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Abstract: The capacitated dispersion problem, which is a variant of the maximum diversity problem,
aims to determine a set of elements within a network. These elements could symbolize, for instance,
facilities in a supply chain or transmission nodes in a telecommunication network. While each
element typically has a bounded service capacity, in this research, we introduce a twist. The capacity
of each node might be influenced by a random Bernoulli component, thereby rendering the possibility
of a node having zero capacity, which is contingent upon a black box mechanism that accounts
for environmental variables. Recognizing the inherent complexity and the NP-hard nature of the
capacitated dispersion problem, heuristic algorithms have become indispensable for handling larger
instances. In this paper, we introduce a novel approach by hybridizing a heuristic algorithm with
reinforcement learning to address this intricate problem variant.

Keywords: capacitated dispersion problem; metaheuristics; reinforcement learning; supply chains;
telecommunication networks

1. Introduction

Within the evolving dynamics of supply networks, facility capacity limitation has
emerged as an undeniable constraint. Deciding upon these capacities is spotlighted as a
pivotal strategic decision in supply network design [1–3]. However, as challenges such as
the facility location problem (FLP) are discussed, a gap is observed: the fluctuating nature
of capacity in response to external drivers [4–6]. Maximum diversity problems (MDPs) offer
an additional dimension, thereby focusing on location without factoring in allocation [4].
These challenges, while relevant, often do not encompass strategic capacity considerations,
especially when demand outpaces supply. To address this gap, we introduce an innovative
cross between greedy algorithms [7] and reinforcement learning [8]. This amalgamation
allows for more dynamic, environment-tuned node selection, thus accounting for shifting
factors and unpredictable demands. Our approach surpasses the limitations of traditional
models, such as Model (1), by adapting and learning from the environment in real time,
thereby ensuring optimal demand fulfillment as discussed in Juan et al. [9].

In supply networks, facilities frequently operate under inherent capacity restrictions.
Whether it is a production plant or a distribution center, there is a finite amount of product
that can be manufactured or managed within a specified timeframe. The first one to define
capacity for this problem was Rosenkrantz et al. [10]. Specifically, the objective of the
capacitated dispersion problem (CDP) is to enhance the dispersion of the chosen elements
(or sites, as in the context of facility location applications) while adhering to capacity
restrictions that represent a minimum storage capacity requirement. A predominant
theme in the diversity problem literature revolves around predetermined selection criteria.
Specifically, it concerns the determination of the optimal number of elements or facilities
to be chosen. The overarching goal is to reflect the innate diversity within the original set
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of options, thereby ensuring that a function reaches either a maximal or minimal value in
the context of combinatorial optimization. Model (1) serves as a representation of such
diversity problems. It aims to maximize the smallest distance between any two selected
elements, which are otherwise termed as active facilities. In this model, we have the
following definitions:

• V represents the element set.
• dij defines the distance between elements i and j within V.
• E signifies the number of elements chosen.
• xi is a binary variable that assumes a value of one when element i in V is selected,

and it selects zero otherwise.
max min

i,j∈V,i<j
{dij : xi · xj = 1}

s.t. ∑
i∈V

xi = E

xi ∈ {0, 1} ∀i ∈ V

(1)

While the ubiquity of models like Model (1) is recognized in characterizing diversity
problems, their applicability falters in specific strategic logistics scenarios. In particular,
situations where a baseline servicing capacity is mandatory present challenges that are
not addressed by such models. To solve this, the unique restriction of the model must be
modified to include the capacity of each node ci ≥ 0 and the minimum required capacity B,
as depicted in Model (2):

max min
i,j∈V,i<j

{dij : xi · xj = 1}

s.t. ∑
i∈V

ci · xi ≥ B

xi ∈ {0, 1} ∀i ∈ V

(2)

Accordingly, this paper addresses a dynamic version of the CDP. In this version,
the objective is to select a set of elements within a network. What sets this variant apart is
the introduction of a dynamic element, since the service capacity of each node is subject to
influence by a random Bernoulli component. This means that some elements may unexpect-
edly have zero capacity, which depends on an underlying black box mechanism that takes
into account the environmental variables. To solve this dynamic version, a learnheuristic
algorithm [11] is proposed. The novelty of the approach presented in this paper lies in
the fusion of a heuristic algorithm with reinforcement learning. This hybrid methodology
offers a promising solution to address the complexities introduced by the dynamic CDP.
As discussed in Mele et al. [12], combining heuristics with machine learning is an emerging
research line with a vast potential with regard to optimization.

The rest of this paper is structured as follows. Section 2 provides a review of related
work on diversity problems. Section 3 offers a formal description of the problem being
discussed. Section 4 introduces the novel learnheuristic approach that will be used to
solve the aforementioned problem. Section 5 illustrates the efficiency of the proposed
algorithm using a series of computational experiments. Finally, Section 6 highlights the
main contributions of this work.

2. Related Work on Diversity Problems

The diversity problem arose with the idea of maximizing the distance between indi-
viduals, where the definition of the distance between elements is customized to specific
applications. Once the combinatorial optimization problem was defined by Kuo et al. [13],
multiple objective functions with different approaches to the concept of diversity were
explored by Sandoya et al. [14]. Additionally, the latter work demonstrates that the di-
versity problem is NP-hard. Therefore, for larger instances, it is advisable to consider
heuristic algorithms.



Algorithms 2023, 16, 532 3 of 15

In the beginning of this century, Rosenkrantz et al. [10] introduced the capacitated
diversity problem, thus adding capacity to each node and constraints of minimal capacity.
In their work, these authors also proposed the first heuristic approach to the problem with a
heuristic algorithm called T1. Peiró et al. [15] proposed a new heuristic for the CDP. In their
work, these authors proposed a GRASP algorithm [16], thus taking into account the distance
between the solution and the capacity of the node to be selected. The algorithm is completed
by combining GRASP with a variable neighborhood descent (VND) framework [17] and a
strategic oscillation (SO) [18], which involves removing and adding nodes in solutions with
capacities that are very close to the limit. The work of Martí et al. [19] outperformed the
aforementioned SO algorithm. This work proposes three phases to achieve a solution. First,
the diversification generation method (DGM) aims to initialize a solution by picking nodes one
by one until the capacity restriction is satisfied. The difference from the GRASP phase of the SO
algorithm is that the node chosen depends on the distance and an α parameter, which shortens
the candidate list to pick the node with the largest capacity. Then, the solution is improved
using a method that differs from VND in the SO algorithm by taking into account more
than one node to replace others. Finally, it employs a multiple path relinking approach [20].
More recently, Lu et al. [21] employed a solution based on a tabu search algorithm [22]
using hash functions to identify the tabu status of the candidate solutions created by a
greedy algorithm.

