
J. Log. Algebraic Methods Program. 136 (2024) 100926

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming

journal homepage: www.elsevier.com/locate/jlamp

Local confluence of conditional and generalized term rewriting

systems ✩

Salvador Lucas
DSIC & VRAIN, Universitat Politècnica de València, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Conditional rewriting

Confluence

First-order logic

Reduction-based systems are used as a basis for the implementation of programming languages,
automated reasoning systems, mathematical analysis tools, etc. In such inherently non-

deterministic systems, guaranteeing that diverging steps can be eventually rejoined is crucial for
a faithful use in most applications. This property of reduction systems is called local confluence.
In a landmark 1980 paper, Gérard Huet characterized local confluence of a Term Rewriting
System as the joinability of all its critical pairs. In this paper, we characterize local confluence
of Conditional Term Rewriting Systems, where reduction steps may depend on the satisfaction of
specific conditions in rules: a conditional term rewriting system is locally confluent if and only
if (i) all its conditional critical pairs and (ii) all its conditional variable pairs (which we introduce
in this paper) are joinable. Furthermore, the logic-based approach we follow here is well-suited
to analyze local confluence of more general reduction-based systems. We exemplify this by (i)
including (context-sensitive) replacement restrictions in the arguments of function symbols, and
(ii) allowing for more general conditions in rules. The obtained systems are called Generalized
Term Rewriting Systems. A characterization of local confluence is also given for them.

1. Introduction

In the last 50 years, conditional rules 𝓁 → 𝑟 ⇐ 𝑐, specifying a reduction step 𝓁 → 𝑟 which is triggered only if the condition 𝑐 is
‘satisfied’, have been used in automated reasoning systems like Mathematica [58], REDUCE [25,26] or SCRATCHPAD [19,20]. They
are central in the expressivity of rule-based programming languages like Haskell [27] or logic-based specification and verification
systems like Maude [5,11]. They are also useful to reason about cryptographic protocols [1] and cyber-physical systems [6,53].

Reduction relations are pervasive in computer science as they are used to express computations in most computational systems
and programming languages as the aforementioned ones. Confluence is a property of (abstract) reduction relations → guaranteeing
that, for all abstract objects 𝑠 (often called expressions without loss of generality) which can be reduced into two different reducts 𝑡
and 𝑡′, respectively (written 𝑠 →∗ 𝑡 and 𝑠 →∗ 𝑡′), there is some 𝑢 to which both 𝑡 and 𝑡′ are reducible, i.e., both 𝑡 →∗ 𝑢 and 𝑡′ →∗ 𝑢 hold.
A weaker property is local confluence, where only a single reduction step is allowed on 𝑠, i.e., 𝑠 → 𝑡 and 𝑠 → 𝑡′. As usual, they are
defined by the commutation of the diagrams displayed in Fig. 1. Confluence guarantees that reductions reaching an end, i.e., leading
to an irreducible expression, obtain one and the same expression, which can then be considered as the result of the computation or
reasoning process.

✩ Partially supported by grant PID2021-122830OB-C42 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe” and by the grant
CIPROM/2022/6 funded by Generalitat Valenciana.
Available online 31 October 2023
2352-2208/© 2023 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: slucas@dsic.upv.es.

https://doi.org/10.1016/j.jlamp.2023.100926

Received 9 February 2023; Received in revised form 24 October 2023; Accepted 25 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:slucas@dsic.upv.es
https://doi.org/10.1016/j.jlamp.2023.100926
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2023.100926&domain=pdf
https://doi.org/10.1016/j.jlamp.2023.100926
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Fig. 1. Local confluence (left) and confluence (right).

In a landmark 1980 paper [28], Gérard Huet proved the following result for Term Rewriting Systems (TRSs [3]), see [28, Lemma
3.1] and [3, Theorem 6.2.4]:

A term rewriting system is locally confluent if and only if all its critical pairs are joinable.

Critical pairs ⟨𝑠, 𝑡⟩ of a TRS  are obtained from rules 𝓁 → 𝑟 and 𝓁′ → 𝑟′ of  that overlap at a nonvariable position 𝑝 of 𝓁, i.e., 𝓁|𝑝
(which is not a variable) and 𝓁′ unify with most general unifier (mgu) substitution 𝜃 (i.e., 𝜃(𝓁|𝑝) = 𝜃(𝓁′), see Section 2 for details about
the notion of mgu). Then, (i) 𝑠 = 𝜃(𝓁[𝑟′]𝑝) is the result of replacing the subterm 𝓁|𝑝 at position 𝑝 of the left-hand side 𝓁 of the first
rule by the right-hand side 𝑟′ of the second rule and then applying the substitution 𝜃. Also, (ii) 𝑡 = 𝜃(𝑟) is obtained by instantiating
the right-hand side 𝑟 of the first rule [32]. Pairs ⟨𝑠, 𝑡⟩ are joinable if there is an expression 𝑢 to which both 𝑠 and 𝑡 can be reduced in
zero or more steps.

Kaplan pioneered the analysis of computational properties of conditional TRSs (CTRSs)  where, in contrast to TRSs, conditional
rules 𝓁 → 𝑟 ⇐ 𝑐 are also allowed [30]. Here, 𝑐 is a sequence of conditions 𝑠 ≈ 𝑡 for terms 𝑠 and 𝑡 and a symbol ‘≈’ which is given the
same interpretation in all rules of ; for instance (see, e.g., [46, Definition 7.1.3]): (i) as joinability statements, where both 𝑠 and 𝑡 are
expected to be reduced to the same term; or (ii) by imposing a left-to-right orientation to the condition so that 𝑡 should be obtained
after zero or more reduction steps on 𝑠; or (iii) by requiring the conversion of terms 𝑠 and 𝑡 by means of reduction sequences where
not only ‘direct’ steps 𝑠 → 𝑡 but also inverse steps 𝑠 ← 𝑡 (i.e., 𝑡 → 𝑠) are allowed. Depending on the chosen interpretation Join, Oriented,
and Semi-Equational CTRSs are obtained. The choice may drastically change the confluence of the system.

Example 1 (Semi-equational vs. join semantics). Consider the following CTRS  [43, Example 1.1] and [44, Example 1.2]:

𝖺 → 𝖻 (1)

𝖺 → 𝖼 (2)

𝖻→ 𝖼⇐ 𝖻 ≈ 𝖼 (3)

There is a single critical pair ⟨𝖻, 𝖼⟩. As remarked by Middeldorp, as a semi-equational system,  is confluent. As a join system, though,
it is not confluent.

Example 2 (Oriented vs. join semantics). With the following CTRS  [46, Example 7.3.3]:

𝖺 → 𝖻 (4)

𝖿(𝑥)→ 𝖼⇐ 𝑥 ≈ 𝖺 (5)

• We can rewrite 𝖿(𝖺) to 𝖿(𝖻) by using rule (4) on 𝖺, written 𝖿(𝖺) →(4) 𝖿(𝖻).
• We also have 𝖿(𝖺)→(5) 𝖼. This is because, when variable 𝑥 in the left-hand side 𝖿(𝑥) of rule (5) is instantiated to 𝖺, the corre-

sponding instance 𝖺 ≈ 𝖺 of the condition 𝑥 ≈ 𝖺 of the rule is trivially satisfied (in all aforementioned semantics for conditions).

Thus, we obtain the following peak [7, Section 4.1]

𝖿(𝖻)← 𝖿(⃖⃖𝖺)
⃖⃖⃖⃖⃖⃗

→ 𝖼 (6)

where the upper ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖left arrow and lower right arrow
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

highlight the specific reduction which is performed in the peak. Now, we have an
interesting situation:

1. If  is viewed as an oriented CTRS, then, as pointed out by Ohlebusch, 𝖿(𝖻) and 𝖼 are not joinable as both 𝖿(𝖻) and 𝖼 are irreducible.
Thus, as an oriented CTRS,  is not (locally) confluent.

2. If  is viewed as a join CTRS, then 𝖿(𝖻) and 𝖼 are joinable because 𝖿(𝖻) →(5) 𝖼 due to the possibility of joining the two components
of the obtained instance 𝖻 ≈ 𝖺 of the condition by applying rule (4) to the second component 𝖺 to obtain 𝖻. Actually, we will be
2

able to prove that, as a join CTRS,  is locally confluent and also confluent.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Suitable conditional generalizations ⟨𝑠, 𝑡⟩ ⇐ 𝑑 of the notion of critical pair for conditional rules 𝓁 → 𝑟 ⇐ 𝑐 and 𝓁′ → 𝑟′ ⇐ 𝑐′ have
been given [31,9,2], where 𝑠 = 𝜃(𝓁[𝑟′]𝑝) and 𝑡 = 𝜃(𝑟) are obtained as above, and 𝑑 is 𝜃(𝑐), 𝜃(𝑐′). However, in view of  in Example 2,
without such pairs, the following question arises:

Are there hidden ‘pairs’ which could be used to obtain a Huet-like characterization of local confluence of CTRSs?

In this paper, we provide a positive answer to this question. For instance, for  in Example 2, the hidden pair has the following shape:

⟨𝖿(𝑥′), 𝖼⟩⇐ 𝑥→ 𝑥′, 𝑥 ≈ 𝖺 (7)

It is an example of a conditional variable pair, a new class of conditional pairs that we introduce here. We prove (7) joinable if  is
viewed as a join CTRS, but not joinable if  is viewed as an oriented CTRS (Examples 41 and 48).

We show how to obtain a complete set of conditional pairs whose joinability characterizes local confluence of CTRSs. Accordingly,
 in Example 2 can be proved confluent as a Join CTRS and non-confluent as an Oriented CTRS, see Example 48 below. Similarly
for  in Example 1, see Example 47. Actually, we provide a more general treatment of the problem by (i) mixing conditions with
different semantic interpretations in the same rule, and also (ii) considering replacement restrictions on selected arguments of function
symbols as in context-sensitive rewriting [34]. The main contributions of this paper are summarized as follows:

1. The introduction of a new class of conditional pairs, the conditional variable pairs which capture variable peaks investigated in
[9] for CTRSs.

2. A characterization of local confluence of CTRSs as the joinability of conditional critical pairs plus conditional variable pairs. As a
corollary of Newman’s Lemma, we obtain a characterization of confluence of CTRSs for terminating CTRSs.

3. The definition of Generalized Term Rewriting Systems (GTRSs) as a proper extension of CTRSs including the aforementioned
features. We extend our previous results to obtain a characterization of local confluence of GTRSs.

After some preliminaries in Section 2, Section 3 shows how to obtain a first-order theory  from  which takes into account
the chosen evaluation of conditions of rules. One-step and many-step rewriting → and →∗


are defined as deducibility of goals 𝑠 → 𝑡

(resp. 𝑠 →∗ 𝑡) in such a theory, i.e.,  ⊢ 𝑠 → 𝑡 (resp.  ⊢ 𝑠 →∗ 𝑡). In this way, techniques for proving feasibility of sequences of atoms
(with respect to , see [22]), can be used to prove interesting properties of CTRSs. In particular, they are heavily used to analyze
(non)joinability of conditional pairs. Section 4 recalls the taxonomy of peaks in conditional rewriting investigated by Dershowitz,
Okada, and Sivakumar [9] (distinguishing disjoint, critical, and variable peaks). Section 5 discusses the notion of conditional pair,
which abstracts conditional critical pairs and conditional variable pairs, which are introduced in this section together with specific
results to prove their (non)joinability. Section 6 shows that the joinability of the aforementioned classes of conditional pairs (which
are called extended conditional critical pairs altogether, ECCP) characterizes local confluence of CTRSs. As a simple corollary of this
result, a characterization of confluence of terminating CTRSs is obtained. In Section 7, we define Generalized Term Rewriting Systems

GTRSs and extend our previous results to obtain a characterization of local confluence of GTRSs and confluence of terminating
GTRSs. Section 8 discusses some related work. Section 9 concludes.

This paper is an extended and revised version of [37].

2. Preliminaries

In the following, we often write iff instead of if and only if. We assume some familiarity with the basic notions of term rewriting [3,

46,54] and first-order logic [15,42], where missing definitions can be found. For the sake of readability, though, here we summarize
the main notions and notations we use.

Abstract reduction relations Given a binary relation 𝖱 ⊆ 𝐴 × 𝐴 on a set 𝐴, we often write 𝑎 𝖱 𝑏 instead of (𝑎, 𝑏) ∈ 𝖱. The transitive

closure of 𝖱 is denoted by 𝖱+, and its reflexive and transitive closure by 𝖱∗. An element 𝑎 ∈ 𝐴 is irreducible (or an 𝖱-normal form), if
there exists no 𝑏 such that 𝑎 𝖱 𝑏. Given 𝑎 ∈ 𝐴, if there is no infinite sequence 𝑎 = 𝑎1 𝖱 𝑎2 𝖱 ⋯ 𝖱 𝑎𝑛 𝖱⋯, then 𝑎 is 𝖱-terminating

(or well-founded); 𝖱 is terminating if 𝑎 is 𝖱-terminating for all 𝑎 ∈𝐴. We say that 𝖱 is (locally) confluent if, for all 𝑎, 𝑏, 𝑐 ∈𝐴, whenever
𝑎 𝖱∗ 𝑏 and 𝑎 𝖱∗ 𝑐 (resp. 𝑎 𝖱 𝑏 and 𝑎 𝖱 𝑐), there exists 𝑑 ∈𝐴 such that 𝑏 𝖱∗ 𝑑 and 𝑐 𝖱∗ 𝑑.

Signatures, terms, positions In this paper,  denotes a countable set of variables and  denotes a signature, i.e., a set of function symbols

{𝑓, 𝑔, …}, each with a fixed arity given by a mapping 𝑎𝑟 ∶  → ℕ. The set of terms built from  and  is  ( ,) and  () is the
set of ground terms, i.e., without variable occurrences. The set of variables occurring in 𝑡 is 𝑎𝑟(𝑡). Terms are viewed as labeled trees
in the usual way. Positions 𝑝 are represented by chains of positive natural numbers used to address subterms 𝑡|𝑝 of 𝑡. Positions are
ordered by the prefix ordering ≤ on sequences: given positions 𝑝, 𝑞, we write 𝑝 ≤ 𝑞 iff 𝑝 is a prefix of 𝑞. If 𝑝 ≰ 𝑞 and 𝑞 ≰ 𝑝, we say that 𝑝
and 𝑞 are disjoint (or parallel). The root position of a term is denoted as Λ. The set of positions of a term 𝑡 is 𝑜𝑠(𝑡). The set of positions
of a subterm 𝑠 in 𝑡 is denoted 𝑜𝑠𝑠(𝑡). The set of positions of non-variable symbols in 𝑡 is denoted as 𝑜𝑠 (𝑡). A context is a term 𝐶
with a ‘hole’ □, often viewed as a fresh constant symbol. A context with a single hole is written 𝐶[], or 𝐶[]𝑝 to make the position
of □ explicit. A binary relation 𝖱 on terms is closed under substitutions iff for all substitutions 𝜎 and terms 𝑠, 𝑡 ∈  ( ,), if 𝑠 𝖱 𝑡, then
𝜎(𝑠) 𝖱 𝜎(𝑡); it is closed under contexts if for all contexts 𝐶[]𝑝 and terms 𝑠 and 𝑡, if 𝑠 𝖱 𝑡, then 𝐶[𝑠]𝑝 𝖱 𝐶[𝑡]𝑝. Equivalently, for all 𝑘-ary
3

symbols 𝑓 ∈  , arguments 1 ≤ 𝑖 ≤ 𝑘, and terms 𝑠1, … , 𝑠𝑘 and 𝑡𝑖, if 𝑠𝑖 𝖱 𝑡𝑖, then 𝑓 (𝑠1, … , 𝑠𝑖, … , 𝑠𝑘) 𝖱 𝑓 (𝑠1, … , 𝑡𝑖, … , 𝑠𝑘).

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Table 1

Generic sentences of the FO-theory of CTRSs.

Label Sentence

(Rf) (∀𝑥) 𝑥→∗ 𝑥

(Co) (∀𝑥, 𝑦, 𝑧) 𝑥→ 𝑦 ∧ 𝑦→∗ 𝑧⇒ 𝑥→∗ 𝑧

(Pr)𝑓 ,𝑖 (∀𝑥1 ,… , 𝑥𝑘, 𝑦𝑖) 𝑥𝑖 → 𝑦𝑖 ⇒ 𝑓 (𝑥1 ,… , 𝑥𝑖,… , 𝑥𝑘)→ 𝑓 (𝑥1,… , 𝑦𝑖,… , 𝑥𝑘)
(Rl)𝛼 (∀𝑥1 ,… , 𝑥𝑛) 𝑠1 ≈ 𝑡1 ∧⋯ ∧ 𝑠𝑛 ≈ 𝑡𝑛 ⇒ 𝓁→ 𝑟

Unification A renaming 𝜌 is a bijection from  to  . A substitution 𝜎 is a mapping 𝜎 ∶  →  ( ,) from variables into terms which
is homomorphically extended to a mapping (also denoted 𝜎) 𝜎 ∶  ( ,) →  ( ,). It is standard to assume that substitutions 𝜎
satisfy 𝜎(𝑥) = 𝑥 except for a finite set of variables. Thus, we often write 𝜎 = {𝑥1 ↦ 𝑡1, … , 𝑥𝑛 ↦ 𝑡𝑛} to denote a substitution. Terms 𝑠 and
𝑡 unify if there is a substitution 𝜎 (i.e., a unifier) such that 𝜎(𝑠) = 𝜎(𝑡). If 𝑠 and 𝑡 unify, then there is a (unique, up to renaming) most
general unifier (mgu) 𝜃 of 𝑠 and 𝑡 satisfying that, for any other unifier 𝜎 of 𝑠 and 𝑡, there is a substitution 𝜏 such that, for all 𝑥 ∈  ,
𝜎(𝑥) = 𝜏(𝜃(𝑥)).

Overlapping terms A term 𝑠 overlaps a term 𝑡 if 𝑠 is unifiable with a nonvariable subterm of 𝑡 [46, Definition 4.3.3]. Terms 𝑠 and 𝑡 are
nonoverlapping if neither 𝑠 overlaps 𝑡 nor 𝑡 overlaps 𝑠.

First-order logic Besides the signature  of function symbols, we also consider a signature Π of predicate symbols. Atoms and first-

order formulas are built using such function and predicate symbols, and also variables in  , in the usual way. We often write 𝐴[𝑥]
to make explicit that variable 𝑥 occurs (possibly many times) in 𝐴. A first-order theory (FO-theory for short) 𝖳𝗁 is a set of sentences
(formulas whose variables are all quantified). In the following, given an FO-theory 𝖳𝗁 and a formula 𝜑, 𝖳𝗁 ⊢ 𝜑 means that 𝜑 is
deducible from (or a logical consequence of) 𝖳𝗁 by using a correct and complete deduction procedure (e.g., resolution [49]).

Feasibility sequences An f-condition 𝛾 is an atom [22]. Sequences 𝖥 = (𝛾𝑖)𝑛𝑖=1 = (𝛾1, … , 𝛾𝑛) of f-conditions are called f-sequences. We
often drop ‘f-’ when no confusion arises. Empty sequences are written (). Given an FO-theory 𝖳𝗁, a condition 𝛾 is 𝖳𝗁-feasible (or just
feasible if no confusion arises) if 𝖳𝗁 ⊢ 𝜎(𝛾) holds for some substitution 𝜎; otherwise, it is infeasible. A sequence 𝖥 is 𝖳𝗁-feasible (or just
feasible) iff there is a substitution 𝜎 such that, for all 𝛾 ∈ 𝖥, 𝛾 is 𝖳𝗁-feasible. Note that the empty f-sequence () is trivially feasible.

