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Wiener, Hammerstein, and Wiener–Hammerstein structures are useful for modelling dynamic systems that exhibit a static type
nonlinearity. Many methods to identify these systems can be found in the literature; however, choosing a method requires prior
knowledge about the location of the static nonlinearity. In addition, existing methods are rigid and exclusive for a single structure.
'is paper presents a unified approach for the identification of Wiener, Hammerstein, and Wiener–Hammerstein models. 'is
approach is based on the use of multistep excitation signals and WH-EA (an evolutionary algorithm for Wiener–Hammerstein
system identification).'e use of multistep signals will take advantage of certain properties of the algorithm, allowing it to be used
as it is to identify the three types of structures without the need for the user to know a priori the process structure. In addition,
since not all processes can be excited with Gaussian signals, the best linear approximation (BLA) will not be required. Performance
of the proposed method is analysed using three numerical simulation examples and a real thermal process. Results show that the
proposed approach is useful for identifying Wiener, Hammerstein, and Wiener–Hammerstein models, without requiring prior
information on the type of structure to be identified.

1. Introduction

Block-oriented models are a class of nonlinear model
consisting of an interaction of linear-time invariant (LTI)
dynamic subsystems and nonlinear (NL) static elements
[1, 2].'is interaction between basic blocks is not restricted
to serial connections, and blocks can be used more than
once.'erefore, block-oriented models comprise a series of
structures that can be useful when modelling dynamic
systems affected by memoryless nonlinearities. An over-
view of the most common block-oriented model structures
can be found in [3].'e simplest structures within this class
of model are the Wiener (LTI-NL) and Hammerstein (NL-
LTI) models. Generalisations of these basic models lead to
more complex structures known as Wiener–Hammerstein
(LTI-NL-LTI) and Hammerstein–Wiener (NL-LTI-NL)
models.

Static nonlinearities are very common in real systems,
and for this reason, block-oriented models have great po-
tential within the identification of nonlinear systems. 'is
class of models has been successfully used in practice in-
cluding biological processes [4–6]; chemical processes [7–9];
electronic systems [10, 11]; and others [12, 13]. Motivation
for block-oriented models includes the identification of
systems, and many reports of control applications using
these types of models can be found in the literature [14–18].

In the context of block-oriented models, LTI subsystems
are typically represented by pulse transfer models, impulse
response models, and state space models, while nonlinearity
blocks are usually parameterized with polynomials, piece
wise functions, splines, neural networks, basis functions, and
wavelets, among others. When LTI subsystems and NL
blocks are represented with one of these forms, the model is
parametric. However, block-oriented models can also be
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represented in a nonparametric form [19] or in a combined
way [20]. 'is paper is concerned with parametric block-
oriented models based on serial connections with a single
nonlinear block, i.e., Wiener, Hammerstein, and Wie-
ner–Hammerstein models. 'e latter structure provides
higher modelling capabilities than Wiener and Hammer-
stein; however, its identification scenario is more complex
due to the presence of two LTI blocks.

Knowledge of linear dynamics is a good starting point
for identifying block-orientedmodels [3]. In this context, the
Best Linear Approximation (BLA) of a nonlinear system is
preferred [21–24]. 'e BLA can greatly simplify the iden-
tification problem in Wiener and Hammerstein models. In
both cases, once linear dynamics are obtained, static non-
linearity can be obtained by solving an optimisation problem
that is linear in the parameters. However, a more efficient
estimate of Wiener and Hammerstein models may require a
whole parameter refitting using nonlinear optimisation.
Several identification algorithms for Wiener and Ham-
merstein models have been developed in the literature, and
the works of Giri and Bai [2] and dos Santos et al. [25] show a
good selection of algorithms.

In the case of Wiener–Hammerstein models, identifi-
cation is not so easy since the BLA must be divided to es-
tablish the dynamics of both LTI blocks. Several methods to
split the BLA can be found in the literature [26–33]. After the
front and back dynamics of a Wiener–Hammerstein model
have been classified, a fine-tuning of model parameters must
be made to achieve an efficient estimate. Usually, consid-
erable user interaction is demanded—at least two proce-
dures are required from the BLA. In addition, the final
model estimated greatly depends on these previous stages (a
poor division of the BLA will obviously lead to a poor es-
timate). To minimise these drawbacks, a new methodology
called WH-EA (evolutionary algorithm for Wie-
ner–Hammerstein system identification) was introduced in
[34]. 'is algorithm enables estimating all the parameters of
aWiener–Hammerstein model with a single procedure from
the BLA.WithWH-EA, a good estimate does not depend on
intermediate procedures since the evolutionary algorithm
looks for the best BLA partition, while the locations of the
poles and zeros are fine-tuned and nonlinearity is captured
simultaneously.

Although state-of-the-art methods for BLA splitting
offer their own advantages and disadvantages, they make the
identification of Wiener–Hammerstein models a subjective
task with an acceptable degree of maturity. However, from a
practical point of view, obtaining the BLA can be a complex
and sometimes unfeasible task. On one side, multiple
realisations—each with a large amount of data—may be
required to obtain the BLA. In real processes with slow
dynamics, experiments for obtaining the BLA would require
too much time, so it would be impractical. On the other
hand, excitation signals used to obtain the BLA must belong
to the Riemann equivalence class of asymptotically normally
distributed excitation signals [35].'emost common signals
of this type are the Gaussian noise sequences and random-
phased multisines [22, 36] and not all real processes can be
excited with this kind of inputs.

Beyond problems derived from BLA attainment, several
methods forWiener, Hammerstein, andWiener–Hammerstein
model identification can be found in the literature [3].
Almost all have in common that they use the BLA as a
starting point—although this has not been used much for
Wiener and Hammerstein models. Although the three
model structures are differentiated by how the dynamics are
distributed around static nonlinearity, to date, there is no
method to identify any of the three models without dis-
tinction. Existing methods have been developed indepen-
dently and exclusively for a single structure. 'at is, one for
identifying Wiener cannot be used to identify Hammerstein
models and vice versa. If there is uncertainty about the
location of the dynamics and the static nonlinearity, the user
would be obliged to make separate estimates of Wiener,
Hammerstein, and Wiener–Hammerstein using three dif-
ferent identification methods. After this tedious task, the
performance of the models obtained should be compared to
select the appropriate one.

At first glance, it would seem that existing Wie-
ner–Hammerstein identification methods could easily
overcome this drawback, since the Wiener and Ham-
merstein models are specific cases of the Wie-
ner–Hammerstein structure where the dynamics have
been distributed to only one side of the static nonline-
arity. However, this situation must be handled carefully.
Existing methods to identify Wiener–Hammerstein
models address the problem of identification as an op-
timisation problem. In that case, to achieve a good
convergence, it is necessary to define appropriately the
range where the static nonlinearity will be captured. Since
static nonlinearity is located in different positions with
respect to the dynamics, the nonlinearity bounds are
different for the three types of structures. Note that it is
not the same to capture the static nonlinearity before or
after a dynamic block given that the domain and codo-
main of the nonlinear function will change notably.
Defining a very small search space will result in the
nonlinearity not being properly captured. On the other
hand, a search space too broad will cause a slow con-
vergence, or worse, the algorithm could get stuck at a
local minimum. 'erefore, without beforehand infor-
mation on the process structure, the search space of static
nonlinearity could be defined incorrectly.

Difficulties in estimating the BLA in practical applica-
tions and the need to know, prior to the selection of an
identification method, if static nonlinearity is in front, be-
hind, or in the middle of the dynamics have been the
principal motivations to present this work. 'e aim is to
create a unified approach to estimate Wiener, Hammerstein,
and Wiener–Hammerstein models without the need for the
user to know a priori the structure of the process under test.
'is unified approach is based on the use ofWH-EAwithout
any modification. However, for WH-EA can identify any of
the three structures without distinction, an effective and
common search space for static nonlinearity is stated. 'is
search space will be useful for any possible structure without
the need for their dimensions to change as WH-EA dis-
tributes the dynamics. It must be taken into account that it is
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not an oversized search space, rather it is a search space with
optimal dimensions to capture static nonlinearity regardless
of the distribution of the dynamics.

In the case of Wiener, Hammerstein, and Wie-
ner–Hammerstein models, a search space for static non-
linearity can be defined using information from the input
and output dataset used during the identification procedure.
However, when an arbitrary excitation signal (e.g., a
Gaussian signal) is applied, the process structure must be
known to define an effective search space. Since this work
assumes that the process structure is unknown, from the
input and output dataset a common search space useful for
the three structures will be defined. As it will be seen in
Section 2.4, this common search space will be possible as
long as the applied excitation signal leads the output of the
process to steady state and for this reason, multistep signals
will be used. In addition, multistep excitation will enable an
effective exploration of different process operation zones
highlighting existing nonlinearities (not possible if Gaussian
signals are used to excite the process). Note that Gaussian
signals are useful for capturing the dynamic behavior of a
system, however, these types of signals are not suitable for
highlighting static non-linearites - as in the case of
saturations.

Since this approach will not use Gaussian-type signals,
an initial linear model obtained using standard linear
identification methods can be used instead of the BLA. In
noisy environments and under the effect of nonlinearity, the
initial linear model will be a biased version of the real process
dynamics. As it will be shown, the potentiality of WH-EA is
exploited to refine the location of the poles and zeros of this
initial model while they are distributed around nonlinear
block (which is also captured simultaneously).

Unlike other proposals where a single type of model is
addressed, this paper presents a new approach that allows
the identification of any of the three types of block-oriented
models indistinctly without any beforehand information
about the type of structure. 'is approach is useful for
identifying nonlinear systems, where it is known a priori that
the system is affected by a static nonlinearity but its location
with respect to dynamics is unknown. From the core idea of
this paper, other derived novelties are highlighted below:

(i) In this proposal, the BLA is not used. 'is is a
significant advantage since the estimation of the
BLA can be impractical in many real applications
due to the execution time required to excite the
process under test.

