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Abstract
In this paper we introduce and study global wave front sets in terms of the τ -Wigner
transform in global ultradifferentiable classes of Beurling type modulated with weight
functions in the sense of Braun, Meise, and Taylor, and we compare it with other wave
front sets existing in the literature defined by different time-frequency analysis tools,
such as the short-time Fourier transform or Gabor frames. Conditions for the equality
of these wave front sets are provided and some examples are given.

Keywords Global wave front set · τ -Wigner transform · Global ultradifferentiable
classes · Gabor frames

Mathematics Subject Classification 35A18 · 46F05

1 Introduction

A global wave front set can be defined as follows: a point does not belong to the
wave front set of a distribution if there exists an open conic set which contains the
point such that the distribution satisfies regular enough properties in that conic set.
Indeed, Hörmander [20] studied quadratic hyperbolic operators via two types of global
wave front sets: the C∞ wave front set and the analytic wave front set. While a global
analytic wave front set was considered by, for instance, Nakamura [22] for the analysis
of Schrödinger equations, being proved that it coincides with the analytic wave front
set in [20] by Schulz and Wahlberg [28], global C∞ wave front sets remained, as far
as we know, almost forgotten in the literature. Rodino and Wahlberg [26] recovered

B Vicente Asensio
viaslo@upv.es

1 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València,
Camino de Vera, s/n, Valencia 46071, Spain

2 Centro Universitario EDEM, La Marina de Valencia, Muelle de la Marina s/n, Valencia 46024, Spain

0123456789().: V,-vol 

http://crossmark.crossref.org/dialog/?doi=10.1007/s11868-023-00523-9&domain=pdf


   27 Page 2 of 21 V. Asensio

them, using the fact that the definition ofwave front set is about a simultaneous analysis
of points and directions, which fits within the frame of time-frequency analysis (as
pointed out in, for instance, [21, 23, 24]). Moreover, they defined a global wave front
set based on the behaviour of the short-time Fourier transform of the distribution in
an open conic set and on a suitable lattice at the same time, which is called the Gabor
wave front set. They showed that the C∞, the analytic, and the Gabor wave front set
coincide in the space of tempered distributions. We refer to [25] for an overview about
the topic.

Boiti, Jornet, and Oliaro, in [7], extended the results obtained in [26] to the space of
ω-tempered ultradistributions of Beurling type, ω being a subadditive weight function
in the sense of Braun,Meise, and Taylor [9]. Indeed, they showed the equality between
the ultradifferentiable version of the analytic wave front set and that of the Gabor wave
front set. See [10, 11] for wave front sets of Gel’fand–Shilov type. Recently, the author,
Boiti, Jornet, and Oliaro [2], using the theory developed in [1], generalized the concept
of C∞ wave front set to spaces of ω-tempered ultradistributions following the ideas
given in [20, 26], and provided conditions on the weight function under which this
wave front set and the analytic wave front set in [7] are equal.

The Wigner transform is a tool originally devoted to the quantum mechanics field.
For f ∈ L2(R), we define the Wigner transform of f by

Wig( f , f )(x, ξ) =
∫
R

f (x + y/2) f (x − y/2)e−iy·ξdy, (1.1)

and turns out to be a two-variable function depending on a position x and amomentum
ξ . In the context of signals, the value of Wig( f , f )(x, ξ) provides, in principle, no
information. Nonetheless, the Wigner transform is an example of quadratic time-
frequency representation which enjoys interesting properties, such as that it is real-
valued, or that it is covariant, in the sense that if h(y) = eiy·η f (y − t), t, η ∈ R

d ,
then

Wig(h, h)(x, ξ) = Wig( f , f )(x − t, ξ − η), x, ξ ∈ R
d .

In this paper we work with an extension of the (cross-)Wigner transform of f , g ∈
L2(Rd) (denoted by Wig( f , g) and called Wigner transform again for simplicity),
which is defined replacing f (x − y/2) in (1.1) by g(x − y/2). It satisfies similar
properties to the original Wigner transform. For instance,

|Wig( f̂ , ĝ)(x, ξ)| = C |Wig( f , g)(−ξ, x)|, (1.2)

where f̂ denotes the Fourier transform of f . More precisely, we are mainly concerned
about what it is called the τ -Wigner transform, where τ ∈ (0, 1), which recaptures
theWigner transform when τ = 1/2. We recall that the τ -Wigner transform coincides
with [5, Prop. 5.6]

σ ∗ Wig( f , g), f , g ∈ S(Rd).
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Hence, it belongs to the Cohen class, where σ is given in [5, (5.6)].
Very recently, Cordero and Rodino [14] defined a global wave front set in terms

of the τ -Wigner transform in the space of square-integrable functions. They proved
that this type of wave front sets contains a version of the one in [26], the converse
inclusion could not be proven due to the presence of what in [5] call ghost frequencies
that the Wigner transform detects. The ghost frequencies can be explained via the
following example given in [5, Sect. 3]: let f be a signal in one dimension supported in
[a, b]×[c, d]with b < c and consider a time x near themiddle of the interval [b, c]. It is
clear that there is no frequency present in f . However, the term f (x+y/2) f (x − y/2)
appearing in (1.1) accounts to a kind of ‘folding’ of the previous time of f onto the
future time. Hence, by the choice of x , the intervals [a, b] and [b, c] may overlap,
providing frequencies which in reality do not exist. The same may happen for some
frequencies ξ , by formula (1.2).

We point out that the analytic wave front sets introduced in [7, 26] were given in
terms of the short-time Fourier transform, since a function in Sω(Rd) and S(Rd)

respectively can be characterized in terms of the decay of the short-time Fourier
transform [18, Theo. 2.7]. Therefore, we asked ourselves whether replacing the short-
time Fourier transform by the τ -Wigner transform may provoke or not an alteration
on the global wave front sets defined in global classes of ultradistributions in [7]. We
prove that the wave front set given in [7] is related to the wave front set defined via
the τ -Wigner transform, in the sense that the wave front set in [7] coincides with a
linear transformation of the latter, the transformation being the identity when τ = 1/2
(Theorem 16). We support this theorem with explicit examples, like Example 23, in
which the Wigner wave front set rotates as the constant τ varies.

