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Abstract
We present a new class of Lipschitz operators on Euclidean lattices that we call lattice
Lipschitz maps, and we prove that the associated McShane and Whitney formulas provide
the same extension result that holds for the real valued case. Essentially, these maps satisfy
a (vector-valued) Lipschitz inequality involving the order of the lattice, with the peculiarity
that the usual Lipschitz constant becomes a positive real function. Our main result shows
that, in the case of Euclidean space, being lattice Lipschitz is equivalent to having a diagonal
representation, in which the coordinate coefficients are real-valued Lipschitz functions. We
also show that in the linear case the extension of a diagonalizable operator from the values
in their eigenvectors coincide with the operator obtained both from the McShane and the
Whitney formulae. Our work on such extension/representation formulas is intended to follow
current research on the design of machine learning algorithms based on the extension of
Lipschitz functions.
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1 Introduction

The diagonal representation of symmetric linear operators is a classical and powerful tool in
the mathematical treatment of many problems in all fields of scientific and technical research.
Following this pattern, it has been a common interest of many researchers in mathematics
to extend the ideas that allow to obtain such diagonal representations to other classes of
maps, such as bilinear operators (see for example [9, 10, 12, 22] and references therein), and
Lipschitz operators [3, 11, 14]. We are interested in developing new techniques to extend
Lipschitz operators on finite-dimensional normed spaces from subsets of eigenvectors to
the whole space to obtain explicit representation formulas for them, based on the previous
computation of subsets of eigenvectors of the operator.

In this paper we introduce a new class of Lipschitz-type maps on Euclidean lattices which
we call lattice Lipschitz operators. We provide a technique for the extension of such maps
from a set of vectors in the space that satisfy eigenvector equations, proving the error formulas
that are needed in any approximation framework. The reason is that the set of eigenvectors is
known to be a convenient set to start extending a linear operator in Euclidean spaces. In this
case the computations to obtain the pointwise evaluation of the map are just additions and
multiplications by scalars, once the values of the operator in this set are known. However,
for more general maps this rule would not work, even when these maps have a reasonably
good linear approximation.

This opens the door to the project of defining new extension rules. Essentially, our operator
should be able to be “reconstructed” from the knowledge of its “fixed points” (except for a
multiplicative constant). Such points are easily described: an eigenvector of an operator T is
an element x of the space for which the projection of T (x) onto the subspace generated by
x coincides with its multiplication by an scalar. Consequently, a useful extension rule is one
that derives some benefit from this easy description, in terms of facilitating the mathematical
representation of the operator by means of a simple formula. We will show that, for the
class of lattice Lipschitz operators, the adaptations of the McShane and Whitney formulas
to the lattice valued case give the desired representations. In fact, our construction relies on
the fundamental fact that, for the case of “diagonalizable” Lipschitz operators on Euclidean
spaces, our two extension formulae coincide with the original map when applied using the
set of eigenvector of the operator as primary set. Thus, we show that the extension of a lattice
Lipschitz map T from its set of eigenvalues using any of these formulae give as a result the
original map. Moreover, as a consequence of the minimal and maximal character of these
extension formulas, we get that any other lattice Lipschitz extension give again the operator
T . This is proved in Theorem 4 (see also Corollary 5 for the linear diagonalizable operators).

Our results are motivated by the potential use of Lipschitz extension formulas in Machine
Learning algorithms. It has been shown that Lipschitz extensions are useful to predict value
functions in Reinforcement Learning (see for example [5, 13]). Although the use of the
theory of Lipschitz functions goes back to the origin of Artificial Intelligence, recently some
new results have pointed out the power of this mathematical setting to provide competitive
algorithms in different fields of machine learning (for example, [2, 4, 8, 24]). Following
this guide, we intend in this paper to provide a mathematical foundation for the safe use
of extension formulas for Lipschitz maps in this applied setting. An important key here is
that they can be applied for vector valued functions, instead of the classical case that works
for real valued function. Far from being a formal extension of the classical case, we are
interested in constructing the mathematical setting in which the relevant functions appearing
in, for example, machine learning (value functions, reward functions, oracle functions…),
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are vector-valued. This would allow to transfer the ideas supporting artificial intelligence
algorithms that are based on evaluation of real functions to the vector valued setting. This
also provides a uniform treatment of all the coordinates in the same Lipschitz type theoretical
framework.

This is also the reason why we present in this paper the simplest case, which consists
of operators defined on finite dimensional lattices. Most of our results could be formulated
and studied in the more general context of order complete Banach lattices, including abstract
ordered normed spaces, aswell asBanach function lattices ofmeasurable functions.However,
we are interested in showing the results as clean and directly applicable as possible, in order
to facilitate the direct construction of new machine learning algorithms.