(ii) 'is approach uses multistep excitation signals.'is
type of signals allows nonlinearities to emerge
better. 'is is very useful since nonlinear estimation
starts from dynamics already known.

(iii) 'anks to the normalisation of the dynamics and
the use of multistep signals a common search space
for the three types of models can be stated. 'is
search space is not dependent on any parameter
provided by the user, such as it was the case of theΩ
parameter in [34].

(iv) 'e estimation is done in continuous time, which
gives the user a clearer view of the process behaviour
under test.

'e rest of this paper is organised as follows. Section 2
presents the identification framework that has been divided
into five parts. First, the structure of the Wiener, Ham-
merstein, and Wiener–Hammerstein models and their
mathematical formulation are described. 'e initial linear
model estimation and selection of its structure is then
addressed, followed by the optimisation problem statement.
'e search space for static nonlinearity is then analysed for
these three types of models when creating a common search
space. Finally, several aspects related to multistep inputs,
such as excitation signals, are presented. Section 3 presents
an abstract of WH-EA including codification of the indi-
viduals, its genetic operators, and details of how the algo-
rithm works. To end, in Section 4, the presented
methodology is applied to three numerical examples and a
real application (a thermal process). Finally, concluding
remarks are presented in Section 5.

2. Identification Framework

2.1. Structure of Nonlinear Models and Problem Formulation.
All the three block-orientedmodels treated in this work have
a single nonlinear element. In the case of the Wie-
ner–Hammerstein models, two LTI blocks Gw(s, ρw) and
Gh(s, ρh) surround the nonlinear element f(v(t), ρnl).
Wiener and Hammerstein models are specific cases of
Wiener–Hammerstein models when one of the linear blocks
lacks dynamics. If dynamics are present only at the input
linear block, the resulting model is known as a Wiener
model. When dynamics are present only at the output block,
the resulting model is known as a Hammerstein model.

In this paper, the block-model structure of the process to
be identified is unknown, so the most general form is
considered as a starting point for the problem formulation.
Let us represent Wiener, Hammerstein, and Wie-
ner–Hammerstein models by

y(t, ρ) � Gh s, ρh( 􏼁f Gw s, ρw( 􏼁u(t), ρnl( 􏼁, (1)

ρ � ρw, ρnl, ρh􏼂 􏼃, (2)

where u(t) and y(t) are the model input and output, re-
spectively, and vectors ρw and ρh contain the parameters of
the dynamic blocks, while ρnl contains the parameters of
static nonlinearity.

Notice that equations (1) and (2) correspond to the
formulation of Wiener–Hammerstein models or generic
case. In the case of Wiener models, vector ρh does not exist
and Gh � 1, whereas in the case of Hammerstein models,
vector ρw does not exist and Gw � 1.

'is paper establishes a common framework for the
identification of Wiener, Hammerstein, and Wie-
ner–Hammerstein models that is only possible under certain
constraints that are detailed in Section 2.4. For all three
cases, the identification problem starts from (1) and is
addressed as a classification problem. 'e evolutionary
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algorithm will determine if there are dynamics distributed
between the two blocks or if the dynamics are present just in
one of them.

For the two LTI blocks to be parameterized, both LTI
subsystems are represented in the continuous time domain
as rational transfer functions in factorised form (zero-pole-
gain):

Gw(s) � Kw

􏽑
nb

i�1 s + zwi
􏼐 􏼑/ zwi

􏼐 􏼑

􏽑
na

i�1 s + pwi
􏼐 􏼑/ pwi

􏼐 􏼑
, (3)

Gh(s) � Kh

􏽑
nd

i�1 s + zhi
􏼐 􏼑/ zhi

􏼐 􏼑

􏽑
nc

i�1 s + phi
􏼐 􏼑/ phi

􏼐 􏼑
, (4)

where − pwi
with i � 1, . . . , na and − zwi

with i � 1, . . . , nb

represent front LTI poles and zeros, respectively. In a similar
way, − phi

with i � 1, . . . , nc and − zhi
with i � 1, . . . , nd

represent poles and zeros of the back LTI one. Static gains of
each linear block are represented by Kw and Kh, while s is the
complex Laplace variable. Considering this, let us define
vectors ρw and ρh as

ρw � Kw, zw1
, zw2

, . . . , zwnb
, pw1

, pw2
, . . . , pwna

􏽨 􏽩, (5)

ρh � Kh, zh1
, zh2

, . . . , zhnd
, ph1

, ph2
, . . . , phnc

􏽨 􏽩. (6)

Notice that poles and zeros in (3) and (4) are not re-
stricted to be real, since − pwi

, − phi
, − zwi

, and − zhi
can also

represent complex poles or zeros, respectively.
Static nonlinearity can also be represented in different

ways. In this case, piecewise functions are used as WH-EA
uses them:

w(t) � f v(t), ρnl( 􏼁, (7)

where v(t) is the input signal to the nonlinear block, while
ρnl contains the abscissas and ordinates which define the
breakpoint locations of the piecewise function. Notice that
for a Wiener system, y(t) � w(t), while for a Hammerstein
system, v(t) � u(t).

'e problem formulation is completed by the following
assumptions:

A1. 'e model to be identified corresponds to a
Wiener, Hammerstein, or Wiener–Hammerstein sys-
tem, where the structure is unknown but the general
dynamics must be known.
A2. 'ere is no cancellation of poles and zeros and the
location of the poles is consistent with a stable system.
A3. 'e system under test will be identified from an
input/output dataset, where the input excitation signal
u(t) is a multistep signal (see Section 2.5 for more
details), while the measured output y(t) may be cor-
rupted by stationary additive noise n(t):

y(t) � y0(t) + n(t). (8)

2.2. Initial Linear Model. In our context of Wie-
ner–Hammerstein models, obtaining a perfect linear

dynamic model in the presence of noise and nonlinearities is
not an easy task; however, gathering an overview of system
dynamics can be a good starting point. 'e BLA is an option
that has been used generally in the estimation of Wie-
ner–Hammerstein models. From a theoretical point of view,
the fastest and most robust method to find the BLA hides the
effect of noise and nonlinearities, and so the dynamics can be
captured with great precision [22]. However, from a prac-
tical point of view, obtaining the BLA is not always possible
or may require the use of multiple realisations, especially
when the robust method is used.

In practical applications, the BLA can present a lack of
accuracy, once its poles/zeros have been distributed and the
nonlinearity captured, and refinement of the dynamics is
always possible to improve model preciseness. In this work, it
is assumed that the initial linear model is not perfect but it can
be fine-tuned during estimation. 'e initial model can be
obtained as usual from the response to a step signal. 'e
process under test can be excited with a small amplitude step
avoiding excitation of the nonlinearity. Due to its static na-
ture, any process operating point can be selected to inject the
step signal. Estimatedmodels in different operation zones will
give similar dynamics but with different static gains (it is
advisable to avoid zones near operation limits since the
nonlinearity can be stronger due to saturation phenomena).

'e purpose of this paper is not to discuss methods for
linear system identification. For a direct estimation in
continuous time and to obtain models with better precision,
simple refined instrumental variable method for continuous-
time models (SRIVC) has been used [37, 38], available in the
CONtinuous-Time System IDentification (CONTSID)
toolbox for Matlab [39–41].

Since that initial linear model estimation is based on a
step response, it is assumed that a small amount of data will
be used. For this reason, theModified minimum Description
Length (MDL) criterion has been used to select the best
linear structure [42]:

MDL �
V(ρl,Z)

NL

e
pc nρl ,NL( 􏼁

, (9)

where ρl are the estimated model parameters, Z is a two-
dimensional vector containing the input/output data, nρl is
the number of parameters in the estimated model, NL

represents the amount of data used for estimation, V(ρl,Z)

is the quadratic-like cost function depending on the dif-
ference between measurements and model (ϵ), computed
using (10), and pc(nρl, NL) is the term known as the cor-
rected penalty and is computed using (11).

V(ρl,Z) �
1
2

􏼒 􏼓ϵTϵ, (10)

pc nρl, NL􏼐 􏼑 �
ln NL( 􏼁 nρl + 1􏼐 􏼑

NL − nρl − 2
. (11)

2.3. Optimisation Problem Statement. From the initial linear
model and an input/output dataset u(t), yr(t)􏼈 􏼉

N

t�1, WH-EA
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is used to find the best set of parameters that represent the
nonlinear model. 'e procedure includes the refinement of
the initial linear model, the characterisation of static non-
linearity, and the pole/zero distribution of the initial linear
model around the static nonlinearity. 'e best set of pa-
rameters is assigned to a model of Wiener, Hammerstein, or
Wiener–Hammerstein. For this purpose, the identification
problem is stated as an optimisation problem based on a
prediction-error method and the mean absolute error cri-
terion (notice that any other criterion could be used in the
proposed method, such quadratic or maximum error
criteria):

εNL(t, ρ) � yr(t) − y(t, ρ), (12)

J(ρ) �
1
N

􏽘

N

t�1
abs εNL(t, ρ)( 􏼁. (13)

'e solution of the optimisation problem is written as
􏽢ρ � argmin

ρ
J(ρ), (14)

where 􏽢ρ contains the best set of parameters to represent the
nonlinear model.