On the other part, reinforcement learning [23] is a machine learning paradigm that
focuses on training agents (entities that interact with the environment) to make sequential
decisions in an environment to maximize a cumulative reward. It is inspired by behavioral
psychology and is commonly used in fields such as artificial intelligence, robotics, game
playing, and autonomous systems. This technique plays a relevant role in the current
paradigm of optimization problems as described in Mazyavkina et al. [24]. During the last
years, some studies have successfully forged a synergy between reinforcement learning
and heuristic algorithms to construct solutions for dynamic problems [25]. This symbiotic
relationship not only enhances the robustness of heuristic algorithms when confronted
with dynamic scenarios, but also allows them to continually improve over time and adapt
to changes in the environment. An instance of this is detailed in reference [9]. To the best of
our knowledge, our work is the first study to incorporate dynamic conditions into the CDP,
which requires the combination of a heuristic algorithm with reinforcement learning.

3. Problem Definition

The problem addressed in this article is an extension of the CDP, thereby considering
the possibility of selected nodes not meeting their capacity. This probability of not utilizing
the capacity is determined by dynamic contextual conditions.

In a more formal way, the CDP can be defined on a complete, weighted, and undirected
graph G(V, E), in which V is the set of facilities, and E is the set of edges connecting these
facilities. If i, j ∈ V, with i 6= j, each edge (i, j) ∈ E has a distance dij ≥ 0 that satisfies the
triangle inequality. All distances are symmetric, i.e., dij = dji. Each facility i ∈ V has a
known deterministic capacity ci > 0. An aggregated servicing capacity b > 0 is required as
a threshold. Then, the CDP consists of finding a subset O ⊂ V of facilities to open, with the
aggregated capacity exceeding b and such that the minimum distance between any pair of
facilities i, j ∈ S is maximized. In this context, xi is a binary variable that takes the value one
if facility i ∈ V is included in O, and it takes the value zero if otherwise. Then, an integer
programming model for this problem can be formulated as follows:

max min
i,j∈V,i<j

{dij : xi · xj = 1} (3)

s.t. ∑
i∈V

ci · pi · xi ≥ B (4)

xi ∈ {0, 1} ∀i ∈ V (5)
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The objective function (3) maximizes the minimum distance between any pair of
open facilities. Constraint (4) guarantees that the minimum required capacity is met
where the probability of obtaining a capacity for a node i also depends on the weather w,
the congestion of the node (ci), and the type of nodes already opened, which are determined
by the dynamic context condition, i.e., pi ∼ Bern(φ(w, c, o)) for an unknown function φ,
for a black box emulating reality. Finally, Constraint (5) defines the values that decision
variables can take. Figure 1 shows an illustrative example of the dynamic CDP. It can be
seen that the selection of the top right node has resulted in failure and a capacity of zero,
but it still remains part of the solution, thus affecting the objective function and forcing the
search for other nodes.

Figure 1. Simple example of a CDP solution under dynamic conditions.

Black Box Definition

In order to define the aforementioned black box function, which emulates the behavior
of real life, let us consider the following function:

φ(w, c, o) =
1

1− eβ0+β1·w+β2·c+β3·o
(6)

where:

• w represents the meteorological conditions directly affecting the networks.
• c denotes the congestion level between nodes.
• o indicates the ratio of operational facilities for each category—each facility belongs to

a particular type.

To model the effect of these variables on the network, the black box function uses a set
of β coefficients: β0, β1, β2, and β3; each coefficient is associated with a particular variable
as in Equation (6):

• β0 serves as the intercept term, which represents the baseline log-odds when all other
influencing factors are zero.

• β1 modulates the influence of the meteorological conditions (w) on the outcome.
• β2 influences the outcome based on the congestion (c) between nodes.
• β3 influences the outcome based on the ratio of the operation facilities (o) that are

currently open.

We employed a rule based on the name of the node to determine its type.
Specifically, the type of node with name n, where n > 1 is the number of nodes of the
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instance, is determined by calculating the remainder when n is divided by five, as displayed
in Equation (7), since there are five different types of nodes.

node_type(n) = n mod 5 (7)

Figure 2 provides a comprehensive visualization of the probabilities associated with
selecting a new node, which are generated by the black box model.

Figure 2. Different behaviors depending on the beta values.

The visualization takes into account three pivotal variables: node type, weather
conditions, and congestion levels. This display is designed to facilitate an in-depth under-
standing of how these variables interact to determine the probabilities produced by the
model. The figure consists of four distinct heatmaps, each of which corresponds to a unique
combination of weather (W) and congestion (C) conditions. The first row of heatmaps
represents scenarios where the weather condition is W = 0, interpreted as ‘Good Weather’,
while the second row corresponds to W = 1, which is interpreted as ‘Bad Weather’.
Similarly, the first column presents cases of C = 0, meaning ‘Low Congestion’, and the
second column represents C = 1, indicating ‘High Congestion’.

In each heatmap, the x axis represents the node types, which are denoted by integers
ranging from 0 to 4. These node types could, for instance, represent different geographical
locations or functionalities within a network. The y axis lists various configurations for
the open_type variable, which are labeled from A to C. These configurations represent the
state of multiple facilities, and they play a crucial role in determining the probabilities in
question. In the heatmap, every cell shows the likelihood of choosing the next node. This
takes into consideration both the node type of the next node and the types of nodes that are
already opened (open_type). It also considers the specific weather of the instance and the
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congestion conditions of the next node, which are indicated by the subplot. The color scale
enhances visual comprehension: dark black represents lower probabilities, while dark red
signifies higher probabilities.

A general legend at the bottom of the figure serves as a key to the open_type con-
figurations. It clarifies that A corresponds to an open_type configuration where we have
opened 30 facilities of type 3 and 4, B corresponds to opening 12 facilities of each type,
and C is where we have opened 30 facilities of type 0 and 1. This legend serves as a useful
guide for interpreting the complex interactions captured in the heatmaps. This intricate
visualization serves as a valuable tool for comprehending the multifaceted relationships
between weather conditions, congestion levels, node types, and open_type configurations,
which are modeled by the black box.

4. Solution Approaches for the Dynamic Capacitated Dispersion Problem

The approach proposed to solve the dynamic CDP is a heuristic algorithm that uses
reinforcement learning to deal with uncertainly. The way to approach the dynamism of the
problem is through a function that approximates the black box, which is designated from
from now on as the white box. In this example, a multivariate logistic regression was used
for prediction. It should be noted that another model, such as a neural network, could also
have been selected.