The article is organized as follows. After this introduction, we present in Sect. 2 the class
of lattice Lipschitz operators. Section3 is devoted to show the main results on the extension
of lattice Lipschitz maps. After adapting the classical formulas of McShane and Whitney,
we demonstrate the main results on how these extensions work in the lattice setting. Finally,
in Sect. 4 we show the role played by the set of eigenvectors of lattice Lipschitz maps in the
representation of these operators from their eigenvalues and eigenvectors. In this sense, the
coincidence of the lattice extension formulas with the linear extension shows that essentially,
the linear representation of diagonalizable maps coincides with the lattice representation
by the McShane and Whitney formulas. The interest of our results lies in the fact that our
technique can also be applied to a broader class than linear maps, or even to operators that can
be reasonably approximated in order by lattice Lipschitz maps. Some examples illustrating
this fact are also explained in Sect. 4.

Throughout the paper we will use standard notation and concepts of normed lattices. The
symbols ∧, ∨ and | · | stand for the infimum, the supremum and the modulus of the elements
of the lattice. Recall that |x | = x ∨ (−x) for every element of the normed lattice E . We refer
to [19] for general notions on normed lattices, as order completeness and regular operator.

Let (D, d) and (M, ρ) be two metric spaces. A function T : D → M that satisfies that
there exists a constant K > 0 such that

ρ
(
T (a), T (b)

) ≤ Kd(a, b), a, b ∈ D,

is called a Lipschitz function. The Lipschitz constant of T is the infimum of all constants K
satisfying this inequality.

If T : B → R is a real-valued Lipschitz function defined on a subset B ⊆ D, it can be
extended by the McShane–Whitney Theorem [18, 25] to the whole space D preserving the
Lipschitz constant. Moreover, the extension can be explicitly computed using the following
formulas, called McShane and Whitney extensions of T respectively:

T M (b) := sup
a∈B

{
T (a) − K d(b, a)

}
, b ∈ D,

TW (b) := inf
a∈B

{
T (a) + K d(b, a)

}
, b ∈ D.

This result, together with the celebrated Kirszbraun Theorem [16] which proves the existence
of extension of Lipschitz maps on subsets of Hilbert spaces, form the classical core of the
topic. A comprehensive study of Lipschitz functions and its extensions can be seen on the
book by Cobzaş, Miculescu and Nicolae [7].

In this paper we will modify these definitions to consider the pointwise evaluation of
functions T : E → E, where E is an Euclidean normed lattice (E, ‖ · ‖,≤). We will show
that these extension formulas make sense also in this case. Let us recall the definition of
(finite dimensional) normed lattice. This is a vector lattice—with the order relation “≤”—
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and a norm ‖ · ‖ that satisfies that ‖x‖ ≤ ‖y‖ when |x | ≤ |y|, x, y ∈ E . Once a basis B is
fixed for E , we can associate to it the order in the space, that coincides with the coordinates
order: that is, for two vectors of the space x = (x1, . . . , xn) and y = (y1, . . . , yn), x ≤ y if
and only if xi ≤ yi for i = 1, . . . , n (see Sect. 2).

Consider a Lipschitz operator T : E → E . As in the linear case, we will say that a vector
v is an eigenvector of T if there is a real number λ (we consider only real eigenvalues) such
that T (v) = λ v. Note that, in the Lipschitz case, the ray defined by such a vector v need not
define a vector subspace of eigenvalues. Recall that a linear map T is diagonalizable if there
is a basis of eigenvectors. We will adapt this definition to the Lipschitz setting. However—as
in the linear case—, the set of eigenvalues of the Lipschitz map T will play a relevant role in
the representation results that we show in this paper.

2 Lattice Lipschitz operators on Euclidean spaces

In this section we define the particular class of Lipschitz maps to which this paper is devoted.
In the case we consider, the finite dimensional normed space E is enriched by an order
relation to become a normed lattice, which is defined by a cone associated to a given basis.

Fix E = R
n and let B = {x1, . . . , xn} be a basis for R

n . Consider, as usual, the addition
and scalar multiplication defined by its components. We will consider the lattice order on R

n

provided by the basis, that is, if x = (α1, . . . , αn) and y = (β1, . . . , βn) are representations
of two vectors of E given by their coordinates in B, we define

x ≤ y if and only if αi ≤ βi for every i = 1, . . . , n.

This order is given by the positive cone

C =
{

x =
n∑

i=1

αi xi : αi ≥ 0 for i = 1, . . . , n

}

,

so x ≤ y if and only if y − x ∈ C . Each vector x = ∑n
i=1 αi xi = (α1, . . . , αn) of the space

E can be considered as a function fx : � = {
1, . . . , n

} → R in the usual way, fx (w) = αw.

Thus, E can be seen as a function lattice with the pointwise order. We will use “function
notation” for simplicity, that is, if z ∈ E we will write z(w) for the coordinate of z that
corresponds to the element of B with label w ∈ �. Therefore, for x, y ∈ E,

x ≤ y if and only if x(w) ≤ y(w) for every w ∈ {
1, . . . , n

}
.