2.4. Search Space for Static Nonlinearity. In the present
approach, the problem of identifyingWiener, Hammerstein,
and Wiener–Hammerstein models is addressed as an op-
timisation problem that is solved with WH-EA. For the
algorithm to converge successfully and the best model to be
estimated, it is necessary to define a suitable search space for
static nonlinearity. 'e minimum and maximum values of
the input and output signals of the nonlinear block give a
clear idea of the domain and codomain of the static non-
linearity; therefore, from this information, it is possible to
define its search space. However, it is necessary to point out
that the minimum and maximum values of the input signal
to the nonlinear block depend on the excitation signal used
and the location of the nonlinearity around the dynamics of
the process, while the minimum and maximum values of the
output signal depend on the input signal to the block and the
nonlinearity itself. 'is can be clearly seen in Figure 1, where
a Gaussian signal has been used to excite three models
containing the same dynamics and the same static non-
linearity. 'ese models differ only in the distribution of the
dynamic that has intentionally been handled to give rise to
the three structures that are addressed in this paper.

In the case of Wiener and Wiener–Hammerstein
models, the limits that define the horizontal search space of
the nonlinear static function are affected by the static gain
and the dynamics of the linear input block. Since the linear
blocks of these two models are different, the limits are also
different. For example, for the Wiener–Hammerstein model
defined in Figure 1, the limits that horizontally define the
search space for static nonlinearity are − 1.68 and 1.85, while
for the Wiener model, the limits are − 1.10 and 1.12. In the
case of the Hammerstein model, these limits could be ob-
tained directly from the minimum and maximum values of
the excitation signal (− 2.38 and 2.43). It is evident that the

limits that horizontally define the search space are different
for the three types of models. 'is difference is also reflected
in the vertical limits—even though the three models have the
same static nonlinearity. 'e fact that there are different
search spaces makes it necessary to know a priori the process
structure under test in order to define an adequate search
space. If it is not possible to know the process structure, an
oversized search space could be defined; however, this will
surely complicate the convergence of any search algorithm.

'is section shows how to create a unified search space for
the three types of models. 'is search space is independent of
the distribution of the dynamics, so the search algorithm will
not be restricted to estimating a certain structure. In other
words, thanks to the creation of this unified search space,
WH-EA will be able to estimate Wiener, Hammerstein, and
Wiener–Hammerstein models without the need for the user
to specify a priori the process structure.

For a better understanding, prior to explaining how to
create a unified search space, in the first instance, it is shown
how to determine the search space of the three types of
models assuming an arbitrary excitation signal (e.g., a
Gaussian signal). For all three cases, it is assumed that the
intermediate signals are not measurable and the dynamic
blocks are nonreversible, and therefore the only way to
determine the search space is by using information from the
input and output data and from the initial linear model.

Let us assume, for the three cases of analysis, that the
input signal u(t) is bounded by a maximum value umax and a
minimum value umin with a mean value of umean. In the same
way, the output y(t) is bounded by a maximum value ymax
and a minimum value ymin, and it has a mean ymean.

2.4.1. Search Space in Wiener–Hammerstein Models. In a
Wiener–Hammerstein model, the excitation signal u(t)

enters the first LTI block (Gw(s)). 'is block will produce an
output v(t) with mean vmean, bounded by a maximum value
vmax and minimum value vmin. 'e relationship between
minimum and maximum values of signals u(t) and v(t) is
determined by

vmin � Ω∗ umin, (15)

vmax � Ω∗ umax, (16)

where Ω is a scaling factor depending on the block Gw(s).
Without loss of generality, the static gain of Gw(s) can be
normalised to one, since the real gain can be absorbed by
static nonlinearity. Under this normalisation, it can be as-
sumed that there will be no offset between input and output
signals since Gw(s) is an LTI subsystem; therefore,
vmean � umean. 'e same can be applied to the output block
Gh(s); therefore, wmean � ymean, where wmean is the mean of
the signal w(t).

'e search space for static nonlinearity in a Wie-
ner–Hammerstein model will be horizontally bounded by
vmin and vmax. To compute these parameters, umin and umax
can be obtained directly from the input signal u(t), whereas
Ω would be a user-defined parameter. Selection of this
parameter will be addressed later in this same section.
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Search space for nonlinearity is vertically delimited by
wmin and wmax corresponding to the minimum and maxi-
mum values of signal w(t). 'e linear dynamic model
complements the information required to find this values.
'e static gain of this model corresponds to the slope of the
straight line (KNL) passing through the point (vmean, wmean)

and the extreme points (vmin, wmin) and (vmax, wmax).
'erefore,wmin andwmax can be found using (17) and (18) (it
should be noted that if the linear dynamic model has
negative static gain, the search space for static nonlinearity
would be delimited by the coordinate pair (vmin, wmax) and
(vmax, wmin)).'e search space for the static nonlinearity of a
Wiener–Hammerstein model is illustrated in Figure 2.

wmin � ymean + KNL Ωumin − umean( 􏼁, (17)

wmax � ymean + KNL Ωumax − umean( 􏼁. (18)

2.4.2. Search Space in Wiener Models. In this case, the input
signal u(t) produces an output v(t) and nonlinearity search
space is horizontally bounded by (vmin, vmax), whereas
vertical bounds will be given by ymin and ymax.

It is well known that the identification of Wiener
models is not as complex as the identification of Wie-
ner–Hammerstein models. In a Wiener identification, once
the linear block is known, the signal v(t) can be obtained
directly; therefore, to define the search space for static
nonlinearity, it would not be necessary to use (15) and (16).
However, estimation of the intermediate variable v(t) can
be useful when dealing with Wiener models. 'is approach
assumes that the distribution of the dynamics around
nonlinearity is unknown; therefore, it is not possible to
estimate v(t), rather it is necessary to establish a search
space for nonlinearity that is common for all three
structures.

To define the horizontal bounds of the search space of a
Wiener model, without loss of generality, we could follow
the same guidelines that were followed for Wie-
ner–Hammerstein models, that is, values of vmin and vmax

can be determined with (15) and (16), considering the scaling
factor Ω. 'e static nonlinearity search space for a Wiener
model is shown in Figure 3.'e extremes of the search space
give rise to the straight line whose slope KNL must match the
static gain of the initial linear dynamic model.

2.4.3. Search Space in Hammerstein Models. In a Ham-
merstein model, the input signal u(t) enters the nonlinear
block; therefore, umin and umax horizontally define the search
space for static nonlinearity, while vertical bounds are de-
fined by wmin and wmax. To estimate the intermediate var-
iable w(t), the dynamic block needs to be invertible, which is
impossible from a practical point of view. Furthermore, our
approach assumes that pole/zero distribution around non-
linearity is unknown; therefore, for the sake of establishing a
common search space for the three structures, wmin and
wmax can be determined following the same procedure that
was used for Wiener–Hammerstein models. 'e search
space for the static nonlinearity of a Hammerstein model is
illustrated in Figure 4.
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Figure 2: Search space for nonlinear static function in a Wie-
ner–Hammerstein model.
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Figure 1: Example of search space limits for static nonlinearity in Wiener, Hammerstein, andWiener–Hammerstein models when they are
excited with a Gaussian signal.
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2.4.4. A Common Search Space Definition for Wiener, Ham-
merstein, and Wiener–Hammerstein Models. According to
previous sections, when an arbitrary signal u(t) excites the
system (for example, a Gaussian signal), horizontal and
vertical limits that define the search space for static nonlin-
earity are different for the three types of models. 'is fact
implies that the identification algorithm should change the
search space over which the nonlinearity is captured at the
same time that distributes the dynamics. To solve this
drawback, a common and fixed search space for the three
types of structures will be defined. To achieve a common
search space, it is necessary that both horizontal and vertical
limits of the search space for each model are the same.
'erefore, it is necessary that in the Wiener and Wie-
ner–Hammerstein models, when an excitation signal u(t) is
applied, the dynamics and static gain of the Gw(s) block cause
an output signal v(t) whose minimum and maximum values
are equal to the minimum and maximum values of u(t),
respectively. 'at is, vmin � umin and vmax � umax.

With the static gain of Gw(s) normalised to one, the
amplitude of the signal v(t) will only be affected by the
dynamics present in this linear block. 'e effect of the
dynamics present Gw(s) on v(t) is represented by the Ω
factor. According to (15) and (16), so that vmin � umin and
vmax � umax, Ω must be one. However, Ω cannot take any
value without taking into account the input signal. For
example, if a Gaussian signal is used to excite the system, the
output of Gw(s) will be modified in amplitude and the

corresponding minimum and maximum values of u(t) and
v(t) will be different. However, if an input causes the output
of Gw(s) in a Wiener or Wiener–Hammerstein model to
reach steady state, both amplitudes will be coincident since
Gw(s) has unity gain.

Similarly, vertical bounds must be coincident to achieve
a common search space for the three types of models. For
this to occur, amplitudes of w(t) and y(t) must be equal. If
u(t) brings to y(t) at steady state, normalising the static gain
of Gh(s) to 1 would mean that vertical bounds coincide for
the three cases. A good option to obtain the output of a
dynamic system at steady state is to apply step inputs with
sufficient duration. Figure 5 shows how the horizontal and
vertical limits that give rise to the search space of static
nonlinearity are the same for the three types of models. 'e
models used are the same as in Figure 1; the difference is that
the static gains of the dynamic blocks in Figure 5 have been
normalised to 1. A multistep signal has been used to excite
the three models. 'e step duration ensures that the re-
sponse of the three models reaches steady state at each step
change. As can be seen, the limits that define horizontally the
search space of the three models are 0 and 4.68. One great
advantage of having a unified search space is that these limits
can be obtained directly from the minimum and maximum
values of the input signal. Similarly, the limits that vertically
define the search space are the same for the three models (0
and 26.5). 'ese limits can be obtained directly from the
minimum and maximum values of the output signal.
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Figure 3: Search space for nonlinear static function in a Wiener model.
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Figure 4: Search space for nonlinear static function in a Hammerstein model.
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A good option to obtain the output of a dynamic system
at steady state is to apply step inputs of sufficient duration. In
Section 2.5 more details on how to design this signal will be
given.