A Constructive Heuristic

Algorithm 1 shows the main procedure of the constructive heuristic, which extends
the algorithm proposed by Martí et al. [19], thus considering the predictions provided by
the white box to deal with the uncertainty of the problem. It starts from a hypothetical
scenario where all facilities are initially closed, i.e., the algorithm starts with an empty initial
solution (line 1). Next, a list of potential candidates for the first two nodes is generated.
This list includes the edges that connect each pair of facilities and is sorted in descending
order based on a combination of the distances between them and their respective capacities.
This combination is weighted by the likelihood of successfully covering the capacity of
a node (line 2). Equation (8) shows the edge value, where π(ni) is the probability of ni
covering the capacity.

edge(ni, nj) = δ · di,j +
(1− δ)

2
·
(
π(ni) · ci + π(nj) · cj

)
(8)

Next, the algorithm selects the element at the top position of the described edge_list
(line 3). Subsequently, the pair of facilities that compose the selected edge are included in
the solution (line 4). Then, the simulation of the black box with the environment condition
is performed, and the capacity of the solution is updated (line 5). Later, the objective
function (of ) is computed for the first time, thus considering the distance between these two
facilities (line 6). To construct a feasible solution, the heuristic generates a preference list
of candidate facilities (node_list) to be included in the solution in order to decide the most
suitable ones to add in each iteration (line 8). To select the best nodes, a candidate list to
evaluate them is implemented, with an evaluation function employed to sort the preference.
The evaluation value associated with each element of the list is defined in Equation (9). It
considers both the calculated distance from the new facility (distance_to_solution), i.e., the
minimum distance between the node and each of the facilities currently selected, and the
capacity of the candidate facility (ci), which is weighted by the predicted probability of
successfully covering the node capacity, π(ni). Both of these factors are adjusted to fit
within a common scale by dividing them by the maximum distance between nodes and the
maximum capacity in the set of candidates V\S, where S represents the current solution.
To properly adjust the importance of each of the terms, a δ ∈ (0, 1) is added. Later on,
the meaning of this parameter will be explained in more depth.

eval(ni) = δ · distance_to_solution(ni)

max_distance(V\S) + (1− δ) · π(ni) · ci
max_capacity(V\S) (9)
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The list of facilities is sorted in descending order, and then a modified version of the
semigreedy algorithm introduced by Martí et al. [19] is performed. This variation involves
selecting a subset of the candidate list based on the parameter 0 ≤ α ≤ 1. The subset is
described in (10):

CL := {i ∈ V\M : eval(ni) ≥ α · (eval(n0)− eval(nm))}, (10)

where n0 and nm are the nodes with best evaluation value and the worst in the list, respec-
tively. Finally, unlike the deterministic algorithm, the node ni with the highest π(ni) · ci in
the subset is chosen. The parameter α enables the algorithm to make choices among various
candidates and avoid those facilities with a low probability of successfully providing the
required capacity.

Once the facility has been selected, the simulation under the environment condition is
performed to determinate the success of the node (line 9). Finally, the of and the node_list
are updated to consider the new facility in the solution. This procedure is repeated until the
capacity constraint is met (line 7). Notice that δ ∈ (0, 1) is a tuning parameter, which depends
on the heterogeneity of the facilities in terms of the capacity. In particular, in scenarios with
heterogeneous facilities in terms of the capacity, δ will be close to zero. On the contrary, δ will
be close to one in scenarios with homogeneous facilities in terms of the capacity. To choose
the better δ parameter, the deterministic form of the problem is taken. Then, the heuristic
algorithm is performed for different δ candidates (such as values ranging from 0.1 to 0.9).
The δ parameter that is ultimately chosen is the one that yields the best result. The parameter
α is another tuning parameter, and it can be selected in a similar way.

To study the performance of the algorithm, a number of maximum iterations max_iter
is fixed, and the heuristic Algorithm 1 is performed for different environment conditions.
In Algorithm 2, the procedure initiates by creating an empty solution set S and an empty
set of objective function values o f _list. It also initializes the white box, which is going to
generate random predictions in the first iteration. Until the iteration limit is reach, a new
set of context conditions is created, and the constructive heuristic algorithm (referenced in
Algorithm 1) is repeatedly invoked to construct solution S, and its performance in terms of
the objective function value is recorded. Simultaneously, the white box object is subject to
modifications ruled by the f it_whitebox method, which is executed based on a probability
function that is dependent on the iteration. As the iteration goes on, the chance of using the
fit operation on the white box decreases. This behavior is encapsulated in Equation (11).

ExponentialFunction := P(t) = e
ln(0.01)·iter

max_iteration (11)

This cycle continues until the algorithm reaches the maximum iteration, thus culmi-
nating in the output of the refined solution set S.

Algorithm 1 Constructive heuristic (edge_list, environment_conditions, whitebox)

1: S← ∅
2: edge_list← sort(edge_list)
3: Select an element i from edge_list
4: S← S ∪ Nodes(edge_list(i))
5: capacity← black− box(Nodes(modi f ied_edge_list(i)))
6: o f ← dist(edge_list(i))
7: while not_feasible_solution(S) do
8: Select an element i from node_list
9: capacity← capacity + blackbox(node_list(i))

10: S← S ∪ node_list(i)
11: o f ← Update_ f (S)
12: node_list← Update(node_list)
13: end while
14: return S
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Algorithm 2 Algorithm performance evaluation

1: S← ∅
2: o f _list← ∅
3: iter ← 0
4: white− box ← initialize()
5: while iter < max_iter do
6: environment_conditions← random_environment_conditions
7: S← Constructive_heuristic(edge_list, environment_conditions, whitebox)
8: iter ← iter + 1
9: o f _list← o f _list ∪ o f (S)

10: whitebox ← f it_whitebox(iter, whitebox)
11: end while
12: return mean(o f _list)

5. Numerical Experiments and Results

This section outlines the computational trials we conducted to evaluate the efficacy
and performance of the previously discussed algorithms.

5.1. Computational Environment

All of the algorithms were developed using Python version 3.11 and operated on
a Google cloud platform (GCP) computing instance equipped with an Intel(R) Xeon(R)
CPU @ 2.20 GHz, 8 GB of RAM, and the Debian 11 operating system. We established
1000 instances to run with different parameters of congestion and weather defined by the
seed of the problem. We juxtaposed the performance of our proposed algorithms with the
static method. In the static method, the same algorithm was used without utilizing the
learned information from the white box. In other words, it assumes that π(ni) = 1, ∀i ∈ V.
This approach allows for a thorough comparison. Our evaluations took into account three
sets of instances as proposed by Martí et al. [19], i.e.:

• GKD instances: This is a dataset formed using Euclidean distances with node coordi-
nates generated within a uniform distribution ranging from 0 to 10. Initially proposed
in Martí et al. [26], it is divided into two subsets: the GKD-b, which includes instances
with 50 and 150 nodes, and the GKD-c subset, which includes instances harboring
500 nodes.

• MDG instances: This dataset encompasses real numbers arbitrarily chosen between
0 and 1000 that originate from a uniform distribution. It was introduced by Duarte
and Martí [27] and comprises instances with a sizable 500 nodes.