The supremum, the infimum and the modulus in this space are those given by their coor-
dinates, ∣∣∣∣∣

n∑

i=1

αi xi

∣∣∣∣∣
=

n∑

i=1

|αi |xi .

In what follows, we will assume that B is a fixed basis of E with the order defined above.
Therefore, we consider the Euclidean space as a normed lattice of functions on the set � that
contains as many elements as the dimension of E .

Definition 1 Let B be a basis for E, and consider the normed lattice with the order and the
norm provided by B. Let E0 be a subset of E . We say that an operator T : E0 → E is
lattice Lipschitz if there is a non-negative bounded function K : � → R such that for every
x, y ∈ E0, ∣∣T (x) − T (y)

∣∣(w) ≤ K (w)
∣∣x − y

∣∣(w), w ∈ �. (1)
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The pointwise infimum of all the functions K satisfying the inequality above will be called
the associate function to T .

If no further information is given we will assume throughout the paper that the function
K (w) appearing in the Lipschitz inequality for a Lipschitz operator of the lattice is its
associate function. For easy of reading, we will not make an explicit reference to the basis B
when we say that an operator is Lipschitz lattice; however, note that we need to fix this basis
beforehand for the definition to make sense.

Our definition can be seen as a particular case of the one in [17]—that is given for the
case when E is a Banach algebra—, considering E as a cone metric space on itself with the
cone metric ρ : E × E → E,

ρ(x, y)(w) = ∣
∣x − y

∣
∣(w), w ∈ �,

for x, y ∈ E . Recall that a cone metric on a set X—see for example [17]—is a map ρ :
X × X → Y , where Y is a Banach lattice, satisfying that for all x1, x2, x3 ∈ X ,

(1) 0 < ρ(x1, x2) if x1 
= x2, and ρ(x1, x1) = 0,
(2) ρ(x1, x2) = ρ(x2, x1),
(3) ρ(x1, x2) ≤ ρ(x1, x3) + ρ(x3, x2).

This notion has been applied mainly in the context of fixed point theory (see, for example,
[23] and the references therein). To the best of our knowledge, no results on operator extension
satisfying the above definition are known in the existing mathematical literature.

Some other Lipschitz-type inequalities in ordered spaces can be found on Papageorgiou
[21], Németh [20] or Li [15]. For the specific case of Banach function spaces, the recent
paper [6] provides a concrete adaptation of such kind of inequalities for spaces of integrable
functions. An overview on classical results on the topic can be found in [7, Ch.4.1].

Remark 1 Note that lattice Lipschitz operators are in particular Lipschitz: if T is lattice
Lipschitz with associate function K (w), it is a Lipschitz operator with norm less than or
equal to supw |K (w)|. Indeed, for x, y ∈ E, we have by the definition that

∣∣T (x) − T (y)
∣∣(w) ≤ K (w)

∣∣x − y
∣∣(w), w ∈ �.

Thus, taking into account the relation of the order and the norm on any normed lattice and
the specific formula of the Euclidean norm, a direct computation gives

∥∥T (x) − T (y)
∥∥ ≤

∥∥∥K (w)
∣∣x − y

∣∣(w)

∥∥∥ ≤
(
sup
w

|K (w)|
)

‖x − y‖.

3 Extension theorems for lattice Lipschitz operators

Inwhat followswewill show the extension results for lattice Lipschitz operators on Euclidean
lattices. As usual in mathematical research, in order to prove that our method makes sense
we show that our new extension rule provides the same fundamental results that hold for
diagonalizable linear operators and for non-linear operators (Theorem 4 and Corollary 5).

We will write E0 for any subset of the Euclidean space E, and we will consider a lattice
Lipschitz operator T : E0 → E .

Definition 2 Let E0 ⊆ E . For a lattice Lipschitz operator T : E0 → E with associated
bounded function K : � → R, we consider the formulas

T M (x)(w) :=
∨{

T (z)(w) − K (w)|x − z|(w) : z ∈ E0

}
, x ∈ E,
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and

TW (x)(w) :=
∧ {

T (z)(w) + K (w)|x − z|(w) : z ∈ E0

}
, x ∈ E .

Remark 2 Previous expressions are well defined in the sense that the supremum
∨

and the
infimum

∧
exist for all w ∈ �, and so T M , TW are operators from E to E . Indeed, given

x ∈ E , let y ∈ E0 be fixed and let w ∈ �. Then, for any z ∈ E0,

T (z)(w) − T (y)(w) ≤ ∣
∣T (z) − T (y)

∣
∣(w) ≤ K (w)

∣
∣z − y|(w)

≤ K (w)|z − x |(w) + K (w)|x − y|(w).

