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Objective: Summarize evidence for use of advanced MRI techniques as monitoring
biomarkers in the clinic, and highlight the latest bench-to-bedside developments.

Methods: Experts in advanced MRI techniques applied to high-grade glioma treatment
response assessment convened through a European framework. Current evidence
regarding the potential for monitoring biomarkers in adult high-grade glioma is
reviewed, and individual modalities of perfusion, permeability, and microstructure
imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to
metabolism and/or chemical composition, appraise the clinic readiness of the individual
modalities, and consider post-processing methodologies involving the combination of
MRI approaches (multiparametric imaging) or machine learning (radiomics).
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Results: High-grade glioma vasculature exhibits increased perfusion, blood volume, and
permeability compared with normal brain tissue. Measures of cerebral blood volume
derived from dynamic susceptibility contrast-enhanced MRI have consistently provided
information about brain tumor growth and response to treatment; it is the most clinically
validated advanced technique. Clinical studies have proven the potential of dynamic
contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence,
but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic
value, and optimal cut-off points remain to be established. Arterial spin labeling techniques
do not require the injection of a contrast agent, and repeated measurements of cerebral
blood flow can be performed. The absence of potential gadolinium deposition effects
allows widespread use in pediatric patients and those with impaired renal function. More
data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-
weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis
imaging, intravoxel incoherent motion, and other microstructural modeling approaches
also allow treatment response assessment; more robust data are required to validate
these alone or when applied to post-processing methodologies.

Conclusion: Considerable progress has been made in the development of these
monitoring biomarkers. Many techniques are in their infancy, whereas others have
generated a larger body of evidence for clinical application.
Keywords: magnetic resonance imaging, glioma, perfusion, diffusion, pseudoprogression, monitoring biomarkers,
glioblastoma, high-grade glioma
1 INTRODUCTION

High-grade gliomas (adult-type diffuse WHO grade 3 and 4
gliomas) account for up to 85% of all new cases of malignant
primary brain tumors diagnosed every year, with an incidence of
approximately 5/100,000 person years in Europe and North
America (1). Of these, approximately 70% are either
“glioblastomas, isocitrate dehydrogenase (IDH)-wildtype” or
“astrocytoma, IDH-mutant, grade 4” (2). Approximately 15%
are “astrocytoma, IDH-mutant, grade 3” and approximately 10%
are “oligodendroglioma, IDH-mutant and (chromosome) 1p/
19q deleted, grade 3.”Malignant primary brain tumors cause the
greatest number of years of life lost than any other cancer (3).
Grade 4 glioma is particularly devastating: The median survival
without any treatment is less than six months and with standard-
of-care treatment is only 14.6 months (4). In adults aged up to 70
years with good performance status, maximal safe tumor
resection followed by radiotherapy with concomitant and
adjuvant temozolomide has been recommended as the
standard-of-care treatment for grade 4 glioma since 2005 (4–6).

During and after treatment, “monitoring biomarkers” are
measured serially and are required to detect any change in the
extent of glioma infiltration or provide evidence of treatment
response (7). Magnetic resonance imaging (MRI) is particularly
useful in determining treatment response as it is noninvasive and
captures the entire tumor volume as well as adjacent tissues.
Furthermore, in nearly all high-grade gliomas, the integrity of the
blood-brain barrier (BBB) is disrupted. Following intravenous
2

administration of gadolinium-based contrast agents (GBCA), the
hydrophilic contrast molecules diffuse out of the vessel lumen and
accumulate within the extravascular extracellular space,
manifesting as contrast-enhancing hyperintense regions on T1-
weighted sequences (8). Subsequently, MRI has been incorporated
into recommendations for determining treatment response in
clinical trials (9). In these recommendations, treatment response
assessment is based on simple linear metrics of contrast-enhancing
tumor, specifically, theproduct of themaximalperpendicular cross-
sectional dimensions (in “measurable” lesions, which are defined as
> 10 mm in all perpendicular dimensions). The recommendations
are based on expert opinion informed by observational studies and
derived from the biologically plausible assumption that changes in
tumor size identify progression of disease, potentially before it
becomes clinically apparent, resulting in a lead time improvement
for therapeutic intervention (10). Indeed, there may be benefits in
changing management before the development of irreversible
disability or before the extent of tumor precludes intervention.
Some justification for enhancement as a disease proxy has been
inferred fromdata showing that enhancing tumor size and extent of
resection are “prognostic biomarkers” (7) at both first presentation
and recurrence (11, 12).

The trial assessment recommendations, incorporated in a less
stringent form during routine clinical assessment (13), allow for
an early change in treatment strategy, for example, termination
of ineffective treatments or switching to second-line therapies (14).
However, there are four important challenges using conventional
structural MRI protocols.
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First, there is a paucity of evidence that earlier diagnosis of
disease recurrence using conventional structural MRI influences
prognosis (10). It is noted that individual enhancing tumor
growth trajectories vary between individuals with the same
histological tumor type.

Second, seemingly simplemeasurements can still be challenging
because tumors have a variety of shapes, tumorsmay be confined to
a cavity rim, and the edge of tumors may be difficult to define (15).
For example, large, cyst-like gliomas are common and are often
“non-measurable” unless a solid peripheral nodular component
fulfils the above “measurable” criteria.

Third, there is a lack of biological specificity for contrast
enhancement, which can lead to false positive, false negative, and
indeterminate results, particularly relating to post-treatment
related pseudophenomena in glioma (10). In high-grade
glioma, pseudoprogression is an early post-treatment-related
effect typically occurring within six months of finishing
concomitant temozolomide and radiotherapy (Figure 1),
whereas pseudoresponse typically occurs after anti-angiogenic
agents such as bevacizumab have been administered. False
positive progression and false negative treatment response are
manifest as an increase or decrease in MRI contrast-enhancing
volume, respectively. Delayed treatment effects, such as increased
enhancement due to radiation necrosis, can similarly cause false
positive progression. Other examples of non-specificity include
post-operative peritumoral parenchymal enhancement following
operative “tissue handling” or following operative infarction.

Fourth, due to the non-specificity of changes in contrast-
enhancing volume, treatment response assessment typically is
made in a retrospective manner as confirmatory imaging is
required to demonstrate a sustained increase (Figure 1) or a
sustained decrease in enhancing volume. This leads to a delay
in diagnosis.

Clearly, contemporaneous, accurate, and reliable monitoring
biomarkers are required for high-grade glioma treatment response
assessment. Due to the non-specific nature of contrast
enhancement, histopathology is sometimes employed as a
combined or alternative monitoring biomarker; often it is
considered the reference standard-of-treatment response
(Figure 2). However, there are several challenges when using
histopathology as a monitoring biomarker. First, there is a
paucity of evidence that earlier diagnosis of viable tumor using
biopsy influences prognosis (2). Second, repeat tissue sampling has
a high risk of procedure-related morbidity in patients with high-
grade glioma compared to other systemic cancers (20). Third,
biopsy has a potential drawback of sampling bias (21). Fourth,
there is a need to improve and better systematize the application of
histological andmolecular analysis todiffuse glioma in the recurrent
setting; currently, it is not standardized, causing a variety of inter-
observer diagnostic interpretations given the background of
extensive post-therapy-related changes (2).

An emerging alternative approach is to harness the potential
value of circulating biomarkers (including circulating tumor
cells, exosomes, and microRNAs) to monitor disease
progression in glioma patients (22). For example, a recent
study found that serum micro-RNA levels did not increase in
Frontiers in Oncology | www.frontiersin.org 3
cases of pseudo-progression, and increased levels were associated
with tumor progression (23). However, as with any potential
monitoring blood or cerebral spinal fluid biomarker, potential
use requires further evaluation and validation in larger scale
prospective studies before implementation into routine clinical
practice can be envisaged.

Another promising approach, which concords with an impetus
to derive an evidence-base for follow-up imaging of high-grade
gliomasdrivenbothby researchers aswell as patients and caregivers
(24–26), is to use advanced imaging techniques. Considerable
technical developments have occurred in the last three decades;
however, clinical translation is far from ubiquitous. A European
survey in 2016 suggested dynamic susceptibility contrast-enhanced
(DSC) MRI and 1H-magnetic resonance spectroscopy was used in
the clinic routinely in 82% and 80% of hospitals respectively (27).
However, with only 3% survey response rate, it is unlikely to be
representative of Europeanpractice. A 2020 survey of all UKneuro-
oncology centers with 100% response rate from all three lead
specialists (neuroradiology, neuro-oncology, and neurosurgery)
within all centers showed that only 10% of centers routinely used
any advanced MRI technique and a third of centers used such
techniques in selected cases (13). It is noteworthy that many
respondents suggested that advanced imaging techniques would
improve their practice.

The purpose of this position statement is to summarize the
evidence for the use of advanced MRI techniques as monitoring
biomarkers in adult high-grade glioma in the clinic, and to
highlight the latest bench-to-bedside developments.
2 MATERIALS AND METHODS

Clinicians, engineers, and physicists with expertise in advanced
MRI techniques applied to high-grade glioma, convened virtually
through the European Cooperation in Science and Technology
(COST) Glioma MR Imaging 2.0 (GliMR) initiative (28) from
July 2020 through July 2021, which also included experts from
outside of Europe. A working group analyzed the available
evidence for potential high-grade glioma monitoring
biomarkers derived from advanced imaging techniques. The
consensus decision was to focus on monitoring biomarkers
that can reliably differentiate post-treatment-related effect from
true tumor progression during (or before) the point when
contrast enhancement on T1-weighted MRI images first
increases. False-negative progression (pseudoresponse) during
second line treatment is a concern in the United States but rarely
in Europe, as the European Medicines Agency concluded that
progression-free survival bevacizumab trial outcome measures
are inherently confounded and the use of bevacizumab is not
supported (29). Therefore, pseudoresponse was not the focus of
the position statement.