Conditional term rewriting systems A CTRS is a pair  = ( , 𝑅) where  is a signature and 𝑅 is a set of rules 𝓁 → 𝑟 ⇐ 𝑐, with 𝑐 a
sequence 𝑠1 ≈ 𝑡1, ⋯ , 𝑠𝑛 ≈ 𝑡𝑛 for some 𝑛 ≥ 0 and terms 𝓁, 𝑟, 𝑠1, … , 𝑡𝑛 such that 𝓁 ∉ . As usual, 𝓁 and 𝑟 are called the left- and right-hand
sides of the rule (lhs and rhs, respectively), and 𝑐 is the conditional part of the rule. We often write 𝛾 ∈ 𝑐 to say that a condition 𝛾 as
above is in 𝑐. Labeled rules are written 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐, where 𝛼 is a label. In the following, given , we often write 𝛼 ∈, instead of
𝛼 ∈𝑅, to say that 𝛼 is a rule of . Whenever rules 𝓁 → 𝑟 ⇐ 𝑐 of  are given numeric labels (𝑛), as in Example 2 (with rules labeled

(4) and (5)), we often write 𝓁(𝑛), 𝑟(𝑛), and 𝑐(𝑛) to refer to the left- and right-hand sides, and also the conditional part of such rules.
Conditional rules 𝓁 → 𝑟 ⇐ 𝑐 are classified according to the distribution of variables among 𝓁, 𝑟, and 𝑐 [45, Definition 6.1]: type 1, if
𝑎𝑟(𝑟) ∪ 𝑎𝑟(𝑐) ⊆ 𝑎𝑟(𝓁); type 2, if 𝑎𝑟(𝑟) ⊆ 𝑎𝑟(𝓁); type 3, if 𝑎𝑟(𝑟) ⊆ 𝑎𝑟(𝓁) ∪ 𝑎𝑟(𝑐); and type 4, otherwise. A rule of type 𝑛 is often
called an 𝑛-rule. An n-rule 𝛼 is proper if for all 𝑚 < 𝑛, 𝛼 is not an 𝑚-rule. An 𝑛-CTRS contains only 𝑚-rules for some 𝑚 ≤ 𝑛 and at least
a proper 𝑛-rule. A TRS is a 1-CTRS whose rules have no conditional part; we display them 𝓁 → 𝑟.

Grounding variables Let  be a signature and  be a set of variables such that  ∩  = ∅. Let  =  ∪ 𝐶 where variables 𝑥 ∈ 

are considered as (different) constant symbols 𝑐𝑥 of 𝐶 = {𝑐𝑥 ∣ 𝑥 ∈ } and  and 𝐶 are disjoint [23], see also [2, page 224]. Given
a term 𝑡 ∈  ( ,), a ground term 𝑡↓ ∈  () is obtained by replacing each occurrence of 𝑥 ∈  in 𝑡 by 𝑐𝑥. Given a substitution
𝜎 = {𝑥1 ↦ 𝑡1, … , 𝑥𝑛 ↦ 𝑡𝑛}, we define 𝜎↓ = {𝑥1 ↦ 𝑡↓1, … , 𝑥𝑛 ↦ 𝑡↓𝑛}.

3. First-order theory of a CTRS. Rewriting as deduction

The presentation in this section is briefly anticipated in the second half of [23, Section 3.1]. In this paper, expressions 𝑠 →
𝑡 (intended to denote one-step reductions), 𝑠 →∗ 𝑡 (zero or many-step reduction), 𝑠 ≈ 𝑡 (conditions in rules), etc., are viewed as
atoms with (binary) predicate symbols →, →∗, ≈, etc. We collect all these predicate symbols in a set Π. The meaning of such
expressions as reduction relations (e.g., 𝑠 → 𝑡 and 𝑠 →∗


𝑡) is given by deduction using an FO-theory  associated to the conditional

system  [33, Section 4.5]. Given a CTRS  over a signature  ,  is obtained from the generic sentences in Table 1 where

• (Rf) expresses reflexivity of many-step rewriting;

• (Co) expresses compatibility of one-step and many-step rewriting;

• for each 𝑘-ary function symbol 𝑓 , 1 ≤ 𝑖 ≤ 𝑘, and 𝑥1, … , 𝑥𝑘 and 𝑦𝑖 distinct variables, (Pr)𝑓,𝑖 enables the propagation of rewriting
steps in the 𝑖-th immediate subterm of a term with root symbol 𝑓 ; finally,

• for each rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑠1 ≈ 𝑡1, … , 𝑠𝑛 ≈ 𝑡𝑛 in , with variables 𝑥1, … , 𝑥𝑛, (Rl)𝛼 expresses the application of a rewriting step
4

𝜎(𝓁) → 𝜎(𝑟) for some substitution 𝜎, provided that, for all 1 ≤ 𝑖 ≤ 𝑛, 𝜎(𝑠𝑖) ≈ 𝜎(𝑡𝑖) can be proved.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Fig. 2. Sentences for different semantics of CTRSs.

We also need sentences defining the meaning of the predicate ≈ used in the conditions of rules, see, e.g., [46, Definition 7.1.3]. Fig. 2

displays the appropriate set of sentences which should be added to obtain the theory 𝐽 , 𝑂 , or SE (or just  if the semantics Join,
Oriented, or Semi-equational of condition evaluation is clear from the context).

Definition 3. Let  be a CTRS and CI ∈ {𝐽 , 𝑂, SE} denote a computational interpretation of symbol ≈ in the conditional part of rules
𝛼 ∈𝑅. Then,

CI = {(Rf), (Co)} ∪ {(Pr)𝑓,𝑖 ∣ 𝑓 ∈  ,1 ≤ 𝑖 ≤ 𝑎𝑟(𝑓)} ∪ {(Rl)𝛼 ∣ 𝛼 ∈𝑅} ∪ CI

where

CI =
⎧
⎪
⎨
⎪
⎩

{(J)} if CI=J

{(O)} if CI=O

{(SE1),… , (SE3)} if CI=SE

We often write  if CI is clear from the context.

Remark 4. In the following, given a CTRS , unless explicitly given otherwise,  is the first order theory associated to  according
to Definition 3.

Note that  is a Horn theory. Thus, we often use resolution [49] as an appropriate deduction calculus for .

Example 5. For  in Example 1,

J = {(Rf), (Co), (8), (9), (10), (J)}
SE = {(Rf), (Co), (8), (9), (10), (SE1), (SE2), (SE3)}

with rule sentences

𝖺 → 𝖻 (8)

𝖺 → 𝖼 (9)

𝖻 ≈ 𝖼 ⇒ 𝖻→ 𝖼 (10)

Example 6. For  in Example 2,

𝐽 = {(Rf), (Co), (11), (12), (13), (J)}
𝑂 = {(Rf), (Co), (11), (12), (13), (O)}

with propagation sentence

(∀𝑥1, 𝑥2) 𝑥1 → 𝑥2 ⇒ 𝖿(𝑥1)→ 𝖿(𝑥2) (11)

and rule sentences

𝖺 → 𝖻 (12)

(∀𝑥) 𝑥 ≈ 𝖺 ⇒ 𝖿(𝑥)→ 𝖼 (13)

Definition 7 (Feasible rule). Let  be a CTRS. A rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈ is -(in)feasible iff 𝑐 is -(in)feasible.

For instance, rule (3) of  in Example 1 is O- and J-infeasible. However, it is SE-feasible.

Definition 8 (Rewriting as deduction). Let  be a CTRS. For all terms 𝑠 and 𝑡, we write 𝑠 →

𝑡 (resp. 𝑠 →∗


𝑡) iff  ⊢ 𝑠 → 𝑡 (resp.
5

 ⊢ 𝑠 →∗ 𝑡). We often just write 𝑠 → 𝑡 and 𝑠 →∗

𝑡 if no confusion arises.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

The following result makes explicit well-known properties of unconditional rewriting which also hold for CTRSs and we use in
the sequel.

Proposition 9. Let  be a CTRS. Then, → is closed under contexts and substitutions.

As it is well-known, in term rewriting the variables occurring in subject terms are never instantiated. They behave as constants dur-

ing rewriting sequences (see also [23, Proposition 6]).

Theorem 10. Let  be a CTRS and 𝑠, 𝑡 be terms. Then, 𝑠 → 𝑡 iff 𝑠↓ → 𝑡↓ and 𝑠 →∗

𝑡 iff 𝑠↓ →∗


𝑡↓.

Proof. By definition, 𝑠 → 𝑡 holds iff  ⊢ 𝑠 → 𝑡 iff  ⊢ (∀𝑥⃗) 𝑠 → 𝑡, where 𝑥⃗ are the variables occurring in 𝑠 or 𝑡, which is equivalent to
the unsatisfiability of  ∪ {¬(𝑠↓ → 𝑡↓)} because ¬(𝑠↓ → 𝑡↓) can be seen as the skolemized version of ¬(∀𝑥⃗)𝑠 → 𝑡, i.e., (∃𝑥⃗)¬(𝑠 → 𝑡). This
shows that deducing 𝑠 → 𝑡 and deducing 𝑠↓ → 𝑡↓ from  is essentially the same thing. Similarly for 𝑠 →∗ 𝑡. □

The following result makes explicit that each rewriting step 𝑠 → 𝑡 involves a position 𝑝 ∈ 𝑜𝑠(𝑠), a substitution 𝜎, and a rule
𝓁→ 𝑟 ⇐ 𝑐 ∈ such that 𝑠|𝑝 = 𝜎(𝓁) and 𝜎(𝑐) holds.

Proposition 11. Let  be a CTRS and 𝑠, 𝑡 ∈  ( ,). Then, 𝑠 → 𝑡 iff there is 𝑝 ∈ 𝑜𝑠(𝑠) and 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈ such that (i) 𝑠|𝑝 = 𝜎(𝓁)
for some substitution 𝜎, (ii) for all 𝛾 ∈ 𝑐, ⊢ 𝜎(𝛾) holds, and (iii) 𝑡 = 𝑠[𝜎(𝑟)]𝑝.

Proof. The only if part follows by induction on 𝑝 ∈ 𝑜𝑠(𝑠). If 𝑝 = Λ, then 𝑠 = 𝜎(𝓁) and, since ⊢ 𝜎(𝛾) holds for all 𝛾 ∈ 𝑐, by (Rl)𝛼 we
conclude 𝑠 = 𝜎(𝓁) → 𝜎(𝑟) = 𝑡. If 𝑝 = 𝑖.𝑝′ and root(𝑠) = 𝑓 , we use (Pr)𝑓,𝑖 and the induction hypothesis. As for the if part, since 𝑠 → 𝑡,
by Theorem 10, the goal 𝑠↓ → 𝑡↓ is deducible from . Thus, we assume the use of resolution and proceed by induction on the number
𝑛 of resolution steps used to obtain an empty set from 𝐺 = {¬(𝑠↓ → 𝑡↓)} by applying resolution steps using clauses in . (Base: 𝑚 = 1)

There is a clause (Rl)𝛼 for some (unconditional) rule 𝛼 ∶ 𝓁 → 𝑟 ∈ so that 𝑠↓ = 𝜎(𝓁) and 𝑡↓ = 𝜎(𝑟) for some substitution 𝜎. Thus, the
rewriting position is 𝑝 = Λ ∈ 𝑜𝑠(𝑠). (Induction step: 𝑚 > 1) We consider two cases:

1. There is a clause (Rl)𝛼 for some rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈ with 𝑐 consisting of 𝑛 > 0 (atomic) conditions 𝛾1, … , 𝛾𝑛 so that 𝑠 = 𝜎(𝓁) for
some substitution 𝜎, and an empty set is obtained from 𝐺′ = {¬𝜎(𝛾1), … , ¬𝜎(𝛾𝑛)} using 𝑚 −1 resolution steps. In this case, we just
need to take 𝑝 = Λ to fulfill the desired conclusion.

2. There is a clause (Pr)𝑓,𝑖 for some 𝑓 ∈  and 1 ≤ 𝑖 ≤ 𝑎𝑟(𝑓) so that (a) 𝑠↓ = 𝑓 (𝑠↓1, … , 𝑠↓𝑖 , … , 𝑠↓
𝑘
) for some terms 𝑠1, … , 𝑠𝑘, (b) 𝑡 =

𝑓 (𝑠↓1, … , 𝑡↓𝑖 , … , 𝑠↓
𝑘
), and an empty set is obtained from 𝐺′ = {¬(𝑠↓𝑖 → 𝑡↓𝑖)} using 𝑚 − 1 resolution steps. By the induction hypothesis

and Theorem 10, 𝑠𝑖 → 𝑡𝑖 holds and there is 𝑞 ∈ 𝑜𝑠(𝑠𝑖), 𝓁→ 𝑟 ⇐ 𝑐 ∈ and substitution 𝜎 such that 𝑠𝑖|𝑞 = 𝜎(𝓁), 𝑡𝑖 = 𝑠𝑖[𝜎(𝑟)]𝑞 , and
each atom in 𝜎(𝑐) is deducible from . Since 𝑠|𝑖.𝑞 = 𝜎(𝓁) and 𝑡 = 𝑠[𝜎(𝑟)]𝑖.𝑞 , the conclusion follows by letting 𝑝 = 𝑖.𝑞. □

Definition 12 (Confluence and termination of CTRSs). A CTRS  is (locally) -confluent (resp. -terminating) iff →


is (locally)
confluent (resp. terminating).

If no confusion arises, we remove the prefix ‘-’ and just talk of confluence and termination of . In confluence analysis, testing
joinability of terms is essential.

Definition 13 (Joinable terms). Given a CTRS , terms 𝑠, 𝑡 ∈  ( ,) are -joinable (written 𝑠 ↓

𝑡) iff there is a term 𝑢 such that

𝑠 →∗

𝑢 and 𝑡 →∗


𝑢. If no confusion arises, we use ↓ or even ↓.

The following consequence of Theorem 10, is used below.

Corollary 14. Let  be a CTRS. Two terms 𝑠 and 𝑡 are -joinable iff 𝑠↓ and 𝑡↓ are -joinable.

The next result shows how joinability of terms can be proved as the feasibility of a sequence. This is used in the following.

Proposition 15. [23, Corollary 24] Let  be a CTRS and 𝑠, 𝑡 be terms. Then, 𝑠 and 𝑡 are -joinable iff 𝑠↓ →∗ 𝑧, 𝑡↓ →∗ 𝑧, where 𝑧 is a
variable, is -feasible.

Proof. By Corollary 14, 𝑠 and 𝑡 are -joinable iff 𝑠↓ and 𝑡↓ are -joinable. Since 𝑠↓ and 𝑡↓ have no variable, the sequence 𝑠↓ →∗

𝑧, 𝑡↓ →∗ 𝑧 is -feasible iff there is a term 𝑢 such that 𝑠↓ →∗

𝑢 and 𝑡↓ →∗


𝑢 hold, i.e., iff 𝑠↓ and 𝑡↓ are -joinable. □

In some cases, removing infeasible rules from a CTRS  may alter its computational properties. For instance, the oriented CTRS
6

 = {𝖺 → 𝖻 ⇐ 𝖺 ≈ 𝖻} is not operationally terminating [39] because the attempt to reduce 𝖺 using the only (conditional) rule in 

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

launches infinitely many auxiliary attempts to evaluate the occurrence of 𝖺 in the condition of the rule. However, the rule is clearly
-infeasible as 𝖻 cannot be reached from 𝖺. The removal of the rule from , though, leaves an empty system which does not exhibit
this problem anymore. See [40, Section 4] for a more detailed discussion. However, infeasible rules can be removed at once without
modifying → and →∗


as they cannot be used in any deduction to establish a rewriting step. Since confluence and termination of

 only depend on → and →∗


, we can remove infeasible rules to obtain a simplified system whose confluence and termination is
equivalent to that of .

4. Peaks and (local) confluence

Given a CTRS  and terms 𝑠, 𝑡, 𝑡′, the situation

𝑡 ←𝑠→ 𝑡′

is often called a local peak, or just a peak, if no confusion arises (see, e.g., [54, Section 1.2]). By Proposition 11, there are positions
𝑝, 𝑝′ ∈ 𝑜𝑠(𝑠), rules 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 and 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′, and substitutions 𝜎 and 𝜎′, such that (i) 𝑠|𝑝 = 𝜎(𝓁) and 𝜎(𝑐) hold in ; and (ii)
𝑠|

𝑝′
= 𝜎′(𝓁′) and 𝜎′(𝑐′) hold in . Thus, every peak is of the form

𝑢 = 𝑠[𝜎′(𝑟′)]
𝑝′ ← 𝑠[𝜎′(𝓁′)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
]
𝑝′

= 𝑠 = 𝑠[𝜎(𝓁)
⃖⃖⃖⃖⃖⃖⃖⃗

]𝑝 → 𝑠[𝜎(𝑟)]𝑝 = 𝑣 (14)

Remark 16 (Structure of a peak). Note that (14) pays no attention to the theory  at stake beyond its use (through deduction) to
establish the rewriting steps. This will be important in Section 7.5 below where the discussion in this section is applied to the more
general setting of GTRSs. Regarding positions, a thorough consideration will be required, though.

Depending on the relative location of positions 𝑝 and 𝑝′ in 𝜎(𝓁) and 𝜎′(𝓁′) in (14), different classes of peaks are usually distin-

guished: disjoint, critical, and variable peaks [9, Sections 2.1–2.3].

Disjoint peaks If 𝑝 and 𝑝′ in (14) are disjoint, then 𝑠 = 𝑠[𝜎(𝓁)]𝑝[𝜎′(𝓁′)]
𝑝′
= 𝑠[𝜎′(𝓁′)]

𝑝′
[𝜎(𝓁)]𝑝. Accordingly, (14) can be written as

follows:

𝑢 = 𝑠[𝜎′(𝑟′)]
𝑝′
[𝜎(𝓁)]𝑝 ←𝑠[𝜎′(𝓁′)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
]
𝑝′
[𝜎(𝓁)
⃖⃖⃖⃖⃖⃖⃖⃗

]𝑝 → 𝑠[𝜎′(𝓁′)]
𝑝′
[𝜎(𝑟)]𝑝 = 𝑣 (15)

Disjoint peaks are always joinable:

𝑢 = 𝑠[𝜎′(𝑟′)]
𝑝′
[𝜎(𝓁)
⃖⃖⃖⃖⃖⃖⃖⃗

]𝑝 → 𝑠[𝜎′(𝑟′)]
𝑝′
[𝜎(𝑟)]𝑝 ← 𝑠[𝜎′(𝓁′)

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖
]
𝑝′
[𝜎(𝑟)]𝑝 = 𝑣 (16)

where the reduction step 𝜎(𝓁) → 𝜎(𝑟) is possible in (16) because it is possible in (15). Similarly for 𝜎′(𝓁′) → 𝜎′(𝑟′).

Non-disjoint peaks If 𝑝 and 𝑝′ in (14) are not disjoint, then we can write 𝑠 = 𝑠[𝜎(𝓁)[𝜎′(𝓁′)]𝑝]𝑝, i.e., (without loss of generality) 𝑝′ = 𝑝.𝑝

for some 𝑝 ∈ 𝑜𝑠(𝜎(𝓁)). Hence, (14) can be written as follows:

𝑢 = 𝑠[𝜎(𝓁)[𝜎′(𝑟′)]𝑝]𝑝 ← 𝑠[𝜎(𝓁)[⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖𝜎′(𝓁′)]𝑝
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

]𝑝 → 𝑠[𝜎(𝑟)]𝑝 = 𝑣

By removing the untouched context 𝑠[]𝑝 around 𝜎(𝓁), and assuming that 𝛼 and 𝛼′ share no variable (rename if necessary), we can
use a single substitution 𝜎 to obtain:

𝑢 = 𝜎(𝓁)[𝜎(𝑟′)]𝑝 ← 𝜎(𝓁)[⃖⃖ ⃖⃖⃖⃖⃖⃖⃖𝜎(𝓁′)]𝑝
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

→ 𝜎(𝑟) = 𝑣 (17)

Now we consider two cases for 𝑝 ∈ 𝑜𝑠(𝜎(𝓁)):

• 𝑝 ∈ 𝑜𝑠 (𝓁), which characterizes (17) as a critical peak; and

• 𝑝 ∉ 𝑜𝑠 (𝓁), which characterizes (17) as a variable peak.

