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A B S T R A C T   

Digital surface models (DSMs) are crucial in providing accurate urban flood hazard maps. The ubiquitous 
availability of LiDAR data (where accessible) makes constructing geometrically sound DSMs feasible. However, 
little attention has been paid to developing approaches for producing geometrically consistent DSMs. Herein is 
described an application-driven procedure for creating a geometrically robust DSM (DSM1). Two further DSMs 
were created, one for portraying streets using breaklines as ancillary information (DSM2) and the other through 
direct interpolation of LiDAR data (DSM3). The geometrical correctness and vertical accuracy of these DSMs 
were examined qualitatively and quantitatively by plotting longitudinal profiles and cross-sections onto major 
runoff pathways and determining statistical error. The effect of these DSMs’ geometric consistency on flood 
hazard maps was also evaluated. For this, hydraulic outputs from DSM1 were used as a benchmark to compare 
hydraulic outputs from DSM2 and DSM3. This comparison was conducted at two spatial resolutions: i) at the 
total area flooded using the F statistic; and ii) at the pixel level by employing global indices and category-level 
indices extracted from a confusion matrix. Our findings revealed that: 1) DSM1 defined the most geometrically 
coherent configurations for runoff pathways; 2) in urban areas with the most densely packed streets and 
buildings, DSM2 and particularly DSM3 featured the most unrealistic geometric representations of the urban 
domain, displaying fake water flow barriers and lower than real runoff pathway cross-sections; and 3) the 
geometric quality of the DSMs created had a significant impact on flood hazard maps reliability (i.e., the 
disagreement in flood hazard categories between DSM2 and DSM3 and DSM1 varied from 28% to 82%). These 
findings can be very valuable in achieving further reductions and better flood risk management.   

1. Introduction 

Between 2000 and 2019, 7348 natural hazard-related disasters 
caused 1.23 million deaths and USD 2.97 trillion in economic losses, 
affecting more than 4 billion people worldwide (UNDRR, 2020). During 
this period, climate-related disasters increased, with floods accounting 
for 44 % of all disasters (WMO, 2021). Flood risk, on the other hand, is 
expected to rise in the coming decades owing to climate change-induced 
increases in the frequency and magnitude of floods, along with the 
projected global growth of the exposed population and assets (Kundze
wicz et al., 2014). Accordingly, flood risk mitigation is deemed to be one 
of the key societal challenges to be addressed during this century 
(O’Donnell and Thorne, 2020). 

Coping with this challenge requires good urban flood risk 

management and in-depth knowledge of flood hazard along river basins 
and coastal areas (Tsakiris, 2014; Pasquier et al., 2019). Such an 
appraisal is determined by the type of flooding (e.g., fluvial, flash floods, 
or pluvial) and the probability or return period of the flood event to be 
assessed. As an example, the EU Floods Directive considers the following 
scenarios: i) low probability, or extreme events (500-year flood); ii) 
medium probability (100-year flood); and iii) high probability, where 
appropriate (10-year flood). Further, flood magnitude is considered 
(Prinos et al., 2008; Mudashiru et al., 2021). In the context outlined 
above, flood hazard maps are essential for reporting vulnerabilities and 
risks (Masood and Takeuchi, 2012). This mapping also facilitates the 
implementation of successful risk management strategies based on 
preventive and preparedness actions to avoid, minimize, transfer, share, 
or accept flood hazards (di Baldassarre et al., 2009; Surminski and 

* Corresponding author. 
E-mail addresses: josemaria.bodoque@uclm.es (J.M. Bodoque), estefania.aroca@uclm.es (E. Aroca-Jiménez), meguibar@hma.upv.es (M.Á. Eguibar), juan. 
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Thieken, 2017). 
Flood hazard assessment is a complex process that requires deter

mining its magnitude. Ideally, this encompasses the specification of 
flood depth, flood wave velocity, its duration, and sediment and debris 
loading (Scawthorn et al., 2006). In practice, the above analysis is 
simplified by considering flood extent, water depth or, eventually, a 
combination of the two parameters above and flow velocity (van Alphen 
et al., 2009). In urban areas, hazard assessment and cartographic 
depiction rely on two-dimensional (2D) hydrodynamic models, since in 
this environment it is not feasible to assume a one-dimensional (1D) flow 
(Vojinovic and Tutulic, 2009). Upstream boundary conditions of 2D 
hydrodynamic models are generally provided by flow quantiles estab
lished through hydrological modelling, or flood frequency analysis, 
depending on the available data. Other mandatory inputs are land cover, 
to estimate roughness, and topography portrayed as digital surface 
models (DSMs), which capture both natural and built/artificial urban 
environment features (Bodoque et al., 2016). 

DSM topographic data affects 2D hydrodynamic modelling because it 
influences the urban geometric layout of structured or non-structured 
meshes utilized for numerical computations (Yalcin, 2020). The avail
ability of LiDAR data since the end of the last century offers a fast and 
cost-effective way to get detailed DSMs of urban areas (Priestnall et al., 
2000). LiDAR data, by virtue of the very high density of recorded points, 
allows modelling, and flood mapping with a horizontal spatial resolu
tion of 1 to 2 m and a Z-precision of a few decimetres (Costabile et al., 
2015). However, producing DSMs from LiDAR data for flood hazard 
modelling and mapping is not straightforward. This is because LiDAR 
data alone cannot sufficiently capture topographic breaks, especially in 
complicated geometric configurations, such as urban areas (Turner 
et al., 2013). 

To make the above possible, LiDAR data must be coupled with 3D 
breaklines that complement mass points, reinforcing topographic 
breakdowns inside triangulated irregular networks, TINs (Liu, 2008). 
The best way to identify breaklines is to employ local knowledge, 
orthophotos, and cadastral maps as data sources and GIS tools to handle 
this information systematically (Bodoque et al., 2016). Disaggregating 
LiDAR data into ground (terrain) and non-ground (man-made struc
tures) is another important stage in creating urban DSMs. This stage is 
challenging since the algorithms used to classify LiDAR data are not 
totally reliable. Consequently, elements such as cars, canopies, or 
flowerpots are occasionally misclassified as ground, causing DSMs to 
block water flow (Noh et al., 2018). 

Few studies have focused on the need for geometrically correct DSMs 
to generate reliable flood hazard maps that may subsequently be 
employed in urban flood risk management. To the best of our knowl
edge, there are hardly any studies on how to develop geometrically 
sound urban DSMs that display preferential drainage pathways and 
urban features that obstruct water flow (i.e., buildings and walls). In this 
regard, the papers by Meesuk et al. (2015) and Noh et al. (2018) serve as 
examples. In addition, there does not seem to be any research examining 
the effects of using DSMs that are not geometrically robust on the hy
draulic performance of flooded areas in terms of water depth and flow 
velocity, which commonly dictate the layout of flood hazard maps. 

To fill this knowledge gap, this study aims to evaluate how the 
geometric consistency of DSMs obtained from LiDAR data impacts on 
flood hazard outcomes resulting from 2D hydrodynamic modelling. To 
begin, a procedure for obtaining geometrically sound urban DSMs was 
devised. The resulting DSM (henceforth denoted as DSM1) was 
compared to two other DSMs (henceforth designated as DSM2 and 
DSM3) built under different assumptions. This was done to determine 
the differences in geometric configuration and flood hazard outcomes 
deployed by each DSM. To test geometric soundness, longitudinal pro
files and cross-sections were created for the preferential drainage 
pathways during flooding (i.e., understood here as the ‘streets-buildings’ 
system). Vertical accuracy was also measured. This was done by 
computing discrepancies between DSM pixel values and 2,088 points 

taken using Differential Global Positioning System (DGPS) with a ver
tical accuracy lower than the LiDAR data used here. In addition, it was 
assessed how the geometric imprecision of DSMs influences the mapping 
of flood hazard. For this purpose, hydraulic outputs from DSM1 were 
utilized as a benchmark to compare with DSM2 and DSM3 outputs. This 
comparison was conducted by calculating the F statistic (Cook and 
Merwade, 2009) and global and category-level indices through a 
confusion matrix (Congalton, 1991; Congalton and Green, 1999). 