With the above discussion, the common search space for
the three types of models can be constructed directly from
input u(t) and output y(t) measurements. If the gain of the
initial linear model is positive, the search space will be
defined by coordinates (umin, ymin) and (umax, ymax), while if
it is negative, the search space will be defined by (umin, ymax)

and (umax, ymin).

2.5. 5e Multistep Signal. Previous sections state that the
process under test must be excited with an input based on
steps. Step duration must be long enough for the process to
reach steady state. Since it is intended to capture a non-
linearity that is present throughout the entire process op-
erating range, it will be necessary to design a multistep signal
with different amplitudes.

For this aim, three important aspects must be consid-
ered: step duration; number and amplitude of steps; and the
minimum difference between two consecutive steps. All the
steps of the excitation signal can have a fixed duration, based
on the process dynamics under test. 'is duration can be
easily established based on the initial tests in which the initial
linear model was obtained.

A very small amount of data could mean that nonlin-
earity is not captured correctly and the dynamics will not be
distributed properly. A large amount of data would lead to a
satisfactory estimate, but could demand an important
computational cost. How much data need to be used for
identification of a nonlinear model deserves debate, and a
vast majority of nonlinear model identification methods
require a large volume of input and output data.

Calculating the static nonlinearity with precision will
lead to a good dynamic classification. 'erefore, an effective
exploration of the entire process operating range will be
required, and step amplitudes must change within input
limits by varying randomly, and the number of changes will
depend on the desired precision. Furthermore, the

minimum difference between two consecutive steps should
also be considered when designing the multistep signal.
Amplitude changes of the steps will give rise to transitory
stages, which contain information to classify the dynamics. If
they are very small, these transitory intervals will not contain
substantial information for the classification. A suitable
scenario to classify the dynamics is achieved when the
nonlinearity is visible. 'erefore, amplitude changes of the
steps must be large to highlight nonlinearity.

Figure 6 reflects this fact through a numerical simulation
example. Four operating points of the system are explored for
two scenarios (large/small step input changes) where the same
static nonlinearity and the same dynamic have been con-
sidered. 'e nonlinearity consists of a cubic function
(1/64x3), while the dynamic is formed with three poles
(− 2.4; − 1.5 + 0.856i; − 1.5 − 0.856i) and a real zero
(− 1.56). For each case, three simulations were executed
corresponding to Wiener, Hammerstein, and Wie-
ner–Hammerstein models and dynamic blocks were nor-
malised with unit static gain (for the Wiener–Hammerstein
model, the zero and the complex poles were placed before the
nonlinearity, while the remaining pole was placed afterwards).

In Figure 6(b), no difference between the responses can
be seen when the excitation signal has small amplitude
changes. Conversely, Figure 6(a) shows a marked difference
between responses when the excitation signal has larger
amplitude changes. Table 1 shows the differences between
responses as mean absolute error (MAE) and reveals the
advantage of using excitation signals with large amplitude
changes. 'is means that the identification algorithm has
more information to distinguish if the dynamics are in front,
behind, or distributed on both sides of the nonlinearity.
Notice how lowMAEss values imply no significant difference
between the structures formed as the algorithm cannot split
the dynamics properly.

Multistep signals are ideal to highlight the nonlinearities
of a process; however, this type of signal has some limitations
that must be evaluated by the user prior to the estimation of a
process. A multistep signal is enabled to excite the dominant
dynamics of a process. In contrast, a well-designed Gaussian
signal or equivalent is enabled to excite all the oscillatory
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Figure 5: Example of search space limits for static nonlinearity in Wiener, Hammerstein, andWiener–Hammerstein models when they are
excited with a multistep signal.
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modes of a process. 'e persistence of the Gaussian signal
enables capturing all the dynamics; however, from a practical
point of view, there are two important aspects that must be
considered. Precision is not the only criterion to consider for
the selection of a model; it is also necessary to consider its
complexity. For example, for practical control applications, a
model with an excessive number of poles and zeros is not
always necessary, and in many cases, only the dominant
dynamic is required. On the other hand, to excite all the
oscillating modes of a process, the Gaussian signal must be of
a long duration. For this reason, its use is impractical in real
processes with relatively slow dynamics. Table 2 shows a
comparison of the characteristics of a Gaussian signal and a
multistep signal.

'e issues of usingGaussian signals in processes with slow
dynamics are further aggravated when the BLA is required, as
its estimationmay require multiple realisations.'e proposed
unified approach, besides enabling estimation of Wiener,
Hammerstein, and Wiener–Hammerstein models without a
priori information from the user, provides a practical alter-
native to estimate processes where the BLA estimation is not
possible, either because they are slow dynamically, or they are
not enabled to handle Gaussian signals.

3. WH-EA Abstract

WH-EA is an elitist evolutionary algorithm inspired by
biological evolution over generations. It is based on a
population of NP individuals who evolve through the
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Figure 6: Responses of Wiener (blue), Hammerstein (green), and Wiener–Hammerstein (red) models when they are excited with a
multistep signal (dashed) with large (a) and small (b) amplitude changes.

Table 1: Model comparison calculated as MAE when they are
excited with large amplitude changes (MAEls) or low ones
(MAEss).

Model comparison MAEls MAEss

Wiener-Hammerstein 0.2396 0.0342
Wiener-Wiener-Hammerstein 0.0895 0.0126
Hammerstein-Wiener-Hammerstein 0.1653 0.0235

Table 2: Comparison of characteristics between a multistep signal
and a Gaussian signal.

Features Multistep signal Gaussian signal
Frequency
content. Low. High.

Applicability on
real processes. Highly applicable. It is not always

possible.

Information on
static
nonlinearity.

High information
content.

Lower information
content, especially if
the nonlinearities are
at the extremes of the
process operation

range.

Information on
the dynamics.

Less information
content. Ideal to
estimate the

dominant dynamics
of a process.

High content if the
signal is well designed.
Ideal to estimate all the
dynamics of a process.

Complexity. Easy design.

Not so simple to
design. 'e bandwidth

must be selected
carefully.

Duration. Do not need to be so
extensive.

Must be extensive to
excite all the oscillatory
modes of a process.

Complexity 9



generations and compete with each other for their survival.
'is section presents the main components of the algorithm;
nonetheless, complete information can be found in [34].

3.1. Structure of Individuals and Genetic Operators. Each
individual contains coded information (θg

i � [Pg
i ,Bg

i ,Cg
i ])

representing a possible solution for the optimisation
problem. It is comprised of three genetic portions: location
of poles and zeros (Pg

i ); location of the breakpoints (Bg
i ) to

capture the static nonlinearity; and the classification of poles
and zeros (Cg

i ). 'e algorithm contains customised muta-
tion and crossover operations, performed on each piece of
genetic information. Figure 7 shows the structure of an
individual and the genetic operations that apply to each part.
'e subscript i identifies an individual in the population,
while the superscript g indicates the current generation.

Location of poles and zeros for each individual is
encoded in a single vector. Its elements zr1, . . . , zrnr and
pr1, . . . , prmr contain the location of real poles and zeros,
respectively. Real and imaginary parts of complex zeros are
coded in zc1, . . . , zcnc and zi1, . . . , zinc, while complex
poles are coded in pc1, . . . , pcmc(x) and pi1, . . . , pimc,
respectively. Values of mr, nr, mc, and nc depend on the
initial linear model and indicate the number of real poles and
zeros as well as the number of pairs of complex conjugate
poles and zeros, respectively.

Figure 8 depicts the correspondence that exists between
an encoded individual and the resulting nonlinear model. In
the example, an initial linear model of four zeros and six
poles has been considered, while to capture the static
nonlinearity, four points have been assigned. From the
initial linear model, nc � 1 and nr � 2 since there is a pair of
complex zeros and two real zeros. In the same way, mc � 1
and mr � 4 since there is a pair of complex poles and four
real poles. 'e binary code contained in Cg

i indicates how
the poles and zeros of the initial linear model are distributed
around the static nonlinearity.

3.1.1. Pole-Zero Locations. Since the initial linear model is
not perfect, the location of the poles and zeros must be
refined with new estimates around the known values. To
explore new locations in the S-plane, two genetic operations
are carried out. In both operations, an offspring is created
from all the genetic information of his parent except in one
gene.'emodified gene is formed depending on the selected
genetic operation. 'ese operations work as follows:

(i) Mutation M.1. 'e modified gene is determined by a
random number with Gaussian distribution
(Nzp(0, σ2(g))) that is generated within the cor-
responding search space. 'e search space is defined
by the user specifically for each gene. 'e standard
deviation to generate the random number is variable
throughout the generations.'is deviation decreases
from σ2ini to σ2end as the algorithm evolves. 'is en-
ables controlling the aggressiveness of the mutations,
that is, in the final generations, the mutations will be
more subtle to achieve a fine-tuning of the

parameters. Initial and final values of the standard
deviation are defined by the user and are expressed as
a percentage ratio of the search space of each gene.

(ii) Crossover C.1. 'e modified gene is formed by
crossing genetic information between the father and
the best individual in the population. Crossing is
determined by an average between the values of the
corresponding genes.

'e refit of locations of poles and zeros is carried out
within a search space defined by the user. 'is search space
must be bounded around each pole or each zero based on a
minimum and maximum value. For example, a real pole at
− 0.5 with bounds of ± 0.1 maymove between − 0.4 and − 0.6.
Bound selection depends on how close the pole or zero is in
relation to the imaginary axis. 'e poles and zeros closest to
the origin are more dominant than those that are further
away; therefore, they are more sensitive to changes. Since only
fine-tuning is performed at the location of the poles and zeros,
smaller dimensions have been selected for the poles most
attached to the origin, while the farthest poles have greater
freedom of movement since they are less sensitive.