It follows that

T (z)(w) − K (w)|x − z|(w) ≤ T (y)(w) + K (w)|x − y|(w) =: M .

Since M does not depend on z, {T (z)(w) − K (w)|x − z|(w) : z ∈ E0} is a set of real
numbers bounded from above by M, so its supremum exists. Therefore T M (x) ∈ E . For the
case of TW we get the same result; to see it just consider the following remark.

Remark 3 Notice that the extension formulas T M and TW are related by the equation

TW (x)(w) =
∧ {

T (z)(w) + K (w)|x − z|(w) : z ∈ E0

}

=
∧ {

−
(
(−T )(z)(w) − K (w)|x − z|(w)

)
: z ∈ E0

}

= −
∨ {

(−T )(z)(w) − K (w)|x − z|(w) : z ∈ E0

}
= −(−T )M (x)(w).

Moreover, it can be directly seen that −T : E0 → E is also a lattice Lipschitz operator with
the same associate function K . This fact will allow us to prove some properties only for one
of the formulas, and then apply the previous identity for the other case.

Observe that the only information of the space E required for defining both extension
formulas given above is the one related to the order in E and the values of the lattice Lipschitz
function T in E0. No information on metric or linear structure is required.

The following result extends the McShane–Whitney Theorem for the case of lattice Lip-
schitz operators. The calculations are similar to those proving this classical result. However,
the reader should note that the objects for which the result is proved are functions and, in
general, elements of a normed lattice. In fact, the same calculations should give the corre-
sponding result for abstract Banach lattices under the assumption of order completeness, to
guarantee the existence of the infimums and supremums appearing in the formulae. Even for
the case of Dedekind complete Riesz spaces [1], the results of the present paper could make
sense.

Proposition 1 Let E0 ⊆ E . Let T : E0 → E be a lattice Lipschitz operator with associated
bounded function K : � → R. Then T M and TW are suitable extension formulas from E0

to E which preserve the lattice Lipschitz inequality with the same associate function K .

Proof First we show that T M is an extension of T . For any x ∈ E0 and w ∈ �, clearly one
has

T M (x)(w) ≥ T (x)(w) − K (w)|x − x |(w) = T (x)(w).

In addition, for every y ∈ E0,

T (y)(w) − T (x)(w) ≤ |T (y) − T (x)|(w) ≤ K (w)|y − x |(w),
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so T (y)(w) − K (w)|x − y|(w) ≤ T (x)(w) and, taking supremum, T M (x)(w) ≤ T (x)(w).
We conclude that T (x) = T M (x) for every x ∈ E0.

In order to justify that T M satisfies the lattice Lipschitz inequality with the same function
K , let x, y ∈ E . For any w ∈ �, if z ∈ E0

T M (x)(w) ≥ T (z)(w) − K (w)|x − z|(w)

≥ T (z)(w) − K (w)|y − z|(w) − K (w)|x − y|(w).

It follows that

T M (x)(w) ≥
∨{

T (z)(w) − K (w)|y − z|(w) − K (w)|x − y|(w) : z ∈ E0

}

= T M (y)(w) − K (w)|x − y|(w),

so K (w)|x − y|(w) ≥ T M (y)(w) − T M (x)(w). Interchanging the roles of x and y, one
obtains

K (w)|y − x |(w) ≥ T M (x)(w) − T M (y)(w),

so ∣∣T M (x)(w) − T M (y)(w)
∣∣ ≤ K (w)

∣∣y − x
∣∣(w).

The case of TW can be proved similarly. Alternatively, it can be shown just by applying
the previous case to −T taking into account Remark 3, as in Remark 2. ��

The following result gives information on the extremal properties of the McShane and
Whitney lattice extensions. It is relevant to note that, as in the case of real functions, these
lattice extensions are minimal and maximal, respectively, but in this case among all suit-
able operators providing admissible Lipschitz-type extensions. Extremality is therefore to
be understood as a vector-valued property, which works for a wide class of Lipschitz opera-
tors. This is one of the properties that make these extremal formulas especially relevant for
applications in machine learning, as in the real-valued case (see for example [4]).

Note that the notation T ≤ S used below does not follow the convention for regular
linear operators on Banach lattices (see for example [19]). In this linear case, this means that
T (z) ≤ S(z) for positive lattice elements 0 ≤ z ∈ E . However, in our case it means that
T (z) ≤ S(z) for all elements z ∈ E,which is of course only compatible with linearity when
T = S.

Proposition 2 Let E0 ⊆ E . Let T : E0 → E be a lattice Lipschitz operator with associated
bounded function K : � → R. If T̂ : E → E is an extension of T which preserve the lattice
Lipschitz inequality with the same function K , then T M ≤ T̂ ≤ TW .