2. Study site and data employed 

Navaluenga is located in central Spain, on the banks of the Alberche 
River, between the Sierra del Valle (Gredos’s eastern mountain range) 
and the Sierra de la Paramera (40◦24′30′ ′ N; 4◦42′17′ ′ W; 761 m.a.s.l., 
Fig. 1). 

Navaluenga has 2135 inhabitants (data for 2021), however, this 
figure can rise to 20,000 during the summer. 4,311 dwellings are esti
mated, with 3392 being second homes. The Alberche River flows 70 km 
from 1,800 m.a.s.l. to Navaluenga. This river drains 717 km2 up to this 
village, with a time of concentration (Tc) of 8.5 h. Its hydrological 
regime is hardly affected by human intervention, as there is no impor
tant hydraulic infrastructure (e.g., reservoirs) upstream of Navaluenga 
that regulates river water levels or the variability of river flows. Within 
Navaluenga and its surroundings, several torrents flow into the Alberche 
River. Among these, the Chorrerón Stream (Tc ≈ 3 h) stands out. It is an 
ephemeral stream, completely channelled in its urban reach, which 
crosses Navaluenga perpendicularly from north to south (Fig. 1). Since 
at least the late Middle Ages, Navaluenga has been flooded by the 
Alberche river and the Chorrerón Stream. The 1990 s and 2000 s wit
nessed the most recent floods, which caused economic losses and en
dangered locals (Díez-Herrero, 2001). 

The DSMs used here were built from the LiDAR data provided by the 
National Geographic Institute of Spain (IGN). Raw LiDAR data were 
collected by airborne LiDAR systems with a density of 0.5 points.m− 2 

and an altimetric precision (Z) of 15 cm. The reference system for this 
topographic dataset is the ETRS89/UTM zone 30 N (compatible with 
WGS 84). Using 2,088 differential GPS measurements provided by the 
Spanish General Directorate of Cadastre (SEC), the elevation accuracy of 
the DSMs was tested. 

The study area was divided into 4 zones (Fig. 1): i) the total area of 
the study site, which includes the urban and peri-urban areas of Naval
uenga (zone 1); ii) the whole urban and peri-urban floodable zone (zone 
2); iii) the streets included within the urban floodable zone (zone 3); and 
iv) the floodable urban area with a higher density of streets and build
ings (zone 4). Geometric consistency and elevation accuracy of DSMs 
were investigated in zones 1, 2, 3, and 4. In zones 2, 3 and 4, the results 
of hydraulic and flood hazards from each DSM were examined and 
compared. 

3. Methodology 

The methodological approach deployed here was divided into four 
stages (Fig. 2): (1) developing geometrically reliable DSMs for urban 
areas. This section provides a detailed description of the procedure 
designed to obtain a geometrically reliable DSM (DSM1), as well as the 
way in which the DSMs (DSM2 and DSM3) to be compared with DSM1 
were obtained; (2) evaluation of the suitability of DSMs as topographic 
input to hydraulic models. The qualitative tools used to evaluate the 
geometric correctness of the DSMs were detailed, as was the statistical 
approach adopted to evaluate their vertical accuracy; (3) 2D hydraulic 
modelling and flood hazard analysis. It explains how the 2D hydrody
namic model was designed and implemented, and the approach 
employed to obtain flood hazard maps; and (4) comparison of flood 
hazard maps. The quantitative indicators used to compare the flood 
hazard maps displayed by each DSM, both at the level of the total 
flooded area and the flood hazard category displayed in each pixel, are 
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Fig. 1. Location of the case study. This figure depicts the zones into which the case study was subdivided to achieve the objectives of the research conducted here.  

Fig. 2. Sequence of stages and sub-stages comprising the methodological strategy adopted for this research.  
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described. 

3.1. Obtaining geometrically reliable DSMs for urban areas 

When river floods affect urban areas, streets are the main runoff 
pathways. Accordingly, LiDAR point cloud processing was mainly 
focused on these areas. The first task was to filter LiDAR data to select 
those points that were automatically classified by the IGN as ground 
points. In complex urban settings, outdoor furniture (e.g., flowerpots, 
awnings) and other elements such as vehicles can be mistakenly cate
gorized as ground points, which generate false barriers to the water flow 
once DSM is generated. To remove these “fake elements”, two filters 
were sequentially applied: i) points with height differences of more than 
0.30 m above the average were deleted; ii) points with slope differences 
of more than 10 % compared to the average were also omitted. Both 
filters were applied, taking different buffers into account. Specifically, 2 
m were estimated for the filter based on the difference in height and 
between 1 and 5 m for the filter depending on slope. 

For portraying streets, buildings were deemed to represent their 
outside limits. Therefore, the SEC-provided block layer was converted to 
points. The natural neighbour’s interpolation approach was then used to 
get elevation from the LiDAR ground data for the points on the border of 
the block layer. As a frame for the street representation, the IGN- 
provided centre axis of each street was employed. Every 2 m, parallel 
lines to these central axes were drawn and converted into points. 
Similarly, to what was done with the block layer, the LiDAR ground data 
was used to assign elevation values to these points. To appropriately 
depict dwellings, “buildings”-designated LiDAR data points were 
retrieved. These points were then clipped using the SEC-provided 
building layer. As a proxy for roof height, the maximum point eleva
tion per building was then extracted. The collected points were linked to 
the 3D points of the buildings, allowing for their accurate geometrical 
depiction. 

Regarding the Alberche river, riverbanks were manually digitalized 
using the available orthophoto as a reference. Bathymetry was also 
collected through a field survey. To this end, a differential GPS (Trimble 
5700) was used to obtain an average density of 0.3 points.m− 2. 
Regarding the Chorrerón Stream, streambanks were manually digita
lized. Additionally, a couple of lines were drawn in parallel to the 
streambanks, matching the streambed. LiDAR points were used to assign 
surface elevation using the natural neighbour’s interpolation method. 

Once all topographic data were filtered and processed, a TIN was 
created. So, LiDAR and bathymetry points were included as mass points, 
whereas line features (e.g., riverbanks, street boundaries) were added as 
breaklines (hard lines) to enforce slope breaks in the TIN (Arrighi and 
Campo, 2019). At this phase, manual adjustments were also made to the 
TIN to integrate fieldwork-identified structures (e.g., walls, levees, em
bankments) not detected by the original LiDAR data. Errors detected in 
the TIN were also fixed. Last, a DSM was created (DSM1) by linearly 
interpolating the TIN and using a 2-metre cell size to match the point 
density of the original LiDAR data. Additionally, two other DSMs were 
produced. In the first (DSM 2), streets were portrayed by assigning 
breaklines using the average LAS z-value to produce 3D features. The 
second (DSM3), was obtained by direct interpolation of LiDAR data. This 
was done to determine how different the geometry exhibited by DSM2 
and DSM3 is from that of DSM1, as well as to quantitatively define how 
the differences in the geometric arrangement of the DSMs affect the 
flood hazard maps that each DSM deploys. DSM1, DSM2 and DSM3 have 
been made freely available via the open-access repository Zenodo: 
https://doi.org/10.5281/zenodo.5171778 (Aroca-Jiménez et al., 2021). 

3.2. Evaluation of the suitability of DSMs as topographic input to 
hydraulic models 

The suitability of DSMs as topographic input to 2D hydrodynamic 
modelling was tested using both qualitative and quantitative criteria, 

with the latter based on statistical sampling error approaches focused on 
vertical accuracy. In the first approach, the geometric consistency of 
streets and channelling along the urban reach of the Chorrerón Stream 
was visually checked for each DSM. In a second phase, the conclusions of 
the previous analysis were corroborated by the layout of longitudinal 
profiles and cross-sections of the ’streets-buildings’ system and the 
Chorrerón Stream. 