'ere is no recipe for precisely defining these bounds;
however, it should be taken into account that large bounds
will allow a better exploration but at the cost of the algorithm
converging more slowly.

3.1.2. Static Nonlinearity. Information regarding static
nonlinearity is also encoded in a single vector. 'is infor-
mation contains the abscissas (v1, . . . , vn) and ordinates
(w1, . . . , wn) of the breakpoints that define the piecewise
linear function. 'e user-defined parameter n indicates the
number of breaking points used to capture the static
nonlinearity.

To capture nonlinearity with great precision, two mu-
tations plus one crossover are executed on this portion of
genetic information. In both mutations, an offspring is
created from all the genetic information of his parent except
in two genes. 'ese two modified genes correspond to an
abscissa and its corresponding ordinate that describe the
breaking point position. On the other hand, the crossover
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Figure 7: Structure of an individual and genetic operations per-
formed on each piece of genetic information.
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operation generates an offspring taking all the genetic in-
formation of his parent except in one gene. 'e modified
gene corresponds to the ordinate of a breaking point. 'e
three genetic operations applied to this portion of genetic
information work as follows:

(i) Mutation M.2. 'e two genes that correspond to the
coordinates of a breaking point change randomly.
For this, two random numbers
((Nv(0, σ2(g)) andNw(0, σ2(g))) with Gaussian
distribution are generated within the corresponding
search space. To avoid overlapping points, the
search space for the genes corresponding to the
abscissa is determined by the position of the
neighbouring points. 'e search space for ordinates
is the same for all points and corresponds to the
codomain of the nonlinear function that is deter-
mined as indicated in Section 2.4. To control the
aggressiveness of themutations, standard deviations
for generating random numbers are variable
throughout the generations as in Mutation M.1. 'e
initial and final values of both standard deviations
are user-defined parameters that are also expressed
as a percentage ratio of the search space of each
gene.

(ii) Mutation M.3. 'is mutation allows concentrating
as many points as possible in places where there are
curvatures. 'e gene corresponding to the abscissa
is modified in such a way that the points can jump
between them. 'e new value of the abscissa is
calculated as the midpoint between the two
breakpoints that form the segment over which the
point will jump. 'is segment is determined ran-
domly. On the other hand, the gene corresponding
to the ordinates is modified using a quadratic in-
terpolation and information of the points near the
location where the jump occurred. Quadratic in-
terpolation will cause a smooth transition of a point
when it jumps from one segment to another.

(iii) Crossover C.2. 'e modified gene corresponding to
the ordinate of a point is formed by crossing genetic
information between the father and the best indi-
vidual in the population. Crossing is determined by
an average between the values of the corresponding
genes.

Parameter α indicates how close the break points can be
located. 'is parameter is considered in the aforementioned
genetic operations to prevent break points from overlapping.
'is is an important situation to consider since interpolation
methods require that there are no break points with equal
values on the abscissa axis; however, αmust be small enough
to allow break points to join in the curvatures.

'e ratio between the horizontal size of the search space
and the number of break points ((Vmax − Vmin)/n) gives an
idea of how small α should be. If α would take the value of
this ratio, a uniform horizontal distribution of the break
points along the search space would be achieved; however,
what is required is that the points be grouped into the
curvatures. In this sense, αmust take a lower value than this
ratio. In any case, it should be taken into account that it is
better to select a small α value because if the break points are
not required to be so close together, the corresponding
genetic operations will be responsible for separating them,
while if a large α value is selected and the break points
require grouping, the algorithm will not be able to do so and
precision will be lost in capturing static nonlinearity.

3.1.3. Pole-Zero Classification. 'is portion of genetic in-
formation contains binary coded information that enables
the distribution of the dynamics.'e binary codification will
indicate whether the identified system is a Wiener, Ham-
merstein, or Wiener–Hammerstein structure. In this last
case, the code will also indicate how the poles and zeros have
been distributed between the two LTI subsystems. 'e first
part of the binary vector (xz1, . . . , xznc+nr) is used for zero
classifications, while the second part (xp1, . . . , xpmc+mr) is
used for pole classifications.
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Figure 8: Example of an encoded individual and the resulting nonlinear model.
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Pole and zero classifications are based on a correspon-
dence between Pg

i andC
g
i . When an element ofCg

i is equal to
1, the corresponding pole or zero of Pg

i will be located in the
LTI subsystem prior to nonlinearity, whereas if it takes the
value of 0, it will be located in the LTI subsystem that follows
the nonlinearity. 'e genetic operation applied to this in-
formation portion works as follows:

(i) Mutation M.4. To test different dynamic structures as
the algorithm evolves, this genetic operation ran-
domly modifies all the genes, i.e., each time the
mutation M.4 is required, a new binary code is
generated.'is code is generated considering that the
resulting linear subsystems cannot be improper; in
addition, in case there is a dynamic distribution, the
sum of the zeros and the sum of the poles between the
two subsystems must be equal to the number of zeros
and poles of the initial linear model, respectively.

3.2. AlgorithmDescription. WH-EA is based on three stages:
initialization of the population; offspring generation; and
population update. From an initial population of NP in-
dividuals, the algorithm evolves based on the mutation and
crossover operators described in Section 3.1. In each gen-
eration, there will be an individual with the best fitness
(θg

best). When the algorithm obtains the last generation
(MaxGen), the individual with the best fitness will be the
solution to the optimisation problem. Algorithm 1 shows a
pseudocode of WH-EA, while a detail of the three algorithm
stages is indicated below.

3.2.1. Initialisation of the Population. In this stage, NP in-
dividuals with the genetic structure of Figure 7 are gener-
ated.'e first individual of the population is built as follows:

(i) Poles and zeros of the initial linear model give rise to
the genetic information portion corresponding to
pole-zero locations (P0

1).
(ii) 'e n points used to capture the nonlinear function

are distributed uniformly along the diagonal formed
within the search space of the static nonlinearity
(see Section 2.4 for more details). Distribution of
these points gives rise to the genetic information
portion of the static nonlinearity (B0

1).
(iii) A random binary code is generated to fill the genetic

information portion corresponding to the classifi-
cation of poles and zeros (C0

1).

Once the first individual has been structured, mutations
M.1, M.2, andM.4 are applied successively on this individual
to give rise to the new individuals that will occupy a place in
the initial population.

3.2.2. Offspring Generation. In each generation g, an indi-
vidual (r1 ∈ [1,NP]) of the population is selected randomly.
'e selected individual is known as a parent
(θg

r1
� [Pg

r1
,Bg

r1
,Cg

r1
]), since it will give rise to an offspring

who will inherit a large part of its genetic information. An

offspring will differ to a lesser or greater extent from its
parent depending on the genetic information portion se-
lected to be modified and the genetic operation applied. 'e
genetic information portions modified in the offspring are
denoted by 􏽥B

g (breakpoint positions), 􏽥Pg (pole-zero loca-
tions), and 􏽥Cg (pole-zero classification), respectively.

Selection between the genetic information portions
corresponding to the locations of the breakpoints and
locations of poles and zeros is handled randomly with
rpznl ∈ (0, 1]. In addition, probability for the selection is
not fixed throughout the generations, and this is controlled
with the parameter c(g). 'is parameter has an expo-
nential behaviour that decreases as the generations go by.
During the first generations, the probability of modifying
the genetic information corresponding to the breakpoint
locations is very high, and this is justified by the fact that
the nonlinearity is not known, while the dynamics in a
certain way are known and only require refinement. Ge-
netic information corresponding to the locations of the
breakpoints is modified through Algorithm 2, while the
locations of the poles and zeros are modified with
Algorithm 3.

After one of the two portions of genetic information has
been modified, a random process handled by rc ∈ (0, 1] will
determine whether the genetic information portion corre-
sponding to the classification of poles and zeros will be
modified by using Mutation M.4. 'e probability for this
modification is controlled by the user through the parameter
ξ ∈ (0, 1].

To modify a genetic information portion (either Bg
r1
or

Pg
r1
), not all genetic operations are applied at the same time.

In Algorithm 2, the control parameter δnl ∈ (0, 1] indicates
the probability with which the mutation (either M.2 or M.3)
or crossover C.2 will be used, while the random number
rnmc ∈ (0, 1] enables the selection. In the same way, in
Algorithm 3, the control parameter δzp ∈ (0, 1] indicates the
probability with which each genetic operation will be used
(either mutation M.1 or crossover C.1), while the random
number rlmc ∈ (0, 1] enables the selection.

In Algorithm 2, the selection probability between mu-
tations M.2 and M.3 is variable throughout the generations.
'is is justified by the fact that mutation M.2 enables an
exploration in the search space to shape the static nonlin-
earity. 'is mutation is very useful in the first generations.
While mutation M.3 enables an accumulation of points in
the curvatures, M.3 is not useful during the first generations
as nonlinearity curvatures have not yet taken shape. 'e
variable probability of selection between the two mutations
is controlled by the parameter η(g). 'is parameter de-
creases linearly as the generations go by. Since mutation M.2
may also be useful in the final generations, the parameter
ηmin ∈ (0, 0.5] is included to control the selection probability
of the two mutations. 'is is a user-defined parameter in-
dicating the minimum probability with which the mutation
M.2 can be selected.