For each instance, it is important to include all the required data to conduct the
experiments, as was done by Martí et al. [19] and Gomez et al. [28] using the parameter b
to determine the percentage of the total capacity obtained by summing the capacities of all
facilities. In this case, the parameter was set at either 0.2 or 0.3, which represents 20% or
30% of the total capacity, respectively. One of the main goals of this section is to conduct a
comparison between the learnheuristic algorithm introduced in this study and its static
counterpart. To achieve this, we compared the results of 1000 iterations of the algorithm
using identical scenarios in each algorithm. In our experiments, we utilized three distinct
seeds to create the environment of the instances.

5.2. Black Box Parameters

In the context of this study, the black box works as a mechanism that predicts whether
a particular node will be operational or not. It is essential to include the black box in our
solution in order to obtain these predictions. Utilizing specific beta coefficients, this function
provides a probability of a node having capacity. Subsequently, we generate a random
number from a uniform distribution to determine whether the node indeed possesses the
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predicted capacity. The black box is only utilized to predict a node’s operational status once
that node has been specifically incorporated into our solution.

We have assumed that the black box follows a logistic regression for its predictions.
We have defined three types of dynamism, i.e., we have built three sets of parameters, with
one for each type of dynamism. The parameters used for the black box in the Formula (6)
for each type of dynamism are the following:

Table 1 details the probability of a node being operational and offering capacity when
it is opened, which is based on different scenarios combining weather, congestion, and the
configuration of nodes already included in the solution. Notice that congestion has a great
influence on this probability for all nodes.

Table 1. Black box’s parameters for the Formula (6).

Node Type
Low Medium High

β0 β1 β2 β3 β0 β1 β2 β3 β0 β1 β2 β3

N1 0.7 −0.3 −2.5 −0.8 0.5 −0.6 −3 −1.85 −0.4 −1 −3.2 −2

N2 0.8 −0.2 −2 −0.55 0.6 −0.4 −2.5 −0.8 −0.2 −0.6 −2.7 −1.2

N3 0.9 −0.15 −0.5 0 1 −0.25 −0.75 0 0.75 −0.5 −1.75 −1

N4 1 −0.1 −0.25 0.4 1.2 −0.15 −0.45 0.6 1 −0.25 −0.45 0.3

N5 1.1 −0.05 −0.1 0.6 1.3 −0.1 −0.2 0.8 1.1 −0.1 −0.2 0.5

5.3. Analysis of Results

Table 2 shows the results obtained with the static and learnheuristic approaches for all
benchmark instances. Moreover, with the objective of comparing the quality of our methods,
we also report three different types of dynamism. Since we used three different seeds,
Table 2 shows two columns of results for each heuristic strategy: a column with the average
result of the objective function and a column with the average nodes included in the solution
(Nodes). The last four columns in Table 2 show the percentage gaps between some of the
tested solution approaches. Hence, if we denote as a learnheuristic the average objective
function obtained with our learnheuristic approach, then the percentage gap between the
learnheuristic and static solutions is computed using the formula Gap = learnheuristic−static

Static .
In this context, a negative performance gap implies that the static algorithm yields a better
solution, while a positive performance gap suggests that the learnheuristic algorithm
outperforms its static counterpart.

As can be seen in Table 2, the average of our objective function obtained by our learn-
heuristic algorithm usually outperformed the static algorithm, sometimes by a noticeable
percentage gap. For example, while the global average gaps between these approaches
were from 7.30 to 16.07% in a low and in a high dynamic environment, respectively, we can
see that this gap grew by up to 40.13% for the MDG instances, which are the largest ones.
Notably, we observed a negative performance gap in one particular instance characterized
by low dynamism. In this isolated case, the static algorithm outperformed the dynamic
counterpart with a gap of −1.40%. This anomaly can be attributed to the specific dynamic
properties and topological structure inherent to the instance. Given that this negative gap is
an isolated occurrence, it does not warrant undue concern. Additionally, notice that the av-
erage gap between the static and the learnheuristic approaches increased, as the dynamism
was greater due to the static counterpart not taking into account the probability of a node,
thus having fewer nodes in the solution. Based on the values of the aforementioned tables
and Table 3, Figure 3 shows the gap between the different dynamism values of the problem
comparing the static and learnheuristic approaches in all cited instances, where the upward
trend that the gap has can be seen for each dynamic environment.
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Table 2. Comparative results between learnheuristic and static algorithms for instances GKD_b.

Instance

Learnheuristic Static
Gap (%)

Low (1) Medium (2) High (3) Low (4) Medium (5) High (6)

Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF (1)–(4) (2)–(5) (3)–(6)

GKD-b_11_n50_b02_m5 38.4 13.6 117.9 34.1 14.4 116.7 38.7 19.9 110.4 1.9 13.0 115.5 1.7 14.2 113.6 2.0 19.7 105.7 2.10% 2.75% 4.39%

GKD-b_11_n50_b03_m5 31.7 20.6 107.7 34.8 21.6 106.7 46.5 31.4 94.4 1.5 21.7 107.5 1.6 23.5 105.1 2.0 33.7 91.0 0.21% 1.51% 3.72%

GKD-b_12_n50_b02_m5 22.0 11.5 146.3 22.2 11.6 145.4 28.7 14.6 140.4 1.0 13.4 138.0 1.2 14.6 135.3 1.4 20.2 128.3 6.05% 7.45% 9.42%

GKD-b_12_n50_b03_m5 35.3 22.2 134.6 37.2 23.1 132.8 42.9 32.0 122.9 1.4 21.6 130.5 1.5 23.1 128.4 1.9 32.7 119.4 3.13% 3.40% 2.95%

GKD-b_13_n50_b02_m5 26.6 14.0 69.0 27.2 14.4 68.5 34.4 19.3 62.6 1.2 15.2 63.2 1.2 16.1 61.9 1.5 23.6 53.3 9.09% 10.73% 17.44%

GKD-b_13_n50_b03_m5 32.7 19.1 58.0 30.9 19.2 57.9 43.0 27.9 49.0 1.5 22.0 54.0 1.6 23.4 52.6 2.0 33.4 43.0 7.36% 10.13% 13.99%

GKD-b_14_n50_b02_m5 27.3 14.2 60.5 28.1 15.2 59.0 34.3 21.6 50.7 1.2 15.6 56.7 1.3 17.6 53.5 1.6 25.5 42.7 6.61% 10.30% 18.63%

GKD-b_14_n50_b03_m5 38.1 24.2 47.0 41.3 25.4 45.6 49.3 34.9 34.9 1.6 25.4 45.4 1.7 27.3 43.4 2.0 37.4 31.7 3.39% 4.94% 10.19%

GKD-b_15_n50_b02_m5 21.7 8.9 115.4 21.0 8.9 113.0 24.4 9.8 104.3 0.9 11.6 114.0 1.0 12.3 110.1 1.1 15.3 99.3 1.16% 2.61% 4.99%