A Differential Global Positioning System (dGPS) dataset covering 
Navaluenga and the area around it (zone 1) was used to test the vertical 
accuracy of DSMs. 2,088 points with vertical and horizontal accuracies 
<0.15 m were used to evaluate DSM vertical accuracy. For the other 
zones (all included within zone 1), the point samples were 546 (zone 2), 
209 (zone 3), and 55 (zone 4). Vertical accuracy was then evaluated by 
computing the difference between the pixel values of the DSMs and the 
corresponding dGPS measurements. 

The statistical distribution of errors throughout the four zones was 
captured by plotting histograms normalized by their respective means so 
the standard deviation could be visually contrasted. The error sample 
was further described using metrics of centrality (mean and median), 
dispersion (standard deviation and range) and measures of shape (kur
tosis and skewness). Vertical accuracy was determined using the root 
mean square error (RMSE) and the mean absolute error (MAE). The 
coefficient of determination (R2) was also used to assess the DSMs’ 
goodness-of-fit to the sample of dGPS z-values. 

3.3. 2D hydraulic modelling and flood hazard analysis 

Hydraulic modelling was performed using the Iber two-dimensional 
hydrodynamic model (Bladé et al., 2014). The computational mesh was 
generated employing the RTIN (Regular Triangular Irregular Network) 
method, with maximum and minimum triangle lengths of 2 m and 1 m, 
respectively. Once produced, the node height of the mesh elements was 
adjusted from the DSMs. To do so, a threshold tolerance of 0.1 m was set, 
which is consistent with the altimetric accuracy of the LiDAR data used 
(0.15 m). 

Upstream boundary conditions for the Alberche River and the 
Chorrerón Stream assumed steady-state subcritical flow conditions for 
the 500- and 25-year floods (Bodoque et al., 2016; Bodoque et al., 2020; 
Díez-Herrero, 2001). As a downstream boundary condition, it used a 
subcritical regime. The discharges used were 2006 m3.s− 1 (500-year 
flood) and 856 m3.s− 1 (25-year flood) for the Alberche River, and 167 
m3.s− 1 (500-year flood) and 10 m3.s− 1 (25-year flood) for the Chorrerón 
Stream. The roughness coefficient was estimated from national land 
cover mapping at a scale of 1:25,000, and then allocated, in accordance 
with Chow (1959) the equivalent value of Manning’s n to each land 
use/land cover unit. 

Culverts and weirs operating in the study area (Fig. 3) were 
geometrically characterized and included as internal conditions in the 
2D hydrodynamic model. The culverts’ start and end locations, as well 
as their dimensions (width and height for rectangular culverts and 
diameter for circular culverts), were examined. All culverts were given a 
Manning’s n value of 0.018. A weir with a discharge coefficient of 1.7 
was deemed indicative of the Alberche River’s urban reach. Also 
included in the computational mesh were the two bridges present in the 
reach (Fig. 3). Their geometry was replicated by subdividing the mesh. 
First, the coordinates of the upper chords’ upstream ends and deck width 
were established. The relative coordinates and top and bottom eleva
tions of the decks, as well as the relative location and width (crosswise to 
the flow direction) of the bridge piers, were to be determined next. 
Furthermore, the model was only affected by the bridge piles and 
abutments if the water level did not reach the bridge deck. When the 
deck height was exceeded, the coefficients for free or submerged pres
sure flow, as well as the weir coefficients, with values of 0.6, 0.8, and 
1.7, were added. 

Before launching the simulation, a second-order numerical approach 
was considered (Cea and Bladé, 2015). A Courant-Friedrichs-Lewy 
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number of 0.45 was employed to achieve a stable numerical scheme. The 
wet-dry limit, which is the depth in metres below which an element is 
considered dry and is therefore left out of the hydrodynamic computa
tion, was set at 0.01 m. 

A flood hazard analysis was given by the product of water depth and 
velocity rasters derived from the 2D hydrodynamic modelling (Díez- 
Herrero et al., 2009). In this research, the following flood hazard cate
gories were considered: i) high flood hazard (HFH); ii) medium flood 
hazard (MFH); iii) low flood hazard (LFH); and iv) non-flooded areas 
(NFA). 

3.4. Comparison of flood hazard maps 

The objective of this evaluation was to compare DSM1 (reference 
model) flood hazard maps with those from DSM2 and DSM3. The 
following scenarios were examined for this purpose: i) scenario1. 500- 
year flood generated by the Alberche River and the Chorrerón Stream; 
ii) scenario 2. 25-year flood induced by the Alberche River and the 
Chorrerón Stream; iii) scenario 3. 500-year flood triggered by the 
Chorrerón Stream; and iv) scenario 4. 25-year flood driven by the 
Chorrerón Stream. Comparative analyses were conducted in zones 2, 3 
and 4 (see their description at the end of Section 2). 

Two approaches were used to address the above comparison. First, 
using the F statistic (Cook and Merwade, 2009), the difference between 
the flooding areas of DSM1 and DSM2 and DSM3 was assessed. This 
statistic was determined by the equation: 

F = 100.(
Aop

Ao + Ap − Aop
) (1)  

where Ao is the reference inundation area (derived from DSM1), Ap 
provides the area flooded by DSM2 and DSM3, and Aop is the over
lapping flooding area for DSM1, DSM2, and DSM3. A score of 100 rep
resents perfect agreement between DSM1, DSM2 and DSM3 flooding 
areas, whereas the lower the F, the greater the disagreement between 
DSM1 with DSM2 and DSM3 flooding areas. 

Then, using pixel-level statistics, the agreement between the flood 
hazard categories from DSM1 and those from DSM2 and DSM3 was 
checked. A confusion matrix was devised for this purpose (Congalton, 
1991; Congalton and Green, 1999). It included values showing the de
gree of similarity between paired observations provided by the set of 

flood hazard categories derived from DSM1, or the reference dataset 
(RD). Moreover, the set of DSM2 and DSM3 flood hazard categories, 
which were designated as the dataset under control (DUC), were 
considered. 

A confusion matrix is a MxM (rows × columns) matrix, where M 
represents the flood hazard categories under consideration. RH (refer
ence hazard) refers to RD classes, whereas EH relates to DUC classes 
(estimated hazard). The diagonal cells of the confusion matrix include 
values that correspond to well-defined flood hazard categories from 
DSM2 and DSM3 (EHs coincide with RHs). These cells were labelled as 
CP (i.e., pixels where there is agreement on flood hazard categories). 
Off-diagonal cells include values related to errors of omission and 
commission, which are referred to as EC (i.e., error or mismatch pixels in 
flood hazard categories) (Fig. 4). 

A confusion matrix provides a thorough assessment of agreement 
and error distribution between flood hazard categories. However, un
derstanding it requires indices to summarize confusion matrix infor
mation. In this research, the overall accuracy (OA) served as one of the 
global indices (Story and Congalton, 1986). It is the ratio between the 
total number of successfully categorized elements (cells of the main 
diagonal) and the total number of matrix cells. Moreover, the Kappa 
coefficient, KC (Congalton et al., 1983) was employed, which is the 
difference between the agreement percentage supplied by the main 
matrix diagonal and the chance of agreement derived from the marginal 
values (row and column totals; Eq. (2)). According to Landis and Koch 
(1977), kappa values under 0.2 imply minor, 0.2–0.4 fair, 0.4–0.6 
moderate, 0.6–0.8 substantial, and 0.8–1.0 virtually perfect agreement. 