3.2.3. Updation of the Population. Once an offspring has
been generated, it must compete with the individuals of the
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population. 'e fittest contestant wins the competition. 'e
first opponent will be chosen from the population on a
random basis. If the offspring wins the competition, it will
occupy the position of the defeated individual in the pop-
ulation and the algorithm continues with the next genera-
tion. If the offspring fails to defeat the selected individual, a
new competition will be held with the next individual of the
population. 'is process will be repeated until the offspring
defeats an individual. If the offspring has competed with all
the individuals of the population and has not been able to
defeat any, this is discarded and the algorithm continues
with the next generation.

4. Application Examples

'e presented approach was validated with three numerical
examples and a real thermal process. In each case, the initial
linear model was identified with the Matlab CONTSID
Toolbox using the command srivc. Nonlinear identification
was executed in continuous time using WH-EA. For this,
simulations of the dynamic models in the objective function
were performed with the lsim command of Matlab, while
points of nonlinearity were interpolated to define a piecewise
linear function. WH-EA parameters were set the same for
the four identification problems: ξ � 0.25; δzp � 0.75;
δnl � 0.75; and ηmin � 0.35. In addition, initial and final
standard deviations for mutations were set to 20 and 1,
respectively.

4.1. Numerical Example 1. For the first numerical example,
an LTI subsystem of four poles and one zero is connected in
series to a static nonlinearity to give rise to a Wiener
structure (see Figure 9). Static nonlinearity consists of a
sigmoid hyperbolic tangent function “tansig” (19), which
symmetrically saturates large values of the independent
variable.

SNL � 50(1 + tansig(0.05(x − 50))). (19)

'e LTI subsystem used for this example has unitary
static gain. Although the methodology proposed in this
paper enables the identification of block-oriented models
with a static nonlinearity and LTI subsystems with any gain,
unitary gains have been assumed simply for convenience.
'is will allow the captured static nonlinearity to be com-
pared with the real nonlinear function to evaluate the
precision that can be achieved with WH-EA.

To estimate the initial linear model, the simulated system
took half their operation range (50%). From this point, the
input was modified twice consecutively to give rise to two
steps. Each step had a temporary duration of 20 s. 'e first
step had a positive amplitude of 2.5%, while the next had the
same amplitude but negative, forming a rectangular pulse.
To emulate a real situation, Gaussian noise with a power of
− 30 dB was added on the system output. Input and output
data were sampled with a period of 10ms. Figure 10 depicts
the excitation signal and the response of the simulated
system.

'e data obtained with the first input change
t(15, . . . , 35) were used to estimate the initial linear model,
while the data belonging to the second input change
t(36, . . . , 56) were used for validation purposes. To avoid
problems with initial conditions, offset was removed from
data. Fourteen linear models were estimated from second to
fifth order considering only strictly proper systems (number
of zeros smaller than the number of poles). For each esti-
mated model, the quadratic mean error (MSE) was calcu-
lated on the estimation (MSEe) and validation (MSEv)

datasets. In addition, to select the best structure, the MDL
criterion was calculated using (9).

'e results of the estimates are shown in Table 3.
According to lowest value of MDL criterion, the best

(1) Initialise the population;
(2) Evaluate fitness of all population;
(3) for g � 1 toMaxGen do
(4) Find θg

best
(5) Random selection of an individual (r1);
(6) Compute c(g);
(7) if rpznl ≤ c(g)then
(8) Compute 􏽥Bg using Algorithm 2;
(9) else
(10) Compute 􏽥Pg using Algorithm 3;
(11) end if
(12) if rc ≤ ξthen
(13) Compute 􏽥Cg using Mutation M.4;
(14) end if
(15) Update population;
(16) end for
(17) Print θMaxGen

best

ALGORITHM 1: Pseudocode of WH-EA.

(1) if rnmc ≤ δnl then
(2) Compute η(g)

(3) if rmm ≤ ηmin + η(g)then
(4) Mutation M.2;
(5) else
(6) Mutation M.3;
(7) end if
(8) else
(9) Crossover C.2;
(10) end if

ALGORITHM 2: Modifying two-dimensional points for nonlinear
function.

(1) if rlmc ≤ δzp then
(2) Mutation M.1;
(3) else
(4) Crossover C.1;
(5) end if

ALGORITHM 3: Modifying pole/zero locations.
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estimated model was of four poles and one zero (20), which
corresponds to the real structure of the linear dynamics that
was used for the numerical example. 'is selection is cor-
roborated by MSEe values (from the model of four poles and
a zero in cases where the MSE decreases, this decrease is
practically negligible).

Gwlne
(s) �

23.96(s + 1.52)

(s + 2.51)(s + 0.85)(s + 0.70 + 2.51i)(s + 0.70 − 2.51i)
.

(20)

For nonlinear identification, two multistep inputs were
generated, one for estimation and another for validation
purposes. Both signals were designed with 50 steps of random
amplitude to explore the entire operating range of the input
process (0–100%). Each step had a time duration of 25 s, and
the minimum difference between two consecutive steps was
restricted so that it is not less than 18 units. 'e simulated
system was excited with both signals separately. Input and
output data for both cases were sampled with a period of 10ms.
From the estimation dataset, the minimum and maximum
values of the input and output signals were obtained to define
the search space for the static nonlinearity. 'ese values were
umin � 0, umax � 100, ymin � 0.559, and ymax � 99.44. Taking
into account that the static gain of the estimated initial linear
model is positive, the search space for static nonlinearity was
defined with (umin, ymin) and (umax, ymax).

Once the search space for static nonlinearity was defined,
WH-EA was configured according to the data of Table 4. In
addition, P0

1 was coded with nc � 0, nr � 1, mc � 1, mr � 2,
and pole/zero locations of (20). Furthermore, all bounds to
search new pole-zero locations were set in ±0.1.

At the end of the generations, a Wiener model was
obtained, that is, WH-EA distributed the dynamics correctly
without the need for the user to specify the type of structure
to be identified. 'e value reached for the objective function
(MAEe) was 4.415E − 2, while the absolute error on the
validation dataset (MAEv) was 5.567 × 10− 2. Figure 11

depicts a comparison on the validation dataset between
the Wiener system output and the estimated model one. A
magnification on a portion of data is also shown to
demonstrate the great precision of the estimated model.
Figure 12 shows how the 18 points representing the static
nonlinearity were located within the search space. To verify
that it has been captured with great precision, the nonlinear
function tansig was included in the graph.

4.2. Numerical Example 2. For this numerical example, the
same linear subsystem and the same static nonlinearity of the

9.56(s + 1.50)
(s + 2.50) (s + 0.85) (s + 0.70 + 2.51i) (s + 0.70 – 2.51i)

SNL
u(t) v(t) y(t)

Figure 9: Numerical example 1: Wiener structure.
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Figure 10: Input (black dashed line) and output (blue solid line) data for initial linear model estimation (numerical example 1).

Table 3: Ranking of estimated linear models for numerical example
1 (Wiener system). Models 4p, 2z/5p, 3z/5p, and 4z/5p have been
excluded due to their high MCL values.

Structure MSEe MSEv MDL

2p 4.61E − 2 4.66E − 2 2.34E − 2
1z/2p 3.13E − 2 3.19E − 2 1.59E − 2
3p 2.38E − 3 2.49E − 3 1.21E − 3
1z/3p 1.50E − 3 1.51E − 3 7.71E − 4
2z/3p 1.17E − 3 1.18E − 3 6.05E − 4
1z/4p 1.01E− 3 9.81E − 4 5.20E − 4
2z/4p 1.01E − 3 9.82E − 4 5.22E − 4
3z/4p 1.01E − 3 9.92E − 4 5.24E − 4
5p 4.46E − 2 4.42E − 2 2.29E − 2
1z/5p 1.01E − 3 9.83E − 4 5.22E − 4

Table 4: Summary of WH-EA parameter settings for numerical
examples.

Parameter Description Value
MaxGen Generations number 5e6
NP Population size 5e3
n Number of points to represent nonlinearity 18
α Minimum distance between two points 0.9
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previous numerical example were used; however, the blocks
were permuted to give rise to a Hammerstein model (see
Figure 13). Similarly, the same input signals that were used
in the previous example were used to excite this simulated
model. With the corresponding dataset for linear estimation,
fourteen different linear models were tried. As in the pre-
vious case, only strictly proper models from second to fifth
order were considered. 'e results of the estimates are
shown in Table 5.'e best linear model (21) according to the
MDL criterion was four poles and one zero corresponding to
the order of the real system.

Ghlne
(s) �

23.87(s + 1.53)

(s + 2.51)(s + 0.85)(s + 0.70 + 2.51i)(s + 0.70 − 2.51i)
.

(21)

From the nonlinear estimation dataset, the search space
for static nonlinearity was defined in the same way as it was
for the previous numerical example. For this case, the
minimum and maximum values of the input and output

signals were umin � 0, umax � 100, ymin � 0.236, and
ymax � 99.45.

For nonlinear estimation, WH-EA was executed con-
sidering the configuration parameters of Table 4. In addition,
P0
1 was coded with nc � 0, nr � 1, mc � 1, and mr � 2, and

pole/zero locations of (21) were used. Furthermore, all
bounds to search new pole-zero locations were set in ±0.1.
At the end of the generations, WH-EA distributed the dy-
namics correctly, that is, a Hammerstein model was ob-
tained. 'e value reached for the objective function (MAEe)

was 4.328 × 10− 2, while the absolute error on the validation
dataset (MAEv) was 6.526 × 10− 2. Figure 14 depicts a
comparison on the validation dataset between the simulated
output generated by the numerical example and the output
of the estimated model. On the other hand, Figure 15 shows
how the 18 points were distributed within the search space to
capture the static nonlinearity. As in the previous case, the
real nonlinear function was introduced in this graph to
visualise the precision achieved with WH-EA.