Proof Let x ∈ E and w ∈ �. Since T̂ is a lattice Lipschitz operator with associate function
K , for every z ∈ E0

−K (w)|x − z|(w) ≤ T̂ (x)(w) − T̂ (z)(w) ≤ K (w)|x − z|(w).

Notice that T̂ (z)(w) = T (z)(w), and so

T (z)(w) − K (w)|x − z|(w) ≤ T̂ (x)(w) ≤ T (z)(w) + K (w)|x − z|(w).

Now, taking supremum on the left and infimum on the right, we obtain that T M (x)(w) ≤
T̂ (x)(w) ≤ TW (x)(w), as we wanted to show. ��
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Remark 4 In particular, Proposition 2 shows that T M ≤ TW . But, in order to control the
error that is made when we approximate a given extension of T by any of these operators,
we are also interested in studying how much the two extensions differ from each other. Let
us show that

0 ≤ TW (x) − T M (x) ≤ 2K
∧{

|x − z| : z ∈ E0

}
,

for any x ∈ E . Indeed, if w ∈ �,

TW (x) − T M (x)

=
∧ {

T (z) + K |x − z| : z ∈ E0

}
−

∨ {
T (z) − K |x − z| : z ∈ E0

}

=
∧ {

T (z) + K |x − z| : z ∈ E0

}
+

∧ {
− T (z) + K |x − z| : z ∈ E0

}

≤
∧{

T (z) + K |x − z| − T (z) + K |x − z| : z ∈ E0

}

= 2K
∧{

|x − z| : z ∈ E0

}
.

4 Lattice Lipschitz and diagonal operators on Euclidean lattices

Mimicking the linear setting, we are interested in studying to what extent lattice Lipschitz
operators can obtain a diagonal representation. By definition, a diagonalizable linear operator
T can always be written as a diagonal operator with respect to a basis of eigenvectors; in
this case, the restriction of the operator to a subspace generated by an eigenvector is simply
a multiplication by a real number. It is not difficult to see (we will show in what follows)
that if T is diagonalizable, it is in particular Lipschitz lattice if one chooses an eigenvector
basis B to define the order in E . In this section we analyze whether a similar result exists
for the case of lattice Lipschitz operators, showing that, in fact, the existence of a kind of
diagonal representation (with real-valued functional “eigenvalues”) is equivalent to being
lattice Lipschitz, thus closing the parallelism with the linear case satisfactorily. We will
illustrate this idea with some examples in this section too.

Definition 3 We say that an operator T : E → E is diagonal with respect to a basis B =
{x1, x2, . . . , xn} of E = R

n if there exist real functions fi : R → R for 1 ≤ i ≤ n such that

T

(
n∑

i=1

αi xi

)

=
n∑

i=1

fi (αi )xi , for every α1, α2, . . . , αn ∈ R. (2)

In this case, we call the functions fi the coordinate functions of T with respect to the basis
B.

Using the standard vector/coordinates notation, we will write this representation also as

T
(
(α1, α2, . . . , αn)

)
=

(
f1(α1), f2(α2), . . . , fn(αn)

)
,

where the corresponding coordinate in the basis B is written at each position of the vector,
both in the domain and in the range of the operator. We will use this notation in the examples
of this section.

Theorem 3 Let T : E → E be an operator. Consider on E the order provided by the basis
B = {x1, . . . , xn}. Then, T is a lattice Lipschitz operator with associate function K : � → R
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if and only if T is diagonal with respect to the basis B with coordinate functions being real
Lipschitz functions with associated Lipschitz constants K (i), i = 1, . . . , n.

Proof Suppose first that T is diagonal on the basis B and the coordinate functions fi are real
Lipschitz functions with Lipschitz constants K (i) for 1 ≤ i ≤ n. Consider two elements of
E, x = ∑n

i=1 αi xi and y = ∑n
i=1 βi xi . Then, taking into account the Lipschitz inequality

for each coordinate function, we get the following domination,

∣
∣T (x) − T (y)

∣
∣ =

n∑

i=1

∣
∣
∣ fi (αi ) − fi (βi )

∣
∣
∣xi ≤

n∑

i=1

K (i)
∣
∣αi − βi

∣
∣xi = K |x − y|,

what gives the desired result.
For the converse, let T be a lattice Lipschitz function with associate function K . Note that

for every function T : E → E, just by the coordinate representation of the vectors of E,

there are functions Ti : E → R that satisfy

T (x) =
n∑

i=1

Ti (x)xi , x ∈ E . (3)

Define now the real functions f j : R → R for 1 ≤ j ≤ n by

f j (α) = Tj (αx j ).

Let us see that

Tj

(
n∑

i=1

αi xi

)

= f j (α j ). (4)

Indeed, fix 1 ≤ j ≤ n. If x = ∑n
i=1 αi xi , then

∣∣Tj (x) − f j (α j )
∣∣ = ∣∣Tj (x) − Tj (α j x j )

∣∣ = ∣∣T (x) − T (α j x j )
∣∣( j)

≤ K ( j)
∣∣x − α j x j

∣∣( j) = K ( j)
∣∣α j − α j

∣∣ = 0.