Potential biomarkers were derived predominantly from the
individual image acquisition modalities of perfusion and/or
permeability (using DSC MRI techniques, dynamic contrast
enhanced [DCE] and arterial spin labeling [ASL]), microstructure
[diffusion MRI techniques], metabolism and/or chemical
March 2022 | Volume 12 | Article 810263
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FIGURE 1 | Panels of axial T1-weighted images after contrast administration in two patients with glioblastoma, IDH-wildtype. (A–D) demonstrate tumor progression.
(A) Preoperative appearance of an occipital glioblastoma. (B) MRI performed five days after resection with no enhancement suggestive of residual tumor. (C) The patient
continued with standard-of-care radiotherapy and temozolomide. Within three months of radiotherapy, a new enhancing lesion could be seen at the margin of the
postoperative cavity. (D) The enhancing lesion had increased in size three months later and was confirmed to represent tumor recurrence after repeat surgery.
(E–H) demonstrate pseudoprogression. (E) Preoperative appearance of an insular glioblastoma. (F) Postoperative appearance 24 hours after surgery showing blood
degradation products, with no enhancement suggestive of residual tumor. (G) The patient continued with standard-of-care radiotherapy and temozolomide. MRI performed
within six months of radiotherapy demonstrated a new, contrast-enhancing lesion. (H) Follow-up MRI at monthly intervals showed a gradual decrease in the size of the
contrast-enhancing lesion without a change to standard-of-care temozolomide or corticosteroid use. The image shown here is the MRI performed four months later.
Frontiers in Oncology | www.frontiersin.org March 2022 | Volume 12 | Article 8102634
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composition (magnetic resonance spectroscopy and chemical
exchange saturation transfer [CEST] technique}, and MRI
combined with positron emission tomography [PET]).
Frontiers in Oncology | www.frontiersin.org 5
We also considered post-processing methodologies involving
the combination of MRI approaches (multiparametric imaging)
and image feature analysis techniques using machine
learning (radiomics).

We agreed the work would be a position statement (30)
promoting discussion on emerging topics and indicate the
evidence gaps, strengths and limitations. Together this would
provide the foundation for producing a multi-stakeholder
downstream guideline (30) beyond the current position statement.

Specifically, it was agreed that advanced imaging technique
analyses would

• summarize methodology,
• highlight strengths and weaknesses,
• determine clinical diagnostic accuracy, and
• expound the state-of-the-art and future developments.

Finally, we assessed the incorporation into national and/or
international technical and/or clinical guidelines and indicated
the current level of development and clinical readiness
(presented in Part 2).

Advanced imaging technique analyses were compiled by
subject matter experts and incorporated into a manuscript and
circulated to the working group members. Edits and feedback
were incorporated until all authors were in agreement with the
content, and a position statement was produced summarizing
the evidence for the use of advanced MRI techniques as
monitoring biomarkers in the clinic, and highlighting the latest
bench-to-bedside developments.

To determine clinical diagnostic accuracy, we performed
MEDLINE (including PubMed), Embase and Cochrane Register
searches for recent systematic reviews and meta-analyses, favoring
those which followed Preferred Reporting Items for Systematic
Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-
DTA) methodology (31). We also performed searches to analyze
individual clinical studies related to each advanced imaging
technique since the time of the included systematic review; if a
systematic review was published before 2015, we confined our
searches to 2015–2021. Search terms are listed in Supplementary
Table S1. Given that the position statement describes a broad range
of studies involving several imaging approaches (a range of MRI
advanced techniques, PET, and post-processing methodologies)
and several target conditions (pseudoprogression, radiation
necrosis, or a combination of both) a PRISMA-DTA analysis
addressing a specific question on diagnostic accuracy was beyond
our remit. Nonetheless, components of the PRISMA-DTA
methodology have been incorporated where practicable.
3 RESULTS

3.1 An Overview of Perfusion and Permeability
A hallmark of cancers is angiogenesis, the formation of new tumor
vessels to sustainmetabolic demands of the growing tumor (32). Its
main trigger is hypoxia via HIF-1 (hypoxia inducible factor 1)
release and cascades of other pro-angiogenic factors, e.g., vascular
endothelial growth factor. Compared to normal vessels, tumor
FIGURE 2 | Hematoxylin and eosin-stained biopsy samples showing three distinct
histopathological patterns from three patients who were treated for glioblastoma,
IDH-wildtype. All biopsies were obtained from a contrast-enhancing region that had
increased in size on serial T1-weighted images during follow-up imaging. (A) A fully
viable tumor recurrence with dense cellularity and pseudopalisading necrosis.
This corresponds to tumor progression. (B) Depopulated tumor with necrotizing
treatment effect. This corresponds to the radiological appearances of
pseudoprogression. (C) Nearly absent tumor cell compartment with extensive
necrotizing treatment effect and hyalinizing vasculopathy. This corresponds to the
delayed treatment effect, radiation necrosis. Pseudoprogression and radiation
necrosis are two well-documented forms of “post-treatment related effect.”
Pseudoprogression generally occurs within the six months following completion of
chemoradiotherapy, and resolves or stabilizes without additional treatment, whereas
radiation necrosis generally occurs beyond six months, up to several years after
radiotherapy, and is often more severe and progressive (16–19). Images courtesy of
Dr. J Huse, Department of Pathology, MD Anderson Cancer Center, United States.
March 2022 | Volume 12 | Article 810263
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vessels are larger, more irregular, and, importantly, highly
permeable. The increased permeability leads to a disrupted BBB,
allowing the extravasation of macromolecules (such as contrast
agents) across the capillary wall (33). The glioma vasculature will
thus exhibit increased perfusion, blood volume, and permeability
compared with normal brain tissue.

Although the exact definition may depend on the method
applied (34), perfusion is generally defined as the passage of
blood through the tissue microcirculation. In the brain, cerebral
blood flow (CBF) is traditionally used synonymously with
perfusion, and both are measured in units of volume of blood per
volume or weight of tissue per time (ml/100ml/min orml/100mg/
min).Ontheotherhand, the termperfusion imaging isoftenused in
awider senseandalso includesotheraspects of the vascular function
of an organ or tissue such as blood volume or vessel permeability. In
the brain, the most commonly measured perfusion parameters are
CBF and cerebra l b lood vo lume (CBV) . In order
to distinguish perfusion parameter maps (showing regional
distribution within the brain) from global brain measurements, in
imaging they are sometimes referred to as regional CBF and CBV
(rCBF and rCBV, respectively). In a possibly confusing fashion,
measures of CBF and CBV that are obtained voxelwise relative to
the rest of the brain, but not in absolute units, are also often referred
to as rCBF and rCBV, respectively. The latter definition of rCBF/
rCBV is commonly used in the context of the perfusion imaging
techniques described here. For this reason, we chose to useCBF and
CBV to refer to absolute measurements of perfusion and blood
volume,while keeping rCBF and rCBV for relative versions of these
parameters. Moreover, perfusion imaging measurements of brain
tumors are commonly normalized to a reference, for example
healthy appearing brain of the contralateral hemisphere. In this
case, normalized values are referred to as nRCBF/nRCBV,
respectively. Another perfusion related parameter is vessel
permeability, which may be quantified in terms of a transfer
constant (Ktrans) or a permeability surface area product (PS),
depending on the measurement technique and associated
modeling approach.

DSC and DCE techniques are based on dynamic MR imaging
during the bolus passage of a GBCA to provide images of
perfusion- and permeability-related parameters. DSC is a T2/
T2* method most often used to assess vascular proliferation in
terms of CBV. Conversely, DCE is a T1-weighted method, which
in its most widely used form provides information on a
combination of tissue perfusion and vessel permeability as
measured by Ktrans in addition to plasma volume (Vp).
Alternatively, arterial spin labeling (ASL) is a completely
noninvasive and potentially quantitative technique without
GBCA, which is based on labeling arterial water in order to
provide an endogenous, freely diffusible perfusion tracer (35).
ASL provides perfusion-weighted images, and it can be used to
quantify tissue perfusion (CBF).

3.2 DSC-MRI
3.2.1 Methodology
With DSC-MRI, T2- or T2*-weighted images are acquired with
high temporal resolution during the bolus administration of a
GBCA (Figure 3). The bolus passage induces a gradient of
Frontiers in Oncology | www.frontiersin.org 6
susceptibility between the intravascular and extravascular tissue
compartments causing a transient decrease in the signal intensity
(36). Most often T2*-weighted gradient-echo (GRE) echo planar
imaging (EPI) methods are used, which are sensitive to vessels of
all diameters (37). T2-weighted images, obtained with spin-echo
(SE) EPI methods, provide CBV maps primarily sensitive to
microvessels. Subsequent descriptions will be given for GRE-
based methods unless otherwise noted. The same basic principles
for data acquisition and processing apply for SE-based methods.

As further illustrated in Figure 3, the DSC signal time course,
S(t) is converted to a change in the T2* relaxation rate (DR2*(t)),

DR2∗(t) =
−1
TE

ln
S(t)
Sb

� �
, Equation 1

where Sb is the mean of the baseline (pre-bolus) signal intensity
whose integration provides an estimate of the relative cerebral
blood volume (rCBV).

rCBV =
Z

DR2∗(t)dt Equation 2

This measure is termed “relative” because it provides a
voxelwise value relative to the rest of the brain.

Alternatively, an absolute measure of CBV can be determined
from the ratio of the tissue (Ct(t)) (which is assumed equivalent
to DR2*(t)) and arterial concentration-time curve (Ca(t)) first-
pass areas,

CBV = k

Z
Ct(t)dtZ
Ca(t)dt

, Equation 3

where k is the scale factor accounting for the density of brain tissue
and the differences in hematocrit between capillaries and large
vessels (38). As indicated, an absolute measure of CBV requires the
determination ofCa(t), also referred to as the arterial input function
(AIF). More often, for purposes of comparison, the rCBV will be
normalized by dividing the rCBV in each image voxel by the mean
rCBV determined from a reference tissue region of interest (ROI),
such as normal appearing white matter giving normalized rCBV
(nRCBV) values. Like absolute CBV, the nRCBV maps provide
greater consistency for the comparison of rCBV across time and
patients. Note that in some instances the term nRCBVmay be used
interchangeably with normalized CBV (nCBV), with the implicit
assumption that the CBV is relative. In all cases, an explicit
description of the steps used to create CBV should be provided,
with clear definitions of nomenclature provided. Finally, another
newer approach termed “standardization” has been devised to
calibrate the rCBV maps directly (39) without requiring a
normalizing ROI. Standardized rCBV (sRCBV) has demonstrated
greater consistency across time (39) and improved repeatability
compared with nRCBV (40). Both nRCBV and sRCBV have been
used with success in several brain tumor clinical trials (41–43).