4.3. Numerical Example 3. For this numerical example, a
Wiener–Hammerstein model was constructed using the
same dynamics and the same static nonlinearity of the
previous examples. In this case, the front LTI subsystem was
formed with the two complex poles and a gain of 6.80, while
the back LTI subsystem was formed with the two real poles,
the zero, and a gain of 1.41 (see Figure 16). 'e excitation
signals and the procedures for linear and nonlinear esti-
mation were the same as those used in the previous ex-
amples. Ranking of linear estimates is shown in Table 6. As
in the previous cases, the best linear model according to the
MDL criterion was of four poles and one zero (22), which is
consistent with the dynamics of the real system even though
for this case the dynamics was distributed around the static
nonlinearity. 'is demonstrates the great effectiveness of the
linear estimation method used in this approach.
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Figure 11: Validation results for numerical example 1: real output (red solid line) and model output (blue dashed line).
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Figure 12: Numerical example 1: comparison between real non-
linear function tansig (red) and captured nonlinearity (blue circles).
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Figure 15: Comparison between real nonlinear function tansig (red) and captured nonlinearity (blue circles). Results obtained on numerical
example 2.
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Figure 13: Numerical example 2: Hammerstein structure.

Table 5: Ranking of estimated linear models for numerical example 2 (Hammerstein system). Models 4p, 3z/5p, and 4z/5p have been
excluded since their MDL values were very high.

Structure MSEe MSEv MDL

2p 4.57E − 2 4.565E − 2 2.32E − 2
1z/2p 3.29E − 2 3.29E − 2 1.68E − 2
3p 2.29E − 3 2.48E − 3 1.17E − 3
1z/3p 1.38E − 3 1.45E − 3 7.08E − 4
2z/3p 1.13E − 3 1.14E − 3 5.82E − 4
1z/4p 9.45E − 4 9.59E − 4 4.85E − 4
2z/4p 9.43E − 4 9.59E − 4 4.86E − 4
3z/4p 9.42E − 4 9.60E − 4 4.87E − 4
5p 4.26E − 2 4.28E − 2 2.19E − 2
2z/5p 9.46E − 4 9.59E − 4 4.89E − 4
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Figure 14: Validation results for numerical example 2: real output (red solid line) and model output (blue dashed line).
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Gwhlne
(s) �

24.195(s + 1.549)

(s + 2.598)(s + 0.854)(s + 0.709 + 2.507i)(s + 0.709 − 2.507i)
. (22)

As can be seen, the linear models obtained in (20)–(22)
differ very little from each other and are almost equal to the real
dynamic model. 'is is because the step signal used for the
three identification experiments has a small amplitude which
hides the effect of nonlinearity. 'is corroborates what was
indicated in Section 2.5. A step signal with a small amplitude
change is useful for linear estimation; however, for nonlinear
estimation, it is necessary that the nonlinearity is notorious, for
this the amplitude changes of the step signal must be large.

As in the previous cases, WH-EA was configured with
the parameters of Table 4. In addition, the first individual of
the population (P0

1) was coded with nc � 0, nr � 1, mc � 1,
mr � 2, and pole/zero locations of (22). According to the
minimum and maximum values of the input and output
signals, the search space of the static nonlinearity was de-
fined with the coordinates: (0, 0.5546) and (100, 99.443).

At the end of the generations, a Wiener–Hammerstein
model was obtained and the dynamics of both LTI sub-
systems were consistent with the real system. 'e value
reached for the objective function (MAEe) was 3.768 × 10− 2,
while the absolute error on the validation dataset (MAEv)

was 5.117 × 10− 2. Figure 17 depicts a comparison on the
validation dataset between the simulated output generated
by the numerical example and the output of the estimated
model. On the other hand, Figure 18 shows a comparison
between the real and estimated nonlinearity.

4.4. 5ermal Process Identification. 'e real process used to
validate the paper proposal consists of a lab scale thermal
process based on a Peltier cell. Principle of operation of this
device is based on nonlinear Peltier and Seebeck effects.
Figure 19 shows the architecture of the system that was
assembled to operate the process and acquire its output

variables. As can be seen, a fan radiator has been coupled to
the hot face of the Peltier cell. To measure the temperature of
the cold face (Tcold), a type k thermocouple was used, while
the temperature of the hot face (Thot) was measured with an
LM35 sensor. A power supply regulated with an external
voltage signal ua (0, . . . , 4.5Vdc) was used as an actuator to
apply voltage to the Peltier cell. For all the experiments
involved, the input/output process signals were sampled at
100ms using a general purpose acquisition card with 12 bits
A/D and D/A converters. 'e process was identified based
on the input signal ua and the temperature gradient between
the cold and hot faces (ΔT � Tcold − Thot).

A two-step signal was designed to identify and validate
the initial linear model. 'is signal was injected after the
process was taken to the middle of its operating range
(2.25V). 'e first step had a positive amplitude of 0.225V
(5% of the maximum voltage), while the next step had the
same amplitude but negative. To ensure that the process
reaches steady state, each step had a temporary duration of
700 s. 'e applied input signal and the response of the
system are shown in Figure 20.

'e data obtained with the first step change t(0, . . . , 750)

were used to estimate the initial linear model, while the data
belonging to the second input change t(751, . . . , 1451) were
used for validation. To avoid problems with initial condi-
tions, offset was removed from datasets. Different linear
models were estimated from second to fifth order. Results of
the estimates are shown in Table 7. For each estimated
model, the MDL criterion, error on estimation, and error on
validation datasets were computed. Models 2z/3p, 3z/4p, and
4z/5p were not considered, since they were of nonminimum
phase, which is not consistent with the reality of the process.
'e rest of the discarded models had pole/zero cancellations
or there were zeros far removed from the imaginary axis.

1.41 (s + 1.50)
(s + 2.50) (s + 0.85)

SNL
6.80

(s + 0.70 + 2.51i) (s + 0.70 – 2.51i)
u(t) v(t) w(t) y(t)

Figure 16: Numerical example 3: Wiener–Hammerstein structure.

Table 6: Ranking of estimated linear models for numerical example 3 (Wiener–Hammerstein system). Models 4p, 1z/5p, and 2z/5p have
been excluded due to high MDL values.

Structure MSEe MSEv MDL

2p 4.53E − 2 4.61E − 2 2.30E − 2
1z/2p 3.09E − 2 3.11E − 2 1.57E − 2
3p 2.50E − 3 2.32E − 3 1.27E − 3
1z/3p 1.50E − 3 1.46E − 3 7.68E − 4
2z/3p 1.18E − 3 1.11E − 3 6.07E − 4
1z/4p 1.02E − 3 9.67E − 4 5.23E − 4
2z/4p 1.02E − 3 9.69E − 4 5.25E − 4
3z/4p 1.02E − 3 9.70E − 4 5.26E − 4
5p 4.96E − 2 4.96E − 2 2.55E − 2
3z/5p 1.01E − 3 9.72E − 4 5.28E − 4
4z/5p 1.01E − 3 9.73E − 4 5.30E − 4
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Figure 19: 'e real process based on a Peltier cell.
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Figure 20: Input and output data for estimation of initial linear model (thermal process). (a) Excitation signal (blue). (b) Output signal of
the thermal process (red).
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Figure 17: Validation results for numerical example 3: real output (red) and model output (blue dashed line).
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'e best structure according to the MDL criterion was
four poles and one zero (23). Figure 21 shows a comparison
between the estimated model output and the real process
output. 'is comparison has been made considering the
validation dataset.

Glm(s) �
− 41.186(s + 0.015)

(s + 4.473)(s + 2.519)(s + 0.3406)(s + 0.014)
.

(23)

For the nonlinear identification, two multistep signals
were generated, one for identification and another for val-
idation purposes (see Figure 22). 'e estimation signal was
designed with 38 steps, while the validation one was
designed with 24 steps. 'e temporary duration of the steps
in both signals was 700 s, and the amplitude changes were
handled randomly within the entire range of the actuator
ua(0, . . . , 4.5v), whereas the minimum difference between
two consecutive steps was constrained to be greater than
1.5V. Both signals were injected separately to the process,
and the input and output data were recorded after the
transient corresponding to the first step was extinguished.

WH-EA was configured with the parameters of Table 8,
and according to the linear model structure, vector P0

1 was
coded with nc � 0, nr � 1, mc � 0, and mr � 4, as follows:

P0
1 � [− 0.015, − 4.473, − 2.519, − 0.3406, − 0.014]. (24)

'e bounds to explore new locations of poles and zeros
were set to ±0.03 for poles/zeros close to the imaginary
axis, while all other bounds were set to ±0.1. As in the
numerical examples, the minimum and maximum values of
the input and output signal were extracted from the esti-
mation dataset: umin � 0, umax � 4.5000, ymin � − 53.957,
and ymax � − 0.1810. Since the static gain of the estimated
initial linear model is negative, the search space for static
nonlinearity was defined with (0, − 0.1810) and
(4.5000, − 53.957).

With this information, WH-EA was parameterized
and executed. At the end of generations, the algorithm
divided the dynamics into two linear subsystems, there-
fore the best structure to represent the thermal process
was a Wiener-Hammrestein model.. Table 9 presents the
coordinates of the nine points that were assigned to the
static nonlinearity, while a plot of this nonlinearity is
presented in Figure 23. Equations (25) and (26) show the
two resulting subsystems, while performance of the WH
identified model on estimation and validation datasets is
shown in Figure 24. To quantify the accuracy of the es-
timated model, the MAE was calculated on the estimation

and validation datasets with values of 0.1435 and 0.2184,
respectively. To calculate both errors, the first 3000
samples of the datasets were not considered to avoid the
transient effects.