The paper is organized as follows: in Sect. 2 we introduce some preliminaries about
the global spaces of ultradifferentiable functions Sω(Rd) as well as new equivalent
systems of seminorms for this space. Section3 is devoted to introducing and studying
the τ -Wigner wave front set (Definition 13). We prove that, for every ultradistribution
in S ′

ω(Rd), a point z0 belongs to the wave front set given in [7] if and only if Jτ (z0)
belongs to the τ -Wigner wave front set, where Jτ is given in (3.3) (Theorem 16).
As a consequence, the ω-wave front set coincides with the (1/2)-Wigner wave front
set (Corollary 17). We compute the wave front set of some concrete ω-tempered
ultradistributions in Sect. 4, making use of properties of this wave front set, such
as the comparison between the Wigner wave front set of time-frequency shifts or
that of the Fourier transform with the Wigner wave front set of the ultradistribution
(Propositions 19 and 21). We observe that the τ -Wigner wave front set may depend
on the constant τ in Example 23 and on the weight function ω in Example 24. Finally,
in Sect. 5 we introduce the corresponding version of the wave front set described by
Gabor frames in the ultradifferentiable setting, using the τ -Wigner transform, cf. [7,
26] (Definition 28). We take advantage of results existing in the literature, like [7,
Theo. 3.17], to circunvent the use of modulation spaces of exponential type given
by the τ -Wigner transform. In any case, when studying equalities between analytic
and these wave front sets, we need ω to be subadditive in order to have a suitable
definition of the modulation spaces (see [7, Sect. 3]). In Corollary 31 we obtain that
for τ = 1/2 and for any ω subadditive weight function, the wave front sets given in
Definitions 12, 13, 27, and 28 coincide. Furthermore, for the weight functions given in
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[2, Example 5.10] they all coincide with the Weyl wave front set defined in [2, Defin.
4.3] (see Remark 32).

2 Preliminaries

We consider weight functions in the sense of Braun, Meise, and Taylor [9]:

Definition 1 A weight function ω : [0,+∞[→ [0,+∞[ is an increasing and contin-
uous function satisfying:

(α) There exists L ≥ 1 such that ω(2t) ≤ Lω(t) + L , t ≥ 0;
(β) ω(t) = o(t) as t → ∞;
(γ ) There exist a ∈ R and b > 0 such that ω(t) ≥ a + b log(1 + t), t ≥ 0;
(δ) The function ϕ(t) = ω(et ) is convex.

Weight functions can be extended to C
d as follows: ω(z) = ω(|z|), z ∈ C

d ,
where | · | stands for the Euclidean norm. Denoting 〈z〉2 = 1 + |z|2, it holds that
ω(〈z〉) ≤ Lω(z) + L . Notice that condition (α) is weaker than subadditivity. The
Young conjugate of ϕ is defined as ϕ∗(t) = sups>0{st − ϕ(s)}. See [9, 16, 19] for
more information of ϕ∗. There is an exhaustive list of properties [8, Appendix A] of
the Young conjugate of ϕ. We state as a lemma some properties that we need and can
be found in the references above.

Lemma 2 For every λ > 0, t ≥ 0, and k, l ∈ N0,

(1) tk ≤ max{1, e−λϕ∗(0)}eλϕ∗( k
λ
)eλω(t),

(2) λϕ∗( k
λ

)
+ λϕ∗( l

λ

)
≤ λϕ∗(k + l

λ

)
.

We use the following definition of Fourier transform of f ∈ L1(Rd):

f̂ (ξ) =
∫

e−i x ·ξ f (x)dx, ξ ∈ R
d .

In this work, we use global classes of ultradifferentiable functions in the Beurling
setting modulated with weight functions, defined by Björck [4] for subadditive weight
functions.

Definition 3 For aweight functionω, we define the spaceSω(Rd) as those f ∈ L1(Rd)

such that ( f , f̂ ∈ C∞(Rd) and) for all λ > 0 and α ∈ N
d
0 ,

sup
x∈Rd

|Dα f (x)|eλω(x) < ∞ and sup
ξ∈Rd

|Dα f̂ (ξ)|eλω(ξ) < ∞.

This is a Fréchet space, endowed with the natural topology. In [3, Lemma 2.11],
[6, Theo. 4.8], [8, Theo. 2.5], and [18, Theo. 2.7] we can find other descriptions of
Sω(Rd) which provide different equivalent systems of seminorms for Sω(Rd). The
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strong dual of Sω(Rd) is denoted by S ′
ω(Rd) and it is called the space of ω-tempered

ultradistributions.
For f , g ∈ L2(Rd), we define the (cross)-Wigner transform of f and g by

Wig( f , g)(z) =
∫
Rd

f (x + y/2)g(x − y/2)e−iy·ξdy, z = (x, ξ) ∈ R
2d .

Here we introduce the main tool of this paper, which generalizes the definition of
Wigner transform:

Definition 4 For two functions f and g and 0 ≤ τ ≤ 1, we define the (cross-)τ -Wigner
transform Wig( f , g)τ by

Wig( f , g)τ (z) =
∫
Rd

f (x + τ y)g(x − (1 − τ)y)e−iy·ξdy, z = (x, ξ) ∈ R
2d .

For our purposes we exclude from our discussion the cases τ = 0 and τ = 1,
which represent the (cross)-Rihaczek distribution and the conjugate-(cross)-Rihaczek
distribution (see [12]).

Another important tool in the theory of time-frequency analysis is the short-time
Fourier transform, defined below (see for instance [17, Chapter 3] for the definition
in the context of tempered distributions). Before that, we introduce the translation,
modulation, and phase-shift operators (time-frequency shifts) as follows: for a function
f in R

d , and x, y, η ∈ R
d ,

Ty f (x) = f (x − y),

Mη f (x) = eix ·η f (x),

(y, η) f (x) = eix ·η f (x − y).

Definition 5 Given a window function g ∈ Sω(Rd)\{0}, the short-time Fourier trans-
form (STFT for short) of u ∈ S ′

ω(Rd) is defined, for z ∈ R
2d , by

Vgu(z) = 〈u,
(z)g〉.

The bracket 〈·, ·〉 is consistent with the inner product 〈·, ·〉L2(Rd ).

