out by blowing compressed air into the bearing’s interior; in addition,
some solvents were applied to avoid any type of burr that would prevent their correct
operation. Finally, BATat-3 grease was applied, which is a high-quality bentone adhesive
lubricant designed for the maintenance of bearings operating at high temperatures, and
the rubber seals were placed again. The first experimental test used the healthy bearing,
and posteriorly the bearing under analysis was changed to one with a fault severity of
1 and next by one with a fault severity of 2. The faults induced defined the controlled
experimentations on the physical system, having as advantages the development of rapid
tests, adequate and realistic fault design, and variations in the fault severity over short
times with the desired graduality. For example, the outer race faults were easily and rapidly
induced through a machining process with the desired gradual severity, without the need of
waiting for long periods of time over physical system’s operation until a real failure occurs.
As a counterpart, of course, induced faults cannot reflect the unpredictable ways in which
a real fault may occur and affect the physical system. However, the system can be adjusted
to be validated under tests of bearings with real faults because of its configurability. It must
be clarified that induced faults are real damage to a bearing, and when it is mounted in a
physical system, it causes, in consequence, a behavior different from that described with a
healthy bearing.

3.2. Stray Magnetic Flux Fault Detector

The second block of the proposed methodology, which is the first part of the SMFFD,
is the stray magnetic flux triaxial sensor. Therefore, in order to put the use of the sensor
in context, the following must first be mentioned. During the operation of the induction
motor, using the healthy bearing, a stray magnetic flux is generated; thus, when this bearing
suffers damage, the stray flux has variations in the field magnitude and can be measured.
Consequently, a triaxial sensor measures such variations of the stray flux in the motor’s
surroundings from sensor axes “x”, “y”, and “z”, which for this work corresponded to
the axial, axial–radial, and radial directions, respectively. It is worth mentioning that
the useful information that the stray magnetic flux can provide will depend on factors
such as the element analyzed in the motor, the sensor’s placement, and the type of fault
studied, among others. However, based on previous experimentations and reported works
in the literature [41], axial direction measurement was considered in this work. Finally, the
measured signal was sent to the digital system for data processing.



Electronics 2023, 12, 1924 9 of 18

3.3. Statistical Module Implemented into the FPGA-Based Proprietary Board

The third block of the proposed methodology is the statistical module hardware
architecture of the SMFFD, which uses the data acquired from the stray magnetic flux
sensor to compute the statistical indicators through Equations (1)–(11), as shown in Table 2.
To perform this task, the algorithms required in this module are implemented into the
FPGA-based proprietary board. Therefore, the hierarchical architecture, developed through
hardware description language (HDL), is integrated by the IPcores/soft-cores, such as the
first-in, first-out (FIFO) memory, the datapath, a finite states machine (FSM), and pipeline
registers. It must be said that the proprietary board implements an embedded processor
to control all of the hardware architectures developed for this module and any module
required. This embedded processor is not visible in the block diagram in Figure 1, but
its function is to drive the data acquisition from the stray magnetic flux sensor, statistical
module, and user interface (diagnostic visualization and serial transmission of data). For its
part, the FIFO memory stores the input data vector (Din) of the measured signal to speed
up the calculation. Meanwhile, the FSM drives the operation of the datapath module and
regulates the input of the data from the FIFO. Hence, the embedded processor executes
the following sequence, loads the input data to the FIFO memory, defines the operation
that the datapath must perform through the OPC command (statistical feature required),
and starts the operation process by means of a pulse in the STR terminal. Once the module
finishes, it generates a pulse on the RDY terminal and the output data (i.e., result) can be
read on terminals Do1 and Do2. In summary, the FSM has the purpose of synchronizing all
calculations in case extra steps are required to deliver the expected result.

The main IPcore of the hardware architecture is the datapath, because the statistical
features are obtained through this module. Figure 2 shows a simplified diagram of the
internal structure of this function, which consists of four main stages: subtraction, powers,
accumulator, and adjust. The subtraction stage determines whether the mean, x, must
be subtracted from the input, xi, or if the absolute value, |xi|, is taken. The powers stage
determines the power to which the result of the previous operation is raised, and the power
values are 1, 2, 3, and 4. The accumulator stage performs the accumulation of the result of
the powers module. For the case of the 1

N divisor, this operation is executed as a shift in the
fixed-point representation, since N is always considered as an exact power of 2. The adjust
stage carries out the rounding and saturation, if applicable, of the accumulated value, and
it is the output y1; in addition, if necessary, it applies the square root of the rounded result,
and it is the output y2. It is important to mention that for every stage, pipeline registers are
used with the objective of balancing the latency lines of the computational process.
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Figure 2. General hardware architecture of the datapath IPcore.