􏽢Gw(s) �
11.393

(s + 4.394)(s + 2.593)
, (25)

􏽢Gh(s) �
0.293(s + 0.024)

(s + 0.3263)(s + 0.022)
. (26)

4.5. Discussion. 'e results obtained from the numerical
examples show the effectiveness of the method to distribute
the poles and zeros of the initial linearmodel around the static
nonlinearity. For all three cases, a nonlinear model of 41
parameters has been estimated: 5 parameters for the linear
dynamicmodel and 36 parameters for static nonlinearity.'is
number of parameters is due to the complexity of nonlinear
function tansig, which was introduced intentionally to
demonstrate the potential of the WH-EA genetic operators
when capturing the nonlinearity. A comparison of the errors
obtained from the estimation and validation datasets shows
that these are very similar for each case. 'is shows that
estimated models have a good predictive capacity, which can
also be verified in Figures 11, 14, and 17, where the output of
the estimated model has been compared with data not used in
the identification procedure. However, it must be taken into
account that the accuracy of the estimated model, as in all
identification methods, depends on the amount of input and
output data that feeds the procedure. In the specific case of the
models addressed in this paper, it also depends on the number
of points assigned to capture the static nonlinearity and the
quality of the initial linear model.

Table 7: Ranking of estimated linear models for the thermal process. Models 4p and 5p have been excluded due to their MDL high values.

Structure MSEe(C) MSEv(C) MDL

2p 3.994E − 3 4.475E − 3 13.981
1z/2p 3.991E − 3 4.473E − 3 13.972
3p 3.982E − 3 4.470E − 3 13.940
1z/3p 2.577E − 3 2.853E − 3 9.020
1z/4p 2.575E − 3 2.852E − 4 9.014
1z/5p 2.576E − 3 2.854E − 4 9.018
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Figure 21: Comparison between the estimated model output (red)
and the real process output (blue).
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'e real process was estimated with 23 parameters: 5 for the
linear dynamic part and 18 for static nonlinearity. 'e results
obtained are very coherent given the structure of the thermal

process. A Wiener–Hammerstein model has been estimated,
where the fast dynamic of the actuator 􏽢Gw(s) has been separated
from the slow dynamics of the Peltier cell 􏽢Gh(s).

A great advantage of using multistep signals for esti-
mation of this type of models is that one can have a better
panorama to analyse the graphical results. For example, an
extended visual exploration of the results shown in Figure 24
showed that the process presents small changes in the dy-
namics, probably due to thermal drifts and other phe-
nomena that may occur in real processes (see Figure 25)
(variation of the dynamics shown in Figure 25 are not the
only ones; other similar variations were detected over other
portions of estimation and validation data). With a Gaussian
excitation signal, in the event of a discrepancy between real
output and model output, it would not be so easy to de-
termine if this lack of precision is due to unmodeled dy-
namics, variation of the dynamics, or static nonlinearity that
was not well captured.
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Figure 22: Input signals for nonlinear identification of the Peltier process. (a) Signal for estimation. (b) Signal for validation.

Table 8: Summary of WH-EA parameter settings for nonlinear identification of the thermal process.

Parameter Description Value
MaxGen Generations number 2e6
NP Population size 5e3
n Number of points to represent nonlinearity 9
α Minimum distance between two points 0.075

Table 9: Nonlinearity coordinates (n � 9) estimated by WH-EA from thermal process.

i 1 2 3 4 5 6 7 8 9
vi 0.0027 0.0887 0.7726 1.5100 2.2692 3.2030 3.8501 4.2461 4.3485
wi − 0.5143 − 1.0959 − 14.5081 − 26.8456 − 36.9569 − 46.0773 − 50.3862 − 52.5096 − 52.8295
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Figure 23: Captured nonlinearity as a piecewise linear function
(red) from the estimated breaking points (blue circles).
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'e precision achieved in both the numerical examples
and the real application depend to a large extent on the
number of breakpoints used to capture the static nonline-
arity. It is evident that a hard nonlinearity will require many
points; however, this is not possible to determine until an
initial estimate is made. After an initial estimation, the value
reached by the objective function (index J) can give an idea
of whether it is necessary to addmore points to the piecewise
function to reach a greater precision. 'is index can be
compared with the process noise level or with the precision
of the measuring instrument. If this information is not
available, the precision of the nonlinear estimation can be
evaluated with the index J and the range of the process
output. Another way to establish if more points are required

is through a visual comparison between the real and the
modeled output. Since nonlinearity is static, the number of
chosen points directly affects the steady-state error that may
exist between the two outputs. 'is comparison is not
possible when using Gaussian-type signals since these sig-
nals do not lead the system output to steady state.

In the case of the real application, the process output was
bounded between − 53.957∘C and − 0.181∘C; therefore, the
operating range was 53.776∘C. For this operating range, the
MAE between the real output and estimated output was
0.1435∘C. As can be noted, the precision achieved with n � 9
was quite acceptable. Other estimates with a greater number
of points were executed; however, the decrease in the error
was negligible. In the case of the numerical examples, a noise
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Figure 25: Variation of the dynamics detected on estimation dataset for the thermal process. Red: output of the thermal process. Blue
dashed line: output of the estimated model.
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Figure 24: Comparison between thermal process output (red) and estimated model output (blue dashed line). (a) Comparison on es-
timation dataset. (b) Comparison on validation dataset.
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signal of − 30 dB was added to the output of each simulated
model. 'e mean absolute value of this noise signal was
2.52 × 10− 2, and the MAE achieved by the three models is
very close to the noise levels. It should be noted that in order
to conclude that a good precision has been reached, the
signal-to-noise ratio (SNR) must be considered. 'e three
examples were excited with the same signal, and the SNR
was approximately 60 dB. Although the results of the three
numerical examples were quite acceptable, other estimates
were made with the same algorithm configuration but with
n � 24. 'e results obtained were slightly above those ob-
tained with n � 18; however, it is very likely that the algo-
rithm requires an increase in population size and
generations to deal with more complex models. In this sense,
it is not ruled out that in the numerical examples, it is
possible to improve the accuracy of the models but surely a
higher computational cost will be required for the algorithm
execution and obviously the models will be more complex.

To date there is no recipe for assigning an optimal
number of points for static nonlinearity. Since in the context
of systems identification, precision and complexity are two
conflicting objectives, a very interesting way to address this
problem would be through a multiobjective optimisation
approach.

Regarding computational cost of WH-EA (WH-EA was
run on a computer with Intel Core I7 processor of 2.8GHz
and 8.0Gb of RAM), a reference can be obtained. For ex-
ample, in Section 4.3 (Wiener–Hammerstein example), the
average time to run a generation was 0.07 s; however, it
should be taken into consideration that the time required by
the algorithm to execute all the tasks performed in a gen-
eration (mutations, crossovers, and selection) is only
1.42%(0, 99ms) of the total time spent in a generation. 'e
remaining 98.58% corresponds to the time it takes to
evaluate the objective function. 'is evaluation involves an
interpolation process and the simulation of one or two
continuous LTI systems with a large amount of input data. It
should be taken into account that the execution time of a
generation is highly sensitive to the amount of data used for
the nonlinear estimation. In both the numerical examples
and the practical application, large amounts of data were
used to demonstrate the great accuracy that can be achieved
with WH-EA.

5. Conclusions

A unified approach to identify Wiener, Hammerstein, and
Wiener–Hammerstein models has been presented. 'is
paper shows that a smart parameter selection enables WH-
EA to be used to independently identify Wiener, Ham-
merstein, and Wiener–Hammerstein models without a
priori specification of the type of model to be estimated.'is
is highly attractive especially when a process must be
identified and there is uncertainty about the distribution of
the dynamics around nonlinearity. 'e performance of this
approach has been evaluated with three numerical examples
containing complex static nonlinearity and through a real
process consisting of a lab scale thermal process based on a
Peltier cell. 'e results show that WH-EA is enabled to

estimate nonlinear models with good accuracy from an
initial linear model that is not necessarily the BLA.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e authors declare no conflicts of interest.

Acknowledgments

'is work was partially supported by projects DPI2015-
71443-R and RTI2018-096904-B-I00 from the Spanish
Ministry of Economy and Competitiveness and was also
supported by Salesian Polytechnic University in Ecuador
through a PhD scholarship granted to J. Z.

References

[1] A. Janczak, Identification of Nonlinear Systems Using Neural
Networks and Polynomial Models: A Block-Oriented Approach,
Vol. 310, Springer Science & Business Media, Berlin, Ger-
many, 2004.

[2] F. Giri and E.-W. Bai, Block-Oriented Nonlinear System
Identification, Vol. 1, Springer, Berlin, Germany, 2010.

[3] M. Schoukens and K. Tiels, “Identification of nonlinear block-
oriented systems starting from linear approximations: a
survey,” 2016, https://arxiv.org/abs/1607.01217.

[4] I. W. Hunter and M. J. Korenberg, “'e identification of
nonlinear biological systems: wiener and hammerstein cas-
cade models,” Biological Cybernetics, vol. 55, no. 2-3,
pp. 135–144, 1986.

[5] K. J. Hunt, M. Munih, N. d. N. Donaldson, and F. M. D. Barr,
“Investigation of the hammerstein hypothesis in the modeling
of electrically stimulated muscle,” IEEE Transactions on
Biomedical Engineering, vol. 45, no. 8, pp. 998–1009, 1998.

[6] F. Le, I. Markovsky, C. T. Freeman, and E. Rogers, “Recursive
identification of Hammerstein systems with application to
electrically stimulated muscle,” Control Engineering Practice,
vol. 20, no. 4, pp. 386–396, 2012.

[7] A. Kalafatis, N. Arifin, L. Wang, and W. R. Cluett, “A new
approach to the identification of pH processes based on the
wiener model,” Chemical Engineering Science, vol. 50, no. 23,
pp. 3693–3701, 1995.
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