We introduce the following notation: for a given function g defined in R
d and

0 < τ < 1,

Iτ g(x) = g
(

− 1 − τ

τ
x
)
, x ∈ R

d .

For any function g, I1/2g = Ig is the reflection operator, and

IτI1−τ g = I1−τIτ g = g. (2.1)

This is the extension of Definition 4 to ultradistributions:
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Definition 6 For 0 < τ < 1, g ∈ Sω(Rd)\{0} and u ∈ S ′
ω(Rd), we define the

τ -Wigner transform of u by

Wig(u, g)τ (x, ξ) =
(1
τ

)d
e
1
τ
i x ·ξ 〈u,


( 1

1 − τ
x,

1

τ
ξ
)
Iτ g

〉
, (x, ξ) ∈ R

2d ,

(2.2)

where 

(

1
1−τ

x, 1
τ
ξ
)
Iτ g(y) = g

( − 1−τ
τ

y + 1
τ
x
)
e
1
τ
iy·ξ , for y ∈ R

d .

We recall the relation between the short-time Fourier transform and the Wigner
transform (cf. [17, Lemma 4.3.1]): for all f , g ∈ L2(Rd), we have

Wig( f , g)(x, ξ) = 2de2i x ·ξVIg f (2x, 2ξ), x, ξ ∈ R
d .

We can extend this result to ultradistributions and for arbitrary τ ∈ (0, 1), with a
similar proof (cf.[13, Prop.1.1.30],):

Lemma 7 Let 0 < τ < 1. For all u ∈ S ′
ω(Rd) and 0 �= g ∈ Sω(Rd), we have

Wig(u, g)τ (x, ξ) =
(1
τ

)d
e
1
τ
i x ·ξVIτ gu

( 1

1 − τ
x,

1

τ
ξ
)
, x, ξ ∈ R

d .

Proof According to [13, Prop. 1.3.30], the equality above holds for u, g ∈ L2(Rd).
For the general case, we have

Wig(u, g)τ (x, ξ) =
(1
τ

)d
e
1
τ
i x ·ξ 〈u,


( 1

1 − τ
x,

1

τ
ξ
)
Iτ g

〉

=
(1
τ

)d
e
1
τ
i x ·ξVIτ gu

( 1

1 − τ
x,

1

τ
ξ
)
.

�

Reading backwards Lemma 7 and using the fact that IτI1−τ g = g, we obtain the

STFT in terms of the τ -Wigner transform.

Lemma 8 Let 0 < τ < 1. For all u ∈ S ′
ω(Rd) and 0 �= g ∈ Sω(Rd), we have

Vgu(x, ξ) = τ de−i(1−τ)x ·ξ Wig(u, I1−τ g)τ ((1 − τ)x, τξ), x, ξ ∈ R
d .

The relation between the τ -Wigner and the short-time Fourier transforms given in
Lemma 7 yields the following equivalence:

Theorem 9 Let u ∈ S ′
ω(Rd) and 0 < τ < 1. Then, u ∈ Sω(Rd) if, and only if,

given g ∈ Sω(Rd) \ {0}, ∀λ > 0 ∃Cλ > 0 : sup
z∈R2d

|Wig(u, g)τ (z)|eλω(z) ≤ Cλ.

(2.3)
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Proof Fixed 0 < τ < 1, we observe that g ∈ Sω(Rd)\{0} if and only if Iτ g ∈
Sω(Rd)\{0}.

If u ∈ Sω(Rd), then by [18, Theo. 2.7], for all λ > 0 there exists Cλ > 0 such that

sup
w∈R2d

|VIτ gu(w)|eλω(w) ≤ Cλ.

Thus, by Lemma 7 and the fact that ω is increasing (notice that 1
1−τ

> 1 and 1
τ

> 1),
we obtain (2.3): for all λ > 0,

sup
(x,ξ)∈R2d

|Wig(u, g)τ (x, ξ)|eλω(x,ξ)

≤
(1
τ

)d
sup

(x,ξ)∈R2d
|VIτ gu

( 1

1 − τ
x,

1

τ
ξ
)
|eλω

(
1

1−τ
x, 1

τ
ξ
)

=
(1
τ

)d
sup

w∈R2d
|VIτ gu(w)|eλω(w) ≤

(1
τ

)d
Cλ.

On the other hand, assume that (2.3) holds. Without losing generality, we assume
that the function given in Sω(Rd) \ {0} is of the form I1−τ g. We fix q ∈ N such that
2q ≥ max

{ 1
1−τ

, 1
τ

}
. Then, since ω is increasing and by condition (α) of the weight,

ω
( 1

1 − τ
x,

1

τ
ξ
)

≤ ω
(
max

{ 1

1 − τ
,
1

τ

}
(x, ξ)

)
≤ ω(2q(x, ξ))

≤ Lqω(x, ξ) + Lq + · · · + L.

So, for all λ > 0 we have by Lemma 7

sup
(x,ξ)∈R2d

|Vgu(x, ξ)|eλω(x,ξ)

= sup
(x,ξ)∈R2d

∣∣∣VIτ (I1−τ g)u
( 1

1 − τ
x,

1

τ
ξ
)∣∣∣eλω

(
1

1−τ
x, 1

τ
ξ
)

= τ d sup
(x,ξ)∈R2d

|Wig(u, I1−τ g)(x, ξ)|eλω
(

1
1−τ

x, 1
τ
ξ
)

≤ τ deλLq+···+λL sup
(x,ξ)∈R2d

|Wig(u, I1−τ g)(x, ξ)|eλLqω(x,ξ)

≤ τ deλLq+···+λLCλLq .

�

Therefore, given u ∈ Sω(Rd) and fixed g ∈ Sω(Rd)\{0},

sup
z∈R2d

|Wig(u, g)τ (z)|eλω(z), λ > 0, (2.4)
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defines another equivalent system of seminorms for the space Sω(Rd). In fact, we can
replace the L∞(R2d)-norm in (2.4) by L p,q(R2d)-norms, 1 ≤ p, q ≤ +∞, as done
in [8, Theo. 2.5]:

Corollary 10 Let u ∈ S ′
ω(Rd), 0 < τ < 1, and 1 ≤ p, q ≤ +∞. Then, u ∈ Sω(Rd)

if and only if

given g ∈ Sω(Rd) \ {0}, ∀λ > 0 ∃Cλ > 0 :
∥∥∥Wig(u, g)τ (z)e

λω(z)
∥∥∥
L p,q (R2d )

≤ Cλ.