All operations in the datapath IPcore are performed in a fixed-point format, which is
specified in the presynthesis during IPcore instantiation, where the numerical representa-
tions are adjusted automatically during the elaboration process. In general, this hardware
architecture requires two full word multipliers used in the powers stage and an additional
one used by the square root unit, which is carried out through a successive approximations
register (SAR). In addition, several adders/subtractors are required in the initial stage:
accumulation and rounding. Moreover, another register is used for the accumulator and
several multiplexers for routing the data flow. The implementation of the datapath consid-
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ers the latency balance, where each combinational operation is isolated from the next by a
pipeline register, which controls the combinational delays within the FPGA’s structure and
maximizes the operation’s frequency. For the multipliers, a latency of 4 clock cycles was
considered to maintain data coherence, and balancing registers were placed to synchronize
the data paths parallel to the multipliers. Finally, for illustrative purposes and for the sake
of not extending too much the explanation of the obtention of the statistical indicators, only
two calculus chains are described: root mean square and kurtosis.

Therefore, by taking as the basis the general hardware structure in Figure 2 to calculate
the root mean square and using Equation (3) in Table 2, Figure 3 shows the data flow,
marked in red, selected by the FSM through the OPC command to obtain this value. From
the figure, the calculus chain starts by subtracting the mean, x, to the input, xi, and this
value is then raised to the power of 2, the result is accumulated and divided by N, the
square root is obtained from the rounded value, and the output is in terminal y2. In this
case, the powers stage considers a latency of 8 cycles to maintain datapath synchronization.
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Figure 3. Calculus chain to obtain the root mean square of Equation (3).

Similarly, using the previous example and considering the general diagram in Figure 2
and Equation (11) in the Table 2 to calculate the kurtosis, four steps are necessary: cal-
culation of the mean, calculation of the standard deviation, calculation of the numerator
of the kurtosis, and calculation of the kurtosis. Figure 4 shows the data flow, marked in
red, to calculate the kurtosis numerator. For this purpose, two multipliers are used in the
powers stage to obtain the fourth power term. The final kurtosis value is calculated through
the firmware of the floating-point co-processor, in the hardware, by dividing the kurtosis
numerator by the standard deviation raised to a power of 4.
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3.4. User Interface

The last block of the proposed methodology is the user interface that presents a
visualization of the diagnosis results through a liquid crystal display (LCD). In this LCD
screen are displayed the statistical indicators obtained by the SMFFD system. Only those
indicators that can provide useful information about the faults detected are displayed on
the screen. It is worth mentioning that the user can extract the measured signal and the
statistical indicators through an additional port of serial communication, since the system
has IPcores to drive a Bluetooth module.
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4. Results and Discussion
4.1. Experimental Setup

The experimental test bench is an electromechanical system consisting of the coupling
between an induction motor and an automotive alternator. Figure 5a presents a picture of
the experimental test bench. The characteristics of the induction machine are as follows:
manufactured by WEG, triphasic motor, one pair of poles, case type A.E. 00136AP3E48TCT,
rated power of 740 W, nominal speed of 3355 RPM, input voltage of 210-230/460 Vac, and
operating frequency of 50/60 Hz. For its part, an automotive alternator was used as the
mechanical load entailing approximately 30% of the motor capacity. All elements tested
were standard steel bearings manufactured by SKF, model 6203 2RS, with an external
diameter of 40 mm, internal diameter of 17 mm, and eight caged balls. The bearings’
preparation was described previously in Section 2. Figure 5b presents pictures of the
bearings used after such preparation in the three conditions analyzed: healthy bearing
and two bearings with severity levels 1 (3 mm hole) and 2 (5 mm hole). As mentioned,
inside the motor the bearing under analysis supports the rotor frontal shaft, and during
the experimental tests, this bearing is substituted by the bearings with their respective
defined condition. According to the standard ISO 15243, these induced faults can be
categorized as fractures and cracks but also as pitting phenomenon caused by electrical
erosion. For the experimental trials, the electromechanical system was driven through
a variable frequency driver (VFD) feeding the motor with a start ramp of 10 s, which
was previously programmed, that reached a final operating frequency of 50 Hz. Taking
into consideration this ramp, every trial lasted 40 s, with the first 10 s corresponding
to the transient response and the last 30 s to the steady state. For the data processing
in the SMFFD, only the steady state was considered. This way, a total of 15 runs per
bearing condition (healthy state and two outer race severities) were carried out, generating
15 runs × 3 conditions = 45 data sets.
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Figure 5. Experimental setup: (a) test bench; (b) rolling bearings conditions. The considered elements
were the (1) induction motor, (2) alternator as the motor load, (3) output shaft pulleys, (4) transmission
belt, (5) location of the bearing under analysis in the frontal support of the shaft, (6) bearing with a
healthy outer race, (7) bearing with a 3 mm hole in the outer race, and (8) bearing with a 5 mm hole
in the outer race.