In other words, the function Tj only depends on the j component of x . As a consequence of
(3) and (4),

T

(
n∑

i=1

αi xi

)

=
n∑

j=1

Tj

(
n∑

i=1

αi xi

)

x j =
n∑

j=1

f j (α j )x j .

To finish the proof we show that each f j is a (real) Lipschitz function, and we compute its
Lipschitz constant. Indeed, let α, β ∈ R. Then we have

∣∣ f j (α) − f j (β)
∣∣ = ∣∣Tj (αx j ) − Tj (βx j )

∣∣ = ∣∣T (αx j ) − T (βx j )
∣∣( j)

≤ K ( j)
∣∣αx j − βx j

∣∣( j) = K ( j)|α − β|,
and the constants K ( j) clearly give the smallest real numbers that satisfy the inequalities. ��
Remark 5 The above result can also be rewritten in terms of a domination by functionals
acting on the dual space E∗ of E, which would give the key to a more abstract formulation
of the Lipschitz operators on general Banach lattices. Let us write this reformulation for the
sake of completeness. Consider on E the order provided by the basis B = {x1, . . . , xn}. For
an operator T : E → E the following statements are equivalent.

(1) T is a lattice Lipschitz operator with the order given by B.

(2) T is a diagonal operator with coordinate functions being real Lipschitz functions.
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(3) T satisfies that for every 1 ≤ i ≤ n there exists a constant Ki > 0 such that
∣
∣〈T (x) − T (y), x∗

i 〉∣∣ ≤ Ki
∣
∣〈x − y, x∗

i 〉∣∣,
where x∗

i ∈ E∗ is the functional defined as x∗
i (xi ) = 1, and x∗

i (x j ) = 0 if i 
= j .

The following examples show the relevance of the order in the space on the study of lattice
Lipschitz—or diagonal—mappings.

Example 1 Let f : R
2 → R

2 be f (x, y) = (y, x). Clearly it is not a lattice Lipschitz
mapping—with respect to the usual order of R

2—because
∣
∣ f (1, 0) − f (0, 0)

∣
∣ = (0, 1) � K · ∣

∣(1, 0) − (0, 0)
∣
∣ = (K1, 0),

for any K = (K1, K2) ∈ R
2. But it is a lattice Lipschitz function on R

2 when an appropriate
order is considered. Indeed, let us consider the basis B = {

v1 = (1, 1), v2 = (1,−1)
}
and

take the order provided by B. Then,
f (αv1 + βv2) = f (α + β, α − β) = (α − β, α + β) = f1(α)v1 + f2(β)v2,

where f1(t) = t, f2(t) = −t , that are real Lipschitz functions. Therefore we obtain that it is
a lattice Lipschitz mapping by using Theorem 3.

Example 2 Let φ : R
2 → R

2 be the mapping on R
2 endowed with the usual order given by

φ(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
2x2 + 2y2, 4xy

)
if |x + y| ≤ 2, |x − y| ≤ 2(

(x + y)2 + 4, (x + y)2 − 4
)

if |x + y| ≤ 2, |x − y| > 2
(
4 + (x − y)2, 4 − (x − y)2

)
if |x + y| > 2, |x − y| ≤ 2

(8, 0) if |x + y| > 2, |x − y| > 2.

Clearly it is not a lattice Lipschitz function, since
∣∣φ(0, 3) − φ(0, 0)

∣∣(1) = 8 � K |(0, 3) − (0, 0)|(1) = 0,

for any K . Let us see that it is a diagonal function when considering on R
2 the order induced

by the basis B = {
v1 = (1, 1), v2 = (1,−1)

}
. For α, β ∈ R, it is easy to see that

φ(αv1 + βv2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(4α2 + 4β2, 4α2 − 4β2) if |α| ≤ 1, |β| ≤ 1

(4α2 + 4, 4α2 − 4) if |α| ≤ 1, |β| > 1

(4 + 4β2, 4 − 4β2) if |α| > 1, |β| ≤ 1

(8, 0) if |α| > 1, |β| > 1,

so φ(αv1 + βv2) = f1(α)v1 + f2(β)v2, where f1(t) = f2(t) = 4t2 for |t | ≤ 2 and 4
otherwise. Since φ is diagonal on the basis B with coordinate functions f1 and f2, that are
real Lipschitz functions with Lipschitz constant equal to 8, we obtain by Theorem 3 that φ it
is a lattice Lipschitz function with the associate function K given by K (1) = K (2) = 8.