(2.5)

Proof If u satisfies formula (2.5), then the result follows proceeding as in [8, Lemma
3.16]. On the other hand, if u ∈ Sω(Rd) and g ∈ Sω(Rd)\{0}, then for all λ > 0

∥∥∥Wig(u, g)τ (z)e
λω(z)

∥∥∥
L p,q (R2d )

≤
∥∥∥Wig(u, g)τ (z)e

(λ+s)ω(z)
∥∥∥
L∞(R2d )

∥∥∥e−sω(z)
∥∥∥
L p,q (R2d )

where s > 0 is taken large enough (see [8, (2.3)]). We then obtain (2.5) by Theorem 9.
�


We finish this section completing the corresponding version of [18, Theo. 2.7]
for the τ -Wigner transform. The proof follows by Theorem 9, [18, Theo. 2.7], and
Lemma 7.

Proposition 11 Let u ∈ S ′
ω(Rd), 0 < τ < 1, and 0 �= g ∈ Sω(Rd). Then, u ∈ Sω(Rd)

if and only ifWig(u, g)τ ∈ Sω(R2d).

3 Global wave front sets

Werecall the definition of globalω-wave front set introduced in [7,Defin. 3.1], inspired
by [26, Defin. 3.1]:

Definition 12 Let u ∈ S ′
ω(Rd) and 0 �= g ∈ Sω(Rd). We say that 0 �= z0 ∈ R

2d

does not belong to the ω-wave front set of u, WF′
ω(u), if there is an open conic set

� ⊆ R
2d \ {0} containing the point z0 such that

sup
z∈�

|Vgu(z)|eλω(z) < +∞, λ > 0.

This definition is based on the system of seminorms in [18, Theo. 2.7]. Thus,
according to Theorem 9, it is natural to introduce the following notion:

Definition 13 (The τ, ω-Wigner global wave front set) Let 0 < τ < 1, u ∈ S ′
ω(Rd),

and 0 �= g ∈ Sω(Rd). We say that 0 �= z0 ∈ R
2d does not belong to the τ, ω-Wigner

global wave front set of u, WFτ
ω(u), if there exists an open conic set � ⊆ R

2d\{0}
containing z0 such that

sup
z∈�

|Wig(u, g)τ (z)|eλω(z) < +∞, λ > 0. (3.1)
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From now on, the set WFτ
ω(u) will be called the Wigner wave front set of u for

simplicity. As theω-wave front set,WFτ
ω(u) is a closed conic subset ofR

2d \{0}. Now,
we prove that this definition does not depend on the choice of the window function g
(cf. [7, Prop. 3.2] for the ω-wave front set, and [26, Cor. 3.3]). We first reformulate [7,
Prop. 2.12] using the equivalences between the STFT and τ -Wigner transform.

Proposition 14 Let 0 �= g, ψ, γ ∈ Sω(Rd) so that 〈γ,ψ〉 �= 0. Let u ∈ S ′
ω(Rd) and

0 < τ < 1. Then:

|Wig(u, g)τ (x, ξ)| ≤ 1

τ d(2π)d |〈γ,ψ〉| (|Vψu| ∗ |VIτ gγ |)
( 1

1 − τ
x,

1

τ
ξ
)
, x, ξ ∈ R

d .

Proof Indeed, by [7, Prop. 2.12], we have

|VIτ gu(z)| ≤ 1

(2π)d |〈γ,ψ〉| (|Vψu| ∗ |VIτ gγ |)(z). (3.2)

By Lemma 8, the left-hand side of (3.2) is equal to τ d |Wig(u, g)τ ((1 − τ)x, τξ)|.
With the change of variables (1 − τ)x = x ′ and τξ = ξ ′ we complete the proof. �


From Proposition 14 and Lemma 8, it easily follows that (cf. [14, Lemma 3.2]):

|Wig(u, g)τ | ≤ 1

(1 − τ)d(2π)d |〈ψ, γ 〉| (|Wig(u, I1−τψ)τ | ∗ |Wig(γ, g)τ |).

Proposition 15 Let 0 < τ < 1, u ∈ S ′
ω(Rd), 0 �= g ∈ Sω(Rd) and 0 �= z0 ∈ R

2d .
Assume that there exists an open conic set � ⊆ R

2d \ {0} containing z0 such that (3.1)
is satisfied. Then, for every 0 �= ψ ∈ Sω(Rd) and for any open conic set�′ ⊆ R

2d \{0}
containing z0 and such that �′ ∩ S2d−1 ⊆ �, where S2d−1 is the unit sphere in R

2d ,
we have

sup
z∈�′

|Wig(u, ψ)τ (z)|eλω(z) < +∞, λ > 0.

Proof By Proposition 14 (where g, ψ, γ are replaced by ψ, Iτ g, g, and observe that
〈Iτ g, g〉 �= 0), we have for all x, ξ ∈ R

d that

|Wig(u, ψ)τ (x, ξ)| ≤ 1

τ d(2π)d |〈g, Iτ g〉| (|VIτ gu| ∗ |VIτ ψg|)
( 1

1 − τ
x,

1

τ
ξ
)
.

Since 0 �= g ∈ Sω(Rd), by [18, Theo. 2.7], we obtain that for all μ > 0 there exists
Cμ > 0 such that

|VIτ ψg(z)|eμω(z) ≤ Cμ, z ∈ R
2d .

We have, by Lemma 8, for all z = (x, ξ) and z′ = (z′1, z′2) in R
2d , and every ε > 0,
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(|VIτ gu| ∗ |VIτ ψg|)
( 1

1 − τ
x,

1

τ
ξ
)

=
∫
R2d

∣∣∣VIτ gu
(( 1

1 − τ
x,

1

τ
ξ
)

− z′
)∣∣∣|VIτ ψg(z

′)|dz′

= τ d
∫

〈((1−τ)z′1,τ z′2)〉≤ε
〈(

1
1−τ

x, 1
τ
ξ
)〉 |Wig(u, g)τ (x − (1 − τ)z′1, ξ − τ z′2)|

× |VIτ ψg(z
′)|dz′

+
∫

〈((1−τ)z′1,τ z′2)〉>ε
〈(

1
1−τ

x, 1
τ
ξ
)〉

∣∣∣VIτ gu
(( 1

1 − τ
x,

1

τ
ξ
)

− z′
)∣∣∣|VIτ ψg(z

′)|dz′

= I1(z) + I2(z).