3.2.2 Correction for Leakage Effects
A key assumption of DSC-MRI is that GBCA remains
compartmentalized within the intravascular space, causing a
March 2022 | Volume 12 | Article 810263
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susceptibility difference between the intravascular and
extravascular compartments. However, with brain tumors,
which often have a disrupted BBB, this assumption is violated.
GBCA extravasation causes changes to the extravascular T1 and
T2 (GBCA causes a change in the relaxation rate of the local
tissue, which is inversely proportional to T1 and T2 [R1 = 1/T1;
R2 = 1/T2]) in ways that can profoundly affect the DSC-MRI time
course (44) and, thus, the accuracy of the rCBV estimate (45, 46).
Therefore, different MRI acquisition and post-processing
approaches have been used to diminish and/or correct for
confounding GBCA leakage effects. One common approach is
to administer a single-dose preload of GBCA before the
collection of the DSC-MRI data, during which a second dose
of GBCA is administered. The preload serves to diminish the
effects of contrast extravasation that would occur during the
DSC-MRI acquisition (45). One study demonstrated that use of a
single-dose preload (0.1 mmol Gd/kg) with a 5-minute
incubation time before the DSC-MRI dose, provided the best
distinction in rCBV between tumor and treatment effect (47).
Yet, even with a contrast agent preload, a correlation with tumor
grade was only evident when a post-processing correction for
leakage effects was also applied (46). The Boxerman-Schmainda-
Weisskoff method (48) has become one of the most widely used
leakage correction methods, but several modifications have since
been proposed that deserve further consideration (49–51).

More recently, a population-based digital reference object of
brain tumor tissue was developed to evaluate the entire
parameter space of tissue condition and imaging parameter
settings (52, 53). The digital reference object results confirmed
that the double-dose approach using a single-dose (0.1 mmol/kg)
preload and single-dose DSC with Boxerman-Schmainda-
Weisskoff correction was the most accurate and most robust
method, being fairly insensitive to slight variations in parameter
settings. Yet, another potential lower GBCA dose method
emerged. By simply using a lower flip angle (30°) with TE = 30
ms (at 3 Tesla [T]) or TE = 54 ms (at 1.5 T), it was predicted that
rCBV results comparable to the double-dose reference standard
could be obtained. This was experimentally confirmed at 3 T in a
multisite study of brain tumor patients (54). These results helped
to inform a recent consensus recommendation specifically for
Frontiers in Oncology | www.frontiersin.org 7
DSC-MRI data acquisition in high-grade glioma, which includes
both the double-dose reference standard and single-dose
methods (55). Clinical MRI results together with rCBV maps,
obtained using the double-dose reference standard from a
patient with a grade 2 oligodendroglioma, are shown in Figure 4.

3.2.3 Evidence from Clinical Studies
A systematic review and meta-analysis of studies between 2005
and 2015 included 17 DSC-MRI studies and concluded that
individual studies, taken in an isolated form, showed
encouraging results to differentiate tumor progression from
treatment-related changes, with sensitivities and specificities in
the 80%–90% range (56). Yet, widespread use has been hampered
by the wide range of proposed rCBV thresholds reported (0.9–
2.15). This variation is largely attributed to the statistically
significant heterogeneity in how the DSC-MRI data are collected
and analyzed (56). However, the studies reviewed preceded the
recently published consensus recommendation that describes how
best to acquire DSC-MRI data, and that a correction for leakage
should be included. With widespread implementation of this
consensus acquisition, it is hoped that greater consistency in
mean rCBV thresholds will follow. A recent multisite study
supports this contention (57). Several sites used their own post-
processing platform to process the same DSC-MRI data whose
acquisition was consistent with the subsequently published
consensus recommendation regarding acquisition. A common
threshold applicable to all sites could be determined to
distinguish high- from low-grade tumor. This suggests that, with
greater consistency in the acquisition of DSC-MRI data,
agreement on thresholds to distinguish treatment-related effects
from residual or recurrent tumor is also possible.

The practice of using the mean rCBV determined from the
enhancing lesion ROI is another often-overlooked factor that
may contribute to the wide range of reported rCBV thresholds.
Rarely is a lesion composed of pure tumor or pure treatment
effect. Instead, there is an admixture of tumor and treatment
effect that will be unique for each patient and each cohort of
patients. Yet, all studies described in the meta-analysis (56) used
the mean rCBV from an ROI. Consequently, it is not surprising
that each study reports a different threshold value because each
A B DC

FIGURE 3 | Acquisition and processing of DSC-MRI data. (A) GRE-EPI images are collected with high temporal resolution. (B) The signal time course (S(t)) from a
representative voxel shows the collection of baseline signal then the bolus injection of GBCA after which there is a transient decrease in S(t) and return toward baseline.
(C) The S(t) is converted into the change in the T2* relaxation rate (DR2*(t)) from which (D) leakage-correction algorithms are applied and rCBV maps created.
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study comprises a unique set of patients. Even if the acquisition
and post-processing methods were equivalent, it is still likely that
each study would report a different threshold to distinguish
tumor from treatment effect.

One proposed research solution to the determination of a
widely accepted single threshold, is to use image-localized biopsy
and spatially histopathologic correlation as described in two
retrospective studies of high-grade brain tumors (58, 59). In
these studies, only tissue confirmed to be either pure tumor or
pure treatment effect were used to determine an rCBV threshold
for distinction. In both studies, the consensus acquisition
protocol was used, and the rCBV threshold was determined to
be the same to distinguish high-grade tumor from treatment
effect. A significant difference in tumor and treatment effect was
also found for standardized rCBV (59). Biopsy-determined
rCBV thresholds can be used to create voxelwise maps that
distinguish tumor from non-tumor for the determination of the
overall fraction of tumor burden within the enhancing lesion.
These maps, referred to as fractional tumor burden (FTB) maps
(60), provide a unique ability to visualize the admixture of tumor
and post-treatment effects (Figure 5). The potential of FTB to
predict response to treatment (61) and to distinguish between
tumor or treatment effect, as confirmed by histopathologic
examination of resected tissue samples (62), has been
demonstrated. More recently, a prospective study (63) using
image-localized biopsy tissue validated the ability of rCBV to
predict tumor content (0–100%), demonstrating similar
performance of nRCBV and sRCBV for the creation of FTB.
Given that sRCBV does not require choosing a reference ROI,
this represents an important step toward workflow optimization
for the creation of FTB maps.

3.2.4 Future Developments
Other DSC-MRI perfusionmetrics have also demonstrated promise
for providing clinically relevant information to evaluate treatment
response. In a preclinical study, the distribution of mean transit
times, determined from DSC-MRI, was shown to be dose-
dependent and predictive of response to the anti-angiogenic agent
Sugen11657 (64). In a related study, capillary transit time
Frontiers in Oncology | www.frontiersin.org 8
heterogeneities together with indices of estimated tumor
oxygenation, both determined from the DSC-MRI data,
demonstrated promise for predicting unfavorable therapeutic
effects in patients with recurrent glioblastoma (65). Combined
GRE and SE sequences, which can provide measures of mean
vessel diameter, have been shown to correlate with brain tumor
grade (45, 46) and response to anti-angiogenic treatment (64).
Multi-echo perfusion sequences, such as SPICE (44) or SAGE (66),
measure GRE and/or SE at multiple echo times (TEs), enabling
implicit correction of T1 leakage effects and the data for determining
both DSC-MRI and DCE-MRI perfusion parameters maps (67).
Though the technology is still under development (68), these newer
perfusion methods are likely to provide a wealth of information
relevant to treatment monitoring in brain tumors. Furthermore,
with the recent development of the brain tumor DSC-MRI digital
reference object (52, 53), which can serve as a benchmark for all
DSC-MRI methods (69), translation of these technologies for
clinical use should take place more quickly than previously
possible. The additional role to predict response to treatments is
also emerging, as mentioned above, in the context of FTB.

3.2.5 Summary, Strengths, and Weaknesses
Measures of rCBV derived from DSC-MRI have consistently
demonstrated the ability to provide information about brain
tumor growth and response to treatment that is not available
with current structural MRI methods. Of all advanced
techniques, DSC is the most extensively studied for clinically
utility. With a power-injector available and a cannula placed for
contrast agent administration, DSC-MRI data are easy to collect
using commonly available imaging methods and requires only an
extra 2–3 minutes of scanning. Despite the ease of use and
valuable information provided, the widespread clinical use of
DSC-MRI has been hampered by the need to correct for
confounding leakage effects, which in turn has led to a variety
of ways to collect and process this data. However, great strides
have been made to overcome these limitations, with a recent
publication clearly outlining how best to collect this data
(Boxerman consensus) and a strong recommendation that
leakage correction must be used in the post-processing. In this
FIGURE 4 | MRI results from a 32-year-old patient with a grade 2 oligodendroglioma. (A) T2-weighted FLAIR, (B) pre-contrast T1-weighted, (C) post-contrast T1-
weighted (T1+C) images along with the corresponding (D) sRCBV map for a representative image slice. Though this is a non-contrast-agent enhancing tumor, this
example illustrates that DSC rCBV imaging may also provide information in non-enhancing tumors.
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regard, the Boxerman-Schmainda-Weisskoff leakage correction
(48) method has been the most commonly used and currently is
the most widely recommended approach. Therefore, consensus
regarding the collection and processing of DSC-MRI is being
reached. Remaining challenges include the fact that the DSC-
MRI acquisition is most often based on EPI. Although EPI
provides the necessary temporal resolution, the spatial
resolution is less good and significant signal dropout and
geometric distortions can occur at air-tissue interfaces, such
Frontiers in Oncology | www.frontiersin.org 9
as near sinuses, with post-surgical blood products, or at
resection sites. Therefore, efforts are underway to develop
higher resolution fast imaging techniques with less sensitivity
to these unwanted susceptibility effects. These efforts include the
development of spiral-based sequences (44) or parallel imaging
methods such as SENSE (70). With a complete solution
composed of consistent acquisition and post-processing
methods, all obtained with high temporal and spatial
resolution, DSC-MRI should be widely accepted as a
FIGURE 5 | MRI results from a male patient diagnosed four months earlier with glioblastoma, IDH-wildtype, and treated with surgery followed by standard-of-care
radiotherapy and concomittant temozolomide. Progression was questioned at the time of this MRI exam (three days prior to re-do surgery). (A, B) Post-contrast T1-
weighted and (C, D) rCBV maps shown for two representative images slices. (E, F) FTB were created and show a mixture of tumor (red) and treatment effect (white),
which is consistent with the pathologic diagnosis of tumor and treatment effect, respectively. Note that without the previously determined rCBV thresholds to
distinguish tumor from treatment effect, the “blush” of higher rCBV noted on the rCBV maps would be difficult to interpret.
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robust addition to standard brain tumor exam to assess
treatment response.