Critical peaks (proper and improper) If the critical peak (17) is obtained from (i) a single rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 and a renamed version 𝛼′
of 𝛼, and (ii) 𝑝 = Λ, then borrowing [2, Definition 4.2] we call it improper. Otherwise, we call it proper.

Proposition 17. Every improper critical peak of a 2-CTRS is joinable.

Proof. Since 𝑝 =Λ and 𝑠 = 𝜎(𝓁) = 𝜎(𝓁′), improper critical peaks (17) become

𝜎(𝑟′) ← 𝜎(𝓁′)
⃖⃖ ⃖⃖⃖⃖⃖⃖⃖

= 𝜎(𝓁)
⃖⃖⃖⃖⃖⃖⃖⃗

→ 𝜎(𝑟) (18)
7

Since 𝛼 is a 2-rule, 𝑎𝑟(𝑟) ⊆ 𝑎𝑟(𝓁), and then 𝜎(𝑟) = 𝜎(𝑟′). □

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Dealing with proper 3-rules 𝛼 where 𝑎𝑟(𝑟) ⊈ 𝑎𝑟(𝓁), this may fail to hold.

Example 18. For the following oriented 3-CTRS  [52, Introduction]:

𝗀(𝖻)→ 𝗍𝗋𝗎𝖾 (19)

𝗀(𝖼)→ 𝗍𝗋𝗎𝖾 (20)

𝖺 → 𝖿(𝑥)⇐𝗀(𝑥) ≈ 𝗍𝗋𝗎𝖾 (21)

we have the following improper critical peak:

𝖿(𝖻) ← ⃖⃗𝖺
⃖⃖
→ 𝖿(𝖼) (22)

This peak is not O-joinable as both 𝖿(𝖻) and 𝖿(𝖼) are irreducible terms.

Variable peaks If 𝑝 in (17) satisfies 𝑝 ∉ 𝑜𝑠 (𝓁), then (17) can be written

𝑢 = 𝜎(𝓁)[𝐶[𝜎(𝑟′)]𝑞]𝑝𝑥 ← 𝜎(𝓁)[𝐶[⃖⃖ ⃖⃖⃖⃖⃖⃖⃖𝜎(𝓁′)]𝑞]𝑝𝑥
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗

→ 𝜎(𝑟) = 𝑣 (23)

for some context 𝐶 , variable 𝑥 ∈ 𝑎𝑟(𝓁) and 𝑝𝑥 ∈ 𝑜𝑠𝑥(𝓁) such that 𝑝 = 𝑝𝑥.𝑞 for some position 𝑞. Dershowitz et al. call (23) a variable
peak [9]. As implicitly shown in Case 2a of the proof of [28, Lemma 3.1], variable peaks of TRSs are always joinable. For CTRSs, this
is not true: if  in Example 2 is viewed as an O-CTRS, then (6), i.e., 𝖿(𝖻) ← 𝖿 (⃖⃖𝖺)

⃖⃖⃖⃖⃖⃗
→ 𝖼 is a non-joinable variable peak.

5. Conditional pairs in the analysis of local confluence of CTRSs

In order to give a homogeneous treatment to the peaks (17) and (23) we consider conditional pairs

⟨𝑠, 𝑡⟩
⏟⏟⏟

peak

⇐ 𝐴1,… ,𝐴𝑛
⏟⏞⏞⏟⏞⏞⏟

conditional part

(24)

where 𝑠, 𝑡 are terms and 𝐴𝑖 are atoms for all 1 ≤ 𝑖 ≤ 𝑛. In this way, conditional variable pairs like (7), i.e., ⟨𝖿(𝑥′), 𝖼⟩ ⇐ 𝑥 → 𝑥′, 𝑥 ≈ 𝖺, are
instances of (24) using atoms with different predicates (→ and ≈) in the conditional part.

Definition 19 (Feasible conditional pair). Let  be a CTRS. A conditional pair ⟨𝑠, 𝑡⟩ ⇐ 𝑐 is -feasible (or just feasible if  is clear from
the context) iff 𝑐 is -feasible.

Definition 20 (Joinable conditional pair). Let  be a CTRS. A conditional pair ⟨𝑠, 𝑡⟩ ⇐ 𝑐 is -joinable (or just joinable if  is clear from
the context) iff for all substitutions 𝜎, whenever  ⊢ 𝜎(𝛾) holds for all 𝛾 ∈ 𝑐, terms 𝜎(𝑠) and 𝜎(𝑡) are -joinable.

A conditional pair (24) is trivial if 𝑠 = 𝑡. Trivial and infeasible conditional pairs are obviously joinable. This has been used for
proving joinability of conditional critical pairs of CTRSs in, e.g., [2, Theorem 4.2], also with the sufficient criterion of context-

joinability [2, Definition 4.4] which uses grounding of variables to provide a sufficient condition for joinability. As in [23, Section
6], we prove joinability of terms and critical pairs by proving the (in)feasibility of sequences [22] (see Section 2). However, in this
paper we use the more general conditional pairs (24); and proofs of non-joinability of such pairs rely on the next result, whose proof
is straightforward.

Proposition 21. Let  be a CTRS and 𝜋 ∶ ⟨𝑠, 𝑡⟩ ⇐ 𝑐 be a conditional pair (24). If (i) 𝜎(𝑐) is -feasible for some substitution 𝜎, and (ii)
𝜎(𝑐), 𝜎(𝑠) →∗ 𝑧, 𝜎(𝑡) →∗ 𝑧 is -infeasible (for some 𝑧 ∉ 𝑎𝑟(𝜎(𝑐), 𝜎(𝑠), 𝜎(𝑡))), then 𝜋 is not -joinable.

Remark 22. In order to use Proposition 21, we have to use a substitution 𝜎. The following heuristics are useful.

1. The simplest choice is the empty substitution, i.e., 𝜎 = 𝜀. This is easily mechanizable. Example 48 below illustrates this.

2. Choosing another substitution, usually trying to fulfill the conditions in the proposition. Example 49 illustrates this.

Now, we investigate how to represent critical and variable peaks of CTRSs by means of a finite number of conditional pairs (24).

5.1. Conditional critical pairs in CTRSs
8

The notion of conditional critical pair of a CTRS, see, e.g., [46, Definition 7.1.8(1)], is analogous to that of critical pairs of TRSs.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Definition 23 (Conditional critical pair). Let  be a CTRS and 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 and 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ be (-feasible) rules of  sharing
no variable (rename if necessary). Let 𝑝 ∈ 𝑜𝑠 (𝓁) be a nonvariable position of 𝓁 such that 𝓁|𝑝 and 𝓁′ unify with mgu 𝜃. Then,

⟨𝜃(𝓁[𝑟′]𝑝), 𝜃(𝑟)⟩⇐ 𝜃(𝑐), 𝜃(𝑐′) (25)

is a conditional critical pair (CCP) of  and 𝑝 is called the critical position.

If the conditional part of (25) is empty, we just call it a critical pair and write ⟨𝑠, 𝑡⟩, as usual. Example 18 shows that improper
critical peaks can jeopardize (local) confluence of CTRSs. Thus, we introduce the following.

Definition 24 (Proper and improper conditional critical pairs). Given a CTRS ,

1. If 𝛼 and 𝛼′ in Definition 23 are renamed versions of the same rule and 𝑝 = Λ, then (25) is called an improper conditional critical
pair [2, Definition 4.2].

2. Conditional critical pairs not fitting case 1 are called proper.

Let 𝗂𝖢𝖢𝖯() (or just 𝗂𝖢𝖢𝖯() if no confusion arises) be the set of -feasible improper conditional critical pairs of proper 3- or 4-rules
in . Let 𝗉𝖢𝖢𝖯(), or just 𝗉𝖢𝖢𝖯(), be the set of -feasible proper conditional critical pairs of .

Proposition 17 motivates restricting the attention to proper 3- or 4-rules in 𝗂𝖢𝖢𝖯() above.

Remark 25 (Root conditional critical pairs). In the context of this paper, we only need to consider one of the two conditional critical
pairs obtained from (variable disjoint) rules 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 and 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ overlapping at the root critical position Λ when
considering 𝛼 as the “main” rule and 𝛼′ as the “auxiliary” one, or vice versa (in the realm of TRSs, these are called root critical
pairs, see [3, Exercise 6.19]). For 𝜃 an mgu of 𝓁 and 𝓁′, the corresponding root CCPs would be 𝜋1 ∶ ⟨𝜃(𝑟′), 𝜃(𝑟)⟩ ⇐ 𝜃(𝑐), 𝜃(𝑐′) and
𝜋2 ∶ ⟨𝜃(𝑟), 𝜃(𝑟′)⟩ ⇐ 𝜃(𝑐′), 𝜃(𝑐). Since the order of conditions does not preclude their satisfaction by a substitution and our notion of
joinability treats both components 𝑠 and 𝑡 of a conditional pair ⟨𝑠, 𝑡⟩ ⇐ 𝑑 in the same way (requiring joinability, a symmetric relation),
the joinability of 𝜋1 and that of 𝜋2 are equivalent.1

Remark 26 (Conditional critical pairs in the literature). The notion of conditional critical pair as given in, e.g., [2, Definition 4.2]

and [46, Definition 7.1.8(1)] only considers proper conditional critical pairs to formulate confluence results for CTRSs. With such a
definition in mind,  in Example 18 has no conditional critical pair. In contrast, other authors do not dismiss improper critical pairs
from their definition (see [8, paragraph above Theorem 3.3] or [13, Definition 6]) and associated results. Thus, in order to avoid
confusion, we prefer to explicitly collect proper and improper conditional critical pairs in different sets 𝗉𝖢𝖢𝖯() and 𝗂𝖢𝖢𝖯() and
give our results accordingly.

5.1.1. Joinability of conditional critical pairs and joinability of critical peaks

The following result shows that substitutions satisfying the conditional part of conditional critical pairs determine a critical peak.

Proposition 27. Let  be a CTRS and 𝜋 ∶ ⟨𝑠, 𝑡⟩ ⇐ 𝑑 be a conditional critical pair where (i) 𝑠 = 𝜃(𝓁[𝑟′]𝑝) and 𝑡 = 𝜃(𝑟) for some rules
𝓁 → 𝑟 ⇐ 𝑐 and 𝓁′ → 𝑟′ ⇐ 𝑐′, 𝑝 ∈ 𝑜𝑠 (𝓁), and 𝜃 an mgu of 𝓁|𝑝 and 𝓁′, and (ii) 𝑑 = 𝜃(𝑐), 𝜃(𝑐′). Let 𝜎 be a substitution such that 𝜎(𝑑) holds
(i.e., 𝜋 is -feasible). Then, 𝜎(𝑠) ← 𝜎(𝓁) → 𝜎(𝑡) is a critical peak.

Proof. Since 𝜎(𝑑) holds, both 𝜎(𝜃(𝑐)) and 𝜎(𝜃(𝑐′)) hold as well. Since 𝜃(𝓁|𝑝) = 𝜃(𝓁′), we have

𝜎(𝜃(𝓁)) = 𝜎(𝜃(𝓁)[𝜃(𝓁′)]𝑝) = 𝜎(𝜃(𝓁))[𝜎(𝜃(𝓁′))]𝑝 → 𝜎(𝜃(𝓁))[𝜎(𝜃(𝑟′))]𝑝 = 𝜎(𝑠)

and 𝜎(𝜃(𝓁)) → 𝜎(𝜃(𝑟)) = 𝜎(𝑡) as desired. □

The following result establishes that every critical peak 𝜅 has an associated (feasible) conditional critical pair 𝜋.

Proposition 28 (Critical peaks from conditional critical pairs). Let  be a CTRS and 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐, 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ be rules sharing no
variable (rename if necessary) and determining a critical peak (17) at position 𝑝 ∈ 𝑜𝑠 (𝓁) with substitution 𝜎. The (-feasible) conditional
critical pair 𝜋 ∶ ⟨𝜃(𝓁)[𝜃(𝑟′)]𝑝, 𝜃(𝑟)⟩ ⇐ 𝜃(𝑐), 𝜃(𝑐′), where 𝜃 is the mgu of 𝓁|𝑝 and 𝓁′ satisfies 𝜎 = 𝜏◦𝜃 for some substitution 𝜏 .

Proof. Since there is a critical peak 𝜅 determined by 𝛼 and 𝛼′ with substitution 𝜎 at position 𝑝 ∈ 𝑜𝑠 (𝓁), we have that 𝜎(𝓁) =
𝜎(𝓁)[𝜎(𝓁′)]𝑝 → 𝜎(𝓁)[𝜎(𝑟′)]𝑝 and 𝜎(𝓁) = 𝜎(𝓁)[𝜎(𝓁′)]𝑝 → 𝜎(𝑟), and both 𝜎(𝑐) and 𝜎(𝑐′) hold. Since 𝑝 ∈ 𝑜𝑠 (𝓁) and 𝜎(𝓁|𝑝) = 𝜎(𝓁′), we have
9

1 This could be different when asymmetric notions of joinability are considered (e.g., parallel closedness, see [28, page 815] and [3, Definition 6.4.5]).

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

that 𝓁|𝑝 and 𝓁′ unify with 𝜎. Thus, consider the critical pair ⟨𝜃(𝓁)[𝜃(𝑟′)]𝑝, 𝜃(𝑟)⟩ ⇐ 𝜃(𝑐), 𝜃(𝑐′), where 𝜃 is the mgu of 𝓁|𝑝 and 𝓁′ and, by
definition of mgu, 𝜎 = 𝜏◦𝜃 for some substitution 𝜏 . Furthermore, since both 𝜎(𝑐) and 𝜎(𝑐′) hold, 𝜋 is feasible. □

Propositions 27 and 28 justify the dismissal of infeasible critical pairs from 𝗉𝖢𝖢𝖯() and 𝗂𝖢𝖢𝖯(). By Proposition 28, there is
a mapping 𝜛 such that for each critical peak 𝜅, there is an associated critical pair 𝜋 =𝜛(𝜅). Joinability of critical pairs 𝜋 implies
joinability of critical peaks 𝜅 such that 𝜋 =𝜛(𝜅).

Proposition 29 (Joinability of conditional critical pairs and peaks). Let  be a CTRS, 𝜅 be a critical peak (17), and 𝜋 =𝜛(𝜅). If 𝜋 is
-joinable, then 𝜅 is -joinable.

Proof. In this proof, the symbols 𝛼, 𝜎, etc., have the meaning established in the proof of Proposition 28. Note that both 𝜎(𝑐) and
𝜎(𝑐′) hold. By Proposition 28, there is a substitution 𝜏 such that 𝜎 = 𝜏◦𝜃. Thus, 𝜎(𝑐) = 𝜏(𝜃(𝑐)) and 𝜎(𝑐′) = 𝜏(𝜃(𝑐′)) hold. Since 𝜋 =𝜛(𝜅)
and 𝜋 is joinable, by definition of -joinability (Definition 20), we have that 𝜎(𝓁)[𝜎(𝑟′)]𝑝 = 𝜏(𝜃(𝓁))[𝜏(𝜃(𝑟′))]𝑝) and 𝜎(𝑟) = 𝜏(𝜃(𝑟)) are
joinable. Hence, 𝜅 is joinable. □

5.2. Conditional variable pairs in CTRSs

Overlapping terms are not the only source of divergent peaks in conditional rewriting. Variable peaks do not involve overlapping
terms, but can be harmful [9, Section 3]. Up to now, no corresponding notion of conditional pair capturing such divergencies has
been proposed. The following definition fills this gap.

Definition 30 (Conditional variable pair). Let  be a CTRS, 𝓁 → 𝑟 ⇐ 𝑐 ∈, 𝑥 ∈ 𝑎𝑟(𝓁), 𝑝 ∈ 𝑜𝑠𝑥(𝓁) and 𝑥′ be a fresh variable. Then,

⟨𝓁[𝑥′]𝑝, 𝑟⟩⇐ 𝑥→ 𝑥′, 𝑐 (26)

is a conditional variable pair (CVP). Variable 𝑥 is called the critical variable of the pair, and 𝑝 is called the critical position. Let 𝖢𝖵𝖯()
(or just 𝖢𝖵𝖯() if no confusion arises) be the set of all -feasible conditional variable pairs ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 for rules 𝓁 → 𝑟 ⇐ 𝑐 ∈,
𝑥 ∈ 𝑎𝑟(𝓁), and 𝑝 ∈ 𝑜𝑠𝑥(𝓁).

The rule (5) of  in Example 2 defines the conditional variable pair (7).

5.2.1. Joinability of conditional variable pairs and joinability of variable peaks

As for conditional critical pairs, we have the following result.

Proposition 31. Let  be a CTRS and 𝜋 ∶ ⟨𝑠, 𝑡⟩ ⇐ 𝑥 → 𝑥′, 𝑐 be a conditional variable pair where 𝑠 = 𝓁[𝑥′]𝑝 and 𝑡 = 𝑟 for some rule
𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈, 𝑝 ∈ 𝑜𝑠𝑥(𝓁), and 𝑥′ ∉ 𝑎𝑟(𝛼). Let 𝜎 be a substitution such that both 𝜎(𝑥) → 𝜎(𝑥′) and 𝜎(𝑐) hold (hence 𝜋 is feasible).
Then, 𝜎(𝑠) ← 𝜎(𝓁) → 𝜎(𝑡) is a variable peak.

Proof. Since 𝜎(𝑥) → 𝜎(𝑥′), we have

𝜎(𝓁) = 𝜎(𝓁[𝑥]𝑝) = 𝜎(𝓁)[𝜎(𝑥)]𝑝 → 𝜎(𝓁)[𝜎(𝑥′)]𝑝 = 𝜎(𝑠)

Since 𝜎(𝑐) holds, we also have 𝜎(𝓁) → 𝜎(𝑟) = 𝜎(𝑡) as desired. □

As for conditional critical peaks, variable peaks are also covered by appropriate instantiations of (feasible) conditional variable
pairs.

Proposition 32 (Variable peaks as conditional variable pairs). Let  be a CTRS, and 𝛼 ∶ 𝓁→ 𝑟 ⇐ 𝑐, 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′, 𝑥, 𝑝𝑥, 𝜎, and 𝐶[]𝑞 be
as in a variable peak (23). Let 𝜋 ∶ ⟨𝓁[𝑥′]𝑝𝑥 , 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐, with 𝑥′ ∉ 𝑎𝑟(𝛼) ∪𝑎𝑟(𝛼′), together with 𝜍 given by 𝜍(𝑦) = 𝜎(𝑦) for all 𝑦 ∈ 𝑎𝑟(𝛼)
(in particular 𝜍(𝑥) = 𝜎(𝑥) = 𝐶[𝜎(𝓁′)]𝑞), 𝜍(𝑦) = 𝜎(𝑦) for all 𝑦 ∈ 𝑎𝑟(𝛼′), and 𝜍(𝑥′) = 𝐶[𝜎(𝑟′)]𝑞 . Then, 𝜍(𝑐) and 𝜍(𝑐′) hold, 𝑢 = 𝜍(𝓁[𝑥′]𝑝𝑥), and
𝑣 = 𝜍(𝑟), and 𝜋 is -feasible.

Again, by Proposition 32, there is a mapping 𝜛 such that for each variable peak 𝜅, we have an associated conditional variable
pair 𝜋 =𝜛(𝜅). The following result establishes that joinability of conditional variable pairs 𝜋 implies joinability of variable peaks 𝜅
such that 𝜋 =𝜛(𝜅).