GKD-b_15_n50_b03_m5 39.3 21.2 113.0 42.4 23.3 109.8 55.6 35.2 93.7 1.7 23.6 109.5 1.9 27.4 104.9 2.2 39.5 88.6 3.15% 4.68% 5.75%

GKD-b_16_n50_b02_m15 26.9 13.3 51.3 27.6 13.9 49.9 34.5 21.1 40.2 1.1 13.8 48.9 1.1 14.4 47.5 1.5 21.7 38.4 4.89% 5.05% 4.53%

GKD-b_16_n50_b03_m15 30.3 14.8 28.9 29.6 14.6 29.5 35.3 19.2 26.6 1.3 17.9 26.2 1.4 19.0 25.2 1.7 26.8 20.9 10.31% 17.30% 27.34%

GKD-b_17_n50_b02_m15 24.8 12.3 23.2 25.3 12.3 23.1 30.5 15.8 19.3 1.0 13.9 20.3 1.1 15.5 18.5 1.5 22.8 13.5 14.02% 24.86% 43.48%

GKD-b_17_n50_b03_m15 35.5 21.6 13.5 36.4 22.9 12.7 42.7 31.3 8.8 1.5 22.5 13.0 1.7 24.4 11.9 1.9 33.2 8.1 4.27% 6.36% 8.96%

GKD-b_18_n50_b02_m15 25.6 11.5 91.2 24.7 11.0 92.2 26.7 12.5 89.1 1.1 14.8 81.0 1.2 15.8 79.6 1.4 21.9 71.8 12.64% 15.78% 23.98%

GKD-b_18_n50_b03_m15 31.3 17.4 74.3 33.2 17.4 73.9 34.4 22.9 66.8 1.3 18.9 71.2 1.4 19.9 69.4 1.7 27.1 60.5 4.34% 6.55% 10.38%

GKD-b_19_n50_b02_m15 24.1 13.5 89.9 26.8 14.3 88.2 35.2 21.7 79.4 1.0 13.1 88.4 1.1 14.3 86.4 1.4 22.0 76.2 1.71% 2.09% 4.24%

GKD-b_19_n50_b03_m15 36.3 22.6 77.9 37.3 23.6 76.6 44.9 33.3 65.5 1.6 24.0 76.0 1.6 26.4 73.2 2.0 36.9 60.3 2.52% 4.62% 8.64%

GKD-b_20_n50_b02_m15 25.0 13.6 90.7 24.5 13.6 90.1 29.1 17.0 84.7 1.0 13.9 87.8 1.1 15.0 86.0 1.4 21.0 77.8 3.29% 4.78% 8.91%

GKD-b_20_n50_b03_m15 30.5 19.7 79.7 33.1 20.9 78.3 44.5 30.6 64.4 1.3 20.2 77.9 1.5 21.9 75.6 1.9 32.7 60.3 2.30% 3.58% 6.82%

GKD-b_41_n150_b02_m15 162.2 35.7 141.2 165.6 37.5 139.9 197.5 55.5 132.7 7.8 39.4 139.9 8.5 43.9 137.7 11.7 67.6 127.5 0.87% 1.64% 3.41%

GKD-b_41_n150_b03_m15 198.6 56.9 132.4 205.8 60.1 130.7 254.3 95.7 117.6 10.6 58.0 130.0 11.4 64.0 127.0 15.2 105.6 111.5 1.82% 2.88% 5.51%

GKD-b_42_n150_b02_m15 166.9 38.4 62.5 165.3 39.4 61.6 194.9 53.9 55.5 8.2 41.9 61.1 8.8 45.8 59.4 11.1 62.1 53.7 2.40% 3.71% 3.34%

GKD-b_42_n150_b03_m15 196.9 57.5 51.5 195.4 58.7 50.7 234.6 84.0 45.1 11.0 60.4 51.5 11.4 63.8 50.4 14.2 92.9 42.7 0.02% 0.60% 5.57%

GKD-b_43_n150_b02_m15 165.6 39.0 46.0 166.7 38.6 45.9 182.4 50.5 41.5 8.8 45.7 42.8 9.5 49.2 41.6 11.6 65.4 37.6 7.33% 10.44% 10.30%

GKD-b_43_n150_b03_m15 197.1 58.1 39.3 197.4 61.7 38.2 243.9 94.5 29.9 10.9 60.5 38.2 11.6 67.1 36.4 15.2 105.3 26.4 2.86% 4.75% 13.00%

GKD-b_44_n150_b02_m15 166.8 38.2 80.7 166.4 39.3 80.0 193.8 53.1 73.8 7.7 38.4 78.9 8.2 41.6 77.2 10.7 59.6 69.4 2.19% 3.66% 6.38%

GKD-b_44_n150_b03_m15 191.4 56.5 69.8 201.3 58.8 69.2 249.1 91.3 60.6 11.2 62.6 68.2 12.3 71.3 65.5 15.4 108.2 54.5 2.33% 5.65% 11.18%

GKD-b_45_n150_b02_m15 159.6 37.1 88.6 163.7 37.9 87.9 184.3 49.7 82.0 7.5 37.5 86.1 7.8 39.8 84.7 9.9 53.6 78.0 2.89% 3.67% 5.13%
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Table 2. Cont.

Instance

Learnheuristic Static
Gap (%)

Low (1) Medium (2) High (3) Low (4) Medium (5) High (6)

Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF (1)–(4) (2)–(5) (3)–(6)

GKD-b_45_n150_b03_m15 207.2 60.6 77.4 209.4 64.1 75.9 254.4 94.0 66.4 11.3 63.1 73.8 12.0 69.3 71.5 15.0 102.1 62.3 4.92% 6.22% 6.57%

GKD-b_46_n150_b02_m45 162.9 37.1 101.3 161.2 36.9 101.2 177.9 47.5 95.9 7.4 37.1 99.3 7.8 39.6 98.1 10.0 55.3 90.5 1.95% 3.07% 5.98%

GKD-b_46_n150_b03_m45 199.4 59.0 90.5 204.6 62.3 88.9 248.3 93.4 78.3 10.7 58.6 89.4 11.4 64.0 87.4 14.8 101.2 74.0 1.22% 1.72% 5.81%

GKD-b_47_n150_b02_m45 163.7 37.4 142.0 154.5 38.3 141.2 174.9 49.1 135.9 7.7 38.6 139.7 8.1 41.6 137.9 10.2 55.4 130.7 1.68% 2.42% 4.01%

GKD-b_47_n150_b03_m45 178.9 51.9 133.0 180.0 53.7 132.3 223.1 81.9 122.2 10.0 53.8 130.4 10.7 58.2 129.1 14.0 91.5 117.1 1.99% 2.43% 4.32%