3.3 DCE-MRI
3.3.1 Methodology
DCE-MRI is basedondynamicT1-weighted imagingafter intravenous
administration of aGBCA (Figure 6). The contrast agent will increase
the relaxation rate R1 = 1/T1, and the change in relation rate is linearly
related to the concentration of the contrast agent C by

R1 = R0
1 + r1C, Equation 4

where R0
1 is the relaxation rate before arrival of the contrast agent

and r1 is the field strength specific relaxivity of the contrast agent.
The exact relationship between signal (S) and change in
relaxation rate depends on the sequence used. For the
commonly used 3D T1-weighted spoiled gradient recalled echo
sequence, with short TE << T2* so that T2* effects are negligible,
the measured signal is related to the contrast agent by:

S(t) = Mo sin (a)
1 − e−

TR
T1(t)

1 − cos (a)e−
TR

T1(t)

= Mo sin (a)
1 − e−TR(R

0
1+r1C(t))

1 − cos (a)e−TR(R0
1+r1C(t))

, Equation 5

where a is the flip angle and Mo is the equilibrium
magnetization. Only T1, and thus R0

1, are unknown and are
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usually estimated by preceding T1 mapping (typically obtained
by performing T1 imaging at variable flip angles).

Various tracer kinetics models can be applied to the measured
arterial and tissue concentration curves [see Ref. (71) for a
comprehensive review]. The choice (and complexity) of the
model, and thus the requirements for the imaging protocol, are
dependent on the tissue and pathology of interest. For brain
tumors, the most widely applied three-parameter two-
compartment model (i.e., the extended Tofts’ model, Figure 7)
provides voxelwise estimates of plasma volume fraction (Vp),
interstitial volume (Ve), and Ktrans (72), and thus information on
permeability and blood volume, both indicators of neo-
angiogenesis. For reliable estimation of Ktrans from this model,
a temporal resolution of < 10 sec (ideally ≤ 5 sec) and a total scan
duration of 5 minutes following a single dose (0.1 mmol/kg) of
GBCA are recommended in the proposed revised Quantitative
Imaging Biomarkers Alliance (QIBA) profile (73). In the
extended Tofts’ model, the parameter Ktrans reflects both tissue
perfusion (F) and PS. Except in extreme cases where permeability
is very low (F >> PS and Ktrans ≈ PS) or very high (PS >> F and
Ktrans ≈ F), the parameter Ktrans is a mixture of F and PS. The
errors/bias of the parameter estimates derived from the extended
Tofts’ model may be substantial and depend on both the tissue
(e.g., differences in low- compared to high-grade tumors) and the
experimental conditions, e.g., temporal resolution (74). Still, this
model may provide useful estimates of Vp, K

trans, and Ve also at
low temporal resolution on 1.5 T systems.
FIGURE 6 | Acquisition and processing of DCE-MRI data. Using dynamic T1-weighted imaging, a signal increase is measured during bolus passage. From the
preceding T1 mapping obtained by T1 imaging at variable flip angles, the signal change can be converted into absolute concentrations of GBCA. From time
concentration curves in arterial blood (AIF) and in tissue, absolute parameter maps can be produced by subsequent kinetic modeling. A simplified relative measure
can be obtained from the area under the iAUC (initial part of the tissue signal curve), which reflects a mixture of blood flow, permeability, and blood volume.
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Good repeatability of DCE using the extended Tofts’ model
has been reported in normal tissue of both healthy subjects and
patients with brain tumors (75), and moderate-to-good
repeatability of Ktrans similar to that of DSC nRCBV was found
in contrast enhancing lesions of patients with glioblastoma
during treatment (76). Nonetheless, a cross-vendor and
multisite reproducibility study of quantitative T1 imaging in a
phantom found variable reproducibility dependent on both
sequence and protocol used, field strength and range of T1

values (77). Furthermore, whilst studies of DCE reading and
analysis reported good to excellent inter- and intraobserver
agreement (78, 79), there was considerable influence from the
software used (78).

3.3.2 Future Developments
The current standard implementation of DCE using the extended
Tofts’model described in the recent QIBA guidelines (73) may be
considered state-of-the-art for DCE brain tumor imaging, but it
has changed little in recent years. Methods taking advantage of
better signal-to-noise ratio (SNR) at 3 T allow higher temporal
resolution, permitting quantification of F, e.g., by model free-
deconvolution (80), and thus separation of F and Ktrans by the
four-parameter two-compartment exchange models (2CXM) (81,
82). Estimation of F is (among other factors) highly sensitive to
errors related to undersampling of the input function; therefore,
high temporal resolution (ideally 1–2 sec) is required and may be
achieved by limiting coverage or spatial resolution. Simpler (model
independent) approaches are based on initial area under the signal
curve (iAUC), and reflect the initial accumulation of contrast by
the tissue (irrespective of the mechanism). This approach alleviates
the need for T1 mapping, measurement of arterial input function,
and kinetic modeling, and it is possibly more robust across
scanners and implementations (83, 84).

3.3.3 Strengths and Weaknesses
DCE-MRI is the standard perfusion method outside the brain,
e.g., prostate and breast, but it is less widely used than DSC-MRI
in the brain. Nonetheless, DCE-MRI has several advantages
compared with DSC-MRI for post-treatment imaging of brain
tumors. First, DCE-MRI is a T1-weighted imaging technique and
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hence is less sensitive to the susceptibility artifacts in tissue
adjacent to the skull base as well as within treated tumors that
limit the coverage of T2*-weighted imaging in DSC-MRI (85). In
fact, DCE-MRI might provide useful image quality in > 80% of
uninterpretable DSC-MRI cases (86). Second, unlike T2*-
weighted imaging, T1-weighted contrast leakage effects are not
a cause of error when using DCE-MRI. Instead, they allow
explicit modeling of permeability and can provide absolute
parameter maps of tissue microvascular properties. Third, T1-
weighted imaging in DCE allows easier and more accurate
estimation of an AIF for kinetic modeling than EPI used for
DSC-MRI. This and the conversion of blood and tissue signal to
concentration of GBCA permit absolute quantification of
physiological parameters, although quantitative parameter
estimates probably are highly model specific. The main
technical disadvantages of DCE-MRI compared with DSC-MRI
are lower temporal resolution, need for T1 mapping, and
increased scan duration. Clinically, there are no generally
established cut-off points or diagnostic criteria using the
standard implementation (the extended Tofts’ model). In the
case of 2CXM analysis, a single small study investigated 2CXM
DCE for pre-radiotherapy prediction of post-radiotherapy tumor
progression (87), but no published clinical data regarding
diagnostic accuracy are currently available, means of
implementation are not standardized, and scanner and
software solutions for advanced kinetic modeling are limited.

3.3.4 Evidence From Clinical Studies
Compared with DSC-MRI, the available evidence from clinical
studies is more limited. Supplementary Table S2 shows studies
of diagnostic accuracy for differentiating disease progression
related and treatment-related effects. Two partially overlapping
meta-analyses (56, 88) calculated pooled sensitivity and
specificity of 88–89% and 85–86%, respectively, based in
combination on a total of 10 studies published from 2011 to
2015 including 371 patients. It is noteworthy that the diagnostic
accuracy was higher in studies with model independent analysis
(88) than in studies with two- or three-parameter models, while
most recent studies (and clinical practice) typically employ three-
parameter models. Clinical multicenter brain tumor studies
FIGURE 7 | MRI with DCE parameter maps. (A) FLAIR and (B) post-contrast T1-weighted (T1+C) images of a patient with a primary brain tumor. In addition, the
extended Tofts’ model was used to fit DCE-MRI data to generate parameter maps of (C) Ktrans and (D) Vp. (Images are courtesy of Imaging Biometrics LCC).
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using DCE have been performed for tumor grading (79) and for
evaluation of antiangiogenic treatment of recurrent glioma (76).

Several studies have made comparisons of the various DCE-MRI
parameters with each other and with DSC-MRI. Optimal cut-off
values determined by receiver operating curve (ROC) analysis and
associated diagnostic accuracies from the individual studies are
shown in Supplementary Table S2. Two large retrospective
studies from the same group, each including more than 150
patients, found similar overall accuracy (area under receiver
operating curve [AUROC]) of DSC-MRI and model free DCE-
MRI for separation of progressive disease from pseudoprogression
(89) and radiation necrosis (90), with DSC-MRI tending to provide
higher specificity and lower sensitivity compared with DCE-MRI.
Smaller retrospective studies comparing model-based analysis of
DCE-MRI with DSC-MRI have reported variable findings, although
single DCE-MRI parameters tend to provide lower diagnostic
accuracy compared with DSC-MRI (Supplementary Table S2).
The only prospective study comparing three-parameter analysis of
DCE-MRI with DSC-MRI found AUROC of Vp and the model free
analysis (iAUC) to be similar, and both slightly lower than
DSC-CBV, whereas Ktrans yielded the lowest AUROC (91). A
prospective study including both high-grade glioma and
metastases also found AUROC of Vp superior to Ktrans, and
suggest improved accuracy when combing the Vp and Ktrans (92).
Other, mainly smaller, retrospective studies of three-parameter
analysis have suggested Ktrans or Ve outperform Vp

(Supplementary Table S2), while a single study found no
diagnostic value of any DCE-MRI parameter (93). The evidence
does not converge toward recommending a specific parameter or
cut-off point, but a visual analysis of parameter maps comparing
tumor to normal tissues may be a clinically acceptable approach (94).