4.2. Stray Magnetic Flux Fault Detector

Regarding this tool developed, Figure 6a presents the physical SMFFD system for
diagnosing bearings in induction motors. From the figure, it can be noted that in the final
package’s presentation, only the LCD screen is visible to the user. A sticker indicates the
way of placing the SMFFD in respect to the motor for a correct analysis; as previously
mentioned, the axial flux (“x”-axis) was of interest [41]. Internally, as shown in Figure 6b,
the box contains the FPGA-based proprietary board, Bluetooth module, power source,
liquid crystal display, and triaxial stray magnetic flux sensor. For its part, the triaxial sensor
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for measuring the stray magnetic flux is the board BM1422AGMV-EVK-001 from ROHM
Semiconductor manufacturer, and it was installed in the SMFFD box making the “x”-, “y”-,
and “z”-axes coincident with the axial, axial–radial, and radial directions of the stray flux
generated by the motor, respectively. These sensors had the following features: bandwidth
of 1 kHz, I2C interface, sensitivity of 0.042 µT/LSB, sensing range of ±1200 µT, and supply
voltage of 1.7–3.6 V. The proprietary board characteristics were described previously in
Section 3. In relation to the FPGA, the proposed IPcores were implemented as hardware
processing units: inter-integrated circuit (I2C) communication for acquiring the data of the
stray magnetic flux sensor, statistical module, LCD driver, communication port UART, and
embedded system that comprises the processor, memory driver, ISB connection, and USB
interface of the programming. Here, the firmware controls all modules for implementing
fault detection through the stray magnetic flux.
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Figure 6. FPGA-based proprietary SMFD: (a) physical system; (b) hardware components. The
hardware components of the SMFD are the (1) FPGA-based proprietary board, (2) Bluetooth module,
(3) power source, (4) liquid crystal display, and (5) proprietary triaxial stray magnetic flux sensor.

The SMFFD performed the data acquisition from the sensor at a sampling frequency
of 1 kHz, and the data of interest were in the steady state of the machine, as previously
mentioned, in the last 30 s of each trial. For the computation of the statistical indicators
time windows of 4086 data points were taken with overlaps between the windows of 50%.
Therefore, every statistical indicator was obtained and updated approximately every two
seconds during the online monitoring process. In this way, 29 indicators were generated
per trial, 345 indicators per bearing condition, and a total of 1305 indicators for all three
conditions, which were used for validating the diagnosis. The SMFFD monitoring tool
indicates in the LCD the information regarding the final diagnosis through the values of
the statistical indicators; for instance, on the screen two indicators per row are displayed.
The fault severity is known according to a defined range of values to which the statistical
indicators belong. Additionally, the measured signal and the statistical indicators can be
extracted by the user through serial transmission of the Bluetooth module.

In summary, the Spartan 6 XC6SLX45 is a cost-optimized FPGA, according to the
manufacturer, and the hardware resources used by the SMFFD system are presented in
Table 3. The resources used consider all of the modules described previously (embedded
processor, statistical module, drives for LCD and Bluetooth, etc.). From the table, the column
“Logic utilization” refers to the specific hardware elements in the FPGA; the column “Used”
indicates the exact number of implemented elements; the column “Available” indicates
the total available of each type of element; and the column “Utilization” represents the
percentage of elements used in respect to the total available. Finally, the tool for synthetizing
the project was Xilinx ISE 14.7, using the Ubuntu 22.04 operating system.
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Table 3. Hardware resources of the Spartan 6 XC6SLX45 FPGA used by the SMFFD system.