Proposition 33 (Joinability of conditional variable pairs and peaks). Let  be a CTRS, 𝜅 be a variable peak as in (23), and 𝜋 =𝜛(𝜅). If 𝜋
10

is -joinable, then 𝜅 is -joinable.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Proof. By Proposition 32, there is a substitution 𝜍 such that both 𝜍(𝑐) and 𝜍(𝑐′) hold, 𝑢 = 𝜍(𝓁[𝑥′]𝑝𝑥), and 𝑣 = 𝜍(𝑟). By definition of 𝜍,
we have 𝜍(𝑥) = 𝐶[𝜎(𝓁′)]𝑞 and 𝜍(𝑥′) = 𝐶[𝜎(𝑟′)]𝑞 , i.e., 𝜍 satisfies the conditional part 𝑥 → 𝑥′, 𝑐 of 𝜋. By joinability of 𝜋, 𝑢 = 𝜍(𝓁[𝑥′]𝑝𝑥) and
𝑣 = 𝜍(𝑟) are joinable. Thus, 𝜅 is joinable. □

For TRSs , 𝖢𝖵𝖯() is in general not empty as rules 𝓁 → 𝑟 with non-ground left-hand sides 𝓁 produce a CVP ⟨𝓁[𝑥]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′

for each 𝑥 ∈ 𝑎𝑟(𝓁) and 𝑝 ∈ 𝑜𝑠𝑥(𝓁). In the following section we provide some sufficient conditions guaranteeing joinability of CVPs,
thus dismissing many of them when joinability of CVPs is investigated.

5.2.2. Joinable conditional variable pairs

For rules 𝓁 → 𝑟 ⇐ 𝑐 whose active variables 𝑥 in 𝓁 are also active everywhere else in 𝓁 and 𝑟 (and missing in 𝑐), we have the
following.

Proposition 34. Let ) be a CTRS, 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈, and 𝑥 ∈ 𝑎𝑟(𝓁) − 𝑎𝑟(𝑐). Then, for all 𝑝 ∈ 𝑜𝑠𝑥(𝓁), the conditional variable pair
𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 is joinable.

Proof. If 𝑥 → 𝑥′, 𝑐 is not feasible, it is obvious. Otherwise, let 𝜎 be a substitution such that the conditional part of 𝜋 holds. This
means that (i) 𝜎(𝑐) holds and also (ii) 𝜎(𝑥) → 𝜎(𝑥′). By (i) we have 𝜎(𝓁) → 𝜎(𝑟). Let 𝜎′ be 𝜎′(𝑥) = 𝜎(𝑥′) and 𝜎′(𝑦) = 𝜎(𝑦) if 𝑦 ≠ 𝑥. By
(ii) and Proposition 9, 𝜎(𝓁)[𝜎(𝑥′)]𝑝 →∗


𝜎′(𝓁). Since 𝑥 ∉ 𝑎𝑟(𝑐), 𝜎′(𝑐) = 𝜎(𝑐) holds. Thus, 𝜎′(𝓁) → 𝜎′(𝑟) and, by (ii) and Proposition 9,

𝜎(𝑟) →∗

𝜎′(𝑟). Hence, 𝜋 is joinable. □

Thus, we can dismiss conditional variable pairs obtained from rules satisfying Proposition 34 (in particular, unconditional rules)
from proofs of local confluence of rewriting. For oriented CTRSs, we have the following refinement.

Proposition 35. Let  be an oriented CTRS and 𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 ∈ 𝖢𝖵𝖯() for a rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈, such that 𝑥 ∈ 𝑎𝑟(𝓁),
and for all 𝑠 ≈ 𝑡 ∈ 𝑐, 𝑥 ∉ 𝑎𝑟(𝑠). Then, 𝜋 is 𝑂-joinable.

Proof. The proof is similar to that of Proposition 34. We use the same notation here and discuss the small differences after (i) and (ii).
Since  is oriented, for all conditions 𝑠 ≈ 𝑡 ∈ 𝑐, since 𝑥 ∉ 𝑎𝑟(𝑠), we have 𝜎′(𝑠) = 𝜎(𝑠) →∗


𝜎(𝑡). Since 𝜎(𝑥) → 𝜎′(𝑥), by Proposition 9

we have 𝜎(𝑡) →∗

𝜎′(𝑡). Thus, 𝜎′(𝑐) holds, as required. The remainder of the proof does not change. □

For semi-equational CTRSs, we have the following:

Proposition 36. Let  be a semi-equational CTRS and 𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 ∈ 𝖢𝖵𝖯() for a rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 such that 𝑥 ∈ 𝑎𝑟(𝓁).
Then, 𝜋 is SE-joinable.

Proof. Let 𝜎 be a substitution such that 𝜎(𝑥) → 𝜎(𝑥′) and for all 𝑢 ≈ 𝑣 ∈ 𝑐, SE ⊢ 𝜎(𝑢) ≈ 𝜎(𝑣). Let 𝜎′ be as follows: 𝜎′(𝑥) = 𝜎(𝑥′) and
for all variables 𝑦 ≠ 𝑥, 𝜎′(𝑦) = 𝜎(𝑦). Note that 𝜎(𝑥) → 𝜎′(𝑥) = 𝜎(𝑥′) = 𝜎′(𝑥′). Then, (i) Since 𝜎(𝑥) → 𝜎(𝑥′), we have

𝜎(𝓁[𝑥′]𝑝) = 𝜎(𝓁)[𝜎(𝑥′)]𝑝 →∗

𝜎′(𝓁)[𝜎(𝑥′)]𝑝 = 𝜎′(𝓁)[𝜎′(𝑥′)]𝑝 = 𝜎′(𝓁)

(ii) Since 𝜎(𝑥) → 𝜎(𝑥′), we have 𝜎′(𝑥) = 𝜎(𝑥′) ↔∗

𝜎(𝑥). Thus, for all 𝑢 ≈ 𝑣 ∈ 𝑐, 𝜎′(𝑢) ↔∗


𝜎(𝑢). Since 𝜎(𝑐) holds in SE, 𝜎(𝑢) ↔∗


𝜎(𝑣)

and 𝜎(𝑣) ↔∗

𝜎′(𝑣). Therefore, 𝜎′(𝑢) ↔∗


𝜎(𝑢) ↔∗


𝜎(𝑣) ↔∗


𝜎′(𝑣), i.e., 𝜎′(𝑐) holds in SE. This means that 𝜎′(𝓁) → 𝜎′(𝑟). (iii) By

Proposition 9, 𝜎(𝑟) →∗

𝜎′(𝑟). Thus, 𝜎(𝓁[𝑥′]𝑝) →∗


𝜎′(𝓁) → 𝜎′(𝑟) and 𝜎(𝑟) →∗


𝜎′(𝑟), i.e., 𝜋 is SE-joinable. □

Remark 37. In order to use Proposition 21 with conditional variable pairs 𝜋 with critical variable 𝑥, the following heuristics are
useful:

1. 𝜎(𝑥) = 𝓁↓, 𝜎(𝑥′) = 𝑟↓ for some unconditional rule 𝓁 → 𝑟 ∈.

2. 𝜎(𝑥) = 𝜎(𝓁), 𝜎(𝑥′) = 𝜎(𝑟) for some unconditional rule 𝓁 → 𝑟 ∈.

5.2.3. Specialization of conditional variable pairs

In this section, we provide a transformation of CVPs which preserves (non)joinability and, as shown below, it is useful in practice.
First, we need the following

Definition 38 (Specializing CVPs). Let  be a CTRS and 𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 be a CVP for the rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐. Consider the
following specialized conditional pairs:

• Given a (possibly renamed) rule 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ ∈ sharing no variables with 𝛼
11

𝜋𝛼′ = ⟨𝓁𝑥↦𝓁′ [𝑟′]𝑝, 𝑟𝑥↦𝓁′ ⟩⇐ 𝑐𝑥↦𝓁′ , 𝑐
′ (27)

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

where 𝓁𝑥↦𝓁′ , 𝑟𝑥↦𝓁′ , and 𝑐𝑥↦𝓁′ are obtained by replacing all occurrences of 𝑥 in 𝓁, 𝑟, and 𝑐 by 𝓁′. We say that 𝜋𝛼′ is a rule

specialization of 𝜋.

• Given a 𝑘-ary symbol 𝑓 ∈  with 𝑘 > 0, 1 ≤ 𝑖 ≤ 𝑘, and variables 𝑥1, … , 𝑥𝑖, … , 𝑥𝑘, 𝑥′𝑖 not occurring in 𝜋,

𝜋𝑓,𝑖 = ⟨𝓁𝑓,𝑖[𝑓 (𝑥1,… , 𝑥′𝑖 ,… , 𝑥𝑘)]𝑝, 𝑟𝑓 ,𝑖⟩⇐ 𝑥𝑖 → 𝑥′𝑖 , 𝑐𝑓 ,𝑖 (28)

where 𝓁𝑓,𝑖, 𝑟𝑓,𝑖, and 𝑐𝑓,𝑖 are obtained by replacing all occurrences of 𝑥 in 𝓁, 𝑟, and 𝑐 by 𝑓 (𝑥1, … , 𝑥𝑖, … , 𝑥𝑘). We say that 𝜋𝑓,𝑖 is an
argument specialization of 𝜋.

Let 𝖢𝖵𝖯(, 𝜋) be the subset of -feasible, non-trivial conditional pairs in {𝜋𝛼′ ∣ 𝛼′ ∈} ∪ {𝜋𝑓,𝑖 ∣ 𝑓 ∈  , 1 ≤ 𝑖 ≤ 𝑎𝑟(𝑓)}.

Example 39. For the CVP (7) for  in Example 2, i.e.,

⟨𝖿(𝑥′), 𝖼⟩⇐ 𝑥→ 𝑥′, 𝑥 ≈ 𝖺

by applying the specializations in Definition 38, we obtain the following rule specializations (29), (30), and argument specialization
(31)

⟨𝖿(𝖻), 𝖼⟩⇐ 𝖺 ≈ 𝖺 (29)

⟨𝖿(𝖼), 𝖼⟩⇐ 𝖿(𝑥′′) ≈ 𝖺, 𝑥′′ ≈ 𝖺 (30)

⟨𝖿(𝖿(𝑦′)), 𝖼⟩⇐ 𝑦→ 𝑦′, 𝖿(𝑦) ≈ 𝖺 (31)

Since the conditional part of (29) is trivial, we can simplify it into the pair

⟨𝖿(𝖻), 𝖼⟩ (32)

Both (30) and (31) are infeasible (disregarding the J-, O-, or SE-based theory  for ). In particular, regarding joinability and
reachability evaluation of conditions, 𝖿(𝑥) ≈ 𝖺 cannot be satisfied because for all terms 𝑡, reductions on 𝖿(𝑡) would eventually remove
symbol 𝖿 only to obtain 𝖼 using rule (5); on the other hand, 𝖺 is reducible to 𝖻 only (which is irreducible). Similarly, 𝖿(𝑡) ↔∗


𝖺 does

not hold for any term 𝑡. Therefore, 𝖢𝖵𝖯(, (7)) = {(32)}.

Proposition 40. Let  be a CTRS and 𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 be a CVP for the rule 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐. Then, 𝜋 is -joinable if and only if
for all 𝜋′ ∈ 𝖢𝖵𝖯(, 𝜋) 𝜋′ is -joinable.

Proof. As for the if part, we proceed by contradiction. Assume that 𝜋′ is -joinable for all 𝜋′ ∈ 𝖢𝖵𝖯(, 𝜋), but 𝜋 is not -joinable.
Then, there is a substitution 𝜎 such that 𝑠 = 𝜎(𝑥) → 𝜎(𝑥′) = 𝑡 and 𝜎(𝑐) holds, but 𝜎(𝓁[𝑥′]𝑝) and 𝜎(𝑟) are not -joinable. By Proposi-

tion 11, there is 𝑞 ∈ 𝑜𝑠(𝑠) and 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ ∈ such that (since we can assume that 𝑎𝑟(𝛼) ∩𝑎𝑟(𝛼′) = ∅) 𝑠|𝑞 = 𝜎(𝓁′), 𝜎(𝑐′) holds,
and 𝑡 = 𝑠[𝜎(𝑟′)]𝑞 . We consider the two possible cases for 𝑞.

1. If 𝑞 = Λ, then, 𝑠 = 𝜎(𝑥) = 𝜎(𝓁′), 𝜎(𝑐′) holds, and 𝑡 = 𝜎(𝑥′) = 𝜎(𝑟′). We assume that 𝜋𝛼′ ∈ 𝖢𝖵𝖯(, 𝜋), i.e., ⟨𝓁[𝑟′]𝑝, 𝑟⟩ ⇐ 𝑐𝑥↦𝓁′ , 𝑐′ is
-joinable. Thus, if both 𝜎(𝑐) and 𝜎(𝑐′) hold, then, since 𝜎(𝑐) = 𝜎(𝑐𝑥↦𝓁′), we know that 𝜎(𝓁[𝑟′]𝑝) = 𝜎(𝓁)[𝜎(𝑟′)]𝑝) = 𝜎(𝓁)[𝜎(𝑥′)]𝑝 =
𝜎(𝓁[𝑥′]𝑝) and 𝜎(𝑟) are -joinable, thus leading to a contradiction.

2. If 𝑞 = 𝑖.𝑞′ for some 𝑖 ∈ ℕ and position 𝑞′, then there is a 𝑘-ary symbol 𝑓 and terms 𝑠1, … , 𝑠𝑘 such that 𝑠 = 𝜎(𝑥) =
𝑓 (𝑠1, … , 𝑠𝑖, … , 𝑠𝑘), 𝑖 ∈ 𝑜𝑠(𝑠), and 𝑠𝑖 → 𝑠′𝑖 for some term 𝑠′𝑖 , and 𝑡 = 𝜎(𝑥′) = 𝑓 (𝑠1, … , 𝑠′𝑖 , … , 𝑠𝑘). We assume that 𝜋𝑓,𝑖 ∈ 𝖢𝖵𝖯(, 𝜋),
i.e., ⟨𝓁[𝑓 (𝑥1, … , 𝑥′𝑖 , … , 𝑥𝑘)]𝑝, 𝑟⟩ ⇐ 𝑥𝑖 → 𝑥′𝑖 , 𝑐𝑓,𝑖 is joinable. Since 𝑥1, … , 𝑥𝑘 and 𝑥′𝑖 do not occur in 𝛼, we can let 𝜎(𝑥𝑖) = 𝑠𝑖 for all
1 ≤ 𝑖 ≤ 𝑛, and 𝜎(𝑥′𝑖) = 𝑡𝑖. Therefore, 𝜎(𝑥𝑖) = 𝑠𝑖 → 𝑡𝑖 = 𝜎(𝑥′𝑖) holds. Since, by the previous extension of 𝜎 to variables 𝑥1, … , 𝑥𝑘 and
𝑥′𝑖 , we have that 𝜎(𝑐) = 𝜎(𝑐𝑓,𝑖) holds, and

𝜎(𝓁[𝑓 (𝑥1,… , 𝑥′𝑖 ,… , 𝑥𝑘)]𝑝) = 𝜎(𝓁)[𝜎(𝑓 (𝑥1,… , 𝑥′𝑖 ,… , 𝑥𝑘))]𝑝
= 𝜎(𝓁)[𝑓 (𝑠1,… , 𝑠′𝑖 ,… , 𝑠𝑘))]𝑝
= 𝜎(𝓁[𝑥′]𝑝)

by -joinability of 𝜋𝑓,𝑖, 𝜎(𝓁[𝑥′]𝑝) and 𝜎(𝑟) are -joinable, a contradiction.

As for the only if part, if 𝜋 is not -joinable, we prove the existence of a non--joinable conditional pair in 𝖢𝖵𝖯(, 𝜋). Let 𝜎 be
a substitution such that 𝑠 = 𝜎(𝑥) → 𝜎(𝑥′) = 𝑡 and 𝜎(𝑐) hold, but 𝜎(𝓁[𝑥′]𝑝) and 𝜎(𝑟) are not -joinable. By Proposition 11, there is
𝑞 ∈ 𝑜𝑠(𝑠) and 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ ∈ such that 𝑠|𝑞 = 𝜎(𝓁′), 𝜎(𝑐′) holds, and 𝑡 = 𝑠[𝜎(𝑟′)]𝑞 . Consider two cases for 𝑞.

• If 𝑞 = Λ, then, 𝑠 = 𝜎(𝑥) = 𝜎(𝓁′) and 𝑡 = 𝜎(𝑥′) = 𝜎(𝑟′) and we consider 𝜋𝛼′ ∈ 𝖢𝖵𝖯(, 𝜋), i.e., ⟨𝓁[𝑟′]𝑝, 𝑟⟩ ⇐ 𝑐𝑥↦𝓁′ , 𝑐′. Since 𝜎(𝑐) =
𝜎(𝑐𝑥↦𝓁′) and 𝜎(𝑐′) hold and 𝜎(𝓁[𝑟′]𝑝) = 𝜎(𝓁)[𝜎(𝑟′)]𝑝) = 𝜎(𝓁)[𝜎(𝑥′)]𝑝 = 𝜎(𝓁[𝑥′]𝑝) and 𝜎(𝑟) are not joinable, then 𝜋𝛼′ ∈ 𝖢𝖵𝖯(, 𝜋) is
not -joinable either.
12

• If 𝑞 = 𝑖.𝑞′, then we consider 𝜋𝑓,𝑖 ∈ 𝖢𝖵𝖯(, 𝜋) and proceed similarly to prove that it is not -joinable. □

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Example 41. For  in Example 2, the only pair (32) in 𝖢𝖵𝖯(, (7)), i.e.,

⟨𝖿(𝖻), 𝖼⟩

is 𝐽 -joinable: 𝖿(𝖻) →(5) 𝖼 because the corresponding instance 𝖻 ≈ 𝖺 of the condition 𝑥 ≈ 𝖺 holds under a joinability semantics for ≈.
By Proposition 40, (7) is joinable. However, (32) is not 𝑂-joinable (see Example 2).

6. Characterization of local confluence of CTRSs

We collect proper and improper conditional critical pairs together with conditional variable pairs in a set of extended conditional
critical pairs.

Definition 42 (Extended conditional critical pairs). Let  be a CTRS. The set 𝖤𝖢𝖢𝖯() = 𝗉𝖢𝖢𝖯() ∪ 𝗂𝖢𝖢𝖯() ∪ 𝖢𝖵𝖯() is the set of
extended conditional critical pairs of .

The main result of this paper is the following.

Theorem 43 (Local confluence of CTRSs). A CTRS  is locally -confluent iff for all 𝜋 ∈ 𝖤𝖢𝖢𝖯(), 𝜋 is -joinable.

Proof. For the only if part, consider 𝜋 ∶ ⟨𝑠, 𝑡⟩ ⇐ 𝑐 ∈ 𝖤𝖢𝖢𝖯() and a substitution 𝜎 such that 𝜎(𝑐) holds. By Propositions 27 and 31,
there is a term 𝑢 such that 𝑢 → 𝜎(𝑠) and 𝑢 → 𝜎(𝑡). By local -confluence of , 𝜎(𝑠) and 𝜎(𝑡) are -joinable. Hence, 𝜋 is -joinable.

For the if part,  is locally -confluent if and only if for all terms 𝑠, 𝑢, 𝑣 defining a peak (14), 𝑢 and 𝑣 are -joinable. Consider
a peak 𝜅 of the form (14). If 𝜅 is a disjoint peak, then it is -joinable. Otherwise, 𝜅 is either a critical or a variable peak. By
Proposition 28 (resp. Proposition 32), there is a corresponding 𝜋 ∈ 𝖤𝖢𝖢𝖯() representing 𝜅. Since 𝜋 is -joinable, by Proposition 29

(resp. Proposition 33), 𝜅 is -joinable. Thus,  is locally -confluent. □

Using Proposition 36, we have the following.