Kappa(K) =
N.
∑r

i=1xii −
∑r

i=1(xi+.x+i)

N2 −
∑r

i=1(xi+.x+i)
(2)  

where: 

N = CPpixels+ECpixels (3)  

∑r

i=1
xii =

∑
CPpixels (4)  

∑r

i=1
(xi+.x+i) = (R1.C1)+ (R2.C2)+ (R3.C3)+ (R4.C4) (5) 

Along with the global indices described above, errors of commission, 

Fig. 3. Location on orthophoto of the hydraulic infrastructures of Navaluenga and photographic detail of each one of them.  
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or user accuracy (UA), and errors of omission, or producer accuracy 
(PA), were also used as category-level indices (Congalton and Green, 
1999). The user’s accuracy was calculated by dividing the number of 
correctly categorized pixels by the total number of pixels in each flood 
hazard category (row total of the confusion matrix). Also, the producer’s 
accuracy resulted from dividing the number of correctly identified pixels 
in each category by the number of reference pixels utilized for that 
category (column total of the confusion matrix). 

4. Results 

4.1. Geometric consistency and vertical accuracy of the DSMs developed 

DSM1 defined urban-like geometry. Thus, streets and the Chorrerón 
Stream cross-sections revealed consistent rectangular shapes (Figs. 5 
and 6). In DSM2, street cross-sections coherently represented their ge
ometry, but unlike DSM1, the angle between streets and buildings was 
not orthogonal (Fig. 5). In the Chorrerón Stream, cross-sections 1 and 2 
were v-shaped, defining smaller cross-sectional areas than the real ones 
(Fig. 6). In DSM3, street cross-sections also displayed v-shapes and saw- 
like shapes, in which high and low points alternated without transition, 
defining 6-metre elevation differences (Fig. 5, see cross-sections 1 and 

Fig. 4. Confusion matrix used for comparison between the flood hazard categories obtained from the reference model (DSM1) and the flood hazard categories 
obtained from the dataset under control (DSM2 and DSM3). 

Fig. 5. Comparison between DSM1 and DSMs 2 and 3 for two cross-sections and two longitudinal profiles located on two streets within the 500-year flood 
prone area. 
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2). In the Chorrerón Stream, DSM3 cross-sections were like DSM2 ones 
(Fig. 6). 

Regarding longitudinal profiles, DSM1 defined uniform slopes 
(Fig. 5). However, DSM2′s profile pattern was irregular. Thus, longitu
dinal profile 2 had a consistent slope, but longitudinal profile 1 had 
height variances of up to 3 m (Fig. 5). In DSM3, longitudinal profiles 
displayed erratic morphologies that do not match street patterns in cities 
(Fig. 5). In the Chorrerón Stream, longitudinal profiles from the three 

DSMs showed more resemblance than in streets. Thus, they displayed 
uneven patterns with altimetric fluctuations below half a meter, but 
sometimes exceeding 1.5 m (Fig. 6, see longitudinal profile 1). 

Concerning the vertical accuracy of the DSMs, Table S1 of the sup
plementary data displays the vertical accuracy of the DSMs by 
comparing them to cadastral data over the four zones. For DSM1, the 
four zones had coefficients of determination values above 0.99. DSM2 
had comparable results. For DSM3, the coefficient of determination in 

Fig. 6. Comparison between DSM1 and DSMs 2 and 3 for two cross-sections and two longitudinal profiles located in the Chorrerón Stream.  

Fig. 7. Histograms of the normalized elevation errors estimated in the three DSMs.  
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zone 4 decreased below 0.95, suggesting a worse representation of this 
model in streets with higher complexity. Based on centrality measures, 
DSM1 had higher mean and median errors in Zones 1–3 than DSM2 and 
DSM3. In zone 4, however, DSM1 had lower mean and median errors 
than DSM3. DSM2 performed best in all four zones. Alternative error 
measures, such as RMSE or MAE, tended to confirm these findings, 
although RMSE identified DSM1′s advantage over the other two DSMs in 
zone 4. 

Dispersion and shape metrics of elevation errors show that DSM1 had 
the lowest elevation error range in zones 1 and 4, and second lowest in 
zones 2 and 3 (very close to DSM2). DSM1 had the lowest standard error 
and standard deviation in zone 4, indicating reduced elevation error 
fluctuation. Concerning kurtosis and skewness, DSM1′s relative eleva
tion errors displayed a closer-to-normal distribution (Fig. 7). 

4.2. Hydraulic outcomes 

Fig. 8, in relation to zone 2, depicts water depths, flow velocities, and 
Froude numbers for DSM1, DSM2, and DSM3 resulting from the 500- 
year flood. Upstream of the Chorrerón Stream-Alberche River junc
tion, the three DSMs produced similar hydraulic outcomes. However, in 
the junction’s vicinity and downstream, hydrodynamic response 
changed significantly. 

Thus, DSM2 and DSM3 disrupted water flow patterns, as evidenced 
by the sudden depth and Froude number fluctuations noticed in the 
Alberche River. DSM3 water depths ranged from 3.56 to 7.39 m. In 
DSM2, water depths were between 3.91 and 9.20 m, although the lon
gitudinal profile was more homogeneous. Sharp changes in DSM3′s 
longitudinal water depth profile implied that the Froude number shifted 
from less than 1 to greater than 1. These changes in the Froude number 
also occurred in DSM2 but were less pronounced. In contrast, DSM1 
hydraulic outputs revealed a homogeneous longitudinal water depth 

profile (7.09 to 9.35 m), which is why changes in the Froude number 
were not significant (See A in Fig. 8). 

As regards the Chorrerón Stream (zone 3), the hydraulic response 
obtained from DSM1 was more homogenous. Thus, higher, and more 
uniform water flow velocities (0.71–1.50 m/s) were attained. In 
contrast, DSM2 and DSM3 exhibited much fewer uniform velocities in 
the Chorrerón Stream, as velocity was noticeably reduced. Thus, DSM2 
and DSM3 displayed minimum velocities of 0.40 m/s and 0.18 m/s, 
respectively (see B in Fig. 8). Flooding downstream of the Navaluenga’s 
national road (see E in Fig. 8) affected the urban area differently in the 
three DSMs (see C in Fig. 8). So, water flow follows the street network in 
DSM1, whereas in DSM2 and DSM3, water flow discontinuities were 
identified. 

Fig. 9 illustrates the flood hydraulic performance of the three DSMs 
at the Chorrerón-Alberche confluence during the 500-year flood (zone 
3). Again, DSM1 had more consistent hydraulic outputs, with the main 
channel’s physical limits readily discernible (see A in Fig. 9) and floods 
matching the building perimeters. DSM2, and particularly DSM3, had 
erratic depths and velocities. Bridges in DSM3 lacked water-flow spans, 
preventing water from travelling through. As a result, DSM3 bridges 
functioned similarly to weirs crossing the river channel (see B in Fig. 9), 
limiting the river’s capacity to evacuate floods. This caused a rise in 
depths upstream, resulting in lateral overflows and faking floods (see C 
in Fig. 9). When the bridge deck was exceeded, downstream velocities 
rose, and a critical regime was generated (see D in Fig. 9). This increase 
in velocities was less noticeable in DSM1 since there was only a small 
acceleration while crossing the bridge spans. DSM2 exhibited a hy
draulic performance comparable to DSM1 (see E in Fig. 9). 

The right bank of the Chorrerón Stream, upstream of its Alberche 
River junction, had the most changes (zone 4). Depending on the DSM, 
the flood extent in this area (see D in Fig. 8) varied substantially. Almost 
all of zone 4′s streets were flooded in DSM1 and DSM2. However, DSM2 

Fig. 8. Outputs of water depths, flow velocities and Froude numbers obtained after considering the 500-year flood as the upstream boundary condition. The capital 
letters included in this figure show some locations where these hydraulic outputs show relevant differences in each of the DSMs considered. 
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results misrepresented the flooded area and buildings. DSM3′s flood 
extent for zone 4 was significantly lower than that of DSM1 and DSM2. 

Fig. 10 details the differences described above for the 500-year flood. 
It shows two benchmark cross-sections (CS1 and CS2) located in zone 4. 
In CS1, DSM1 had depths close to 4.0 m, while DSM3 depths were 1.5 m 
to 3.0 m. In DSM2, CS1 depths ranged from 0.50 to 3.86 m. In CS2, there 
was no water flow through DSM2 and DSM3, while in DSM1 there was a 
water flow across CS2 deploying depths between 0.44 m and 0.72 m. 