In summary, clinical studies have proven the potential of
DCE-MRI for distinguishing treatment-related effects from
recurrence, but the optimal DCE acquisition protocol, mode of
analysis, and parameter of highest diagnostic value and optimal
cut-off points remain to be established.

3.4 ASL
3.4.1 Methodology
ASL is a perfusion imaging technique based on magnetically
labeling water spins as they flow through the large brain-
supplying arteries at the cervical spine level using radiofrequency
(RF) pulses. An image of the brain is acquired after allowing for
sufficient time for the labeled spins to reach the brain capillaries.
The signal difference in magnetization between labeled images and
non-labeled control images yields perfusion-weighted images using
kinetic model estimations to calculate the quantitative CBF map
(95). Typically, multiple label and control repetitions are acquired
in alternating order, and their average subtraction value is used. A
variety of ASL pulse sequences and associated analysis methods
have been developed, which employ different strategies to control
for unwanted labeling/subtraction effects and to overcome the
intrinsically low SNR of the ASL signal. For a recent review
focused on the ASL basic concepts and the current state-of-the-
art acquisition and analysis approaches, see Ref. (35). New
developments in ASL are also detailed by van Osch et al. (96).
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3.4.1.1 Labeling Schemes
The two main labeling schemes are continuous ASL (CASL) (97)
and pulsed ASL (PASL) (98, 99), illustrated in Figure 8. While
CASL relies on the flow-driven adiabatic inversion of arterial
water spins as they flow through the labeling plane under the
continuous application of a RF field, PASL is based on the
instantaneous inversion of water spins within a wide slab upon
the application of an adiabatic inversion RF pulse. A derivation
of CASL was more recently developed, pseudo-continuous ASL
(pCASL), which uses a train of RF pulses to induce flow-driven
adiabatic inversion of arterial water spins (100). In this way, it
retains the SNR advantage of CASL compared with PASL while
allowing implementation in standard clinical MRI systems not
possible with CASL. The advantages of pCASL relative to both
CASL and PASL have made this the labeling scheme of choice for
clinical applications (95). More advanced and purpose-
specialized labeling schemes employ non-spatially selective
labeling, which can be achieved by inverting spins based on
their velocity, or acceleration, rather than their spatial position:
velocity-selective ASL and acceleration-selective ASL (101).

3.4.1.2 Image Acquisition
Fast image readout techniques should be employed, most
commonly these are multi-slice 2D EPI but also segmented 3D
methods such as 3D GRASE or 3D stack-of-spirals. While the
latter are recommended for their higher SNR, the former is less
sensitive to motion. Other acquisition parameters need to be
selected, namely regarding background suppression and vascular
crushing gradients, which may be used to minimize signal
contributions from static and macrovascular spins, respectively.
A critical choice is that of the time delay between labeling and
image readout—post-labeling delay (PLD) in pCASL/CASL and
inversion time (TI) in PASL (see Figure 8A). Most often, a single
delay acquisition is performed: in this case, the delay should be
long enough to ensure that the labeled spins have reached the
tissues by the time signal is read out, so that it is not sensitive to
variations in the arterial transit time or bolus arrival time,
illustrated in Figure 8. Additionally, in PASL, saturation pulses
should be applied in order to control the label duration, using
QUIPSS II (102) or Q2TIPS (103) approaches (see Figure 8A).
Because the label, and hence the perfusion signal, decay with
longitudinal relaxation (T1 of arterial blood up to the capillaries
and T1 of tissue after exchange), the trade-off between
insensitivity to arterial transit time and sufficient SNR must be
considered when choosing the value of PLD/TI. Alternatively,
multiple delays may be sampled and an appropriate kinetic
model fitted to the data to estimate CBF as well as arterial
transit time. For multi-delay acquisitions, optimal sampling
schemes (104, 105) or more efficient sampling schemes such as
time-encoded pCASL (106), should be considered.

3.4.1.3 Perfusion Quantification
For perfusion quantification, tracer kinetic models have been
developed with different levels of complexity. A standard kinetic
model of ASL signals was originally developed by Buxton assuming
a single well-mixed compartment and instantaneous exchange of
water between blood and tissue (107) (see Figure 8B). Various
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extensions of this model have since been proposed, namely to
account for restricted water exchange/vessel permeability using two
compartment models (108, 109), macrovascular (as well as
microvascular) contributions (110), partial volume effects (111),
or flow dispersion (112). Simplifications of the standard model
have also been proposed (95) to obtain CBF measurements based
on single-delay ASL acquisitions:

In pCASL :CBF =
lDMe

PLD
T1b

2aT1bM0b(1 − e−
t

T1b )
Equation 6

In PASL :CBF =
lDMe

TI
T1b

2aTI1M0b
Equation 7

where DM is the control-label magnetization difference, M0b is
the equilibrium magnetization of arterial blood, T1b [s] is the
longitudinal relaxation time constant of arterial blood, l is the
blood/tissue partition coefficient for water, t [s] is the label bolus
duration, and a is the labeling efficiency. In order to quantify
CBF in absolute units, calibration of ASL measurements must be
performed. This involves normalizing the control-label
difference images, DM, by the equilibrium magnetization of
arterial blood, M0b (113). Since M0b cannot be measured
directly in vivo, different methods have been proposed to
estimate it based on the measurement of the tissue M0,
typically using a proton-density image acquired with the same
readout as the ASL images but with a long repetition time (TR).

3.4.1.4 Consensus Recommendations
In an attempt to harmonize ASL perfusion measurements across
studies, a consensus paper was published in 2015 with
recommendations regarding the most appropriate implementation
for clinical applications (95). In particular, the combination of pCASL
with a segmented 3D readout was recommended for its superior
SNR; however, PASL and 2D readouts still are often used. The use of
background suppression without vascular crusher gradients is also
recommended. Although ASL may be performed at 1.5 T, the
recommended field strength is 3 T. In this paper, a calibration
procedure and a simplified kinetic model were also proposed for CBF
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quantification based on single delay measurements. Although the
consensus paper resulted in part from the efforts of a European
network focused on dementia, the recommendations were made for
clinical applications more generally. In fact, this consensus paper
resulted in the implementation of a recommended sequence by MRI
vendors, and this has indeed been adopted by an increasing number
of studies. However, the consensus paper did not take tumor studies
into key account, nor does it discuss peculiarities of tumor ASL
imaging, which may influence the optimal application of ASL in
tumor imaging under the recommended conditions. Several studies
have assessed the test-retest repeatability of ASL CBF measurements,
including the recommended single-delay pCASL implementation
(114, 115) but also more complex protocols (116, 117). A
reproducibility study has been performed for ASL CBF
measurements obtained with commercial implementations of ASL
across from major MRI vendors (118). This, however, preceded the
consensus paper and results may be improved now that vendors have
generally adopted these recommendations. Regarding multisite
reproducibility, only one study has partially investigated this by
assessing CBF in specific brain regions (115). All of these reliability
studies have been performed on healthy subjects, and no studies in
patients with brain tumors have been reported.

3.4.2 Strengths and Weaknesses
In contrast to DSC-MRI and DCE-MRI, ASL techniques do not
require the injection of a contrast agent. As a consequence, fast
repeated measurements on individual patients can be performed.
Moreover, the absence of potential gadolinium deposition effects
also allows ASL to be more widely used in pediatric patients and
in patients with impaired renal function. Relative to DSC-MRI,
ASL has the additional advantage that perfusion measurements
are not tampered by BBB permeability effects. Even after leakage
effects have been corrected for, DSC perfusion imaging is based
on GBCA as an intravascular tracer, which limits its ability to
yield true perfusion measurements. In contrast, ASL is based on
water as a diffusible tracer, allowing it to truly measure perfusion
at the capillary level (Figure 9). Additionally, susceptibility
effects leading to signal dropout and geometric distortions are
less prominent since shorter echo times are used.
A B

FIGURE 8 | Basic principles of ASL perfusion imaging. (A) The two main labeling schemes (CASL/pCASL and PASL) are illustrated, in terms of the location and
extent of the labeling region (left) and associated pulse sequences and their timings (right). (B) The magnetization difference between label and control images is
illustrated by the difference images for five representative delays (top) and the underlying kinetic curve obtained based on the standard kinetic model (bottom). The
ATT (arterial transit time) and label bolus duration (t) are indicated. The red box and dot indicate a typical PLD/TI value for a single-delay acquisition.
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Despite the potential advantages relative to DSC-MRI and
DCE-MRI, the main weakness of ASL remains its intrinsically
low SNR. This has led to the proliferation of methodological
options and limited accessibility in clinical sites, which have
hindered its wider application so far. Besides the general lack of
robustness that results from the low SNR, ASL is also more
sensitive to motion artifacts than DSC-MRI or DCE-MRI, due to
the inherent image subtraction as well as the frequent use of 3D
readout. Additionally, single-delay ASL acquisitions may have
macrovascular artifacts or underestimation of tissue perfusion in
areas with prolonged arterial transit times, e.g., in patients with
macrovascular stenosis.

3.4.3 Evidence From Clinical Studies
An overview of clinical studies published is provided in
Supplementary Table S3. All studies employed commercial
pCASL sequences with a single delay. Three of the listed
studies were part of a recent meta-analysis of a total of 160
patients, which reported a pooled sensitivity and specificity of
79% and 78%, respectively to differentiate true progression from
post-treatment related effects by ASL (119). All other studies also
reported reported fair to good diagnostic accuracies for
differentiating true progression from post-treatment related
effects. The largest retrospective study included 69 patients
(both low and high-grade gliomas) and reported sensitivity and
specificity of 74% and 82%, respectively, for separation of
progression from post-treatment related effects (120). In the
two largest prospective studies, one study found both high
sensitivity (94%) and specificity (92%) for separation of post-
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treatment related effects from true progression among 42
patients with treated high-grade gliomas (121), while the other
reported low sensitivity (65%) but very high specificity (100%)
among 58 patients (both low- and high-grade gliomas) in the
context of pseudoprogression (122).