Corollary 44 (Local confluence of SE-CTRSs). An SE-CTRS  is locally confluent iff for all 𝜋 ∈ 𝗉𝖢𝖢𝖯() ∪ 𝗂𝖢𝖢𝖯(), 𝜋 is -joinable.

As a corollary of Theorem 43 and Newman’s Lemma, we have the following.

Theorem 45. A CTRS  which is -terminating is -confluent iff for all 𝜋 ∈ 𝖤𝖢𝖢𝖯(), 𝜋 is -joinable.

The following corollary of Theorem 45 and Proposition 36, was given as a sufficient condition for confluence of SE-CTRSs in [8,
Theorem 3.3].

Corollary 46 (Confluence of terminating SE-CTRSs). A terminating SE-CTRS  is confluent iff for all 𝜋 ∈ 𝗉𝖢𝖢𝖯() ∪ 𝗂𝖢𝖢𝖯(), 𝜋 is joinable.

In proofs of termination of CTRSs  with FO-theory , it is often useful to consider the rewriting part 𝓁 → 𝑟 of conditional
rules 𝓁 → 𝑟 ⇐ 𝑐 only. For 2-CTRSs , a TRS, often called underlying TRS, 𝑢, is obtained. Disregarding the underlying theory ,
termination of 𝑢 implies -termination of .

Example 47. For  = {𝖺 →𝖻, 𝖺 → 𝖼, 𝖻 →𝖼 ⇐𝖻 ≈ 𝖼} in Example 1, we have 𝖤𝖢𝖢𝖯() = 𝗉𝖢𝖢𝖯() = {(33)}, with

⟨𝖻, 𝖼⟩ (33)

• As a J-CTRS. Since 𝖻 and 𝖼 are 𝐽 -irreducible, (33) is not 𝐽 -joinable. By Theorem 43,  is not locally J-confluent nor
J-confluent.

• As an SE-CTRS. Since 𝖻 (1)←𝖺 →(2) 𝖼, we have 𝖻 →(3) 𝖼, i.e., (33) is SE-joinable. By Theorem 43,  is locally SE-confluent.
Since 𝑢 = {𝖺 →𝖻, 𝖺 → 𝖼, 𝖻 →𝖼} is clearly terminating,  is SE-terminating and, by Theorem 45,  is SE-confluent.

Example 48. For  = {𝖺 →𝖻, 𝖿(𝑥) → 𝖼 ⇐ 𝑥 ≈ 𝖺} in Example 2, 𝖤𝖢𝖢𝖯() = 𝖢𝖵𝖯() = {(7)}, where (7) is ⟨𝖿(𝑥′), 𝖼⟩ ⇐ 𝑥 → 𝑥′, 𝑥 ≈ 𝖺.

• As a J-CTRS. Since (7) is 𝐽 -joinable (Example 41), by Theorem 43,  is locally 𝐽 -confluent. Since 𝑢 = {𝖺 → 𝖻, 𝖿(𝑥) → 𝖼} is
terminating,  is 𝐽 -terminating and, by Theorem 45, is 𝐽 -confluent.

• As an O-CTRS. The sequence 𝑥 → 𝑥′, 𝑥 ≈ 𝖺 is clearly O-feasible (with 𝜎 = {𝑥 ↦ 𝖺, 𝑥′ ↦ 𝖻}, for instance). However, 𝑥 → 𝑥′, 𝑥 ≈
𝖺, 𝖿(𝑥′) →∗ 𝑧, 𝖼 →∗ 𝑧 is O-infeasible: 𝜎 above is the only substitution satisfying 𝑥 → 𝑥′, 𝑥 ≈ 𝖺 in O, but both 𝜎(𝖿(𝑥′)) = 𝖿(𝖻) and 𝖼
13

are O-irreducible. By Proposition 21, (7) is not 𝑂-joinable. By Theorem 43,  is not locally 𝑂-confluent nor 𝑂-confluent.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Example 49. For the O-CTRS  = {𝗀(𝖻) → 𝗍𝗋𝗎𝖾, 𝗀(𝖼) → 𝗍𝗋𝗎𝖾, 𝖺 → 𝖿(𝑥) ⇐ 𝗀(𝑥) ≈ 𝗍𝗋𝗎𝖾} in Example 18, with 3-rule (21), i.e., 𝖺 → 𝖿(𝑥) ⇐
𝗀(𝑥) ≈ 𝗍𝗋𝗎𝖾, and a renamed copy (21)’ of it, we obtain the improper conditional critical pair

⟨𝖿(𝑥′), 𝖿(𝑥)⟩⇐𝗀(𝑥) ≈ 𝗍𝗋𝗎𝖾,𝗀(𝑥′) ≈ 𝗍𝗋𝗎𝖾 (34)

Hence, 𝖤𝖢𝖢𝖯() = 𝗂𝖢𝖢𝖯() = {(34)}. With 𝜎 = {𝑥 ↦ 𝖻, 𝑥′ ↦ 𝖼}, (i) the instantiated condition of (34), i.e., the sequence 𝗀(𝖻) ≈
𝗍𝗋𝗎𝖾, 𝗀(𝖼) ≈ 𝗍𝗋𝗎𝖾 is O-feasible (just use the two unconditional rules of ); and (ii) the sequence 𝗀(𝖻) ≈ 𝗍𝗋𝗎𝖾, 𝗀(𝖼) ≈ 𝗍𝗋𝗎𝖾, 𝖿(𝖼) →∗ 𝑧, 𝖿(𝖻) →∗ 𝑧

is O-infeasible because both 𝖿(𝖼) and 𝖿(𝖻) are O-irreducible. By Proposition 21, (34) is not 𝑂-joinable. By Theorem 43,  is not
locally O-confluent nor O-confluent.

7. Generalized term rewriting systems

In this section we consider an extension of CTRSs and show that our results can be adapted to characterize local confluence of
the corresponding reduction relation. Our extension is twofold:

1. Signature level. We restrict the arguments of function symbols on which reductions are allowed, as in context-sensitive rewriting

(CSR, [34]).

2. Rule level. We permit the use of arbitrary atoms in the conditional part of rules. Such atoms are defined by means of definite
Horn clauses.

Before presenting the notion of a generalized term rewriting system, we recall some notions from CSR.

7.1. Context-sensitive rewriting

Given a signature  , a replacement map is a mapping 𝜇 satisfying that, for all symbols 𝑓 in  , 𝜇(𝑓) ⊆ {1, … , 𝑎𝑟(𝑓)} [34]. The set of
replacement maps for the signature  is 𝑀 . Extreme cases are 𝜇⊥, disallowing replacements in all arguments of function symbols:
𝜇⊥(𝑓) = ∅ for all 𝑓 ∈  , and 𝜇⊤, restricting no replacement: 𝜇⊤(𝑓) = {1, … , 𝑘} for all 𝑘-ary 𝑓 ∈  . The set 𝑜𝑠𝜇(𝑡) of 𝜇-replacing (or

active) positions of 𝑡 is 𝑜𝑠𝜇(𝑡) = {Λ}, if 𝑡 ∈  , and 𝑜𝑠𝜇(𝑡) = {Λ} ∪ {𝑖.𝑝 ∣ 𝑖 ∈ 𝜇(𝑓), 𝑝 ∈ 𝑜𝑠𝜇(𝑡𝑖)}, if 𝑡 = 𝑓 (𝑡1, … , 𝑡𝑘). Positions of active

non-variable symbols in 𝑡 are denoted as 𝑜𝑠𝜇

(𝑡). Given a term 𝑡, 𝑎𝑟𝜇(𝑡) (resp. 𝑎𝑟�𝜇(𝑡)) is the set of variables occurring at active

(resp. frozen) positions in 𝑡: 𝑎𝑟𝜇(𝑡) = {𝑥 ∈ 𝑎𝑟(𝑡) ∣ ∃𝑝 ∈ 𝑜𝑠𝜇(𝑡), 𝑥 = 𝑡|𝑝} and 𝑎𝑟�𝜇(𝑡) = {𝑥 ∈ 𝑎𝑟(𝑡) ∣ ∃𝑝 ∈ 𝑜𝑠𝜇(𝑡), 𝑥 = 𝑡|𝑝}. In general,
𝑎𝑟𝜇(𝑡) and 𝑎𝑟�𝜇(𝑡) are not disjoint: 𝑥 ∈ 𝑎𝑟(𝑡) may occur active and also frozen in 𝑡. The strict prefix sprefix𝑡(𝑝) of a position 𝑝 in
a term 𝑡, i.e., the (possibly empty) sequence of symbols traversed when going from the root of 𝑡 to position 𝑝 (excluding 𝑝 itself),
determines the active/frozen status of 𝑝 in 𝑡.

Proposition 50. [34, Proposition 3.3] Let 𝑠, 𝑡 ∈  ( ,) and 𝜇 ∈𝑀 . If 𝑝 ∈ 𝑜𝑠(𝑠) ∩𝑜𝑠(𝑡) and sprefix𝑠(𝑝) = sprefix𝑡(𝑝), then 𝑝 ∈ 𝑜𝑠𝜇(𝑠) ⇔
𝑝 ∈ 𝑜𝑠𝜇(𝑡).

A context 𝐶[]𝑝 is 𝜇-active (or just active) iff 𝑝 ∈ 𝑜𝑠𝜇(𝐶); equivalently (by Proposition 50), iff either 𝑝 = Λ or 𝐶[]𝑝 =
𝑓 (𝑡1, … , 𝐶𝑖[]𝑞 , … , 𝑡𝑘) for some 𝑓 ∈  , terms 𝑡1, … , 𝑡𝑘, and active context 𝐶𝑖[]𝑞 such that 𝑝 = 𝑖.𝑞 for some 𝑖 ∈ 𝜇(𝑓). A CS-TRS (resp.
CS-CTRS) (, 𝜇) consists of a TRS (resp. CTRS)  together with a replacement map 𝜇.

7.2. Syntax of generalized term rewriting systems

We consider definite Horn clauses 𝛼 ∶𝐴 ⇐ 𝑐 (with label 𝛼) where 𝑐 is a sequence 𝐴1, … , 𝐴𝑛 of atoms. If 𝑛 = 0, then 𝛼 is written 𝐴
rather than 𝐴 ⇐.

Definition 51 (Generalized term rewriting system). Let  be a signature of function symbols, Π be a signature of predicate symbols,
𝜇 ∈𝑀 be a replacement map, 𝐻 be a set of clauses 𝐴 ⇐ 𝑐 where root(𝐴) ∉ {→, →∗}, and 𝑅 be a set of rewrite rules 𝓁 → 𝑟 ⇐ 𝑐 such
that 𝓁 is not a variable (in both cases, 𝑐 is a sequence 𝐴1, … , 𝐴𝑛 of atoms). The tuple  = ( , Π, 𝜇, 𝐻, 𝑅) is called a Generalized Term
Rewriting System (GTRS).

The usual definition of type (1, 2, 3, or 4) of rules and CTRSs (see Section 2) also apply to GTRSs  = ( , Π, 𝜇, 𝐻, 𝑅) in the
obvious way. The rules in 𝑅 also permit the usual distinction of function symbols 𝑓 ∈  as defined symbols (if 𝑓 = root(𝓁) for some
𝓁→ 𝑟 ⇐ 𝑐 ∈𝑅) or constructor symbols (otherwise). We often denote as  or  if no confusion arises (resp.  or ) the signature of
defined (resp. constructor) symbols of .

7.3. First-order theory of a generalized term rewriting system

In order to define the FO-theory of a GTRS, besides the generic sentences in Table 1, we also consider the following one for
14

definite Horn clauses 𝛼:

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

(HC)𝛼 (∀𝑥1,… , 𝑥𝑛) 𝐴1 ∧⋯ ∧𝐴𝑛 ⇒𝐴

Note that (Rl)𝛼 can be seen as a particular case of (HC)𝛼 . Actually, since rewrite rules of GTRSs are more general than rules of CTRSs,
we use (HC)𝛼 both for clauses in 𝐻 and rules in 𝑅.

Definition 52 (FO-theory of a GTRS). Let  = ( , Π, 𝜇, 𝐻, 𝑅) be a GTRS. Then,

 = {(Rf), (Co)} ∪ {(Pr)𝑓,𝑖 ∣ 𝑓 ∈  , 𝑖 ∈ 𝜇(𝑓)} ∪ {(HC)𝛼 ∣ 𝛼 ∈𝐻 ∪𝑅} (35)

is the FO-theory of .

Compared with Definition 3 for CTRSs, the following differences are noticeable:

1. The use of propagation rules (Pr)𝑓,𝑖 is restricted to arguments 𝑖 ∈ 𝜇(𝑓) rather than to all arguments 𝑖 ∈ {1, … , 𝑎𝑟(𝑓)} of 𝑓 . This
formalizes the use of (context-sensitive) replacement restrictions in reductions.

2. No specific sentence in the FO-theory  in Definition 52 permits rewritings on arguments 𝑠𝑖 as part of proofs of atoms
𝑃 (𝑠1, … , 𝑠𝑛). If necessary, this can be achieved by just adding clauses

𝑃 (𝑥1,… , 𝑥𝑖,… , 𝑥𝑛)⇐ 𝑥𝑖 → 𝑦𝑖, 𝑃 (𝑥1,… , 𝑦𝑖,… , 𝑥𝑛) (36)

to 𝐻 for all desired 𝑛-ary predicates 𝑃 and arguments 1 ≤ 𝑖 ≤ 𝑛, where 𝑥1, … , 𝑥𝑛, 𝑦𝑖 are distinct variables.

3. In GTRSs, the effect of CI is made explicit by including auxiliary clauses for (J), (O), (SE), see Fig. 2, in 𝐻 . For instance,
𝛼JO ∶ 𝑥 ≈ 𝑦 ⇐ 𝑥 →∗ 𝑧, 𝑦 →∗ 𝑧 would be included in 𝐻 to obtain (J), as (HC)𝛼JO

is (J). Sometimes ≈ is not necessary to specify
conditions in rules. For instance, if a reachability semantics is required for a condition, we can just write 𝑠 →∗ 𝑡 instead of 𝑠 ≈ 𝑡

in the rule. Since →∗ is already defined by rules (Rf) and (Co), which are included in , we can let 𝐻 = ∅. In this way, each
condition in the conditional part of a GTRS rule can have its own semantics, which is defined by specific clauses in 𝐻 , if necessary
(see Example 54 below).

Remark 53 (A GTRS determines its FO-theory). In contrast to CTRSs  = ( , 𝑅) whose theory  cannot be obtained from  and 𝑅
only (as rules (J), (O), etc., are required to describe the semantics of conditions 𝑠 ≈ 𝑡 in rules), the components  , Π, 𝜇, 𝐻 , and 𝑅 of
a GTRS  determine the theory  as in (35). Accordingly, in the following we do not explicitly mention  unless it is technically
required, as it can be obtained from .

Given a GTRS  = ( , Π, 𝜇, 𝐻, 𝑅) with 𝐻 = ∅, a number of well-known classes of rule-based systems is obtained: if only unconditional
rules 𝓁 → 𝑟 are allowed in 𝑅, then we obtain a TRS (if 𝜇 = 𝜇⊤) or a CS-TRS [34] (no restriction on 𝜇); besides, if some rules 𝓁 → 𝑟

contain extra variables in 𝑟, we obtain an eTRS [14] (if 𝜇 = 𝜇⊤), or a CS-eTRS; finally, if only conditional rules 𝓁→ 𝑟 ⇐ 𝑠1 ≈ 𝑡1, … , 𝑠𝑛 ≈
𝑡𝑛 for a given symbol ≈ with a given (J-, O-, or SE-) interpretation are included in 𝑅 (and the appropriate clauses in 𝐻), then we
obtain a CTRS (if 𝜇 = 𝜇⊤), or a CS-CTRS [36]. The following example shows how different evaluation semantics in the conditional
part of rules of GTRSs can be used.

Example 54. Consider the GTRS  = ( , Π, 𝜇⊤, ∅, {(37), (38)}) obtained as a variant of the CTRS in Example 2, with

𝖺 → 𝖻 (37)

𝖿(𝑥)→ 𝖼⇐ 𝑥→ 𝑦, 𝑦→∗ 𝖺 (38)

Note that 𝑥 → 𝑦, 𝑦 →∗ 𝖺 encodes reachability of 𝖺 from (instances of) 𝑥 by using at least one rewriting step. This makes (38) infeasible,
leading to a trivial proof of (local) confluence of the system using the results in Section 7.5 below. Alternatively, (38) could be
written as follows:

𝖿(𝑥)→ 𝖼⇐ 𝑥 ≈1 𝑦, 𝑦 ≈2 𝖺 (39)

and clauses 𝑥 ≈1 𝑦 ⇐ 𝑥 → 𝑦 and 𝑥 ≈2 𝑦 ⇐ 𝑥 →∗ 𝑦 would be included in 𝐻 . This presentation highlights the idea that different semantics
for conditions can be used in rules provided that appropriate clauses defining the predicates representing the conditions are given in
𝐻 .

As for CTRSs, we can talk of J-, O-, or SE-GTRSs  = ( , Π, 𝜇, 𝐻, 𝑅) provided that ≈ ∈ Π and the conditional part 𝑐 of each rule
𝓁 → 𝑟 ⇐ 𝑐 ∈𝑅 consists of a mix of conditions 𝑠 ≈ 𝑡 for terms 𝑠 and 𝑡, and atomic conditions 𝐴 where root(𝐴) ∈ Π− {→,→∗}. Besides,
𝐻 should contain the appropriate clauses (in Fig. 2) to give the desired meaning to conditions 𝑠 ≈ 𝑡 ∈ 𝑐 and no other clause 𝐴 ⇐ 𝑐 with
root(𝐴) =≈ so that the meaning of ≈ is given by the sentences in Fig. 2 only. For GTRSs we also have the following.
15

Proposition 55. Let  = ( , Π, 𝜇, 𝐻, 𝑅) be a GTRS. Then, → is closed under substitutions and 𝜇-active contexts.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Proof. Remind that  consists of sentences obtained from Horn clauses. Then, closedness under substitutions follows because
deduction of goals 𝑠 → 𝑡 involves deductions ⊢ 𝜎(𝐴) of instances of atoms 𝐴 for some substitution 𝜎. Since ⊢ 𝜎(𝐴) is equivalent to
 ⊢ (∀𝑥⃗)𝜎(𝐴) for all variables 𝑥⃗ = 𝑥1, … , 𝑥𝑛 occurring in 𝜎(𝐴), we also have ⊢ 𝜏(𝜎(𝐴)) for all substitutions 𝜏 . Hence, ⊢ 𝜏(𝑠) → 𝜏(𝑡)
and hence 𝜏(𝑠) → 𝜏(𝑡) hold.

Regarding closedness under 𝜇-active contexts, note that for all terms 𝑠𝑖 and 𝑡𝑖, if 𝑠𝑖 → 𝑡𝑖, then (Pr)𝑓,𝑖 in  enables the rewriting
of 𝑓 (𝑠1, … , 𝑠𝑖, … , 𝑠𝑛) into 𝑓 (𝑠1, … , 𝑡𝑖, … , 𝑠𝑛) if 𝑖 ∈ 𝜇(𝑓). □

7.4. Examples of GTRSs

In the following, in order to keep a close connection with the original sources, rather than call them CS-CTRSs, we use TRS, CTRS,
etc., when citing external examples. If no replacement map is explicitly given (as in TRSs and CTRSs), then 𝜇⊤ is assumed in the
corresponding GTRS. In order to improve the understanding of replacement restrictions, in the next examples, frozen subterms in
rules are often written in red.