Theorem 4 Let E = R
n and consider the order provided by a basis B = {x1, x2, . . . , xn}

of E, and let T : E → E be a lattice Lipschitz function with associate function K and
coordinate functions fi (the decomposition given in Eq. (2) of Definition 3 can be obtained
by Theorem 3). Consider the “axis” set � = {

αxi : α ∈ R, 1 ≤ i ≤ n
}
. Then,

(1) the Whitney and McShane extensions of T |� from � to E satisfy

(T |�)M = T and (T |�)W = T .
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If, in addition, T (0) = 0,

(2) the set of eigenvectors of T contains �, and
(3) if λ is an eigenvalue of T , then |λ| ≤ supw∈� Kw.

Proof (1) Consider the McShane extension of T |� at x,

(
T |�

)M
(x) =

∨

s∈�

(
T (s) − K |x − s|

)
=

n∨

i=1

(
∨

α∈R

(
T (αxi ) − K |x − αxi |

)
)

.

Suppose now that x = ∑n
i=1 αi xi and observe that, for each 1 ≤ i ≤ n, we have

x − αxi = (αi − α)xi + ∑
j 
=i α j x j . Fix 1 ≤ w ≤ n and assume first that w 
= i . Then

(
∨

α∈R

(
T (αxi ) − K |x − αxi |

)
)

(w) =
∨

α∈R

(
fw(0) − Kw|αw|) = fw(0) − Kw|αw|.

Since fw(0)− fw(αw) ≤ | fw(0)− fw(αw)| ≤ Kw|αw|, then fw(0)−Kw|αw| ≤ fw(αw),
and so (

∨

α∈R

(
T (αxi ) − K |x − αxi |

)
)

(w) ≤ fw(αw). (5)

For the case w = i , note that
(

∨

α∈R

(
T (αxw) − K |x − αxw|)

)

(w) =
∨

α∈R

(
fw(α) − Kw|αw − α|).

Observe that fw(α) − fw(αw) ≤ | fw(α) − fw(αw)| ≤ Kw|α − αw| for every α ∈ R, so
fw(α) − Kw|αw − α| ≤ fw(αw). Hence the supremum is attained at α = αw. Therefore

(
∨

α∈R

(
T (αxw) − K |x − αxw|)

)

(w) = fw(αw). (6)

As a consequence of (5) and (6),

(T |�)M (x)(w) =
n∨

i=1

(
∨

α∈R

(
T (αei ) − K |x − αei |

)
)

(w) = fw(αw) = T (x)(w),

which proves that (T |�)M (x) = T (x).
The proof for the Whitney formula is immediate by using the just proved case with −T .

(2) Clearly, x = 0 is an eigenvector of T . Observe that the condition T (0) = 0 implies that
fi (0) = 0 for all 1 ≤ i ≤ n. Let αxi in � with α 
= 0, and note that in this case

T (αxi ) =
∑

j 
=i

(
f j (0)x j + fi (α)xi

) = fi (α)

α
αxi ,

so αxi is an eigenvector of T with eigenvalue fi (α)/α.

(3) If T (x) = λx (with x 
= 0), the Eq. (2) implies that fi (αi ) = λαi for each i . Since
x 
= 0, at least one αi0 is not 0, so

|λ| =
∣∣∣∣
fi0(αi0)

αi0

∣∣∣∣ =
∣∣∣∣
fi0(αi0) − fi0(0)

αi0

∣∣∣∣ ≤
∣∣∣∣
Ki0 |αi0 − 0|

αi0

∣∣∣∣ = Ki0 ≤ sup
w∈�

Kw.

��
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An immediate consequence of Theorem 4 is the following result for linear operators.
It shows that for linear diagonalizable operators, the representation provided by the linear
combination of the eigenvectors coincideswith both theMcShane and theWhitney extensions
with the order defined by these eigenvectors.

Corollary 5 Let T : E → E be a linear diagonalizable operator with real eigenvalues
λ1, . . . , λn ∈ R. Let B = {x1, . . . , xn} be a basis for E of eigenvectors of T . Consider the
complete set of eigenvectors E0 and take the order in the lattice induced by B. Then
(1) T |E0 is lattice Lipschitz with associate function K (r) = |λr |, r ∈ {1, . . . , n}.
(2) Both (T |E0)

M and (T |E0)
W provide lattice Lipschitz extensions of T |E0 from E0 to E

preserving the associate function K such that

(T |E0)
M = T and (T |E0)

W = T .

Consequently, T is lattice Lipschitz with the associate function K written above.

The coincidence of the lattice Lipschitz extension rule and the linear rule opens the door
to a general procedure for the representation of Lipschitz maps with a “large enough” set of
eigenvectors. For the diagonalizable case, theminimum-maximum condition of theMcShane
and Whitney extensions (Proposition 2) can be considered, along with the extension behav-
ior of diagonalizable mappings when applying these formulas (Theorem 4), to obtain the
following results, which reveals a uniqueness property for the lattice extension of linear
maps.