Regarding flow velocity, the results obtained in CS1 for all three 
DSMs were close to 0 m/s. DSM1 velocities in CS2 ranged from 0.54 to 
0.71 m/s; however, DSM2 and DSM3 did not deploy flow through CS2. 
In DSM1 and DSM2, flow velocities were less than 1 m/s; yet, in some 
streets of DSM1, the flow accelerated continuously and in an orderly 
manner, reaching 0.37 m/s to 1.28 m/s. In DSM2, water flow was sped 
up in several streets to velocities comparable to DSM1. In contrast to 
DSM1, DSM2 displayed a discontinuous and chaotic maximum velocity 

Fig. 9. Hydraulic outputs (water depth and flow velocity) at the junction of the Chorrerón Stream and the Alberche River (zone 3). The capital letters indicate the 
locations where these hydraulic outputs vary significantly depending on the DSM used. 

Fig. 10. Water depths and flow velocity patterns determined from DSM1, DSM2, and DSM3 in zone 4 and during the 500-year flood. The description focuses on how 
these hydraulic outputs behave at cross-sections CS1 and CS2. 
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pattern. DSM3 performed differently from DSM1 and DSM2 because it 
mostly deployed flow velocities around 0 m/s. 

The respective portrayals of the Chorrerón Stream 500-year flood by 
the three DSMs were comparable (see Fig. S1 of the supplementary 
data). For the 25-year flood, however, the DSMs differed significantly. 
Fig. 11 illustrates these differences and as shown in Fig. 10, two cross- 
sections (CS1 and CS2) were used as a benchmark for comparison. 
Around CS1, DSM2 and DSM3 had a significant right-bank overflow, but 
DSM1 had essentially none. In CS2, DSM1 depths revealed a clear 
contrast between channel flow (1.72 m) and bank flooding (a few cen
timetres). This pattern was also noticeable in DSM2 and DSM3, although 
downstream of CS2, flooded urban area depths were 1.3 m, whereas in 
DSM1 the depth was 0.8 m (see B in Fig. 11). DSM1 had the best water 
flow continuity, reducing lateral overflows into surrounding streets. 
This meant, for example, that a street was flooded according to DSM3 
and to some extent DSM2, but not DSM1 (see A in Fig. 11). Concerning 
flow velocities, maximum values were obtained in DSM1 (CS1 = 1.64 
m/s; CS2 = 1.11 m/s) while the lowest ones were reported in DSM3 
(CS1 = 0.96 m/s; CS2 = 0.71 m/s). The simulated flow velocities in 
DSM2 ranged from 0.68 m/s (CS2) to 1.02 m/s (CS1). 

The hydraulic outputs of water depth and flow velocity displayed by 
each DSM, as well as the resulting flood hazard maps, are available for 
unrestricted download in the open access Zenodo repository: https://d 
oi.org/10.5281/zenodo.5171778 (Aroca-Jiménez et al., 2021). 

4.3. Level of agreement on flooding outcomes elicited from DSM1, DSM2 
and DSM3 

4.3.1. Matching degree of flooded areas 
For scenario 1, in zone 2, DSM2 and DSM3 set for higher matching 

with DSM1, since the F-statistic in both DSMs was more than 87 %. In 
zone 3, the F-statistic defined values of 80 % in DSM3 and 86 % in DSM2. 
In zone 4, DSM3 scored badly (F statistic = 64 %), while DSM2 matched 
similarly in zones 2 and 3 (F statistic = 82 %). For scenario 2, in zone 2, 
the F-statistic varied between 82 % (DSM3) and 86 % (DSM2). In zone 3, 
the F-statistic dropped to 68 % (DSM3) and 74 % (DSM2). In zone 4, the 
matching level of DSM2 was the worst (F statistic = 59 %), while the 
agreement degree of DSM3 also declined (F statistic = 62 %). 

For scenario 3, DSM2 performed better than DSM3. So, in zone 2, the 
F-statistic ranged between 71 % (DSM3) and 79 % (DSM2). In zone 3, 

DSM3 delivered an F-statistic of 68 %, while the F-statistic provided by 
DSM2 was 76 %. In zone 4, the F-statistic corresponding to DSM3 
decreased to 36 %, while the match percentage supplied by DSM2 was 
66 %. For scenario 4, in zone 2, the F-statistics ranged between 63 % 
(DSM3) and 72 % (DSM2), whereas in zones 3 and 4, the F-statistics 
were 48 % and 62 %, respectively (Table 1). 

4.3.2. Degree of agreement between flood hazard outcomes at the pixel level 
The confusion matrices can be consulted in Tables S2–S5 of the 

supplementary data. They contain estimates of global indices (i.e., OA 
and KC) and category-level indices (i.e., UA and PA). 

4.3.2.1. Scenario 1. Zone 2 had the highest OA, with 72 % in DSM2 and 
DSM3 and a KC of 0.46 in both DSMs (moderate level of agreement). 
Zone 4 had the lowest OA, with 31 % (DSM3) and 33 % (DSM2), with KC 
of 0.06 (DSM3) and 0.11 (DSM2), showing a minor level of agreement. 
In zone 3, the OA for DSM2 and DSM3 was 59 % and 57 %, respectively. 
The KC for DSM2 and DSM3 were 0.40 and 0.37 (moderate and fair level 
of agreement). 

Regarding the HFH category, zone 2 had the best agreements. PA and 
UA specified values exceeding 90 % for the HFH category in DSM2 and 
DSM3. In zone 3, DSM2 produced 83 % and 84 % concerning UA and PA, 
whereas DSM3 delivered 78 % (UA) and 84 % (PA). In zone 4, DSM2 
indicated that the UA was 53 % and the PA was 65 %. The results of 
DSM3 were 70 %(UA) and 50 % (PA). 

For the remaining flood hazard categories in zone 2, DSM2 recorded 
UAs ranging from 41 % (MFH) to 43 % (LFH) and PAs from 40 % (LFH) 
to 52 %. (MFH). DSM3 defined UAs from 42 % (MFH) to 43 % (LFH) and 
PAs from 40 % (LFH) to 48 %. (MFH). In zone 3, DSM2 and DSM3 re
ported agreements like those of zone 2. Compared to zones 2 and 3, 
DSM2 agreements for LFH and MFH categories were poorer in zone 4, as 
UAs were 25 (MFH) to 38 % (LFH) and PAs were 33 % (LFH) to 41 % 
(MFH). Regarding DSM3, LFH agreements in zone 4 were like those in 
zones 2 and 3. Lower values were recorded for the MFH category (UA =
25 %; PA = 26 %), while the HFH category reported UA and PA out
comes of 70 % and 50 %, respectively. 

These disagreements resulted in different flood hazard categories in 
DSM1, DSM2, and DSM3. Thus, DSM1 and DSM3 overlapped flood 
hazard categories in 72 % of pixels in zone 2, 57 % in zone 3, and 31 % in 
zone 4. In zones 2, 3, and 4, where flood hazard categories did not 

Fig. 11. Pattern that follows water depths and flow velocities from DSM1, DSM2, and DSM3 in the Chorrerón Stream and for the 25-year flood. The focus of the 
description is on how these hydraulic outputs behave at the cross-sections CS1 and CS2. 
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Table 1 
Comparative analysis of the flooded areas derived from the three DSMs using the F-statistic as a quantitative metric.      