Example 56 (Use of replacement restrictions). Consider the O-CTRS  in [17, Example 10] (COPS/387.trs2)

𝗀(𝗌(𝑥))→𝗀(𝑥) (40)

𝖿(𝗀(𝑥))→ 𝑥⇐ 𝑥 ≈ 𝗌(𝟢) (41)

We consider two replacement maps to restrict reductions on the arguments of function symbols: 𝜇⊥ and the canonical replacement
map 𝜇𝑐𝑎𝑛


, which is the most restrictive replacement map making all nonvariable positions in left-hand sides 𝓁 of rules 𝓁 → 𝑟 ⇐ 𝑐

active [34, Section 5]. For 𝜇⊥ and 𝜇𝑐𝑎𝑛


(where 𝜇𝑐𝑎𝑛


(𝖿) = 𝜇𝑐𝑎𝑛


(𝗀) = {1} and 𝜇𝑐𝑎𝑛


(𝗌) = ∅), we have the following O-CS-CTRSs:

𝑥 ≈ 𝑦⇐ 𝑥→∗ 𝑦

𝗀(𝗌(𝑥))→𝗀(𝑥)

𝖿(𝗀(𝑥))→ 𝑥⇐ 𝑥 ≈ 𝗌(𝟢)

𝑥 ≈ 𝑦⇐ 𝑥→∗ 𝑦

𝗀(𝗌(𝑥))→𝗀(𝑥)

𝖿(𝗀(𝑥))→ 𝑥⇐ 𝑥 ≈ 𝗌(𝟢)

⊥=( ,Π, 𝜇⊥,𝐻,𝑅) (COPS/1554.trs) can=( ,Π, 𝜇𝑐𝑎𝑛


,𝐻,𝑅) (COPS/1555.trs)

For ⊥, we have: ⊥ = {(Rf), (Co), (O), (42), (43)}, with

(∀𝑥) 𝗀(𝗌(𝑥))→𝗀(𝑥) (42)

(∀𝑥) 𝑥 ≈ 𝗌(𝟢)⇒ 𝖿(𝗀(𝑥))→ 𝑥 (43)

Note the absence of propagation sentences due to 𝜇⊥(𝑓) = ∅ for all 𝑓 ∈  . For can, we have can = {(Rf), (Co), (O), (44), (45), (42), (43)}
with propagation sentences (Pr)𝖿 ,1 and (Pr)𝗀,1 as follows:

(∀𝑥1, 𝑥′1) 𝑥1 → 𝑥′1 ⇒ 𝖿(𝑥1)→ 𝖿(𝑥′1) (44)

(∀𝑥1, 𝑥′1) 𝑥1 → 𝑥′1 ⇒𝗀(𝑥1)→𝗀(𝑥′1) (45)

Note the absence of (Pr)𝗌,1; this is consistent with 𝜇𝑐𝑎𝑛


(𝗌) = ∅.

Example 57. Consider the following O-GTRS:

𝑥 ≈ 𝑦⇐ 𝑥→∗ 𝑦 (46)

𝑥 ≥ 0 (47)

𝗌(𝑥) ≥ 𝗌(𝑦)⇐ 𝑥 ≥ 𝑦 (48)

𝗌(𝗌(𝑥))→ 𝑥⇐ 𝑥 ≥ 𝗌(𝟢) (49)

𝗍𝖾𝗌𝗍(𝑥)→𝗉𝖾𝗏(𝑥)⇐ 𝑥 ≈ 𝗌(𝗌(𝟢)) (50)

𝗍𝖾𝗌𝗍(𝑥)→𝗈𝖽𝖽(𝑥)⇐ 𝑥 ≈ 𝗌(𝟢) (51)

𝗍𝖾𝗌𝗍(𝑥)→ 𝗓𝖾𝗋𝗈(𝑥)⇐ 𝑥 ≈ 𝟢 (52)

where ≥ is defined by the Horn clauses (47) and (48). Rules (50), (51), and (52) define tests to check whether a number (in Peano
notation) is positive and even, odd or zero. Note that Peano numbers keep its positive even/odd character after each application of
rule (49). Furthermore, 𝗌(𝗌(𝟢)), 𝗌(𝟢), and 𝟢 are irreducible.
16

2 Confluence Problems Data Base: http://cops .uibk .ac .at/.

http://cops.uibk.ac.at/

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

7.5. Local confluence of generalized term rewriting systems

The main concepts defined in Section 3: feasible rule (Definition 7), rewriting as deduction (Definition 8 and Theorem 10),
confluence and termination (Definition 12), joinable terms (Definition 13, Corollary 14 and Proposition 15) remain unchanged as
they are relative to the underlying FO-theory  at stake. Proposition 11 requires a small adaptation to cope with context-sensitive
replacement restrictions. We have the following.

Proposition 58. Let  = ( , Π, 𝜇, 𝐻, 𝑅) be a GTRS and 𝑠, 𝑡 ∈  ( ,). Then, 𝑠 → 𝑡 iff there is 𝑝 ∈ 𝑜𝑠𝜇(𝑠) and 𝓁 → 𝑟 ⇐ 𝑐 ∈ such that
(i) 𝑠|𝑝 = 𝜎(𝓁) for some substitution 𝜎, (ii) for all 𝛾 ∈ 𝑐, ⊢ 𝜎(𝛾) holds, and (iii) 𝑡 = 𝑠[𝜎(𝑟)]𝑝.

The proof of this result is obtained from the proof of Proposition 11 by using the version of Theorem 10 for GTRSs and taking
into account, in the induction step, that the position 𝑝 where the rewriting step is performed (by the use of a propagation rule (Pr)𝑓,𝑖
for some 𝑓 ∈ ) is active (i.e., 𝑖 ∈ 𝜇(𝑓)), and then using Proposition 50 in the remainder of the induction step. Since the proof of
Proposition 11 does not refer to the shape of conditions in rules, having more general conditions in the rules of GTRSs is irrelevant.

Proposition 58 is essential to generalize the taxonomy of peaks discussed in Section 4 to GTRSs. Accordingly, positions 𝑝, 𝑝′ ∈ 𝑜𝑠(𝑠)
in a peak (14) must be active, i.e., 𝑝, 𝑝′ ∈ 𝑜𝑠𝜇(𝑠). By using again Proposition 50, we conclude that (i) disjoint peaks (15) are also
joinable; (ii) position 𝑝 ∈ 𝑜𝑠(𝓁) in critical peaks (17) is active, i.e., 𝑝 ∈ 𝑜𝑠𝜇(𝓁); and (iii) position 𝑝𝑥 ∈ 𝑜𝑠(𝓁) in variable peaks (23)

is active, i.e., 𝑝𝑥 ∈ 𝑜𝑠𝜇(𝓁). Then, all results in Section 4 hold for GTRSs as they pay no attention to the structure of  besides the
role of replacement restrictions just discussed above.

Conditional pairs (24) can be used to represent conditional critical and variable pairs of GTRSs and Definition 19 (feasibility),
Definition 20 (joinability), and Proposition 21 also work for GTRSs. The definitions of conditional critical pair and conditional
variable pair must be slightly adapted to require that critical positions be active. The following definition provides the necessary
adaptation of these essential definitions.

Definition 59 (Conditional critical and variable pairs of a GTRS). Let  = (Ω, 𝜇, 𝐻, 𝑅) be a GTRS, and 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐, 𝛼′ ∶ 𝓁′ → 𝑟′ ⇐ 𝑐′ be
feasible rules of  sharing no variable (rename if necessary).

• Let 𝑝 ∈ 𝑜𝑠𝜇

(𝓁) be a nonvariable position of 𝓁 such that 𝓁|𝑝 and 𝓁′ unify with mgu 𝜃. Then, (25), i.e., ⟨𝜃(𝓁[𝑟′]𝑝), 𝜃(𝑟)⟩ ⇐ 𝜃(𝑐), 𝜃(𝑐′),

is a conditional critical pair (CCP) of .

• Let 𝑥 ∈ 𝑎𝑟𝜇(𝓁), 𝑝 ∈ 𝑜𝑠𝜇𝑥 (𝓁) and 𝑥′ be a fresh variable. Then, (26), i.e., ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐 is a conditional variable pair (CVP).
Variable 𝑥 is called the critical variable of the pair.

In both cases, 𝑝 is called the critical position.

We keep the distinction between proper and improper conditional critical pairs, and the notations 𝗉𝖢𝖢𝖯(), 𝗂𝖢𝖢𝖯(), and 𝖢𝖵𝖯()
along the lines of those given in previous sections. Accordingly, we have the following.

Definition 60 (Extended conditional critical pairs of a GTRS). Let  be a GTRS. The set 𝖤𝖢𝖢𝖯() = 𝗉𝖢𝖢𝖯() ∪ 𝗂𝖢𝖢𝖯() ∪𝖢𝖵𝖯() is the
set of extended conditional critical pairs of .

With these provisos, the results guaranteeing the correspondence between critical (resp. variable) peaks and conditional critical
pairs (resp. conditional variable pairs), i.e., Propositions 27, 28, 29, 31, 32, and 33, also hold for GTRSs. The results about joinability
of CVPs in Section 5.2.2 require some attention due to the use of replacement restrictions. Our next result provides the necessary
reformulation. Given a theory 𝖳𝗁 and a binary relation 𝖱 on terms, we say that an atom 𝐴[𝑥] is (𝖳𝗁, 𝖱, 𝑥)-preserving if for all terms 𝑠, 𝑡,
and substitutions 𝜎 and 𝜎′ such that 𝜎(𝑥) = 𝑠, 𝜎′(𝑥) = 𝑡 and 𝜎(𝑦) = 𝜎′(𝑦) for all 𝑦 ≠ 𝑥, if 𝑠 𝖱 𝑡, then 𝖳𝗁 ⊢ 𝜎(𝐴[𝑥]) implies 𝖳𝗁 ⊢ 𝜎′(𝐴[𝑥]).

Proposition 61. Let  = ( , Π, 𝜇, 𝐻, 𝑅) be a GTRS, 𝛼 ∶ 𝓁 → 𝑟 ⇐ 𝑐 ∈𝑅, and 𝑥 ∈ 𝑎𝑟𝜇(𝓁) be such that 𝑥 ∉ 𝑎𝑟�𝜇(𝓁) ∪ 𝑎𝑟�𝜇(𝑟), 𝑝 ∈ 𝑜𝑠𝜇𝑥 (𝓁),
and 𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′, 𝑐

1. If 𝑥 ∉ 𝑎𝑟(𝑐), then, 𝜋 is joinable.

2. If all conditions in 𝑐 are of the form (i) 𝑠 →∗ 𝑡 and such that 𝑥 ∉ 𝑎𝑟(𝑠), and 𝑥 ∉ 𝑎𝑟�𝜇(𝑡), or (ii) an atom 𝐴 which is →∗


-preserving in
all occurrences of 𝑥, then 𝜋 is joinable.

3. If all conditions in 𝑐 are of the form (i) 𝑠 ↔∗ 𝑡 with ↔∗ defined in 𝐻 by modified versions of (SE1), (SE2), and (SE3) where ≈ has
been replaced by ↔∗, and such that 𝑥 ∉ 𝑎𝑟�𝜇(𝑠) ∪ 𝑎𝑟�𝜇(𝑡), or (ii) an atom 𝐴 which is ↔∗


-preserving in all occurrences of 𝑥, then 𝜋 is

joinable.

Proof.
17

1. In the proof of Proposition 34 use Proposition 55 instead of Proposition 9.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

2. Analogous to Proposition 35, by using Proposition 55 instead of Proposition 9. The main difference with respect to O-CTRSs
is that rules in GTRSs may include atoms 𝐴 which are not reachability conditions 𝑠 →∗ 𝑡. Requiring →∗


-preservingness on all

occurrences of 𝑥 guarantees that 𝜎(𝐴[𝑥′]) holds if 𝜎(𝐴[𝑥]) holds.

3. Analogous to Proposition 36, taking into account ↔∗


-preservingness in the previous proof. □

Specializing conditional variable pairs 𝜋 of GTRSs is also possible along the lines of Definition 38. Now, only indices 𝑖 ∈ 𝜇(𝑓) need
to be considered in argument specializations 𝜋𝑓,𝑖. Regarding the correctness result, Proposition 40 needs to be adapted to consider
the use of active positions 𝑝 ∈ 𝑜𝑠𝜇𝑥 (𝓁) of variables 𝑥 in the left-hand side 𝓁 of rules: since Proposition 58 should be used in the proof
instead of Proposition 11, we have 𝑞 ∈ 𝑜𝑠𝜇(𝑠). Thus, in the second case for 𝑞 considered in the proof (item 2), i.e., 𝑞 = 𝑖.𝑞′, we have
𝑖 ∈ 𝜇(𝑓) and (by Proposition 50) also 𝑖 ∈ 𝑜𝑠𝜇(𝑠) and 𝑞′ ∈ 𝑜𝑠𝜇(𝑠𝑖) for 𝑠 and 𝑠𝑖 as in the proof of Proposition 40. This enables the
reduction 𝑠𝑖 → 𝑡𝑖 which is required to finish the proof.

Since the proof of Theorem 43 for CTRSs in Section 6 relies on these results, which have been extended to GTRSs, we have the
following.

Theorem 62 (Local confluence of GTRSs). A GTRS  is locally confluent iff each 𝜋 ∈ 𝖤𝖢𝖢𝖯() is joinable.

Corollary 63 (Local confluence of SE-GTRSs). Let  be an SE-GTRS such that for all ⟨𝑠, 𝑡⟩ ⇐ 𝑥 → 𝑥′, 𝑐 ∈ 𝖢𝖵𝖯(), (i) for all 𝑢 ↔∗ 𝑣 ∈ 𝑐,
𝑥 ∉ 𝑎𝑟�𝜇(𝑢) ∪𝑎𝑟�𝜇(𝑣) and (ii) all other atoms 𝐴 ∈ 𝑐 are (, ↔∗


, 𝑥)-preserving. Then,  is locally confluent iff each 𝜋 ∈ 𝗉𝖢𝖢𝖯() ∪ 𝗂𝖢𝖢𝖯()

is joinable.

7.6. Underlying (extended) CS-TRS of a GTRS

For 3-GTRSs , the computation of 𝑢 produces rules with extra variables, thus leading to an eTRS (extended TRS, see, e.g., [14]).

Example 64. For  in Example 18, the eTRS 𝑢 consists of the rules:

𝗀(𝖻)→ 𝗍𝗋𝗎𝖾 (53)

𝗀(𝖼)→ 𝗍𝗋𝗎𝖾 (54)

𝖺 → 𝖿(𝑥) (55)

Although eTRSs are nonterminating, they can be 𝜇-terminating. For instance, the one rule system  = {𝖺 → 𝖼(𝑥)} is 𝜇⊥-terminating,
as no reduction is possible below 𝖼, disregarding the term we put there as an instance of 𝑥. For this reason, we give the following
definition mimicking [46, Definition 7.1.2].

Definition 65 (Underlying eTRS). Given a GTRS  = ( , Π, 𝜇, 𝐻, 𝑅), the system 𝑢 = ( , 𝜇, 𝑅𝑢) with 𝑅𝑢 = {𝓁 → 𝑟 ∣ 𝓁 → 𝑟 ⇐ 𝑐 ∈ 𝑅} is
the underlying CS-eTRS of .

Example 66. For  in Example 56,

(⊥)𝑢 = ( , 𝜇⊥,{(56), (57)}) and (can)𝑢 = ( , 𝜇𝑐𝑎𝑛


,{(56), (57)})

with

𝗀(𝗌(𝑥))→𝗀(𝑥) (56)

𝖿(𝗀(𝑥))→ 𝑥 (57)

are clearly terminating. Thus, both ⊥ and can are terminating.

The following obvious result is used in this paper.

Proposition 67. A GTRS  is terminating if 𝑢 is terminating.

Termination of particular classes of GTRSs (TRSs, CS-TRSs, CTRSs,. . .) can be investigated by using well-known existing methods
and tools for them. The underlying CS-eTRS of a CTRS  is useful to investigate termination of . Alternatively, termination of
GTRSs can be investigated by using the model-theoretical approach in [38, Sections 5.1 & 8.3.1] and [35, Section 5.5]. The tool
18

AGES [21] provides some support for this.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

7.7. Proving and disproving confluence of GTRSs

The following result generalizes to GTRSs the other main result of the first part of this paper.

Theorem 68 (Confluence of GTRSs). A terminating GTRS  is confluent iff each 𝜋 ∈ 𝖤𝖢𝖢𝖯() is joinable.

Corollary 69 (Confluence of SE-GTRSs). Let  be a terminating SE-GTRS such that for all ⟨𝑠, 𝑡⟩ ⇐ 𝑥 → 𝑥′, 𝑐 ∈ 𝖢𝖵𝖯(), (i) for all 𝑢 ↔∗ 𝑣 ∈ 𝑐,
𝑥 ∉ 𝑎𝑟�𝜇(𝑢) ∪ 𝑎𝑟�𝜇(𝑣) and (ii) all other atoms 𝐴 ∈ 𝑐 are (, ↔∗


, 𝑥)-preserving. Then,  is confluent iff each 𝜋 ∈ 𝗉𝖢𝖢𝖯() ∪ 𝗂𝖢𝖢𝖯() is

joinable.

Example 70. For ⊥ in Example 56 there is no conditional critical pair because the only active position of the left-hand sides 𝓁(40)

and 𝓁(41) of rules (40) and (41) is Λ. However, 𝓁(40) and 𝓁(41) do not unify. Also, 𝖢𝖵𝖯(⊥) = ∅ because all variables in the left-hand
sides of the rules in ⊥ are frozen. By Theorem 62, ⊥ is locally confluent. Since it is terminating, by Theorem 68, ⊥ is confluent.

Example 71. For can in Example 56, with (41), i.e., 𝖿(𝗀(𝑥)) → 𝑥 ⇐ 𝑥 ≈ 𝗌(𝟢) 1 ∈ 𝑜𝑠𝜇

(𝓁(41)) and (40)’, i.e., 𝗀(𝗌(𝑥′)) → 𝗀(𝑥′), since

𝖿 (𝗀(𝑥))|1 = 𝗀(𝑥) and 𝗀(𝗌(𝑥′)) unify with 𝜃 = {𝑥 ↦ 𝗌(𝑥′), we obtain the conditional critical pair

⟨𝖿(𝗀(𝑥′)), 𝗌(𝑥′)⟩⇐ 𝗌(𝑥′)→∗ 𝗌(𝟢) (58)

This pair is not joinable: the sequence 𝗌(𝑥′) →∗ 𝗌(𝟢) is clearly feasible, but the sequence

𝗌(𝑥′)→∗ 𝗌(𝟢), 𝖿(𝗀(𝑥′))→∗ 𝑧, 𝗌(𝑥′)→∗ 𝑧

is infeasible: since the argument of 𝗌 is frozen, the only way to satisfy the first condition 𝗌(𝑥′) →∗ 𝗌(𝟢) is defining 𝜎 = {𝑥′ ↦ 𝟢};
furthermore, in order to satisfy the last condition 𝗌(𝑥′) →∗ 𝑧 we need 𝜎 = {𝑥′ ↦ 𝟢, 𝑧 ↦ 𝟢}; however, 𝜎(𝖿(𝗀(𝑥′))) = 𝖿(𝗀(𝟢)) is irreducible;
thus 𝖿(𝗀(𝟢)) →∗ 𝟢 is not satisfied. By Proposition 21, it is not joinable. By Theorem 62, can is not locally confluent nor confluent.