We fix ε > 0 small enough so that [7, (3.25)] (cf. [26])

z ∈ �′, |z| ≥ 1, 〈((1 − τ)z′1, τ z′2)〉
(

≤ ε〈z〉
)

≤ ε
〈( 1

1 − τ
x,

1

τ
ξ
)〉

implies z − ((1 − τ)z′1, τ z′2) ∈ �. By assumption, for all λ > 0 there exists CλL > 0
such that

I1(z) ≤ τ dCλL

∫
〈((1−τ)z′1,τ z′2)〉≤ε

〈(
1

1−τ
x, 1

τ
ξ
)〉 e−λLω(z−((1−τ)z′1,τ z′2))|VIτ ψg(z

′)|dz′

≤ τ dCλLe
λLe−λω(z)

∫
R2d

eλLω((1−τ)z′1,τ z′2)|VIτ ψg(z
′)|dz′

≤ τ dCλLe
λLe−λω(z)

∫
R2d

e(λL+m)ω(z′)|VIτ ψg(z
′)|e−mω(z′)dz′

≤ C ′
λe

−λω(z), z ∈ �′, |z| ≥ 1,

for some C ′
λ > 0, where m ≥ (2d + 1)/b (b > 0 being the constant in condition (γ )

of the weight ω), to obtain that the integral is convergent.
On the other hand, we know by [17] that there exist c, μ > 0 such that

∣∣∣VIτ gu
(( 1

1 − τ
x,

1

τ
ξ
)

− z′
)∣∣∣ ≤ ceμω

((
1

1−τ
x, 1

τ
ξ
)
−z′

)
, x, ξ ∈ R

d , z′ ∈ R
2d .

For 〈((1 − τ)z′1, τ z′2)〉 > ε
〈( 1

1−τ
x, 1

τ
ξ
)〉
, we proceed similarly as in the proof of [2,

Lemma 5.3]: fix q ∈ N0 such that 2q > ε−1. Then, denoting z = (x, ξ), for all
〈((1 − τ)z′1, τ z′2)〉 > ε

〈( 1
1−τ

x, 1
τ
ξ
)〉
,

ω(z) ≤ ω
( 1

1 − τ
x,

1

τ
ξ
)

≤ ω
(〈( 1

1 − τ
x,

1

τ
ξ
)〉)

≤ ω(ε−1〈((1 − τ)z′1, τ z′2)〉)
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≤ Lqω(〈((1 − τ)z′1, τ z′2)〉) + Lq + · · · + L

≤ Lq+1ω(z′) + Lq+1 + · · · + L,

hence we deduce

−2Lq+1ω(z′) ≤ −ω(z) − ω
( 1

1 − τ
x,

1

τ
ξ
)

+ 2(Lq+1 + · · · + L),

and in particular, for all λ,μ > 0,

−2(λ + μL)Lq+1ω(z′) ≤ −λω(z) − μLω
( 1

1 − τ
x,

1

τ
ξ
)

+2(λ + μL)(Lq+1 + · · · + L).

Therefore,

I2(z) ≤ c
∫

〈(1−τ)z′1,τ z′2)〉>ε
〈(

1
1−τ

x, 1
τ
ξ
)〉 eμω

((
1

1−τ
x, 1

τ
ξ
)
−z′

)
|VIτ ψg(z

′)|dz′

≤ ceμLeμLω
(

1
1−τ

x, 1
τ
ξ
) ∫

〈(1−τ)z′1,τ z′2)〉>ε
〈(

1
1−τ

x, 1
τ
ξ
)〉 eμLω(z′)|VIτ ψg(z

′)|dz′

= ceμLeμLω
(

1
1−τ

x, 1
τ
ξ
) ∫

〈(1−τ)z′1,τ z′2)〉>ε
〈(

1
1−τ

x, 1
τ
ξ
)〉 e−2(λ+μL)Lq+1ω(z′)

×
[
|VIτ ψg(z

′)|e2(λ+μL)Lq+1ω(z′)e(m+μL)ω(z′)
]
e−mω(z′)dz′

≤ ceμLe2(λ+μL)(Lq+1+···+L)e−λω(z)

×
∫
R2d

[
|VIτ ψg(z

′)|e(2(λ+μL)Lq+1+m+μL)ω(z′)
]
e−mω(z′)dz′,

where the constant m > 0 is taken as before. From this, we obtain that for all λ > 0
there exists Cλ > 0 such that

I2(z) ≤ Cλe
−λω(z), z ∈ R

2d .

The proof is complete. �

Now we proceed to study the relation of the global wave front sets introduced in

Definitions 12 and 13, which is the most important result in this paper. To that aim,
we denote

Jτ (x, ξ) =
(
x,

1 − τ

τ
ξ
)
, for x, ξ ∈ R

d . (3.3)

Theorem 16 For every ω weight function and 0 < τ < 1, we have

WF′
ω(u) = Jτ (WFτ

ω(u)), u ∈ S ′
ω(Rd).
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Proof Fix g ∈ Sω(Rd)\ {0} and take 0 �= z0 = (x0, ξ0) /∈ WF′
ω(u). Then, there exists

an open conic set � ⊆ R
2d\{0} containing z0 such that

sup
z∈�

|Vgu(z)|eλω(z) < +∞, λ > 0.

We recall that Iτ g ∈ Sω(Rd)\{0}. By [7, Prop. 3.2], for any open conic set �′ ⊆
R
2d\{0} satisfying that z0 ∈ �′ and �′ ∩ S2d−1 ⊆ �, we have

sup
z∈�′

|VIτ gu(z)|eλω(z) < +∞, λ > 0.