3.4.4 Future Developments
Studies exploring the utility of ASL for the identification of post-
treatment related effects in high-grade glioma are limited to basic
implementations of the technique and have technical and clinical
variabilities as well as small sample sizes. Despite this, ASL
continues to undergo substantial advances yet to be fully
exploited in this context (96). In particular, advanced ASL
techniques based on multiple-delay ASL measurements
combined with appropriate kinetic models may be employed to
obtain measurements of perfusion-related parameters besides
rCBF (35). Of special interest in glioma is the putative possibility
to obtain vessel permeability measurements by using multi-
compartment kinetic models incorporating water exchange
between blood and tissue (108, 109). For now, the biggest
challenge is less the technical development and more the
harmonization of current protocols, which would lead to
clearer comparison between studies with the potential
downstream effect of generating a higher level of evidence.

3.5 An Overview of Diffusion Techniques
Various diffusion MRI techniques can be applied to glioma
treatment response assessment including standard diffusion-
weighted imaging (DWI), apparent diffusion coefficient (ADC)
A B C

FIGURE 9 | Three-months post-radiotherapy follow-up in a 58-year-old patient diagnosed with a glioblastoma, IDH-wildtype, studied on a 3T GE MRI system.
(A) The post-GBCA T1-weighted series shows thick rim enhancement, which could theoretically also be pseudoprogression after recent completion of standard-of-
care radiotherapy and concomittant temozolomide. (B) The DSC rCBV map, acquired with 2D EPI (TE/TR = 45/1500 ms), indicates general hyperperfusion of the
enhancing outer tumor rim, which makes early true progression more likely and is thus decisive for further therapy planning. (C) The ASL CBF map, which was
acquired with 3D pCASL using white paper settings, shows hyperperfusion concordant with the DSC rCBV map but without the need of gadolinium administration.
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analysis, diffusion tensor imaging (DTI), diffusion kurtosis
imaging (DKI), intravoxel incoherent motion (IVIM), as well
as a multitude of microstructural modeling approaches, such as
neurite orientation dispersion and density imaging (NODDI)
(123) or restricted spectrum imaging (RSI) (124); free water
imaging (FWI) (125); and vascular, extracellular and restricted
diffusion for cytometry in tumors (VERDICT) (126).

The basic DWI sequence achieves diffusion contrast based on
different gradient pulses in between the excitation and refocusing
pulses of a basic SE experiment (127). This basic sequence
produces images that highlight diffusional water molecule
motion by signal loss. It has been extended to capture
information of diffusion in different directions (128) and over
different time periods. The gradient strength and duration are
expressed in different b-values with a unit of s/mm2. Typical b-
values for brain imaging are up to a single (also called single-shell)
b-value of 1000 s/mm2 and the signal decay up to this b-value can
be approximated by a Gaussian distribution. Notably, lower (50–
250 s/mm2) b-values are associated with signal frommicrovascular
perfusion rather than Brownian diffusion motion, which is
important in, for example, IVIM (129), a method that aims to
recover the pseudo-diffusion coefficient of blood using several b-
values (also called multi-shell) in its modeling approach. Note that
multi-shell acquisitions may also be used in other modeling
approaches. Higher b-values of > 1000 s/mm2 are associated
with more restricted and hindered environments employed in
non-Gaussian (such as DKI) and microstructural models.

The ADC is the best-known diffusion parameter. By scaling the
diffusion image with a non-weighted image, quantitative maps can
be produced. This quantitative technique is available on any
commercial MRI machine, which makes the integration in clinical
trials attractive. Qualitative visual interpretation is also possible and
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gives an impression of cellular density and water content and can
help in clinical differential diagnostics (Figure 10).

Extending the diffusion methodology to sensitize the signal
over different directions, the DTI approach has seen widespread
application due to its methodological and mathematical simplicity
and elegance (130). DKI models (131) focus on the deviation from
the Gaussian signal. This model is more sensitive to heterogeneity
and complex tissue architecture, rendering parameters that are
correlated with biological tissue properties and reflecting the
organization of tissue microstructure (132). This approach may
deliver biomarkers more relevant to disease interpretation, such as
in heterogeneous environments, and dense architecture, such as
solid tumors (133). A different approach to overcome the
limitation of the Gaussian model is by explicitly modeling it.
The FWI model can be used both to visualize the Gaussian signal
(free water) and to remove it (free water corrected) (125) using a
multi-shell acquisition. This may be useful to distinguish a large
area of edema or necrosis from residual tumor and can be used to
make DTI fiber tracking in the presence of such processes more
accurate (134). Other multi-shell models aim to advance the
understanding of neuronal diffusion parameters, such as
NODDI (123) or RSI (124). Although NODDI has been
designed entirely for use in normal brain tissue, the RSI model
has been adapted for use in tumors (135).

3.6 DWI
3.6.1 Methodology
The b-value dependent diffusion signal in a classical diffusion
acquisition is calculated based on the Stejskal-Tanner equation
(127), where Sb is the signal depending on the apparent diffusion
coefficient ADC and the diffusion gradient length d, separation D,
and strength G. The b-value is defined as b = g 2 · G2 · d 2(D − d

3 ),
FIGURE 10 | DWI and ADC. These images were acquired in a 50-year-old treatment-naive female patient with glioblastoma, IDH-wildtype. (A) DWI (b = 1000 sec/
mm2). The necrotic cavity and necrotic rim are DWI hypointense, due to the diffusing spins having moved between the time of the excitation and the refocusing
pulse. (B) ADC map. In the ADC map fast diffusion is highlighted by hyperintensity. The combined interpretation of both images gives the qualitative inference that
this more likely represents a cavitating or cystic-like tumor with low cellularity rather than a brain abscess or lymphoma.
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where g is the gyromagnetic ratio. Assuming a pure Gaussian
diffusion of water and a log-linear signal decay with increasing b-
value:

Sb = S0e
−b·ADC Equation 8

By acquiring a diffusion weighted image Sb and an
unweighted image S0, the apparent diffusion coefficient ADC
can be calculated as:

ADC = log
Sb
S0

· −
1
b

Equation 9

If more than one DWI Sb exists, ADC may also be derived by
calculating a least squares fit to the Stejskal-Tanner equation.

To sensitize the diffusion image Sb, the diffusion gradient
pulse may be played out on each of the three gradient axes
individually, or on all three gradients at the same time (so-called
tetrahedral scheme) (136). If played out on each axis
individually, the images need to be averaged before the ADC
map is calculated. Therefore, to calculate an ADC image, four
separate volumes have to be acquired: the unweighted image S0
and three Sb images for each of the individual gradient axes. To
reduce the time it takes to acquire the sets of images, EPI (137) is
commonly performed. EPI uses blipped line encoding to fill out
k-space more quickly. Although this technique is incredibly fast,
as with perfusion EPI acquisition, it is sensitive to susceptibility
changes in the local magnetic field, often leading to artifacts near
large tissue-air boundaries e.g., close to the frontal sinuses of
the skull.
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3.6.2 Strengths and Weaknesses
Diffusion-weighted sequences usually have a fast acquisition
time, which makes them suitable for anxious or poorly
compliant patients, both of which are common in the brain
tumor patient population. DWI sequences are globally
ubiquitous and well-standardized across centers with good
dissemination of clinical knowledge of image interpretation
compared to more advanced methods. They allow the
discrimination of differential diagnoses such as stroke
mimicking tumor progression or infection in the surgical
cavity. On the other hand, DWI is affected by geometric
distortions close to bone and air, which can affect diagnostic
quality in adjacent brain structures. Similar artifacts can occur in
the resected surgical cavity due to blood products.
3.6.3 Evidence From Clinical Studies
Progressive disease in high-grade gliomas is characterized by
tumor hypercellularity manifesting as low ADC values (138–
141), which confer poor survival (142–144). In contrast, an
increase in ADC may indicate response to chemoradiotherapy
(138, 145, 146) (Figure 11). Similar findings have been seen in
other brain tumors, in tumors outside the central nervous
system, and after high-grade glioma immunotherapy (138,
147–149). It is noteworthy that high ADC values have also
been associated with the peritumoral T2 hyperintensity of
glioblastoma, albeit inconsistently. A variety of advanced
analyses using histogram-based techniques, either at a fixed
time or longitudinally, capture tumor heterogeneity and can be
FIGURE 11 | MRI obtained in a 48-year-old patient with mulitfocal glioblastoma, IDH-wildtype. Shown are post-contrast T1-weighted images, FLAIR images, DWI at
b = 1000 s/mm2 and ADC maps obtained at approximately two (TP1) and three months (TP2) after standard-of-care radiotherapy and concomittant temozolomide.
Subtraction of ADC obtained at TP1 from ADC obtained at TP2 results in the creation of fDMs, which show where ADC is increasing (red to yellow) or decreasing
(blue). Decreasing ADC (blue regions) is suggestive of increasing tumor cell density. Surgical resection performed one week after TP2 revealed an admixture of tumor
recurrence and post-treatment related effects. Note that interpretation can be complicated by resolving edema between time points, which may also show decreased ADC.
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applied to ADC maps to characterize therapy (138, 150, 151).
One study showed that the fifth percentile on a cumulative
histogram of ADC, obtained at a b-value of 3,000 sec/mm2,
was lower in progressive disease than in pseudoprogression (P <
0.001) (151). In two single-site studies, a clear cut-off of a mean
ADC proved to be successful in predicting pseudoprogression
(152, 153) with ADC ≤ 1300 × 10−6 mm2/s (sensitivity 100%,
specificity 100%) and ≤ 1313 × 10− 6 mm2/s (sensitivity 98.3%,
specificity 100.0%), respectively for true progression.