DSM1 DSM2 DSM3 

500-year flood Alberche River and Chorrerón Stream (scenario 1) Flood-prone area (m2) Zone 2 828,325 841,531 850,094 
Zone 3 100,344 96,189 100,183 
Zone 4 18,887 17,108 14,121 

F statistic (%) Zone 2  87.18 87.51 
Zone 3  85.82 80.18 
Zone 4  81.51 64.04 

Chorrerón Stream (scenario 3) Flood-prone area (m2) Zone 2 292,029 309,608 324,402 
Zone 3 45,089 43,451 42,053 
Zone 4 8,498 9,946 3,962 

F statistic (%) Zone 2  78.96 71.34 
Zone 3  76.02 67.89 
Zone 4  66.49 35.75 

25-year flood Alberche River and Chorrerón Stream (scenario 2) Flood-prone area (m2) Zone 2 528,214 525,436 572,239 
Zone 3 37,475 37,230 48,772 
Zone 4 4,570 4,485 5,041 

F statistic (%) Zone 2  86.30 82.42 
Zone 3  74.47 67.72 
Zone 4  58.63 62.16 

Chorrerón Stream (scenario 4) Flood-prone area (m2) Zone 2 79,702 88,473 96,095 
Zone 3 7,187 10,234 10,234 
Zone 4 1,011 1,018 858 

F statistic (%) Zone 2  71.74 63.49 
Zone 3  47.64 48.91 
Zone 4  62.84 60.45  

Fig. 12. Level of coincidence for scenario 1 in flood hazard categories mapped from DSM1 and DSM3. The capital letters included in the figure correspond to zone 2 
(A); zone 3 (B) and zone 4 (C). 
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overlap, pixels mirrored those of locations where neither DSM1 nor 
DSM3 deployed floods, i.e., 13 % in zone 2, 19 % in zone 3, and 41 % in 
zone 4 (Fig. 12). In addition, 7 % of the pixels in zone 2, 11 % in zone 3, 
and 21 % in zone 4 underestimated the flood hazard category provided 
by DSM1. Conversely, 8 % of the pixels in zone 2, 13 % in zone 3, and 7 
% in zone 4 overestimated the flood hazard category provided by DSM1. 
In scenario 1, DSM2 yielded findings that were comparable with DSM3 
(Fig. S2 of the supplementary data). 

4.3.2.2. Scenario 2. DSM2 gave comparable OAs and KCs for zones 2, 3, 
and 4 as in scenario 1. DSM3 showed similar outcomes for zones 2 and 3 
as in scenario 1. In zone 4, DSM3 showed more agreement (OA = 42 %; 
KC = 0.17; minor agreement) than scenario1. Comparing DSM2 with 
DSM3, it was found that DSM3 reported OAs between 42 % and 64 % 
and KCs between 0.17 (minor agreement) and 0.42 (moderate agree
ment) for zones 2, 3, and 4, like those derived from DSM2 (OAs between 
39 % and 71 % and KCs between 0.11 (minor agreement) and 0.52 
(moderate agreement). 

At the flood hazard category level, DSM2 and DSM3 provided similar 
outcomes to those of scenario 1 in zone 2 and for the HFH category. For 
the remaining flood hazard categories in zone 2, DSM2 produced a 
stronger agreement (UAs and PAs were between 49 % and 57 %) than 
under scenario 1 (UAs and PAs were between 40 % and 43 %), whereas 
DSM3 performed similarly in scenario 2 as it did in scenario 1. In zone 3, 
DSM2 revealed a greater agreement in the LFH category for scenario 2 

(UA = 54 % and PA = 46 %) than for scenario 1 (UA = 46 % and PA =
42 %). In MFH and HFH, DSM2 scored lower in scenario 2 (UAs and PAs 
between 39 % and 84 %) than in scenario 1 (UAs and PAs between 51 % 
and 84 %). DSM3, in zone 3, provided similar agreements in scenarios 1 
and 2. In the MFH category, UA in scenario 2 (27 %) was lower than in 
scenario 1 (46 %). 

DSM2 reported higher percentages of UA and PA in scenario 2 than 
scenario 1 for zone 4. In HFH, the estimated percentage of PA in scenario 
2 (53 %) was lower than in scenario 1 (64 %). DSM3 showed that LFH 
and MFH UAs and PAs were higher in scenario 2 than in scenario 1. For 
HFH, the UA estimated for scenario 2 (51 %) was lower than scenario 1 
(70 %), while the PA was higher in scenario 2 (69 %). 

Compared to DSM2 and DSM3, DSM2 reported higher PAs and UAs 
in zone 2 and for all hazard categories. For zone 3, the same conclusion 
was obtained as for zone 2, except that the percentage of PA related to 
HFH was higher in DSM3 (89 %) than in DSM2 (73 %). In zone 4, DSM3 
exhibited greater PA and UA in the LFH category than DSM2. DSM2 
performed better in the MFH (UA = 49 %; PA = 43 %) than DSM3 (UA =
41 %; PA = 38 %). In the HFH category, DSM3 deployed a greater PA 
than DSM2 (69 % vs 53 %), whereas DSM2′s UA (88 %) was higher than 
DSM3′s (51 %). 

In zones 2 and 3, DSM2 had the largest proportion of matches with 
DSM1 (71 % and 50 %, respectively). In zone 4, this percentage was 
reduced to 39 %. Most pixels (14 % in zone 2, 26 % in zone 3, and 40 % 
in zone 4) corresponded to locations where DSM2 did not record 
flooding but DSM1 did, or vice versa. The remaining percentages (15 % 

Fig. 13. Level of coincidence for scenario 2 in flood hazard categories mapped from DSM1 and DSM2. The capital letters included in the figure correspond to zone 2 
(A); zone 3 (B) and zone 4 (C). 
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in zone 2, 24 % in zone 3, and 21 % in zone 4) pertain to places where 
DSM2 overestimated or underestimated flood hazard categories 
compared to DSM1 (Fig. 13). Zone 2 had the largest proportion of DSM3 
matches (64 %) compared to zones 3 and 4, each of which had 42 %. The 
most mismatched pixels in DSM1 and DSM3 belonged to locations where 
DSM1 did not record flooding but DSM3 did (13 % in zone 2, 28 % in 
zone 3, and 24 % in zone 4), while places where DSM1 reported flooding 
but DSM3 did not do so represented 5 % in zones 2 and 3 and 13 % in 
zone 4. In zone 2, 18 % of DSM3 pixels overestimated or underestimated 
the flood hazard categories that DSM1 displayed. This percentage rose to 
25 % in zone 3 and 21 % in zone 4 (Fig. S3 of the supplementary data). 

4.3.2.3. Scenario 3. OA in zone 2 was 63 % in DSM2 and 51 % in DSM3. 
DSM2 had a KC of 0.46 (moderate agreement) in this zone, whereas 
DSM3 yielded a KC of 0.32 (fair agreement). The estimated percentages 
of OAs in zone 3 were 55 % (DSM2) and 47 %. (DSM3). In both cases, 
estimated KCs of 0.39 (DSM2) and 0.29 (DSM3) indicated fair agree
ment. In zone 4, OAs were 46 % in DSM2 and 18 % in DSM3. In DSM2, 
the reported KC was 0.23 (fair agreement), but in DSM3, it was 0.03 
(minor agreement). 

In zone 2, DSM2 and DSM3 reported UAs and PAs ranging from 81 % 
to 88 % when HFH was considered. DSM2 provided UAs and PAs be
tween 52 % and 60 % for the remaining flood hazard categories, 
whereas DSM3 varied between 32 % and 50 %. In zone 3, UAs and PAs 
for DSM2 and DSM3 HFH category fluctuated between 70 % and 81 %. 
DSM2 displayed more agreement than DSM3 for the other flood hazard 
categories, with UAs and PAs defining outcomes comparable to zone 2. 

DSM3 yielded a higher UA than DSM2 when considering HFH in zone 4: 
82 % vs 54 %. The PA was higher in DSM2 than in DSM3: 69 % vs 55 %. 
DSM2 UAs and PAs for MFH and LFH categories were between 49 % and 
61 %, whereas DSM3 outputs were between 12 % and 41 %. 