Example 72. For  in Example 57, we have the following proper 𝖢𝖢𝖯𝑠 (see Remark 25):

⟨𝗌(𝑥′), 𝗌(𝑥′)⟩⇐ 𝗌(𝑥′) ≥ 𝗌(𝟢), 𝑥′ ≥ 𝗌(𝟢) (59)

⟨𝗈𝖽𝖽(𝑥),𝗉𝖾𝗏(𝑥)⟩⇐ 𝑥 ≈ 𝗌(𝗌(𝟢)), 𝑥 ≈ 𝗌(𝟢) (60)

⟨𝗓𝖾𝗋𝗈(𝑥),𝗉𝖾𝗏(𝑥)⟩⇐ 𝑥 ≈ 𝗌(𝗌(𝟢)), 𝑥 ≈ 𝟢 (61)

⟨𝗓𝖾𝗋𝗈(𝑥),𝗈𝖽𝖽(𝑥)⟩⇐ 𝑥 ≈ 𝗌(𝟢), 𝑥 ≈ 𝟢 (62)

Note that (59) is trivial, and (60), (61), and (62) are all infeasible: (60) due to need of rewriting an instance of 𝑥 to 𝗌(𝗌(𝟢)) and also to
𝗌(𝟢), which is not possible by using (50), the only rule that would be able to produce the expected result; (61) and (62) because the
only way to rewrite an instance 𝜎(𝑥) of 𝑥 to 𝟢 (as required by the second condition) is if 𝜎(𝑥) is already 𝟢, but then 𝜎(𝑥) cannot be
rewritten to any other term whether 𝗌(𝗌(𝟢)), as in (61), or 𝗌(𝟢), as in (62). Thus, 𝗉𝖢𝖢𝖯() = {(59)} containing a trivially -joinable
conditional pair. Since all rules in  are of type 1, 𝗂𝖢𝖢𝖯() = ∅. There are four conditional variable pairs, one per each rewrite rule:

⟨𝗌(𝗌(𝑥′)), 𝑥⟩⇐ 𝑥→ 𝑥′, 𝑥 ≥ 𝗌(𝟢) (63)

⟨𝗍𝖾𝗌𝗍(𝑥′),𝗉𝖾𝗏(𝑥)⟩⇐ 𝑥→ 𝑥′, 𝑥 ≈ 𝗌(𝗌(𝟢)) (64)

⟨𝗍𝖾𝗌𝗍(𝑥′),𝗈𝖽𝖽(𝑥)⟩⇐ 𝑥→ 𝑥′, 𝑥 ≈ 𝗌(𝟢) (65)

⟨𝗍𝖾𝗌𝗍(𝑥′), 𝗓𝖾𝗋𝗈(𝑥)⟩⇐ 𝑥→ 𝑥′, 𝑥 ≈ 𝟢 (66)

Again, they are all joinable:

• Regarding (63), if 𝜎(𝑥) rewrites to 𝜎(𝑥′) for some substitution 𝜎 and 𝜎(𝑥) ≥ 𝗌(𝟢) holds, then 𝜎(𝑥) = 𝗌(𝑡) for some term 𝑡. Hence,
only rule (49) applies to 𝜎(𝑥). By definition of the rule, 𝜎(𝑥) = 𝗌(𝗌(𝜎(𝑥′))). Hence, the two components of the instance of the peak
of (63) are identical and it is -joinable.

• Regarding (64), if 𝜎(𝑥) rewrites to 𝜎(𝑥′) for some substitution 𝜎 and 𝜎(𝑥) →∗

𝗌(𝗌(𝟢)) holds, then (by irreducibility of 𝗌(𝗌(𝟢)), 𝗌(𝟢),

and 𝟢 and because reduction preserves evenness) 𝜎(𝑥) = 𝗌2𝑛(𝟢) for some 𝑛 > 1. Since 2(𝑛 − 1) ≥ 2, 𝜎(𝑥′) →∗

𝗌(𝗌(𝟢)) holds we have

that 𝜎(𝗍𝖾𝗌𝗍(𝑥′)) = 𝗍𝖾𝗌𝗍(𝜎(𝑥′)) → 𝗉𝖾𝗏(𝜎(𝑥′)), and hence 𝜎(𝗉𝖾𝗏(𝑥)) = 𝗉𝖾𝗏(𝗌(𝗌(𝜎(𝑥′)))) → 𝗉𝖾𝗏(𝜎(𝑥′)). Therefore, (64) is joinable.

• (65) and (66) are similar to (64).

Since all conditional pairs in 𝖤𝖢𝖢𝖯() are joinable, by Theorem 62,  is locally confluent. Since

𝑢 = {𝗌(𝗌(𝑥))→ 𝑥, 𝗍𝖾𝗌𝗍(𝑥)→𝗉𝖾𝗏(𝑥), 𝗍𝖾𝗌𝗍(𝑥)→𝗈𝖽𝖽(𝑥), 𝗍𝖾𝗌𝗍(𝑥)→ 𝗓𝖾𝗋𝗈(𝑥)}
19

is terminating, by Theorem 68,  is confluent.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

8. Related work

Conditional variable pairs We are not aware of any similar proposal in the literature on confluence of CTRSs. However, in his analysis
of relative termination, i.e., termination of the relation →∗

′ ◦ → ◦ →∗
′ where  and ′ are TRSs, Geser used variable critical pair to

refer to (unconditional) pairs ⟨𝑠, 𝑡⟩ which are obtained as usual by considering ‘overlaps’ between a nonvariable position 𝓁|𝑝 of the
left-hand side 𝓁 of a rule 𝓁→ 𝑟 ∈ and the left-hand side 𝓁′ of a rule 𝓁′ → 𝑟′ ∈′ where 𝓁′ is a variable [16, page 44]; see also [29,
page 1166, footnote 1] for a similar idea in the realm of the analysis of confluence of equational term rewriting systems.

Struth used variable critical pair to refer to (unconditional) critical pairs obtained by considering variables occurring more than
once in a given rule to produce critical pairs representing peaks [51].

Conditional variable pairs are related to 𝖫𝖧𝜇 -critical pairs for proving confluence of CS-TRSs (, 𝜇) [41]. However, 𝖫𝖧𝜇 -critical
pairs 𝜋 ∶ ⟨𝓁[𝑥′]𝑝, 𝑟⟩ ⇐ 𝑥 → 𝑥′ for a rule 𝓁 → 𝑟 ∈ , 𝑥 ∈ 𝑎𝑟𝜇(𝓁) and 𝑝 ∈ 𝑜𝑠𝜇𝑥 (𝓁) are different from CVPs as 𝑥 must be frozen in 𝓁
or 𝑟 [41, Definition 20]; otherwise, 𝜋 is joinable. CTRSs would have no 𝖫𝖧𝜇 -critical pair as no replacement map is considered. For
CS-TRSs, 𝖫𝖧𝜇 -critical pairs are conditional variable pairs but not vice versa. For instance, for the CS-TRS (can)𝑢 in Example 66, rule
(57) produces the conditional variable pair

⟨𝖿(𝗀(𝑥′)), 𝑥⟩⇐ 𝑥→ 𝑥′ (67)

However, (67) is not an 𝖫𝖧𝜇 -critical pair because the critical variable 𝑥 is not frozen anywhere in (57). Fortunately, Proposition 61.(1)
guarantees joinability of (67), thus avoiding overloads in confluence proofs. Also, the new results about specialization and joinability
of conditional (variable) pairs (Propositions 21 and 40) are also useful in proofs of confluence of CS-TRSs.

Local confluence of CTRSs Kaplan characterized local confluence of simplifying J-CTRSs as the joinability of (proper and improper)
conditional critical pairs [31, Theorem 5.3]. A Join CTRS  is simplifying if all rules 𝓁 → 𝑟 ⇐ 𝑐 ∈ satisfy (i) 𝓁 > 𝑟 and (ii) for all
𝑠 ≈ 𝑡 ∈ 𝑐, 𝓁 > 𝑠 and 𝑟 > 𝑡 for some simplification ordering > (i.e., a well-founded and monotone ordering where 𝑠 > 𝑡 for all terms 𝑠 and
strict subterms 𝑡 of 𝑠, see [31, Definition 1.5]). Simplifyingness implies termination of CTRSs (but not vice versa). Note the use of
termination already to prove local confluence, in contrast to Huet’s work for TRSs.

In their work about confluence of J-CTRSs, Dershowitz, Okada, and Sivakumar observe that joinability of conditional critical
pairs does not suffice to guarantee local confluence of J-CTRSs [9, top of page 37]. However, all their results are given as sufficient
conditions for confluence with no explicit mention to local confluence. Furthermore, besides joinability of conditional critical pairs
(proper and improper, no distinction is made) they require some termination property (decreasingness [9, Definition 7], as in their
Theorem 3, or noetherianity, i.e., termination, as in Theorems 2 and 4). At the end of the paper, they write

Our proofs show that, for conditional systems, the notions of confluence, local-confluence, and joinable critical pairs can not be neatly
disentangled. In particular, the noetherian condition was needed to show that a system is locally confluent if all critical pairs are shallow
joinable. [9, first paragraph of Section 6]

Once termination has been identified (and assumed) as necessary to show local confluence by (shallow) joinability of conditional
critical pairs, Newman’s Lemma makes confluence and local confluence identical. As a matter of fact, the research about confluence
of CTRSs by joinability of conditional critical pairs in these and ensuing works directly addressed confluence, as some property
implying termination was assumed: simplifyingness in [31], decreasingness in [9], quasi-reductiveness in [2], quasi-decreasingness
in [13], etc., see also the summary of results provided in [46, Section 7.3]. In contrast, our Theorem 43 shows that conditional
variable pairs (not used in any of the aforementioned works) improve on this situation, as local confluence of CTRSs  can be proved
à la Huet as the joinability of extended conditional critical pairs in 𝖤𝖢𝖢𝖯(), imposing no additional requirement on  and using no
termination property.

Generalized term rewriting systems CTRSs with more general rules as the ones proposed in Section 7 have been previously investigated
in the literature. Early examples are, e.g., [48,10].

Generalized Rewrite Theories (GRTs [4]) are tuples  = (Σ, 𝜙, 𝐸, 𝑅) where (i) Σ is an order-sorted signature of function symbols,
(ii) 𝜙 is a mapping establishing frozen arguments of 𝑘-ary function symbols 𝑓 , (iii) 𝐸 is a set of Σ-sentences 𝐴 ⇐ 𝑐, where (iii.1) 𝐴 is
either an equation 𝑢 = 𝑣 or a membership statement 𝑡 ∶ 𝑠 for some term 𝑡 and sort symbol 𝑠 and (iii.2) 𝑐 is a sequence of equations
𝑢 = 𝑣 and membership conditions 𝑡 ∶ 𝑠; finally, (iv) 𝑅 is a set of rules 𝓁→ 𝑟 ⇐ 𝑐, where 𝑐 is a sequence of equalities 𝑢 = 𝑣, membership
statements 𝑡 ∶ 𝑠, and reachability tests 𝑤 →∗ 𝑤′ (written 𝑤 → 𝑤′ in the rules) [4, Definition 2.4]. It is not difficult to see that a GRT
can be seen as a GTRS ( , Π, 𝜇, 𝐻, 𝑅). As done in [12], the correspondence is as follows (by lack of space we omit the technical
details):

1. Sorts 𝑠 can be treated in unsorted first-order logic [57] by using monadic predicates. _ ∶ 𝑠 for each considered sort 𝑠, which are
added to Π; then, each sorted symbol 𝑓 ∶ 𝑠1⋯ 𝑠𝑘 → 𝑠 in Σ for sorts 𝑠1, … , 𝑠𝑘, 𝑠 is viewed as an unsorted 𝑘-ary symbol 𝑓 ∈  and
‘typing’ clauses 𝑓 (𝑥1, … , 𝑥𝑘) ∶ 𝑠 ⇐ 𝑥1 ∶ 𝑠1, … , 𝑥𝑘 ∶ 𝑠𝑘 for distinct variables 𝑥1, … , 𝑥𝑘 are added to 𝐻 .

2. For each 𝑘-ary function symbol 𝑓 , we let 𝜇(𝑓) = {1, … , 𝑘} −𝜙(𝑓).
3. Equalities 𝑢 = 𝑣 and memberships 𝑡 ∶ 𝑠 for sorted terms 𝑢, 𝑣, and 𝑡, occurring in 𝐸 are atoms of the equality predicates ‘=’ and

_ ∶ 𝑠 for each considered sort 𝑠. The Σ-sentences in 𝐸 are treated as Horn clauses which take into account the sort information in
20

terms 𝑢, 𝑣, and 𝑡. Such clauses are then included in 𝐻 together with the usual clauses for equality.

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

4. The rules in the GRT can be seen as rules in 𝑅 after some adaptations to deal with sorted variables.

Confluence of a subclass of GRTs (which properly include CS-TRSs and oriented (CS-)CTRSs), has been investigated in [13]. They prove
that strongly deterministic [13, Definition 1] and quasi-decreasing [13, Definition 2] GRTs are confluent iff all (proper and improper)
conditional critical pairs are joinable [13, Theorem 2]. Here,  is strongly deterministic if for all rules 𝓁 → 𝑟 ⇐ 𝑐 of  variables in
𝑐 are ‘sequentially’ introduced from 𝓁 or from a previous condition; furthermore, for all 𝑠 ≈ 𝑡 and substitutions 𝜎, 𝜎(𝑡) is irreducible
[13, Definition 1]. This result does not apply to disprove confluence of  in Example 2 (which is not strongly deterministic, as the
right-hand side 𝖺 of the conditional part of rule (5) is not irreducible). For the same reason, the confluence of  (as a join system)
could not be proved either. Similarly, confluence of  in Example 18 cannot be disproved as the system is not strongly deterministic
(variable 𝑥 occurs in the left-hand side 𝗀(𝑥) of the condition of rule (21), but it does not occur in the left-hand side 𝖺 of the rule).

9. Conclusions and future work

Analysis of (local) confluence of CTRSs We have introduced conditional variable pairs (Definition 30) which, together with proper and
improper conditional critical pairs, provide a new characterization of local confluence of CTRSs:

A CTRS  with FO-theory  is locally -confluent if and only if all (proper and improper) conditional critical pairs and all
conditional variable pairs are -joinable. (Theorem 43)

This characterization is valid for all usually considered classes of CTRSs (Join, Oriented, or Semi-Equational) according to the
evaluation of their conditions, and for any type (1, 2, 3, or 4) of systems according to the distribution of variables in rules. Also, the
following corollary is obtained from Theorem 43:

A CTRS  with FO-theory  which is -terminating is -confluent if and only if all (proper and improper) conditional critical
pairs and all conditional variable pairs are -joinable. (Theorem 45)

For semi-equational CTRSs conditional variable pairs can be dismissed (Corollaries 44 and 46). In this setting, proofs of (local)
-confluence heavily rely on the ability to (dis)prove -joinability of conditional pairs, for which we have provided a number of
new results, most of them for the new conditional variable pairs: Corollary 14, and Propositions 21, 34, 35, and also Proposition 40,
which formalizes the use of a transformation of conditional variable pairs. As discussed in Section 8, most results in the literature
obtain sufficient conditions for confluence of CTRSs by (i) requiring joinability of proper conditional critical pairs, (ii) additionally
imposing syntactical restrictions on the rules (left-linearity, strong determinism, etc.) and (iii) requiring termination properties like
simplifyingness, reductiveness, decreasingness, or quasi-decreasingness, which imply termination, but which are usually stronger, see
[46, Section 7.2] for details of each of them, and [46, Lemma 7.2.20] for a hierarchy. In contrast, we provide a characterization of
local confluence requiring no termination property; only joinability of proper and improper conditional critical pairs, and also of the
new conditional variable pairs is required. Termination is only used to apply Newman’s Lemma to obtain the usual characterization
of confluence as local confluence for terminating systems. This generalizes Huet’s result to CTRSs.

Our results for CTRSs were implemented as part of the 2022 and 2023 versions of the tool CONFident [24], which can be used
to prove and disprove confluence of TRSs, CS-TRSs, CTRSs, and CS-CTRSs. The following table obtained from CONFident’s results
in the full-run of the International Confluence Competition CoCo 2023 (http://cops .uibk .ac .at /results /?y =2023 -full -run &c =CTRS),
shows that, in general, the use of CVPs in proofs of confluence of CTRSs leads to better results in the last version of CONFident with
respect to the 2021 version (without CVPs):

Competition (confluence of CTRSs) Yes No Maybe Solved Total

CoCo 2021 (no CVPs) 63 40 57 103 161

CoCo 2023 (with CVPs) 81 38 42 119 161

Generalized term rewriting systems We have introduced Generalized Term Rewriting Systems (GTRSs, Definition 51), where (i) replace-

ment restrictions on specific arguments of function symbols are introduced by means of a replacement map à la CSR, and (ii) besides
rewriting-based conditions 𝑠 ≈ 𝑡 (including joinability, reachability, and conversion conditions), which can now be used indepen-

dently and mixed in the same rule, see Example 54, also (iii) more general, atomic conditions can be included in rules provided that
(iv) they are defined by means of definite Horn clauses, see Section 7.4 for some examples. The obtained results for CTRSs smoothly
extend to GTRSs due to the use of an appropriate FO-theory  to describe computations with GTRSs (Definition 52) thus obtaining
the corresponding characterizations of (local) confluence of a GTRS  by joinability of all pairs in 𝖤𝖢𝖢𝖯() (Theorems 62 and 68).
Since CS-CTRSs  are particular cases of GTRSs, our results improve on existing results for confluence of CS-CTRSs [36, Section
8.1.2], as we obtain a new characterization of (local) confluence of CS-CTRSs.

Our results for GTRSs were implemented (for CS-CTRSs only) as part of CONFident and tested in the CoCo 2023 category for
proving confluence of context-sensitive rewriting. Confluence of CS-TRSs was proved using the results in [41]. Confluence of CS-

CTRSs (examples 1362 to 1648 from COPS) was proved using the results in this paper. The following table shows the obtained
21

results (extracted from CoCo 2023 full-run, http://cops .uibk .ac .at /results /?y =2023 -full -run &c =CSR):

http://cops.uibk.ac.at/results/?y=2023-full-run&c=CTRS
http://cops.uibk.ac.at/results/?y=2023-full-run&c=CSR

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

Yes No Maybe Solved Total

94 47 146 141 287

Future work An interesting subject for future work is providing an appropriate notion of orthogonality of CTRSs and GTRSs enabling
a generalization of the well-known result for TRSs establishing that left-linearity and the absence of (proper) critical pairs guarantee
confluence (see [50] and also [3, Corollary 6.3.11]), which does not hold for CTRSs, see Examples 2 and 18. Also, devising confluence
criteria for GTRSs through more specific joinability criteria for ECCPs, as already done for TRSs by Huet (e.g., [28, Lemma 3.2])
and other researchers [18,47,56,55] is an interesting topic of research. Another subject for future work is developing criteria and
techniques for proving termination of GTRSs which can be used in proofs of confluence of GTRSs.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

I thank Miguel Vítores for implementing the results in this paper. I also thank the anonymous referees for their careful reading
and useful comments.

References

[1] Damián Aparicio-Sánchez, Santiago Escobar, Catherine A. Meadows, José Meseguer, Julia Sapiña, Protocol analysis with time and space, in: Daniel Dougherty,
José Meseguer, Sebastian Alexander Mödersheim, Paul D. Rowe (Eds.), Protocols, Strands, and Logic - Essays Dedicated to Joshua Guttman on the Occasion of
His 66.66th Birthday, in: Lecture Notes in Computer Science, vol. 13066, Springer, 2021, pp. 22–49.

[2] Jürgen Avenhaus, Carlos Loría-Sáenz, On conditional rewrite systems with extra variables and deterministic logic programs, in: Frank Pfenning (Ed.), Logic
Programming and Automated Reasoning, 5th International Conference, LPAR’94, Proceedings, in: Lecture Notes in Computer Science, vol. 822, Springer, 1994,
pp. 215–229.

[3] Franz Baader, Tobias Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.

[4] Roberto Bruni, José Meseguer, Semantic foundations for generalized rewrite theories, Theor. Comput. Sci. 360 (1–3) (2006) 386–414, https://doi .org /10 .1016 /
j .tcs .2006 .04 .012.