A recent meta-analysis, which contained six eligible studies
with a total of 214 patients, concluded that quantitative ADC is
an effective approach for differentiation of glioma recurrence
from pseudoprogression, and can be used as an auxiliary tool to
diagnose glioma progression: sensitivity was 0.95 (95%
confidence interval [CI] = 0.89 – 0.98), specificity was 0.83
(95% CI = 0.72 – 0.91) (154). Another meta-analysis showed
that quantitative ADC has moderate diagnostic performance in
differentiating glioma recurrence from radiation necrosis
(sensitivity: 0.82 (95% CI: 0.75 - 0.87); specificity: 0.84 (95%
CI: 0.76 - 0.91). The authors recommended not using diffusion
MRI alone in differentiating between glioma recurrence and
radiation necrosis (155). The latter analysis was supported by a
meta-analysis comparing advanced imaging techniques that gave
sensitivity and specificity results of 0.71 (95% CI: 0.60 - 0.80) and
0.84 (95% CI: 0.77 - 0.93), respectively, providing the lowest
diagnostic accuracy among advanced MRI techniques analyzed
(also MRS, DSC-MRI and DCE-MRI) (156). Ordinary ADC
maps were found to be inferior in spatially discriminating
treatment response compared with DSC-derived perfusion
measures (59). Another study could not find any difference
between perfusion and diffusion metrics in the ability to
discriminate between recurrent tumor and pseudoprogression
(157). In a different study, neither DSC-MRI nor DWI were
found to be predictive of tumor recurrence (158).

Incorporating diffusion metrics into radiomics models improved
diagnostic performance for identifying pseudoprogression over a
model with only structural imaging volumes (89). A retrospective
study employing a dictionary-learning approach was able to train its
model to identify pseudoprogression from DTI data (159). The
performance accuracy of radiomics and machine learning
approaches in MRI are described in detail in Part 2.

3.6.4 Future Developments
A few studies have used longitudinal ADC maps, namely
parametric response maps (PRMs) (160) or functional
diffusion maps (fDMs, Figure 11) (145), to discriminate
progression from pseudoprogression (161–163). Whilst these
promising methods have been at the research stage for more
than a decade, more evidence is required to translate these as
routine clinical tools.

Since the initial development of fDMs (145, 164, 165), many
other studies have assessed the potential of fDMs in treatment
response evaluation in glioma (164, 166, 167).A study of 50patients
with glioma proved that the rate of change in fDM “hypercellular”
volumes within hyperintense fluid-attenuated inversion recovery
(FLAIR) regions of interest, predicted tumor progression, time-to-
progression, and overall survival for both cytotoxic and
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antiangiogenic treatments earlier than standard anatomical
imaging (167). Another study including 20 brain tumor patients
found that fDMs predicted patient treatment response at three
weeks from the start of chemoradiotherapy, revealing that early
changes in tumor diffusion values could be used as a prognostic
indicator of subsequent treatment response (146). The preliminary
conclusion regarding fDMs is that this imaging biomarker has the
potential to track treatment response in brain tumor patients in
both enhancing and non-enhancing tumors. A recent study
employing ADC histogram analysis, found that low-ADC tumor
volume shrinkage has the same predictive power as fDMs (168).

A small study assessing the use of PRMs with "relative" ADC,
where the relative ADC represents a ratio between tumor and
contralateral normal-appearing tissue, showed the potential in
differentiating true progression from pseudoprogression (169).
Voxel-based PRMs of ADC were used to predict early tumor
progression (170). Compared with traditional response criteria
(Macdonald or RANO criteria (171)), a PRM has the potential to
allow individualization of treatment seven to eight weeks earlier
than the traditional response criteria (172), since PRM
stratification can be determined during the radiotherapy and
concomitant temozolomide treatment phase.

Given that DWI is acquired in most routine MRI
examinations, post-processing methodologies leveraging
multiparametric combinations, also described in Part 2, have
often incorporated diffusion techniques. This may be with or
without the application of machine learning approaches. For
example, a machine learning model that used FLAIR and DWI
images was able to predict tumor recurrence with higher
accuracy than using either modality by itself (173). Likewise,
analysis with a multiparametric clustering approach was shown
to be superior to a single-modality approach (174, 175).

In summary, study designs will likely improve as large
prospective studies are performed using published study
protocols and this will provide a higher level of evidence for
their translation as routine monitoring biomarkers for high-grade
gliomas (176). Analyses are also likely to become more complex
using histogram analyses or machine learning approaches, which
can integrate longitudinal and multiparametric data. The
beginnings of this development can already be seen (177).

3.7 IVIM and DKI
3.7.1 Methodology
IVIM and DKI are based on standard diffusion acquisition
techniques. Standard DWI with ADC maps as a reference
assume that water diffusion in tissues is Gaussian and that the
diffusion signal will fall log-linearly with increasing b-value.
However, the reality is different due to cell membrane
interactions in anisotropic nerve fibers (and glial cells and their
products such as myelin) and intravascular water in capillaries.
Both IVIM and DKI try to assess the non-Gaussian and
perfusion components in the diffusion signal, IVIM at the low
end of the b-value axis of the signal-decay curve, assessing the
perfusion-dependent component, and DKI on the high end of
the b-value axis, above 1000 mm2/s.

The physiological premise behind IVIM is that due to the
complex networks of capillaries, the flowing water-bound
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protons appear to move randomly, thereby simulating a
Gaussian diffusion process. This pseudo-diffusion component
can be expressed through various extensions of the basic Stejskal-
Tanner equation, of which the biexponential model is possibly
the most frequently applied in IVIM (178):

S(b)
S(0)

= f · e−b:(D
∗+Dblood) + (1 − f ) · e−b·Dtissue Equation 10

with f being the capillary blood perfusion fraction in the diffusion
signal, D* the pseudo-diffusion coefficient in the capillaries, and
D true diffusion in either blood or tissue.

However, model fitting can become more stable, and thus
reliable for application, if the model is simplified by separating
diffusion into the fast pseudo-diffusion component of flowing
water molecules, D*, and the slow component of water molecules
moving by thermal diffusion, D, without further subdivision of
tissue and blood components:

S(b)
S(0)

= f · e−b·D
∗
+ (1 − f ) · e−b·D Equation 11

At high b-values, cell membranes become an influential factor
on the diffusion signal. Therefore, the kurtosis effect, or the width
and amplitude deformation of the Gaussian diffusion probability
curve, needs to be incorporated as a dimensionless kurtosis factor
K (131):

S(b)
S(0)

= f · e−bD
∗
+ (1 − D + f ) · e−bD+

1
6b

2D2K Equation 12

The choice of b-values influences the shape of the fitting curve
and therefore the parameter results. For IVIM, this means that
more b-values should be chosen in the spectrum below 250 mm2/
s. Currently, there is no consensus on howmany or exactly which
b-values should be chosen for IVIM and DKI measurements.

3.7.2 Strengths and Weaknesses
IVIM and DKI are both relevant techniques in neuro-oncological
imaging because they can potentially assess important tumor
tissue properties such as microperfusion and cellularity. They are
also non-invasive. Multiple b-value acquisitions, however, can
extend scan time. Choosing fewer b-values will shorten scan time
but potentially will reduce the accuracy of the signal curve fit.
Furthermore, IVIM and DKI, like all diffusion techniques, are
heavily influenced by scanner-dependent field homogeneity as
well as magnetic distortion caused by the tissue examined, which
can limit their application e.g. in tissues close to air-filled spaces.
There are many other limitations in the models used for post-
processing, which can either underestimate or overestimate
IVIM and DKI parameters. A detailed elaboration on the
issues of fitting and parameter calculation for both IVIM and
DKI was published in 2017 (131). The influence of model
parameter selection to calculate the perfusion fraction in IVIM,
for example, has been shown in gliomas (179).

3.7.3 Evidence From Clinical Studies
The ADC and perfusion fraction (f) extracted using a previously
validated simplified IVIMmodel (150, 180) were used to assess the
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predictionof earlyprogression in IDH-wildtypeglioblastoma(181).
Higher ADCT2-FLAIR at baseline, lower fT2-FLAIR at the 10th (of 30)
radiation fraction, and lack of increase in ADCT2-FLAIR at the 20th
radiation fraction compared with baseline, were associated with
early progression. IVIM metrics were not associated with overall
survival, while higher fT2-FLAIR at the 10th radiation fraction was
associated with longer progression-free survival (181). In a study of
51 patients (182), a histogram analysis of IVIMmetrics was able to
differentiate true progression from pseudoprogression, with ROC
analyses identifying the 90th percentile for perfusion to be
discriminant with a sensitivity of 87.1%, and a specificity of
95.0%. A comparison study of different ADC modeling
approaches found that all computed metrics, including those
using the IVIM model, can differentiate tumor recurrence from
pseudoprogression (100).

In a recent study of 32 glioblastomas, DKI showed high
diagnostic accuracy, up to 88%, for differentiating between
tumor progression and post-treatment related effects (183). In
a comparison with DTI, DKI was found to be superior in
predicting recurrence (184). DKI recently was applied to
investigate treatment response and pseudoprogression in
several studies (184–186) and these found that DKI was
superior in assessing treatment response when compared to
ADC and DTI. However, one of the studies found only limited
benefit when compared to standard ADC measurements (185).

3.7.4 Future Developments
It is potentially possible to render a tumor angiogram and
elastographic information based on IVIM and DKI
measurements (178). Because vascular and elastographic tumor
imaging are upcoming techniques in glioma imaging (187, 188),
IVIM and DKI may be applied to such advanced applications. A
more important development in the near future will be determning
the optimal choice of the number of b values needed for a reliable fit
for IVIM and DKI (189).