By Lemma 7 and since
( 1
1−τ

x, 1
τ
ξ
) = Jτ

( 1
1−τ

(x, ξ)
)
, it follows that for all z =

(x, ξ) ∈ R
2d ,

|Wig(u, g)τ (z)|eλω(z) =
(1
τ

)d ∣∣∣VIτ gu
(
Jτ

( 1

1 − τ
z
))∣∣∣eλω(z)

≤
(1
τ

)d ∣∣∣VIτ gu
(
Jτ

( 1

1 − τ
z
))∣∣∣eλω

(
Jτ

(
1

1−τ
z
))

,

(3.4)

or, equivalently,

|Wig(u, g)τ (J −1
τ ((1 − τ)z))|eλω(J −1

τ ((1−τ)z)) ≤
(1
τ

)d |VIτ gu(z)|eλω(z). (3.5)

It is easy to see that � := J −1
τ (�′) is an open conic set in R

2d \ {0} which contains
the point J −1

τ (z0), since z0 ∈ �′. For every z ∈ �′ we have that J −1
τ ((1 − τ)z) ∈ �

and therefore the left-hand side in (3.5) is bounded for all λ > 0, hence

sup
z∈�

|Wig(u, g)τ (z)|eλω(z) < +∞, λ > 0.

Then, J −1
τ (z0) /∈ WFτ

ω(u).
On the other hand, we fix q ∈ N0 such that max

{ 1
τ
, 1
1−τ

} ≤ 2q . If J −1
τ (z0) /∈

WFτ
ω(u), then there exists an open conic set � ⊆ R

2d\{0}, J −1
τ (z0) ∈ �, such that

sup
z∈�

|Wig(u, g)τ (z)|eλLqω(z) < +∞, λ > 0.

We recall that I1−τ g ∈ Sω(Rd)\{0}. By Proposition 15, for any �′ ⊆ R
2d\{0}

satisfying �′ ∩ S2d−1 ⊆ � and J −1
τ (z0) ∈ �′ it holds that

sup
z∈�′

|Wig(u, I1−τ g)τ (z)|eλLqω(z) < +∞, λ > 0.
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As in (3.4), from the choice of q ∈ N0 it follows that for all z ∈ R
2d and λ > 0

|Wig(u, I1−τ g)τ (z)|eλLqω(z) =
∣∣∣Vgu

(
Jτ

( 1

1 − τ
z
))∣∣∣eλLqω(z).

≥
∣∣∣Vgu

(
Jτ

( 1

1 − τ
z
))∣∣∣eλω

(
Jτ

(
1

1−τ
z
))
e−λ(1+···+Lq ),

which is bounded for all z ∈ �′, and therefore, for the open conic set � := Jτ (�
′)

which contains z0, we have

sup
z∈�

|Vgu(z)|eλω(z) < +∞, λ > 0.

Thus, z0 /∈ WF′
ω(u), and the proof is complete. �


We therefore obtain a condition under which these wave front sets coincide (com-
pare it with [14, Theo. 5.5]):

Corollary 17 For every weight function ω,

WF′
ω(u) = WF1/2ω (u), u ∈ S ′

ω(Rd).

By Theorem 16 and [7, Prop. 3.18], it is easy to characterize when theWigner wave
front set of an ultradistribution is empty.

Theorem 18 Let u ∈ S ′
ω(Rd). Then WFτ

ω(u) = ∅ for all (or some) 0 < τ < 1 if and
only if u ∈ Sω(Rd).

4 Examples

We remark that the ω-wave front set is invariant under time-frequency shifts [7, Prop.
3.19]. By Theorem 16, this holds true for the Wigner wave front set:

Proposition 19 Let 0 < τ < 1 and z ∈ R
2d . We have

WFτ
ω(
(z)u) = WFτ

ω(u), u ∈ S ′
ω(Rd).

Now, we compute explicitly the Wigner wave front set of some concrete u ∈
S ′

ω(Rd), as done in [7, Sect. 5] and [26, Sect. 6].

Example 20 Let u = δ be the Dirac distribution, which belongs to S ′
ω(Rd) for every

weight function ω (since δ has compact support), and fix α ∈ N
d
0 . It is easy to check

that, for any g ∈ Sω(Rd)\{0},

VgD
αδ(x, ξ) =

∑
β≤α

(
α

β

)
ξβDα−βg(−x), x, ξ ∈ R

d .
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Then, by Lemma 7, we have

Wig(Dαδ, g)τ (x, ξ) =
(1
τ

)d
e
1
τ
i x ·ξVIτ gD

αδ
( 1

1 − τ
x,

1

τ
ξ
)

=
(1
τ

)d
e
1
τ
i x ·ξ ∑

β≤α

(
α

β

)(1
τ

ξ
)β

Dα−βIτ g
(

− 1

1 − τ
x
)

=
(1
τ

)d
e
1
τ
i x ·ξ ∑

β≤α

(
α

β

)(1
τ

ξ
)β

Dα−βg
(1
τ
x
)

(4.1)

for all (x, ξ) ∈ R
2d . In particular,

Wig(Dαδ, g)τ (0, ξ) =
(1
τ

)d ∑
β≤α

(
α

β

)(1
τ

ξ
)β

Dα−βg(0). (4.2)

We take g ∈ Sω(Rd) with g(0) = 1 and Dγ g(0) = 0 for all 0 �= γ ∈ N
d
0 and we

check that

{0} × (Rd \ {0}) ⊆ WFτ
ω(Dαδ).

Indeed, for every point of the form (0, ξ0), ξ0 �= 0 we have that all open conic set
� ⊆ R

2d\{0} containing the point (0, ξ0) there exists ξ ∈ R
d such that

∣∣∣ ∑
β≤α

(
α

β

)(1
τ

ξ
)β

Dα−βg(0)
∣∣∣ =

∣∣∣
(1
τ

ξ
)α∣∣∣ ≥ 1.

Hence, by (4.2),

sup
z∈�

|Wig(Dαδ, g)τ (z)|eλω(z) ≥
(1
τ

)d
sup

(0,ξ)∈�

eλω(ξ) = +∞, λ > 0.

Now, we claim that

WFτ
ω(Dαδ) ⊆ {0} × (Rd \ {0}).