Logic Utilization Used Available Utilization

Number of slice registers 5401 54,576 9%
Number of slice look up tables (LUTs) 7367 27,288 26%
Number of bonded input–output blocks (IOBs) 103 218 47%
Number of block random access memory (RAM)/the
first-in, first-out (FIFO) 17 116 14%

Number of digital signal processing multipliers
(DSP48A1s) 14 58 24%

In the case of IOBs, this refers to the physical terminals of the device, where most are
IOs connected to external RAM (40 pins), and there are general purpose IOs (16 pins), the
rest are connected to the LCD, sensor, communication ports, etc. In general, it can be said
that a quarter of the device’s resources are used.

4.3. Results of the Fault Diagnosis through the SMFFD

In the next paragraphs, the fault diagnosis through the SMFFD is described. For
performing the diagnosis task, thresholds must be defined as follows: The statistical
features’ values vary in a range according to the bearing’s condition in the motor; for
instance, the motor with a bearing fault and with a severity level will cause variations in
the statistical values different from those when the motor bearing is healthy. Therefore,
after several experimental trials, it was found that from the eleven statistical indicators
only a few of them present meaningful information related to the fault and its severity;
the rest have incipient variations in their values. For this work, the statistical indicators of
the RMS and kurtosis provided the best information related to the fault and its severity.
Thus, the RMS was used to provide a threshold of whether the kurtosis data were valid,
because if the RMS was out of range, then the kurtosis was saturated. This range, which
was experimentally defined, established the RMS amplitude between 150 and 250, which
corresponds to measurements of the sensor between 5 µT and 10 µT, respectively. Thus,
if the kurtosis values fell into this range, then data were valid, but for values outside of
this range, the kurtosis would not be valid. Meanwhile, the kurtosis was used for defining
a set of ranges for indicating the bearing’s condition. To obtain these kurtosis ranges, an
independently short experimentation was carried out as follows: The stray magnetic flux
signal was acquired in the time domain (1 kHz sampling frequency) at the steady state and
a total of 140 time windows were used, each one of 4 s in length, for every bearing condition
(healthy, 3 mm hole, and 5 mm hole). Therefore, 140 windows per three conditions resulted
in 420 windows that were used to obtain the kurtosis boxplots for differentiating every
bearing condition, see Figure 7.
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Through the boxplots in Figure 7, it can be noted that on the “x”-axis the labels
“HLT”, “3 mm”, and “5 mm” represent the bearing conditions healthy, severity 1, and
severity 2, respectively. On the “y”-axis are the amplitude values that every boxplot spans.
Congruently, the ranges that determine the severity of the faults are summarized in Table 4.

Table 4. Ranges for condition detection according to the kurtosis statistical indicator.

Bearing Condition Kurtosis Range

Healthy state (HLT) [2.2–2.5]
Fault severity 1—Hole of 3 mm diameter [1.5–1.9]
Fault severity 2—Hole of 5 mm diameter [1.3–1.5]

For the sake of validating the monitoring system’s functionality, the results of the
three analyzed conditions are presented. Figure 8a shows an image of the SMFFD system
performing online monitoring and diagnosis of the induction motor with a healthy state
bearing (element without problems in the outer race) mounted in the rotor’s frontal shaft.
From the picture, it can be observed that the placement of the SMFFD in relation to the
induction motor was nonintrusive, because the SMFFD stayed in the surroundings of the
physical system. Meanwhile, Figure 8b presents a digital zoom in on the SMFFD focused
on the LCD screen to better appreciate the results obtained from the fault diagnosis. From
this zoom, the statistical indicators shown to the user are the RMS and kurtosis, having
magnitudes of 155.595 (kurtosis is a valid value) and 2.5, respectively. Therefore, by taking
the value of the kurtosis and comparing it with the ranges in Table 4, the diagnosis is a
healthy bearing. The letter “A” that appears on the LCD screen next to the RMS value is not
an indication of units, instead this letter indicates that the SMFFD system is performing the
analysis. Additionally, the letter “V” appears next to the value of the kurtosis, and this letter
indicates that a fault condition was detected. It is worth highlighting, again, the practicality
of the monitoring tool because it has the following advantages: it is a nonintrusive system
(the sensor in the SMFFD measures the stray magnetic flux in the motor’s surroundings),
the fault diagnosis is completely online, the system is portable, its reconfigurability, and
the functionality expansion.
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Figure 8. (a) SMFFD performing an online fault diagnosis on the induction motor with the healthy
bearing; (b) observing the results in detail through the digital zoom on the LCD screen.