Due to disagreements between DSM1 and DSM3, match percentages 
in zones 2 and 3 were lower (51 % and 47 %, respectively) than between 
DSM1 and DSM2 (63 % and 55 %). In zone 4, matching between DSM1 
and DSM3 was much lower, with 18 % of pixels identifying the same 
flood hazard category, compared to 46 % for DSM1 and DSM2 (Fig. 14 
and Fig. S4 of the supplementary data). For zone 2, mismatches were 
caused by pixels that did not record flooding in DSM3 (10 %) but were 
inundated in DSM1 or pixels that did not report flooding in DSM1 (19 %) 
but were flooded in DSM3. In zones 3 and 4, non-overlap was owing to 
the absence of floods in DSM3 (19 % and 56 % of pixels, respectively). 
Regarding DSM2, 13 % of zone 2 pixels that did not match with DSM1 
were due to the absence of floods in DSM1. This proportion fell to 11 % 
in zone 3, whereas 14 % reported flooding in DSM1 but not DSM2. 24 % 
of non-overlapping pixels in zone 4 showed flooding in DSM2 but not 
DSM1 (Fig. 14 and Fig. S4 of the supplementary data). 

In zone 2, around 9 % of pixels in DSM2 and DSM3 underestimated 
the flood hazard category described by DSM1, whereas 8 % and 11 % of 
the remaining pixels in DSM2 and DSM3 overestimated it. In zone 3, 12 
% of DSM2 pixels underestimated the flood hazard category compared 
to DSM1. When DSM3 outcomes were analysed, this percentage 
increased to 13 %. 8 % of DSM2 and DSM3 pixels overestimated the 
flood hazard category. In zone 4, 4 % of the DSM3 pixels overestimated 
the flood hazard category compared to DSM1, increasing to 12 % when 

Fig. 14. Level of coincidence for scenario 3 in flood hazard categories mapped from DSM1 and DSM3. The capital letters correspond to zone 2(A); zone 3 (B) and 
zone 4 (C). 
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DSM2 results were reviewed. Besides, 8 % of DSM2 pixels under
estimated the flood hazard category provided by DSM1, increasing to 14 
% with DSM3 (Fig. 14. and Fig. S4 of the supplementary data). 

4.3.2.4. Scenario 4. For scenario 4, neither DSM2 nor DSM3 showed 
pixel flooding in zone 4. In this scenario, DSM2 performed worse in 
zones 2 and 3 than it did in scenario 3. Consequently, OAs ranged from 
44 % to 54 % and KCs were between 0.06 (minor) and 0.32 (fair), while 
in scenario 3, OAs ranged from 55 % to 63 % and KCs were between 0.39 
(fair) and 0.46. (moderate). DSM3 provided comparable results in zone 
2 as scenario 3, i.e., OA specified 51 % and KC output was 0.27. (fair). In 
zone 3, DSM3 scored poorer than in scenario 3, with an OA of 34 % and a 
KC of 0.04 (minor) compared to 47 % (OA) and 0.29 (KC–fair) for sce
nario 3. Comparing the performance of DSM2 and DSM3, DSM2 per
formed better in zones 2 and 3 (the average OA was 49 %, while KC 
defined values within the moderate agreement range) than DSM3, which 
deployed OAs ranging from 34 % (zone 3) to 51 % (zone 2), while KC 
defined a value of 0.04 (minor) in zone 3 and 0.27 (fair) in zone 2. 

DSM2 performed better than DSM3 for the HFH category, with UAs 
and PAs between 28 % and 76 % compared to 14 % and 61 % for DSM3. 
These percentages were lower than those projected for the same cate
gory of flood hazard in scenario 3 (UASs and PAs ranged between 80 % 
and 88 %). For the LFH and MFH categories, DSM2 generated better 
results in zone 2 (UAs and PAs ranged from 59 % to 71 %) than scenario 
3 (UA and PA set percentages ranged from 52 % to 60 %). In zone 3, 
DSM2 showed similar performance in scenarios 3 and 4 for LFH and 
MFH, defining PAs and UAs with average percentages of 57 % and 53 %, 
respectively. 

Regarding the LFH category, DSM3 performed worse in scenario 3 
(PA = 34 %; UA = 32 %) than in scenario 4 (PA = 60 %; UA = 57 %) in 
zone 2. Also, in zone 2, scenario 4 (PA = 70 %; UA = 57 %) produced a 
better agreement than scenario 3 (PA = 50 %; UA = 39 %) when the 
MFH category was addressed. In zone 3 and for the MFH category, the 
PA was greater in scenario 4 (PA = 66 % vs 55 % in scenario 3), while the 
UA was higher in scenario 3 (54 % vs 32 % in scenario 4). In Zones 2 and 
3 and for LFH and MFH, DSM2 showed better agreement with DSM1 
(UAs and PAs between 41 % and 71 %) than DSM3 (UAs and PAs 

between 32 % and 70 %). 
When the disagreements described in the previous paragraphs are 

presented spatially (Fig. 15 and Fig. S5 of the supplementary data), 
DSM2 and DSM3 exhibited similar OAs in zone 2 compared to DSM1 
(between 51 % and 54 %). Where there was disagreement, around 19 % 
of the flood hazard projections from DSM2 and DSM3 were not repre
sented in DSM1. In contrast, 11 % of pixels were flooded in DSM1 but 
not in DSM2 or DSM3. On the other hand, roughly 8 % of pixels in DSM2 
and DSM3 underestimated the flood hazard category in DSM1, while 
about 10 % overestimated it. In zone 3, DSM2 outperformed DSM3, 
defining an OA of 44 % as opposed to 34 % for DSM3. In addition, 23 % 
and 32 %, respectively, of the pixels flooded by DSM2 and DSM3 were 
not flooded by DSM1. In contrast, whereas 10 % of pixels in DSM2 
overestimated the flood hazard category relative to DSM1 outcomes, 
this percentage increased to 18 % when DSM3 outcomes were evaluated. 
Moreover, 3 % of DSM3 pixels underestimated the flood hazard cate
gory, as opposed to 6 % of DSM2 pixels. Compared to DSM1, 17 % of 
DSM2 pixels and 13 % of DSM3 pixels were not flooded, while pixels 
that were flooded in DSM2 and DSM3, but not in DSM1, accounted for 
23 % and 32 %, respectively. 

5. Discussion 

Highly accurate DSMs can be generated utilizing LiDAR datasets, 
which offer high point spatial density and vertical accuracy. Accord
ingly, to acquire trustworthy topographic data on a large scale, LiDAR 
data is suggested (Hohenthal et al., 2011). However, like any discrete 
measurement technique, LiDAR data has object space ambiguities, 
which is relevant in urban settings, where buildings and streets, along 
with the floodplain, represent a complicated landscape that can only be 
accurately depicted by employing ancillary information, e.g., through 
the addition of breaklines to a triangulated irregular network, TIN 
(Bodoque et al., 2016). Another drawback of LiDAR data lies in the er
rors caused by automated point cloud classification techniques. These 
inaccuracies may lead to elements such as flowerpots, awnings, or ve
hicles being wrongly classified as ground (Shan and Sampath, 2005). 
This may generate false obstructions to water flow, which leads to errors 

Fig. 15. Level of coincidence for scenario 4 in flood hazard categories mapped from DSM1 and DSM3. The capital letters correspond to zone 2(A) and zone 3 (B).  
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in flood hazard assessments. Even though LiDAR data has these flaws, it 
usually does not indicate in research papers what pre-processing tasks 
must be undertaken before incorporating it into 2D hydrodynamic 
models to create flood hazard maps. 