3.8 DTI
3.8.1 Methodology
By sampling the diffusion signal with at least six different
directions, the information can be grouped into a so-called
tensor, a multi-dimensional mathematical construct that
adheres to mathematical operators (139) and can be used to
determine diffusion magnitude (mean diffusivity) and degrees of
diffusion anisotropy (fractional anisotropy [FA]). The estimated
directionality can be visualized through post processing
techniques using ellipsoids or fibers. DTI obtained by
acquiring repeated DWI in different non-collinear directions
can lead to some quantitative parameters, such as FA, mean
diffusivity, axial diffusivity, and radial diffusivity. FA is an index
between 0 and 1 to assess the degree of diffusion asymmetry in a
voxel in terms of its eigenvalues. Because anatomical tracts are
anisotropic, FA maps show where tracts are passing, or changing
in disease, e.g., through destruction of these due to tumor cell
invasion or sometimes treatment. A limitation of the diffusion
tensor model is the assumption that the diffusion of water will
always be Gaussian (190). This is true for diffusion within a
singular environment (i.e., without different compartments), but
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due to imaging voxels being relatively large, it rarely points to a
complete picture in human tissue.

3.8.2 Strengths and Weaknesses
All scanner manufacturers have protocols to acquire DTI data
and calculate mean diffusivity and FA maps as part of a post-
processing step on the console. However, there is no common
framework and a lack of consensus regarding how many
directions or which b-values shells should be chosen. As in
DWI, EPI-related artifacts such as geometric distortions and
signal loss present challenges in superimposing DTI-derived
maps on structural imaging. Although tractography is
currently less relevant as a monitoring biomarker and largely
beyond the scope of this position statement, it is noted that some
scanner manufacturers offer the ability to perform tractography.
These algorithms are often a “black-box,” making comparison
and reproducibility difficult. Commercial and non-commercial
software packages exist, employing both deterministic and
probabilistic algorithms. It is noteworthy that these require
considerable training and present challenges when integrating
the process with clinical workflows.

3.8.3 Evidence From Clinical Studies
After standard-of-care radiotherapy and concomittant
temozolomide, when compared with pseudoprogression, the
FA in contrast-enhancing tumor was higher in true tumor
progression (162, 191, 192) and even appears to increase when
compared to previous measurements (163). Whilst higher FA in
progression has been postulated to occur due to the orientation
of overproduced extracellular matrix in glioblastoma, other
authors reported no difference in FA when pseudoprogression
and progression were compared (141, 193). DTI-based maps of
tissue isotropy and anisotropy have also been successfully used to
predict recurrence of glioblastoma (194).

3.8.4 Future Developments
Clinical studies aiming to optimize the multiple b-value shells
and number of directions selected, are required before consensus
standardization will support translation into the clinic routinely.
This is being enabled by the dissemination of sequences and
greater accessibility of post-processing pipelines without the
need for advanced programming skills.

3.9 Other Advanced Diffusion Techniques
3.9.1 Methodology
Multiple other advanced MRI techniques are based on DWI.
Many of them focus on modeling diffusion in different tissue
environments to disentangle the signal from “hindered, restricted,
and isotropic compartments” (195). The hypothesis is that these
compartments reflect actual tissue compartments, such as the
extra-axonal or extracellular space (hindered diffusion), intra-
cellular, or intra-axonal space (restricted), and fluid, such as
edema or cerebrospinal fluid (isotropic). Many of these models,
such as the NODDI technique, are designed based on assumptions
in healthy white matter (123). Therefore, their use may be limited
in glioblastomas. The RSI model (124) offers parametric indices to
be calculated in a similar way to NODDI, such as with neurite
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density and dispersion indices, but RSI does allow more flexibility
that may make it more appropriate for tumor imaging. While the
tissue in RSI is modeled as cylinders, similar to other DWI-
microstructure techniques targeted at white matter, the relatively
large spectrum of size and orientation modeled makes it sensitive
to a large range of geometries beyond the cylindrical shape (124).
In addition, removal of the isotropic signal contribution can aid in
disentangling enhancing tumor volume from edema.
Disentangling the isotropic compartment is also of interest in
the FWI technique. Here, a modeling approach that is initialized
with a constant diffusivity of free water can be used to create maps
of free water as well as produce a diffusion tensor that has the
isotropic signal removed. Integration with the tensor approach
lends its application to improving tractography results in the
presence of a conspicuous amount of edema.

VERDICT is a model that infers tumor cell microstructure
from DWI measurements (126). This model derives multiple
compartments (intracellular, intravascular and extracellular–
extravascular spaces) and has recently been used to investigate
treatment response in animal models of glioma (196, 197). It has
subsequently been adapted in human glioblastoma studies in
treatment-naive patients (198). The VERDICT model assumes
tumor cells are spherical and can model both cell radii and
densities, making it an attractive option for the use in treatment
response monitoring.

3.9.2 Strengths and Weaknesses
Even though the advanced radiological imaging and
multiparametric imaging approach is promising in the context of
post-treatment related effects or specifically for pseudoprogression
and radiation necrosis, efforts to establish uniform practices and
protocols are again necessary. As in DWI and DTI, geometric
distortions are also a challenge and there is no consensus on how
many directions and which b-value shells are optimal with which
particular microstructural technique. Other factors, such as the
choice of TE and TR that is limited by either hardware or sequence,
also add difficulty to the reproduction of results.

Many microstructural imaging approaches require lengthy
protocols or uncommon scanner hardware options, such as
parallel transmit or head coils with a large number of
channels. In addition, the high b-values required often
necessitate imaging close to the noise baseline, which requires
lengthy averaging or noise modeling in post-processing, which is
not a trivial challenge in clinical imaging.

3.9.3 Evidence From Clinical Studies
The evidence in clinical studies of brain tumor treatment
response is very limited. However, FWI has most recently been
used to successfully predict glioblastoma recurrence (199).
Furthermore, RSI has been used to show treatment effects
(135, 200, 201) as well as investigating overall and progression-
free survival in gliomas (202). NODDI has been used together
with serial DTI imaging to observe tumor changes up to two
months before recurrence (203). For completeness in describing
these emerging techniques, it is also noted that RSI was used to
differentiate true progression from immune-mediated
pseudoprogression (Figure 12) in a proof-of-concept case
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study. A 64-year-old man had follow-up imaging over several
months. He developed pathologically proven pseudoprogression
as well as a secondary primary lesion in a separate location. The
authors found that RSI was able to differentiate true progression
from pseudoprogression while ADC could not (204). However,
whilst RSI is supported by marginally more clinical evidence
than these other emerging techniques, it has yet to be adopted in
large-scale glioblastoma research studies, thereby allowing the
strengths of the technique to be demonstrated.
4 DISCUSSION

Contemporaneous, accurate, and reliable monitoring biomarkers
are required for high-grade glioma treatment response assessment
as the use of conventional structural MRI protocols is limited by
important challenges. The current evidence regarding the potential
for monitoring biomarkers based on advanced MRI techniques is
reviewed, and the individual modalities of perfusion, permeability,
and microstructural imaging are described (these will be
complemented by modalities related to metabolism and/or
chemical composition discussed in Part 2). Considerable
developments have been made in advanced MRI methodology.
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Although some techniques have evolved and matured over three
decades, several new state-of-the-art methods are poised to
contribute to the imaging armamentarium. However, limitations
remain for all techniques. Good-quality evidence of clinical
diagnostic accuracy is typically lacking. Clinical implementation
of standardized tools generally remains challenging, and some
recent techniques are in their infancy. The readiness of individual
modalities in terms of technical validation, clinical evidence,
acceptance and implementation are summarized in Part 2.

High-grade glioma vasculature exhibits increased perfusion,
blood volume, and permeability compared with normal brain
tissue. Measures of CBV derived from DSC-MRI have
consistently provided information about brain tumor growth
and response to treatment; it is the most clinically validated
advanced technique. Clinical studies have proven the potential of
DCE-MRI for distinguishing post-treatment related effects from
recurrence, but the optimal acquisition protocol, mode of
analysis, and parameter of highest diagnostic value and
optimal cut-off points remain to be established. These same
challenges are present to some extent with other perfusion
techniques. ASL techniques do not require the injection of a
contrast agent, and fast repeated measurements can be
performed. Moreover, the absence of potential gadolinium
FIGURE 12 | A glioblastoma in a 64-year-old man after chemoradiation and immunotherapy with both true progression (A–C) and pseudoprogression
(D–F) observed in the same patient at different time points. Red squares in the T1-weighted post contrast images (A, D) illustrate the magnified regions on ADC
images (B, E) and RSI cellularity map (C, F). (A–C) An enhancing frontolateral area (A) confirmed to represent true progression is shown to have low ADC (B) with
hyperintensity in the RSI cellularity map with more subtle ring hyperintensity around the central necrosis (C). Left parietal pseudoprogression in an enhancing solid
focus (D) was shown to be hypointense on the RSI cellularity map (F). The ADC map is not decisive here (E). Adapted with kind permission by the authors (204).
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deposition effects allows widespread use in pediatric patients and
those with impaired renal function. Although the current review
is focused on adult high-grade glioma, several studies have
shown the utility of ASL perfusion imaging in pediatric brain
tumors (205). DWI, ADC, DTI, DKI, IVIM, and other
microstructural modeling approaches also allow treatment
response assessment; more robust data is required to validate
these techniques alone or when applied to post-processing
methodologies. (Post-processing methodologies involving the
combination of MRI approaches [multiparametric imaging] or
machine learning are summarized in Part 2). Finally, for all
parametric imaging techniques, the clinical application of cutoffs
based on the literature is complicated by differences in how a
ROI is defined and what particular descriptive statistic value
(maximum, mean, etc.) within the ROI is used. Using a fixed
image analysis approach, a multi-center study did show that
excellent agreement of cut-offs between sites and platforms may
be achieved (57). Nevertheless, until methods are standardized,
generally accepted cut-off values may be difficult to apply in the
clinical setting. Alternatively, clinical departments may rely on
replicating approaches for generation and analysis of parametric
images described in individual studies reporting the cut-off used.

In conclusion, considerable progress has been made in the
development of advanced MRI monitoring biomarkers. As we
approach the mid-twenty-first century, the techniques will have
matured and serve as robust clinic-ready assays for treatment
response assessment in personalized medicine regimens, which
themselves will evolve in parallel. For now, more research and
collaboration are needed to provide standardized and evidenced-
based tools for this uncommon but disproportionately
devastating disease.
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