In another case, Figure 9a presents a captured image of the SMFFD system performing
online monitoring and diagnosis of the induction motor with a bearing, mounted in the
rotor’s frontal shaft, having the severity of 1 for an outer race fault (hole of 3 mm). At the
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same time, Figure 9b presents a digital zoom of the LCD screen for this case, indicating
an RMS with a value of 233.105 (kurtosis is a valid value) and the kurtosis with a value
of 1.545. Hence, by taking the value of the kurtosis and comparing it with the ranges in
Table 4, the diagnosis is effectively the outer race fault on the bearing with a hole of 3 mm.
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Figure 9. (a) SMFFD performing an online fault diagnosis on the induction motor with the bearing
having a fault severity of 1 (3 mm); (b) observing the results in detail through the digital zoom of the
LCD screen.

Figure 10a depicts a photograph of the SMFFD system performing online monitoring
and diagnosis of the induction motor with a bearing, mounted in the rotor’s frontal shaft,
having the severity of 2 for an outer race fault (hole of 5 mm). Figure 10b shows a digital
zoom on the screen of the tool indicating magnitudes for the RMS of 163.859 (kurtosis is a
valid value) and a magnitude for the kurtosis of 1.333. Therefore, by taking the value of the
kurtosis and comparing it with the ranges in Table 4, the diagnosis is an outer race fault on
the bearing with a hole of 5 mm.
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5. Conclusions

This work presents a methodology for developing an online monitoring tool for
diagnosing outer race faults on bearings in induction motors. The monitoring tool, named
the stray magnetic flux fault detector, was developed into an FPGA-based proprietary
board, performing an analysis on the data from the acquired stray magnetic flux signal.
The are several advantages to using an FPGA-based solution, for example, the design in the
hardware for faster data processing, concurrent execution of the IPcores, configurability,
portability, functionality expansion according to the application requirements, and high
operational frequency, among others. The practicality of the developed tool is observed
in its compact design following an all-in-one philosophy, which means that the system
includes the FPGA, an embedded processor, the sensor, the user interface, and the power
source. Therefore, the user must only put the system near to the induction motor that needs
to be analyzed, and the online fault diagnosis will be performed. This is achieved thanks to
the sensor integrated into the system’s box, thus measuring the stray magnetic flux from
three directions (axial, radial, and axial–radial) in the motor’s surroundings, making the
system nonintrusive. Now, in relation to the FPGA potential, the implementation of the
IPcore for the calculation of the statistical indicators demonstrates the powerfulness of the
programmable logic device, because the system acquires the physical signal and extracts
the features related to the faults. As mentioned, the selection of the statistical features
is because they are relatively easy to compute and can provide nonvisible information
about the data distribution. In this sense, the calculation of the statistical indicators was
performed through a generalized hardware architecture in only four stages. It is worth
mentioning the potential of computing diverse statistical indicators, for this work from
the set of statistical features, two of which became meaningful in the final diagnosis. The
RMS validates the kurtosis value and this allows for the differentiation of the bearing
conditions; thus, the system is based on these two features. However, if other types of
faults need to be analyzed, the rest of the statistical features could be helpful, since the
faults could be reflected as different symptoms in the physical system and, consequently,
in the acquired data. Thus, the calculation of several statistical indicators is important,
because they could be useful for the analysis of other types of faults. In addition, in future
work other nonstatistical indicators can be computed and explored for developing fault
detection methodologies. Finally, as mentioned, the developed system has an interesting
and important characteristic which is the configurability allowing for the inclusion of extra
IPcores, allowing the system to be adjusted as required. For this reason, the system is
able to be expanded in functionality and with the possibility of being explored for other
monitoring applications, because other types of sensors can be added and other hardware
structures can be described according to an application’s requirements.
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