To this, take (x0, ξ0) ∈ R
2d \ {0} such that x0 �= 0. Consider an open conic set

containing the point (x0, ξ0) of the form

� = {(x, ξ) ∈ R
2d |ξ | < C |x |},

for some C > 0. By condition (α) of the weight, there exists C ′ > 0 such that, for
z = (x, ξ) ∈ �,

ω(z) ≤ ω(|x | + |ξ |) ≤ ω((1 + C)|x |) ≤ C ′ω(x) + C ′ ≤ C ′ω
(1
τ
x
)

+ C ′.
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Therefore, using (4.1), for all λ > 0 and z = (x, ξ) ∈ �,

|Wig(Dαδ, g)τ (z)|eλω(z)

≤
(1
τ

)d
eλω(x,ξ)

∑
β≤α

(
α

β

)∣∣∣1
τ

ξ

∣∣∣|β|∣∣∣Dα−βg
(1
τ
x
)∣∣∣

≤
(1
τ

)d
eλC ′

eλC ′ω( 1
τ
x)

∑
β≤α

(
α

β

)
C |β|

∣∣∣1
τ
x
∣∣∣|β|∣∣∣Dα−βg

(1
τ
x
)∣∣∣.

For all λ > 0 and β ≤ α, we have by Lemma 2,

∣∣∣1
τ
x
∣∣∣|β| ≤ eλϕ∗( |β|

λ

)
eλω( 1

τ
x) ≤ eλϕ∗( |α|

λ

)
e−λϕ∗( |α−β|

λ

)
eλω( 1

τ
x).

Then,

sup
z∈�

|Wig(Dαδ, g)τ (z)|eλω(z)

≤
(1
τ

)d
eλC ′

C |α|eλϕ∗( |α|
λ

) ∑
β≤α

(
α

β

)

× sup
x∈Rd

e−λϕ∗( |α−β|
λ

)
e(λ+λC ′)ω( 1

τ
x)

∣∣∣Dα−βg
(1
τ
x
)∣∣∣

=
(1
τ

)d
eλC ′

C |α|eλϕ∗( |α|
λ

) ∑
β≤α

(
α

β

)

× sup
x∈Rd

e−λϕ∗( |α−β|
λ

)
e(λ+λC ′)ω(x)|Dα−βg(x)|,

which is finite, using the seminorms given in [6, Theo. 4.8] (as g ∈ Sω(Rd)). This
shows that (x0, ξ0) /∈ WFτ

ω(Dαδ), and thus

WFτ
ω(Dαδ) = {0} × (Rd \ {0}).

Moreover, since the Wigner wave front set is invariant under the translation operator
(Proposition 19), for the Dirac distribution δx centered at the point x we have

WFτ
ω(Dαδx ) = {0} × (Rd \ {0}).

We now study how the Wigner wave front set interacts with the Fourier transform
(cf. [27, Prop. 4.3]):

Proposition 21 For all 0 < τ < 1, we have

WFτ
ω(̂u) = J WF1−τ

ω (u), u ∈ S ′
ω(Rd),
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where J (x, ξ) := (−ξ, x) for all x, ξ ∈ R
d .

Proof Fix g ∈ Sω(Rd) \ {0}. By Lemma 7 and [17, Lemma 3.1.1], we have

|Wig(̂u, I1−τ ĝ)τ (x, ξ)| =
( 1

τ

)d ∣∣∣Vĝû
( 1

1 − τ
x,

1

τ
ξ
)∣∣∣ =

( 1
τ

)d ∣∣∣Vgu
(

− 1

τ
ξ,

1

1 − τ
x
)∣∣∣.

By Lemma 8 we deduce

Vgu(x, ξ) = (1 − τ)de−iτ x ·ξ Wig(u, Iτ g)1−τ (τ x, (1 − τ)ξ),

therefore

|Wig(̂u, I1−τ ĝ)τ (x, ξ)| =
(1 − τ

τ

)d |Wig(u, Iτ g)1−τ (−ξ, x)|.

Hence, by Proposition 15, (x, ξ) /∈ WFτ
ω(̂u) if and only if (−ξ, x) /∈ WF1−τ

ω (u). �


Example 22 Since D̂αδ(ξ) = ξα for all ξ ∈ R
d , it follows from Example 20 and

Proposition 21 that

WFτ
ω(xα) = (Rd \ {0}) × {0},

which as a particular case includes the equality of sets for the distribution u = 1.
Moreover, since the modulation operator does not affect the Wigner wave front set
(Proposition 19), we obtain the analogous of [7, Example 5.2]: for ξ ∈ R

d ,

WFτ
ω(Mξ1) = (Rd \ {0}) × {0}.

Example 23 Consider u(x) = eicx
2/2, where x ∈ R and c ∈ R\{0}. Observe that

u ∈ S ′
ω(R) for every weight function ω. The ω-wave front set of u is equal to [7,

(5.3)]

WF′
ω(u) = {(x, cx) : x ∈ R \ {0}}, for every weight ω.

By Theorem 16 we obtain

WFτ
ω(u) =

{(
x, c

τ

1 − τ
x
)

x ∈ R \ {0}
}
.

Notice that in this case

WFτ
ω(u) = WF′

ω(u) ⇔ τ = 1/2.

Furthermore, if τ �= 1/2, we see that none of the wave front sets is contained in the
other.
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Example 23 illustrates that, in general, if 0 < τ < ρ < 1, it may fail that

WFτ
ω(u) ⊆ WFρ

ω(u) and WFρ
ω(u) ⊆ WFτ

ω(u), u ∈ S ′
ω(Rd).

Moreover, it may happen that the intersection of WFτ
ω(u) and WFρ

ω(u) is empty.
Let us now turn our attention into weight functions. It is clear by definition that if

ω ≤ σ are two weight functions, then

WFτ
ω(u) ⊆ WFτ

σ (u), u ∈ S ′
ω(Rd).

We see that the Wigner wave front set also may depend on the weight function, like
the ω-wave front set [7, Example 5.4].

Example 24 Take two (non-quasianalytic) weight functions ω ≤ σ satisfying

Sσ (Rd) ∩ D(Rd) � Sω(Rd) ∩ D(Rd),

whereD(Rd) is the space of smooth functions with compact support. By [7, Example
5.4], there exists a compactly supported, non-trivial function f ∈ Sω(Rd)\Sσ (Rd)

such that

WF′
ω( f ) = ∅ and WF′

σ ( f ) = {0} × (Rd \ {0}).