GKD-b_48_n150_b02_m45 151.8 37.0 79.3 157.9 38.6 78.2 182.6 55.6 71.3 7.6 38.0 78.5 8.3 42.2 76.4 11.8 65.8 67.7 0.93% 2.33% 5.19%

GKD-b_48_n150_b03_m45 194.0 61.0 69.1 194.1 66.2 67.7 238.9 102.7 57.1 11.0 60.7 68.0 11.8 67.8 65.9 15.4 110.7 53.4 1.61% 2.71% 6.78%

GKD-b_49_n150_b02_m45 140.0 30.3 148.7 137.0 30.2 148.0 146.3 36.1 143.4 6.5 31.1 146.1 6.6 32.5 145.2 8.4 43.5 139.5 1.78% 1.93% 2.78%

GKD-b_49_n150_b03_m45 170.6 49.9 134.2 170.1 51.2 133.9 210.5 79.7 123.2 9.9 52.9 128.5 10.7 58.1 126.2 14.0 91.2 115.7 4.44% 6.15% 6.48%

GKD-b_50_n150_b02_m45 140.3 35.3 88.8 148.4 36.5 87.8 172.8 50.0 82.1 7.6 37.7 86.4 8.0 40.9 85.0 11.0 60.8 78.0 2.74% 3.27% 5.26%

GKD-b_50_n150_b03_m45 187.8 50.6 77.1 190.9 51.0 76.5 212.2 69.9 72.1 9.6 50.7 72.7 9.9 53.4 71.8 12.6 75.9 66.0 6.04% 6.63% 9.15%

Table 3. Comparative results between learnheuristic and static algorithms for instances GKD_c and MDG.

Instance

Learnheuristic Static
Gap (%)

Low (1) Medium (2) High (3) Low (4) Medium (5) High (6)

Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF (1)–(4) (2)–(5) (3)–(6)

GKD-c_01_n500_b02_m50 1579.2 119.9 7.6 1584.2 122.9 7.5 1776.5 160.8 7.0 76.8 124.1 7.4 81.4 133.0 7.3 104.3 183.5 6.8 2.11% 3.13% 3.25%

GKD-c_01_n500_b03_m50 1895.2 170.0 6.7 1844.2 173.7 6.7 2120.7 258.5 6.0 105.2 179.1 6.6 109.7 191.9 6.5 144.3 296.3 5.7 2.12% 2.95% 5.44%

GKD-c_02_n500_b02_m50 1630.6 114.2 7.7 1665.4 116.4 7.6 1780.5 150.6 7.1 73.2 115.7 7.5 75.5 121.5 7.4 98.2 168.9 6.9 2.48% 3.04% 4.04%

GKD-c_02_n500_b03_m50 1956.9 195.5 6.7 1964.5 200.2 6.6 2183.0 284.9 5.9 114.9 206.5 6.4 123.4 219.3 6.3 151.9 329.7 5.5 3.93% 4.33% 6.60%

GKD-c_03_n500_b02_m50 1621.8 115.8 7.5 1596.2 116.8 7.5 1745.8 151.5 7.0 74.6 120.6 7.3 78.7 127.4 7.3 98.8 171.1 6.8 3.04% 3.39% 2.68%

GKD-c_03_n500_b03_m50 1972.0 199.9 6.6 2065.7 210.3 6.4 2334.2 329.0 5.5 115.8 210.3 6.4 126.0 230.8 6.2 160.5 364.4 5.2 1.56% 3.33% 6.71%

GKD-c_04_n500_b02_m50 1582.6 100.6 7.3 1608.4 101.6 7.2 1698.1 132.0 6.7 68.5 106.8 6.9 72.3 115.5 6.9 102.2 171.4 6.1 5.35% 5.10% 9.34%

GKD-c_04_n500_b03_m50 1933.4 193.1 6.4 1991.6 202.5 6.3 2248.1 288.1 5.6 116.1 207.9 6.2 124.2 227.7 6.0 162.6 341.7 5.0 2.89% 5.45% 11.33%

GKD-c_05_n500_b02_m50 1508.3 110.3 7.4 1605.7 111.6 7.3 1774.8 146.2 6.9 73.3 117.1 7.4 79.6 128.6 7.2 106.2 183.7 6.5 0.76% 2.14% 6.31%

GKD-c_05_n500_b03_m50 1915.9 200.1 6.6 1907.1 208.6 6.5 2156.4 307.8 5.7 113.7 201.8 6.4 118.2 217.5 6.3 153.7 343.7 5.3 2.88% 3.21% 8.22%

GKD-c_06_n500_b02_m50 1511.0 117.0 7.5 1518.4 120.2 7.5 1680.1 161.7 6.9 77.4 125.8 7.3 81.6 134.9 7.2 107.1 192.1 6.6 3.36% 4.53% 5.05%

GKD-c_06_n500_b03_m50 1827.0 184.6 6.5 1925.6 190.6 6.4 2124.9 275.3 5.7 114.2 201.1 6.3 122.8 222.1 6.1 157.5 342.1 5.2 3.38% 4.59% 10.45%
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Table 3. Cont.

Instance

Learnheuristic Static
Gap (%)

Low (1) Medium (2) High (3) Low (4) Medium (5) High (6)

Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF Time Nodes OF (1)–(4) (2)–(5) (3)–(6)

GKD-c_07_n500_b02_m50 1551.2 120.1 7.4 1523.6 122.1 7.4 1720.3 156.4 7.0 80.8 130.5 7.1 86.9 140.5 7.1 110.1 191.4 6.7 4.34% 4.19% 4.78%

GKD-c_07_n500_b03_m50 1968.1 200.5 6.6 1905.1 210.3 6.5 2171.7 317.9 5.7 113.3 204.1 6.5 121.2 222.0 6.4 156.3 347.7 5.3 0.44% 1.05% 5.75%

GKD-c_08_n500_b02_m50 1486.1 116.1 7.6 1510.8 119.4 7.6 1619.2 163.6 6.9 72.7 118.2 7.5 77.2 127.3 7.4 103.1 182.9 6.8 1.65% 2.03% 1.61%

GKD-c_08_n500_b03_m50 1771.6 197.2 6.6 1867.0 204.2 6.5 2116.3 296.4 5.8 111.9 204.1 6.5 119.0 220.6 6.4 149.0 324.1 5.6 1.47% 1.48% 3.94%

GKD-c_09_n500_b02_m50 1651.9 121.9 7.4 1634.3 125.5 7.4 1793.8 167.1 6.8 78.2 128.2 7.3 84.0 138.7 7.2 110.2 197.4 6.5 1.23% 2.45% 5.39%

GKD-c_09_n500_b03_m50 1803.9 178.6 6.4 1786.6 185.4 6.3 2060.3 272.6 5.7 111.1 196.7 6.3 119.4 218.7 6.1 153.1 333.2 5.4 1.08% 3.65% 6.37%