[5] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer, Carolyn L. Talcott, All About Maude - a High-Performance
Logical Framework, How to Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in Computer Science, vol. 4350, Springer, 2007.

[6] Yuri Gil Dantas, Vivek Nigam, Carolyn Talcott, A formal security assessment framework for cooperative adaptive cruise control, in: 2020 IEEE Vehicular
Networking Conference (VNC), 2020, pp. 1–8.

[7] Nachum Dershowitz, Jean-Pierre Jouannaud, Rewrite systems, in: Jan van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, Elsevier and MIT Press, 1990, pp. 243–320.

[8] Nachum Dershowitz, Mitsuhiro Okada, A rationale for conditional equational programming, Theor. Comput. Sci. 75 (1 and 2) (1990) 111–138, https://doi .org /
10 .1016 /0304 -3975(90)90064 -O.

[9] Nachum Dershowitz, Mitsuhiro Okada, G. Sivakumar, Confluence of conditional rewrite systems, in: Stéphane Kaplan, Jean-Pierre Jouannaud (Eds.), Conditional
Term Rewriting Systems, 1st International Workshop, Proceedings, in: Lecture Notes in Computer Science, vol. 308, Springer, 1987, pp. 31–44.

[10] Nachum Dershowitz, David Plaisted, Equational programming, Mach. Intell. 11 (1988) 21–56.

[11] Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet, José Meseguer, Rubén Rubio, Carolyn L. Talcott, Programming and symbolic computation
in Maude, J. Log. Algebraic Methods Program. 110 (2020), https://doi .org /10 .1016 /j .jlamp .2019 .100497.

[12] Francisco Durán, Salvador Lucas, Claude Marché, José Meseguer, Xavier Urbain, Proving operational termination of membership equational programs, High.-

Order Symb. Comput. 21 (1–2) (2008) 59–88, https://doi .org /10 .1007 /s10990 -008 -9028 -2.

[13] Francisco Durán, José Meseguer, On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories, J. Log. Algebraic Program. 81 (7–8)
(2012) 816–850, https://doi .org /10 .1016 /j .jlap .2011 .12 .004.

[14] Irène Durand, Aart Middeldorp, Decidable call-by-need computations in term rewriting, Inf. Comput. 196 (2) (2005) 95–126, https://doi .org /10 .1016 /j .ic .2004 .
10 .003.

[15] Melvin Fitting, First-Order Logic and Automated Theorem Proving, second edition, Graduate Texts in Computer Science., Springer, 1996.

[16] Alfons Geser, Relative Termination, PhD thesis, Fakultät Für Mathematik und Informatik. Universität Passau, 1990.

[17] Karl Stefan Gmeiner, Transformational Approaches for Conditional Term Rewrite Systems, PhD thesis, Faculty of Informatics, Vienna University of Technology,
February 2014.

[18] Bernhard Gramlich, Confluence without termination via parallel critical pairs, in: Hélène Kirchner (Ed.), Trees in Algebra and Programming - CAAP’96, 21st
International Colloquium, Proceedings, in: Lecture Notes in Computer Science, vol. 1059, Springer, 1996, pp. 211–225.

[19] J.H. Griesmer, R.D. Jenks, SCRATCHPAD/1: an interactive facility for symbolic mathematics, in: Proceedings of the Second ACM Symposium on Symbolic and
Algebraic Manipulation, SYMSAC’71, Association for Computing Machinery, 1971, pp. 42–58.

[20] James H. Griesmer, Richard D. Jenks, SCRATCHPAD: a capsule view, in: James B. Morris, Mark B. Wells (Eds.), Proceedings of the Symposium on Two-

Dimensional Man-Machine Communication, ACM, 1972, pp. 93–102.

[21] Raúl Gutiérrez, Salvador Lucas, Automatic generation of logical models with AGES, in: Pascal Fontaine (Ed.), Automated Deduction - CADE 27 - 27th International
Conference on Automated Deduction, Proceedings, in: Lecture Notes in Computer Science, vol. 11716, Springer, 2019, pp. 287–299.

[22] Raúl Gutiérrez, Salvador Lucas, Automatically proving and disproving feasibility conditions, in: Nicolas Peltier, Viorica Sofronie-Stokkermans (Eds.), Auto-

mated Reasoning - 10th International Joint Conference, IJCAR 2020, Proceedings, Part II, in: Lecture Notes in Computer Science, vol. 12167, Springer, 2020,
pp. 416–435.

[23] Raúl Gutiérrez, Salvador Lucas, Miguel Vítores, Confluence of conditional rewriting in logic form, in: Mikołaj Bojańczy, Chandra Chekuri (Eds.), 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021), Dagstuhl, Germany, in: Leibniz International
22

Proceedings in Informatics (LIPIcs), vol. 213, Schloss Dagstuhl – Leibniz-Zentrum Für Informatik, 2021, pp. 44:1–44:18.

http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3881ACCDA477F67A644F257346326EF6s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3881ACCDA477F67A644F257346326EF6s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3881ACCDA477F67A644F257346326EF6s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibB00A9E66FC5AFF8C6E7D117086F2DDF9s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibB00A9E66FC5AFF8C6E7D117086F2DDF9s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibB00A9E66FC5AFF8C6E7D117086F2DDF9s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib5076B25F9927070E64B0E14A826D9586s1
https://doi.org/10.1016/j.tcs.2006.04.012
https://doi.org/10.1016/j.tcs.2006.04.012
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib2CC8820CB3EDFFB32AC7177805A31934s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib2CC8820CB3EDFFB32AC7177805A31934s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3437A9485C48A8C4C967F2772B10229Es1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3437A9485C48A8C4C967F2772B10229Es1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib868482C71804E46467DA93C8D9C70AC8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib868482C71804E46467DA93C8D9C70AC8s1
https://doi.org/10.1016/0304-3975(90)90064-O
https://doi.org/10.1016/0304-3975(90)90064-O
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibBCA17E0F13B48A0043A53494689452CFs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibBCA17E0F13B48A0043A53494689452CFs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3230B8F1C49E55440CD94BD3E55713E4s1
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1007/s10990-008-9028-2
https://doi.org/10.1016/j.jlap.2011.12.004
https://doi.org/10.1016/j.ic.2004.10.003
https://doi.org/10.1016/j.ic.2004.10.003
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib637A3A11D85D1F4E4F2E445D261B6945s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib376ECC93F0129504E0C22D9ECB9FC1DDs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib9D429651A8A7BAD6FF64ECADF6B5A498s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib9D429651A8A7BAD6FF64ECADF6B5A498s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibBE888672080A7FD72DC9CD80054F9936s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibBE888672080A7FD72DC9CD80054F9936s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibC6459F51A76807D5882AFBE61331DC1Ds1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibC6459F51A76807D5882AFBE61331DC1Ds1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibF3AFBA9A4599431F0B662F702780AC4Es1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibF3AFBA9A4599431F0B662F702780AC4Es1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib18D8300E70B1300A777E7B1EBA91E011s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib18D8300E70B1300A777E7B1EBA91E011s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibC55DF72E553BD69BC474637E4ECE1DC8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibC55DF72E553BD69BC474637E4ECE1DC8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibC55DF72E553BD69BC474637E4ECE1DC8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibDA966CA13D119F28774B030935B7CA37s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibDA966CA13D119F28774B030935B7CA37s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibDA966CA13D119F28774B030935B7CA37s1

Journal of Logical and Algebraic Methods in Programming 136 (2024) 100926S. Lucas

[24] Raúl Gutiérrez, Miguel Vítores, Salvador Lucas, Confluence framework: proving confluence with CONFident, in: Alicia Villanueva (Ed.), Logic-Based Program
Synthesis and Transformation - 32nd International Symposium, LOPSTR 2022, Proceedings, in: Lecture Notes in Computer Science, vol. 13474, Springer, 2022,
pp. 24–43.

[25] Anthony C. Hearn, REDUCE: a user-oriented interactive system for algebraic simplification, in: Melvin Klerer, Juris Reinfelds (Eds.), Proceedings of the ACM
Symposium on Interactive Systems for Experimental Applied Mathematics, ACM, 1967, pp. 79–90.

[26] Anthony C. Hearn, REDUCE 2: a system and language for algebraic manipulation, in: Proceedings of the Second ACM Symposium on Symbolic and Algebraic
Manipulation, SYMSAC’71, Association for Computing Machinery, 1971, pp. 128–133.

[27] Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph H. Fasel, María M. Guzmán, Kevin Hammond, John Hughes, Thomas
Johnsson, Richard B. Kieburtz, Rishiyur S. Nikhil, Will Partain, John Peterson, Report on the programming language Haskell, a non-strict, purely functional
language, SIGPLAN Not. 27 (5) (1992) 1, https://doi .org /10 .1145 /130697 .130699.

[28] Gérard P. Huet, Confluent reductions: abstract properties and applications to term rewriting systems: abstract properties and applications to term rewriting
systems, J. ACM 27 (4) (1980) 797–821, https://doi .org /10 .1145 /322217 .322230.

[29] Jean-Pierre Jouannaud, Hélène Kirchner, Completion of a set of rules modulo a set of equations, SIAM J. Comput. 15 (4) (1986) 1155–1194, https://doi .org /
10 .1137 /0215084.

[30] Stéphane Kaplan, Conditional rewrite rules, Theor. Comput. Sci. 33 (1984) 175–193, https://doi .org /10 .1016 /0304 -3975(84)90087 -2.

[31] Stéphane Kaplan, Simplifying conditional term rewriting systems: unification, termination and confluence, J. Symb. Comput. 4 (3) (1987) 295–334, https://

doi .org /10 .1016 /S0747 -7171(87)80010 -X.

[32] Donald E. Knuth, Peter E. Bendix, Simple word problems in universal algebra, in: J. Leech (Ed.), Computational Problems in Abstract Algebra, Pergamon Press,
1970, pp. 263–297.

[33] Salvador Lucas, Proving semantic properties as first-order satisfiability, Artif. Intell. 277 (2019), https://doi .org /10 .1016 /j .artint .2019 .103174.

[34] Salvador Lucas, Context-sensitive rewriting, ACM Comput. Surv. 53 (4) (2020) 78, https://doi .org /10 .1145 /3397677.

[35] Salvador Lucas, Using well-founded relations for proving operational termination, J. Autom. Reason. 64 (2) (2020) 167–195, https://doi .org /10 .1007 /s10817 -
019 -09514 -2.

[36] Salvador Lucas, Applications and extensions of context-sensitive rewriting, J. Log. Algebraic Methods Program. 121 (2021) 100680, https://doi .org /10 .1016 /j .
jlamp .2021 .100680.

[37] Salvador Lucas, On local confluence of conditional rewrite systems, in: 11th International Workshop on Confluence, IWC 2022, 2022, pp. 7–12.

[38] Salvador Lucas, Raúl Gutiérrez, Automatic synthesis of logical models for order-sorted first-order theories, J. Autom. Reason. 60 (4) (2018) 465–501, https://

doi .org /10 .1007 /s10817 -017 -9419 -3.

[39] Salvador Lucas, Claude Marché, José Meseguer, Operational termination of conditional term rewriting systems, Inf. Process. Lett. 95 (4) (2005) 446–453.

[40] Salvador Lucas, José Meseguer, Raúl Gutiérrez, The 2D dependency pair framework for conditional rewrite systems. Part I: definition and basic processors, J.
Comput. Syst. Sci. 96 (2018) 74–106, https://doi .org /10 .1016 /j .jcss .2018 .04 .002.

[41] Salvador Lucas, Miguel Vítores, Raúl Gutiérrez, Proving and disproving confluence of context-sensitive rewriting, J. Log. Algebraic Methods Program. 126 (2022)
100749, https://doi .org /10 .1016 /j .jlamp .2022 .100749.

[42] Elliott Mendelson, Introduction to Mathematical Logic, 4th ed., Chapman and Hall, 1997.

[43] Aart Middeldorp, Confluence of the disjoint union of conditional term rewriting systems, in: Stéphane Kaplan, Mitsuhiro Okada (Eds.), Conditional and Typed
Rewriting Systems, 2nd International CTRS Workshop, Proceedings, in: Lecture Notes in Computer Science, vol. 516, Springer, 1990, pp. 295–306.

[44] Aart Middeldorp, Modular properties of conditional term rewriting systems, Inf. Comput. 104 (1) (1993) 110–158, https://doi .org /10 .1006 /inco .1993 .1027.

[45] Aart Middeldorp, Erik Hamoen, Completeness results for basic narrowing, Appl. Algebra Eng. Commun. Comput. 5 (1994) 213–253, https://doi .org /10 .1007 /
BF01190830.

[46] Enno Ohlebusch, Advanced Topics in Term Rewriting, Springer, 2002.

[47] Satoshi Okui, Simultaneous critical pairs and Church-Rosser property, in: Tobias Nipkow (Ed.), Rewriting Techniques and Applications, 9th International
Conference, RTA-98, Proceedings, in: Lecture Notes in Computer Science, vol. 1379, Springer, 1998, pp. 2–16.

[48] David A. Plaisted, A logic for conditional term rewriting systems, in: Stéphane Kaplan, Jean-Pierre Jouannaud (Eds.), Conditional Term Rewriting Systems, 1st
International Workshop, Proceedings, in: Lecture Notes in Computer Science, vol. 308, Springer, 1987, pp. 212–227.

[49] John Alan Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1) (1965) 23–41, https://doi .org /10 .1145 /321250 .321253.

[50] Barry K. Rosen, Tree-manipulating systems and Church-Rosser theorems, J. ACM 20 (1) (1973) 160–187, https://doi .org /10 .1145 /321738 .321750.

[51] Georg Struth, An algebra of resolution, in: Leo Bachmair (Ed.), Rewriting Techniques and Applications, 11th International Conference, RTA 2000, Proceedings,
in: Lecture Notes in Computer Science, vol. 1833, Springer, 2000, pp. 214–228.

[52] Taro Suzuki, Aart Middeldorp, Tetsuo Ida, Level-confluence of conditional rewrite systems with extra variables in right-hand sides, in: Jieh Hsiang (Ed.),
Rewriting Techniques and Applications, 6th International Conference, RTA-95, Proceedings, in: Lecture Notes in Computer Science, vol. 914, Springer, 1995,
pp. 179–193.

[53] Carolyn L. Talcott, Vivek Nigam, Farhad Arbab, Tobias Kappé, Formal specification and analysis of robust adaptive distributed cyber-physical systems, in: Marco
Bernardo, Rocco De Nicola, Jane Hillston (Eds.), Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems - 16th International School
on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2016, Advanced Lectures, in: Lecture Notes in Computer Science,
vol. 9700, Springer, 2016, pp. 1–35.

[54] Terese, Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, vol. 55, Cambridge University Press, 2003.

[55] Yoshihito Toyama, Commutativity of term rewriting systems, in: K. Fuchi, L. Kott (Eds.), Programming of Future Generation Computer, II, North-Holland, 1988,
pp. 393–407.

[56] Vincent van Oostrom, Developing developments, Theor. Comput. Sci. 175 (1) (1997) 159–181, https://doi .org /10 .1016 /S0304 -3975(96)00173 -9.

[57] Hao Wang, Logic of many-sorted theories, J. Symb. Log. 17 (2) (1952) 105–116, https://doi .org /10 .2307 /2266241.
23

[58] Stephen Wolfram, Mathematica - a System for Doing Mathematics by Computer, Addison-Wesley, 1988, https://www .worldcat .org /oclc /16830839.

http://refhub.elsevier.com/S2352-2208(23)00080-9/bib07E308DDCEB5B14F8E76E3E5EB39E1B8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib07E308DDCEB5B14F8E76E3E5EB39E1B8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib07E308DDCEB5B14F8E76E3E5EB39E1B8s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib69179EAB74CCA3DBE9A15DDE5081947As1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib69179EAB74CCA3DBE9A15DDE5081947As1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibCB8E7B5AE729866F373A7D5BFA5FF857s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibCB8E7B5AE729866F373A7D5BFA5FF857s1
https://doi.org/10.1145/130697.130699
https://doi.org/10.1145/322217.322230
https://doi.org/10.1137/0215084
https://doi.org/10.1137/0215084
https://doi.org/10.1016/0304-3975(84)90087-2
https://doi.org/10.1016/S0747-7171(87)80010-X
https://doi.org/10.1016/S0747-7171(87)80010-X
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3A1A852037BF565AC3744672722C28CFs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib3A1A852037BF565AC3744672722C28CFs1
https://doi.org/10.1016/j.artint.2019.103174
https://doi.org/10.1145/3397677
https://doi.org/10.1007/s10817-019-09514-2
https://doi.org/10.1007/s10817-019-09514-2
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.jlamp.2021.100680
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib2864F1E5CF8F91121D0193215987B8D2s1
https://doi.org/10.1007/s10817-017-9419-3
https://doi.org/10.1007/s10817-017-9419-3
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib5B3E405C01F2F1550D43AE5DEB314C7Cs1
https://doi.org/10.1016/j.jcss.2018.04.002
https://doi.org/10.1016/j.jlamp.2022.100749
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib9B7266AA3A3A36F06B6B200B0A24716Cs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib94CF8169BB6798A8748D41FF91F17D86s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib94CF8169BB6798A8748D41FF91F17D86s1
https://doi.org/10.1006/inco.1993.1027
https://doi.org/10.1007/BF01190830
https://doi.org/10.1007/BF01190830
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib77FA295E1F34571EE06E7E949723F7E0s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib24EEBC4D1081DE3E2A189B6882060F64s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib24EEBC4D1081DE3E2A189B6882060F64s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib21714A8D57A9E16B753D1AC7F425F894s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib21714A8D57A9E16B753D1AC7F425F894s1
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321738.321750
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibFFCFFE58949EDCB32BB0E5CD996E8BBBs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibFFCFFE58949EDCB32BB0E5CD996E8BBBs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib7EF06DD04E227B576B68E7DDA25032D9s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib7EF06DD04E227B576B68E7DDA25032D9s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib7EF06DD04E227B576B68E7DDA25032D9s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib246D25BD8FAACAE20DC665AE8DCFEF1Fs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib246D25BD8FAACAE20DC665AE8DCFEF1Fs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib246D25BD8FAACAE20DC665AE8DCFEF1Fs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib246D25BD8FAACAE20DC665AE8DCFEF1Fs1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bibFF815C073A9A32CDE8EFCF0853F57D12s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib694ECBB68922F0477943EC013B0CA639s1
http://refhub.elsevier.com/S2352-2208(23)00080-9/bib694ECBB68922F0477943EC013B0CA639s1
https://doi.org/10.1016/S0304-3975(96)00173-9
https://doi.org/10.2307/2266241
https://www.worldcat.org/oclc/16830839

	Local confluence of conditional and generalized term rewriting systems
	1 Introduction
	2 Preliminaries
	3 First-order theory of a CTRS. Rewriting as deduction
	4 Peaks and (local) confluence
	5 Conditional pairs in the analysis of local confluence of CTRSs
	5.1 Conditional critical pairs in CTRSs
	5.1.1 Joinability of conditional critical pairs and joinability of critical peaks

	5.2 Conditional variable pairs in CTRSs
	5.2.1 Joinability of conditional variable pairs and joinability of variable peaks
	5.2.2 Joinable conditional variable pairs
	5.2.3 Specialization of conditional variable pairs

	6 Characterization of local confluence of CTRSs
	7 Generalized term rewriting systems
	7.1 Context-sensitive rewriting
	7.2 Syntax of generalized term rewriting systems
	7.3 First-order theory of a generalized term rewriting system
	7.4 Examples of GTRSs
	7.5 Local confluence of generalized term rewriting systems
	7.6 Underlying (extended) CS-TRS of a GTRS
	7.7 Proving and disproving confluence of GTRSs

	8 Related work
	9 Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	References