Thus, by Theorem 16, we obtain, for 0 < τ < 1,

WFτ
ω( f ) = ∅ and WFτ

σ ( f ) = {0} × (Rd \ {0}).

Remark 25 We point out that the information that provides the Wigner wave front set
and the ω-wave front set is the same in Examples 20, 22, and 24, independently of the
τ chosen, while in Example 23, the Wigner wave front set depends on τ .

On the other hand, for the wave front set defined in [27, Defin. 4.1], Examples 20
and 22 are studied in [27, Prop. 5.3], obtaining the same equality for their wave front
set.

We also remark that the Wigner wave front set provides different information than
the classical Hörmander wave front set [20] for Dirac delta distributions centered at
x �= 0. Indeed, he obtained that the wave front set of δx is equal to {x} × (Rd\{0}),
x ∈ R

d , coinciding with the case of Coriasco and Maniccia [15]. Nonetheless, the
τ -Wigner transform provides more information for u = 1 in Example 22 than in
Hörmander’s case, as the wave front set is empty (since u ∈ C∞(Rd)), while the
wave front set of Coriasco and Maniccia detects the ray (Rd\{0})×{ξ} for u = Mξ1,

ξ ∈ R
d .

Remark 26 Cordero and Rodino [14, (158)] give an equivalent definition of the wave
front set defined by Rodino and Wahlberg (Definition 12 with ω(t) = log(1 + t)),
denoted by WFG(u). In [14, Theo. 5.5] it is shown that it is included in the wave front
set defined in [14, Defin. 5.3] on the space L2(Rd), the converse inclusion could not
be proven because of the presence of ghost frequencies.
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For ω(t) = log(1 + t), we observe by Hölder’s inequality that

WFG(u) ⊆ WF′
ω(u), u ∈ S ′

ω(Rd).

Thus, by Corollary 17 we extend the inclusion in [14, Theo. 5.5] to the space of
tempered distributions for τ = 1/2. Moreover, this inclusion holds true if we replace
the L2-norm given in WFG(u) by the L p-norm, 1 ≤ p ≤ +∞, and also for the
corresponding definition of [14, (158)] in S ′

ω(Rd), for every weight function ω in the
sense of Definition 1. On the other hand, we do not knowwhether the reverse inclusion
can be satisfied for some 1 ≤ p < +∞ and some weight function.

5 The Gabor–Wigner wave front set

For α, β > 0, we consider the lattice � = αZ
d ×βZ

d ⊆ R
2d . For a window function

0 �= g ∈ L2(Rd) we define a Gabor frame for L2(Rd), denoted by {
(σ)g}σ∈�, if
there exist two constants A, B > 0 such that

A ‖ f ‖2L2(Rd )
≤

∑
σ∈�

|〈 f ,
(σ)g〉|2 ≤ B ‖ f ‖2L2(Rd )
, f ∈ L2(Rd).

See [17] for conditions on α and β for which {
(σ)g}σ∈� is a Gabor frame.
Rodino andWahlberg [26] have shown that the information provided by the decay of

the Gabor coefficients was necessary and sufficient to describe the micro-regularity of
the tempered distribution.We state [7, Defin. 3.4], generalizing that idea toω-tempered
ultradistributions.

Definition 27 Let 0 �= g ∈ Sω(Rd) and � = αZ
d ×βZ

d be a lattice, where α, β > 0
are sufficiently small (so that {
(σ)g}σ∈� is a Gabor frame). For u ∈ S ′

ω(Rd), we
say that 0 �= z0 ∈ R

2d is not in the ω-Gabor wave front set of u, WFGω (u), if there
exists an open conic set � ⊆ R

2d \ {0} containing z0 such that

sup
σ∈�∩�

|Vgu(σ )|eλω(σ) < +∞, λ > 0.

We analogously define a global wave front set in open conic sets intersected with
appropriate lattices, but replacing the STFT by the τ -Wigner transform:

Definition 28 (The τ, ω-Gabor–Wigner global wave front set of u) Let g and � be as
in Definition 27. For u ∈ S ′

ω(Rd) and 0 < τ < 1, we say that z0 ∈ R
2d \ {0} is not in

the τ, ω-Gabor–Wigner global wave front set of u, WFτ,G
ω (u), if there exists an open

conic set � ⊆ R
2d \ {0} containing z0 such that

sup
σ∈�∩�

|Wig(u, g)τ (σ )|eλω(σ) < +∞, λ > 0.

Analogously to Definition 13, we call WFτ,G
ω (u) the Gabor–Wigner wave front set

of u. The main aim of this section is to discuss the equality between the wave front sets
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in Definitions 13 and 28. Contrary to [7, 26], we do not need to develop a theory of
modulation spaces of exponential type using theWigner transform. In fact, proceeding
as in Theorem 16 it is easy to see that Definitions 27 and 28 satisfy a similar relation
as that of Definitions 12 and 13:

Theorem 29 For every ω weight function and 0 < τ < 1, we have

WFGω (u) = Jτ (WFτ,G
ω (u)), u ∈ S ′

ω(Rd).

In particular, these wave front sets coincide in S ′
ω(Rd) for τ = 1/2. Furthermore,

from [7, Theo. 3.17] and Theorem 16, it follows that

Theorem 30 Let ω be a subadditive weight function. For every 0 < τ < 1,

Jτ (WFτ,G
ω (u)) = WFGω (u) = WF′

ω(u) = Jτ (WFτ
ω(u)), u ∈ S ′

ω(Rd).

This shows that for any 0 < τ < 1, the Wigner wave front set coincides with
the Gabor–Wigner wave front set in S ′

ω(Rd), provided that ω is a subadditive weight
function. Moreover,

Corollary 31 (Equalities of wave front sets) If ω is subadditive, then

WF1/2,Gω (u) = WFGω (u) = WF′
ω(u) = WF1/2ω (u), u ∈ S ′

ω(Rd).

Remark 32 Notice that if ω is a subadditive weight function satisfying the hypotheses
in [2, Cor. 5.9] and 0 < τ < 1, then the chain of equalities in Theorem 30 is extended
to the global wave front set defined in [2, Defin. 4.3] for all u ∈ S ′

ω(Rd). In particular,
this whole chain holds for Gevrey weight functions ω(t) = ta with 0 < a < 1 small
enough (see [2, Example 5.10]).
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