GKD-c_10_n500_b02_m50 1465.0 113.4 7.7 1483.2 115.9 7.7 1621.5 152.8 7.1 72.4 117.4 7.6 76.3 124.7 7.4 99.5 173.5 6.8 1.77% 2.98% 3.82%

GKD-c_10_n500_b03_m50 1730.9 191.9 6.7 1738.6 197.1 6.6 1969.5 285.1 5.9 108.5 195.6 6.5 114.9 212.1 6.4 147.4 318.3 5.5 2.26% 3.45% 7.34%

MDG-b_01_n500_b02_m50 1386.4 105.8 14.6 1390.5 107.7 14.2 1565.6 147.2 9.2 69.9 110.4 12.2 73.8 118.2 10.7 99.1 170.5 5.9 20.24% 33.02% 56.78%

MDG-b_01_n500_b03_m50 1798.3 214.4 4.4 1846.4 223.2 4.0 2184.6 322.9 1.9 119.4 221.5 3.8 126.8 241.1 3.3 160.8 368.5 1.1 14.63% 21.87% 70.62%

MDG-b_02_n500_b02_m50 1563.4 142.6 13.2 1555.6 148.8 12.2 1698.6 199.4 7.4 91.6 151.4 12.6 93.6 160.8 11.4 116.0 216.2 6.9 5.21% 7.45% 7.28%

MDG-b_02_n500_b03_m50 1772.0 211.7 5.4 1797.4 221.7 4.8 2070.1 325.2 2.0 115.1 212.1 4.8 122.1 230.7 4.0 153.7 344.9 1.4 12.08% 20.98% 44.87%

MDG-b_03_n500_b02_m50 1475.1 134.2 12.0 1499.1 140.2 11.1 1678.7 190.2 6.6 88.6 150.0 9.4 93.8 159.9 8.6 116.7 217.6 5.3 28.66% 29.06% 25.48%

MDG-b_03_n500_b03_m50 1841.9 239.5 4.7 1878.1 255.6 4.1 2095.0 362.8 1.5 126.1 241.5 4.5 133.5 264.4 3.7 161.1 383.3 1.2 4.66% 9.04% 21.97%

MDG-b_04_n500_b02_m50 1462.3 122.4 12.9 1470.3 127.6 11.9 1648.5 173.8 7.0 81.9 134.4 7.9 86.8 144.5 7.3 113.6 206.9 5.5 63.56% 62.27% 26.19%

MDG-b_04_n500_b03_m50 1811.2 210.5 4.9 1812.0 225.2 4.3 2094.0 331.8 1.6 122.6 227.8 4.3 130.2 252.6 3.4 164.4 365.5 1.0 12.89% 25.96% 51.06%

MDG-b_05_n500_b02_m50 1419.5 118.5 13.6 1427.3 123.1 12.7 1600.5 167.9 7.6 77.3 125.5 11.5 82.0 134.5 10.4 108.1 192.6 5.7 18.35% 22.27% 33.91%

MDG-b_05_n500_b03_m50 1735.6 197.0 5.0 1767.8 207.5 4.4 2015.4 306.8 1.8 111.2 198.2 4.0 118.3 217.1 3.6 153.7 337.5 1.4 24.19% 20.74% 32.24%

MDG-b_06_n500_b02_m50 1444.1 116.5 13.7 1461.7 120.0 13.1 1609.5 163.8 8.2 75.6 121.8 13.0 80.2 132.2 11.5 108.2 194.7 6.0 5.57% 13.57% 36.91%

MDG-b_06_n500_b03_m50 1796.1 222.5 4.9 1844.9 237.9 4.2 2175.7 347.6 1.5 126.6 239.6 3.8 137.5 271.8 3.1 166.1 401.9 0.9 28.53% 37.25% 72.18%

MDG-b_07_n500_b02_m50 1580.0 122.0 13.7 1653.7 126.4 12.8 1767.7 169.8 7.8 82.4 134.0 11.2 87.7 144.6 9.3 113.3 203.4 5.6 22.55% 38.32% 39.54%

MDG-b_07_n500_b03_m50 1874.5 210.0 5.5 1928.2 221.5 5.0 2249.5 336.1 2.0 116.5 213.2 5.0 123.6 230.4 4.3 156.3 347.6 1.7 11.24% 16.10% 17.93%

MDG-b_08_n500_b02_m50 1639.8 115.2 13.9 1658.6 117.4 13.0 1834.8 162.4 8.0 73.8 117.9 8.8 80.1 130.0 8.4 108.6 193.0 4.8 57.79% 54.24% 68.93%

MDG-b_08_n500_b03_m50 1975.8 220.3 5.7 2119.5 232.1 5.1 2359.8 338.2 2.1 120.0 219.0 5.3 126.3 237.0 4.5 155.7 344.3 1.7 7.72% 13.94% 23.52%

MDG-b_09_n500_b02_m50 1570.9 104.9 15.7 1577.4 108.2 15.1 1739.8 150.8 9.3 72.1 112.1 13.3 76.5 121.0 11.8 105.1 181.9 6.3 18.81% 27.92% 47.93%

MDG-b_09_n500_b03_m50 1918.4 198.1 5.5 1929.3 207.2 5.0 2182.6 305.4 2.1 115.8 203.0 5.6 123.7 223.4 4.7 158.4 341.0 1.4 –1.41% 5.68% 47.44%

MDG-b_10_n500_b02_m50 1505.8 117.0 14.8 1517.1 119.7 13.9 1653.5 159.4 8.7 78.4 125.5 13.9 84.0 133.9 11.7 106.9 185.4 7.1 5.93% 18.97% 23.02%

MDG-b_10_n500_b03_m50 1842.2 203.7 5.1 1890.6 216.8 4.5 2135.5 327.6 1.7 117.7 212.7 4.3 124.4 235.8 3.6 157.9 359.4 1.1 20.19% 27.95% 54.85%
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Figure 3. Gaps between static and dynamic approaches for different environments.

Nevertheless, Figure 4 shows the average nodes opened by the algorithm to have a
solution. The learnheuristic algorithm, represented in green, opened 4.72% fewer nodes in
scenarios with low dynamism, 9.47% fewer nodes for a scenario with medium dynamism,
and up to 13.50% fewer nodes in scenarios with high dynamism, thereby reducing the
number of nodes that needed to be opened. This fact may be of interest for other variations
of the CDP problem. For instance, in a study by Lozano-Osorio et al. [29], a cost is assigned
to each node, along with a constraint that the total cost of all opened nodes must not exceed
a constant K. This constraint is similar to the capacity constraint with the static algorithm,
shown in orange, serving as a comparative baseline.

Figure 4. Average of nodes in the solution by type of instance.