According to our knowledge, the research presented here is the first 
to examine the detrimental impact of adopting geometrically inconsis
tent DSMs for urban areas on flood hazard assessment. Besides, few 
studies give procedures for obtaining DSMs of urban areas, and there are 
only a few papers in the literature that describe the added value of DSMs 
using LiDAR data in urban flood analyses. For instance, LiDAR data has 
been used to provide distributed assessments of urban water level and 
extent (Neal et al., 2009; Fewtrell et al., 2011). Schubert et al. (2008) 
used semi-automated approaches for geospatial data processing to 
enable mesh generation, building representation, and resistance 
parameter estimation. Other papers have focused on applying and 
testing numerical schemes with different surface friction configurations 
on high-resolution DSMs derived from terrestrial LiDAR (Ozdemir et al., 
2013); on investigating the sensitivity of flood damage assessments 
concerning the quality of DSMs and building representation (Arrighi and 
Campo, 2019); or on the extraction of building facade openings (e.g., 
windows, doors) to assess flood risk (Feng et al., 2022). Fewer published 
papers address the issue of how to build DSMs, which allow the char
acterization of flow paths beneath urban objects such as elevated roads 
and overpasses (Noh et al., 2018), or how to construct DSMs that 
properly portray the surface of urban areas (Meesuk et al., 2015). 

The purpose of this research was to establish the requirements for 
obtaining geometrically consistent DSMs of urban areas to develop 
trustworthy flood hazard maps. To this end, an application-oriented 
approach to producing DSMs has been developed (referred to as DSM1 
in this study), in which the primary drainage paths of urban areas at risk 
of river flooding (e.g., the street-building system) were accurately 
geometrically depicted. DSM1 was compared using qualitative and 
quantitative approaches to a model that represents urban streets but not 
buildings (DSM2) and a third model, DSM3, created using direct inter
polation of LiDAR data. This comparison aimed to characterize the 
geometric quality and vertical accuracy of these DSMs. Moreover, dif
ferences found in flood hazard mapping resulting from each DSM were 
examined. 

In this study, it was assumed that the success of employing direct 
interpolation of LiDAR data to construct geometrically consistent DSMs 
is dependent on the complexity of the surface being mapped. To test this 
assumption, the study area was divided into four zones, with zone 1 
(which was only considered for assessing the vertical accuracy of DSMs) 
being the least complicated from a geometric standpoint since it includes 
non-urban and peri-urban areas, and zone 4 being the most complex 
because it has the most buildings and streets. Zones 2 and 3 exhibited 
features midway between zones 1 and 4. Zones 2, 3, and 4 were utilized 
to test the levels of agreement between DSM2 and DSM3 with DSM1 
regarding flood hazard assessment. The impact of geometric inconsis
tency on flood hazard mapping was also evaluated. To do this, four 
scenarios were explored: i) Scenario 1 depicts the 500-year flood in both 
the Alberche and the Chorrerón Streams; ii) Scenario 2 portrays the 25- 
year flood in both the Alberche River and the Chorrerón Stream; iii) 
Scenario 3 captures the 500-year flood in the Chorrerón Stream; and iv) 
Scenario 4 illustrates the 25-year flood in the Chorrerón Stream. 

The findings reported here demonstrate divergences in the geometric 
configurations of DSM2 and DSM3 compared to DSM1, which served as 
the benchmark. The differences were largest in zone 4, which contains 
the most buildings and streets and a more complicated geometric 
arrangement, and lowest in zone 2, which has more undeveloped and 
peri-urban land. Comparing the performance of DSM2 and DSM3 (Figs. 5 
and 6), it was found that in DSM2, cross-sections streets often exhibited 
a smaller area than the real one, since the DSM’s construction did not 
account for buildings. The geometric portrayal of DSM3 is even farther 
from reality since a qualitative analysis of the longitudinal and trans
versal profiles of streets (Figs. 5 and 6) revealed the presence of artificial 

barriers with a high capacity to disrupt flood wave propagation. Because 
neither DSMs considered adding breaklines to consistently portray the 
Chorrerón Stream channelling, the morphological patterns in DSM2 and 
DSM3 were comparable, with smaller cross-sections compared to the 
real ones. DSM1 showed transverse and longitudinal profiles for streets 
and the Chorrerón Stream that are consistent with Navaluenga’s geo
metric configuration. These findings agree with Zhou et al. (2004), who 
showed that LiDAR data interpolation algorithms perform poorly when 
there are abrupt fluctuations in elevation. 

Geometric inconsistency in DSM3, and to a lesser extent in DSM2, 
affected flood hazard maps since 2D hydrodynamic model outputs 
depend on proper site geometry (Aronica et al., 2012). The level of 
agreement was lower as the geometric discrepancy with DSM1 rose, 
both at the level of the total flooded area (calculated using the F-sta
tistic) and at the level of the predicted flood hazard category for each 
pixel (determined from the indices extracted from the confusion 
matrices). Flood hazard outputs from DSM3 were less in accord with 
DSM1 than DSM2. This was due to DSM3 displaying a geometric 
arrangement that was farther from reality than DSM2. In preferential 
flow pathways (streets and the urban reach of the Chorrerón Stream), 
DSM2 and particularly DSM3 typically generated smaller cross-sections 
than the true ones by creating triangulations that defined artificial 
barriers that hinder or restrict the passage of the flood wave. Conse
quently, increased water depths and more varied velocity patterns were 
deployed, distorting flood magnitude. Accordingly, flood hazard may 
define distinct flood hazard categories depending on the DSM employed, 
as well as streets that flood in DSM2 and DSM3 but not flooding in DSM1 
and vice versa. Flood hazard outputs from DSM2 and DSM3 showed a 
higher agreement with DSM1 when analysing 500-year flood scenarios, 
while such agreements were lower when examining 25-year flood sce
narios. This is because the geometric inconsistency of DSMs has less of 
an effect on flood hazard outputs with increasing water levels during 
floods. 

Flood hazard mapping is a critical tool for managing flood risk as it 
enables potentially flood-prone areas to be identified and analysed for 
their risk (Mudashiru et al., 2021). Flood hazard mapping may also be 
used to aid in the planning and development of flood protection and 
evacuation procedures (Musolino et al., 2020). Another use of flood 
hazard mapping is that it can be employed to educate the public about 
flood risk and how to protect themselves and their property in the event 
of a flood (Henstra et al., 2019). The findings presented here reveal that 
the geometric consistency of the DSMs used to adjust the node height of 
the elements comprising the computational mesh has a large impact on 
the outputs of 2D hydrodynamic models and, therefore, on flood hazard 
assessments. If there is no geometric consistency, the flooded area and 
flood hazard categories indicated in the maps may vary considerably 
from what is expected, jeopardizing the credibility of flood risk assess
ments and the efficacy of flood risk mitigation measures. Consequently, 
the development of geometrically consistent DSMs is a critical step in 
developing new tools to mitigate the possible effects of floods via risk 
management supported by hazard and risk mapping. 

6. Conclusions 

This study provides an application-oriented procedure for con
structing geometrically and vertically accurate urban DSMs (designated 
here as DSM1). Given the above, LiDAR data is especially valuable for 
producing consistent DSMs when supplemented with ancillary infor
mation such as break lines, which enables a precise portrayal of slope 
breaks common in urban settings (e.g., between streets and buildings). 
Through the F statistic and comprehensive and category-level indices 
produced from a confusion matrix, this work also looked into the effects 
of using DSMs that do not adequately portray urban geometry on flood 
hazard assessments. This research provides beyond a doubt that DSMs 
that are not geometrically consistent (DSM2 and DSM3 in this paper) 
have a detrimental impact on flood hazard estimates. Because 
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geometrically robust DSMs are a highly sensitive input for obtaining 
reliable flood hazard maps, a lack of geometric consistency in DSMs 
causes significant errors in the distribution of depths and velocities, as 
well as the spatial distribution of hazard categories and the area occu
pied by the flooding zone, which may lead decision-makers to take the 
wrong decisions during the flood risk management process. So, making 
sure that DSMs are geometrically consistent is important because flood 
hazard mapping helps protect people and economic assets from flooding 
while also letting communities keep control over urban growth in 
floodplains. As a result, spatial planners may restrict development to the 
best available sites, provided they have access to reliable and up-to-date 
data on the flood hazard in a given area. 
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