6. Conclusions and Future Work

This work introduces a learnheuristic algorithm that hybridizes a constructive heuristic
with reinforcement learning to tackle a dynamic version of the capacitated dispersion
problem, thus offering a robust solution that surpasses existing methods for deterministic
static versions. The presented algorithm adopts a constructive approach, where it integrates
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elements using reinforcement learning techniques, thus continuously learning and adapting
to the dynamism inherent in the problem space. The first part of our study explores the
advantages of this constructive mechanism. Beginning with an empty set, the algorithm
iteratively adds promising components, which are influenced by heuristic knowledge
and guided by reinforcement learning feedback, until an efficient solution structure is
achieved. This phase demonstrates a remarkable capacity to navigate and adapt to the
problem’s complexities, thus showcasing superiority over established methods, particularly
in deterministic scenarios. The results show a generalized decrease in the number of
selected nodes compared to the static version of the algorithm. It does, however, raise
the computational time due to its complex learning and adaptation processes. This minor
increase in resource is usually made up for by the algorithm’s skill in quickly identifying
and skipping nodes that probably will not give the best solution, thereby ensuring a
more efficient problem-solving process. In the CDP, the objective function is logically
connected to the number of selected nodes; this reduction, which was undoubtedly due
to the predictive intelligence used by the algorithm to avoid nodes with a low chance of
success, led to an improvement in the objective function.

Looking forward, we identify several directions for further research. Firstly, future
studies could explore problem variants where the element selection is associated with
specific costs that are possibly linked to individual element capacities. This expansion
would bring a new layer of complexity and realism to the problem, thereby providing
possibilities for further optimization and refinement. Secondly, considering scenarios with
stochastic inputs, including fluctuating demands or capacities, would be a natural next
step: this would extend our algorithm to include simheuristic components [30,31]. Thus,
combining our learnheuristic with simulation could provide robust solutions in fluctuating
environments, thus clearing the path for optimization algorithms that are flexible and
capable of adapting to dynamic and stochastic scenarios. Additionally, another possible
extension refers to the combined use of parallel computing [32] and biased randomization
techniques [33] in order to promote ‘agile’ optimization algorithms.

Author Contributions: Conceptualization, A.A.J. and J.P.; methodology, J.F.G. and A.R.U.; software,
J.F.G. and A.R.U.; validation, A.A.J. and J.P.; formal analysis, J.F.G. and A.R.U.; investigation, J.F.G.
and A.R.U.; writing—original draft preparation, J.F.G. and A.R.U.; writing—review and editing,
A.A.J. and J.P.; supervision, A.A.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been partially funded by the Spanish Ministry of Science and Innovation
(PID2022-138860NB-I00, RED2022-134703-T), by the SUN project of the Horizon Europe program
(HORIZON-CL4-2022-HUMAN-01-14-101092612), and by the i4OPT project of the Generalitat Valen-
ciana (PROMETEO/2021/065).

Data Availability Statement: All data employed is publicly available in the given references.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Govindan, K.; Fattahi, M.; Keyvanshokooh, E. Supply chain network design under uncertainty: A comprehensive review and

future research directions. Eur. J. Oper. Res. 2017, 263, 108–141. [CrossRef]
2. Eskandarpour, M.; Dejax, P.; Miemczyk, J.; Péton, O. Sustainable supply chain network design: An optimization-oriented review.

Omega 2015, 54, 11–32. [CrossRef]
3. Nataraj, S.; Ferone, D.; Quintero-Araujo, C.; Juan, A.; Festa, P. Consolidation centers in city logistics: A cooperative approach

based on the location routing problem. Int. J. Ind. Eng. Comput. 2019, 10, 393–404. [CrossRef]
4. Martí, R.; Martínez-Gavara, A.; Pérez-Peló, S.; Sánchez-Oro, J. A review on discrete diversity and dispersion maximization from

an OR perspective. Eur. J. Oper. Res. 2022, 299, 795–813. [CrossRef]
5. Correia, I.; Melo, T.; Saldanha-da Gama, F. Comparing classical performance measures for a multi-period, two-echelon supply

chain network design problem with sizing decisions. Comput. Ind. Eng. 2013, 64, 366–380. [CrossRef]
6. Tordecilla, R.D.; Copado-Méndez, P.J.; Panadero, J.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Juan, A.A. Combining heuristics

with simulation and fuzzy logic to solve a flexible-size location routing problem under uncertainty. Algorithms 2021, 14, 45.
[CrossRef]

http://doi.org/10.1016/j.ejor.2017.04.009
http://dx.doi.org/10.1016/j.omega.2015.01.006
http://dx.doi.org/10.5267/j.ijiec.2019.1.001
http://dx.doi.org/10.1016/j.ejor.2021.07.044
http://dx.doi.org/10.1016/j.cie.2012.11.001
http://dx.doi.org/10.3390/a14020045


Algorithms 2023, 16, 532 15 of 15

7. Osaba, E.; Villar-Rodriguez, E.; Del Ser, J.; Nebro, A.J.; Molina, D.; LaTorre, A.; Suganthan, P.N.; Coello, C.A.C.; Herrera, F. A
tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm
Evol. Comput. 2021, 64, 100888. [CrossRef]

8. Szepesvári, C. Algorithms for Reinforcement Learning; Springer Nature: Cham, Switzerland, 2022.
9. Juan, A.A.; Marugan, C.A.; Ahsini, Y.; Fornes, R.; Panadero, J.; Martin, X.A. Using Reinforcement Learning to Solve a Dynamic

Orienteering Problem with Random Rewards Affected by the Battery Status. Batteries 2023, 9, 416. [CrossRef]
10. Rosenkrantz, D.J.; Tayi, G.K.; Ravi, S.S. Facility Dispersion Problems under Capacity and Cost Constraints. J. Comb. Optim. 2000,

4, 7–33. [CrossRef]
11. Bayliss, C. Machine learning based simulation optimisation for urban routing problems. Appl. Soft Comput. 2021, 105, 107269.

[CrossRef]
12. Mele, U.J.; Gambardella, L.M.; Montemanni, R. A new constructive heuristic driven by machine learning for the traveling

salesman problem. Algorithms 2021, 14, 267. [CrossRef]
13. Kuo, C.C.; Glover, F.; Dhir, K.S. Analyzing and modeling the maximum diversity problem by zero-one programming. Decis. Sci.

1993, 24, 1171–1185. [CrossRef]
14. Sandoya, F.; Martínez-Gavara, A.; Aceves, R.; Duarte, A.; Martí, R. Diversity and equity models. In Handbook of Heuristics;

Springer: Berlin/Heidelberg, Germany, 2018; Volume 2-2, pp. 979–998.
15. Peiró, J.; Jiménez, I.; Laguardia, J.; Martí, R. Heuristics for the capacitated dispersion problem. Int. Trans. Oper. Res. 2021,

28, 119–141. [CrossRef]
16. Resende, M.G.; Ribeiro, C.C. Optimization by GRASP; Springer: Berlin/Heidelberg, Germany, 2016.
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