Corollary 6 Under the hypothesis of Theorem 4, T is the unique lattice Lipschitz operator
with associated function K that extends T |� .
Corollary 7 Under the hypothesis of Theorem 4, if T (0) = 0 and E0 is the set of eigenvectors
of T , then the McShane and Whitney extensions of T |E0 are equal to T .

Next we show the error bounds for the lattice extension formulas at a point x ∈ E with
respect to the original operator T . This expression is valid for lattice Lipschitz functions,
and could be used to control the error committed when the reconstruction of the function is
done from the information we have about it in a subset. This result is fundamental for the
application of our extension tool in artificial intelligence.

Theorem 8 Let T : E → E be a lattice Lipschitz operator with associated bounded function
K : � → R and E0 ⊆ E. Then, for any x ∈ E

−2K
∧

{|x − z| : z ∈ E0} ≤ (T |E0)
M (x) − T (x) ≤ 0,

0 ≤ (T |E0)
W (x) − T (x) ≤ 2K

∧
{|x − z| : z ∈ E0}.

Proof For T : E → E as in the statement of the proposition, consider T |E0 . If x ∈ E ,
applying that T is a lattice Lipschitz operator in the whole E ,

(T |E0)
W (x) − T (x) =

∧
{T (z) + K |x − z| : z ∈ E0} − T (x)

=
∧

{T (z) − T (x) + K |x − z| : z ∈ E0}
≤

∧
{|T (z) − T (x)| + K |x − z| : z ∈ E0}

≤
∧

{K |z − x | + K |x − z| : z ∈ E0}
= 2K

∧
{|z − x | : z ∈ E0}.
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In addition,

(T |E0)
W (x) − T (x) =

∧
{T (z) − T (x) + K |x − z| : z ∈ E0}

≥
∧

{−|T (z) − T (x)| + K |x − z| : z ∈ E0}
≥

∧
{−K |z − x | + K |x − z| : z ∈ E0} = 0.

The bounds for the McShane case can be proved by applying Remark 3. ��

Remark 6 Theorem 8 can also be proved using Proposition 2 and Remark 4. Observe that
the original map T is a suitable extension of T |E0 (with the same associate function). Thus,
it is clear that for x ∈ E , T M (x) ≤ T (x) ≤ TW (x). Also note that |TW (x) − T M (x)| ≤
2K

∧{|x−z| : z ∈ E0}, so T (x) cannot differ from T M (x) and TW (x)more than 2K
∧{|x−

z| : z ∈ E0}.

Let us explain an example point by point to finish the paper. We will show the set of
eigenvectors, the associate function, and the Whitney extension of the map.

Example 3 Consider the function φ : R
2 → R

2 given by

φ(x, y) =
(

x2

1 + x2
,

y2

1 + y2

)
, (x, y) ∈ R

2.

The computation of the eigenvectors by means of the eigenvector equations provide the next
formulas in terms of the eigenvalues λ; for λ = 0, the eigenvector is (0, 0). The spectrum
of the map is given by the values of λ ∈ [−1/2, 1/2]. The eigenvectors associated to each
of these values are given by all the combination of values (x, y) for λ 
= 0 given by the
formulas

x = 0, x = 1

2λ

(
1 +

√
1 − 4λ2

)
or x = 1

2λ

(
1 −

√
1 − 4λ2

)
,

and

y = 0, y = 1

2λ

(
1 +

√
1 − 4λ2

)
or y = 1

2λ

(
1 −

√
1 − 4λ2

)
.

Let us write E0 for the set of all these eigenvectors. A graphical representation of this set can
be found in Fig. 1.

In this case, the lattice structure is given by a function space defined on a two-point
measurable space {w1, w2}.To show that this function is a lattice Lipschitz operator, consider

(x1, y1), (x2, y2) ∈ R
2 and let ψ be the real function ψ(t) = t2

1+t2
. Then, by the mean value

theorem, there exists ξ, μ ∈ R such that

|φ(x1, y1) − φ(x2, y2)| = (|ψ(x1) − ψ(x2)|, |ψ(y1) − ψ(y2)|)
= (|ψ ′(ξ)| · |x1 − x2|, |ψ ′(μ)| · |y1 − y2|

)
.

A standard optimization procedure allows to obtain that supt∈R |ψ ′(t)| =
∣∣∣ψ ′

(
± 1√

3

)∣∣∣ =
3
√
3

8 . So the function that plays the role of the Lipschitz norm for the case of lattice Lipschitz
functions, is the constant function
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Fig. 1 Representation of the set of eigenvectors for the function φ. All the points in the curves and lines
represented are eigenvectors, including the axis OX and OY

K (w1) = K (w2) = 3
√
3

8
.

Let us consider as subset for constructing the McShane and Whitney extensions the set
E0 of all the eigenvectors described above. We write only the Whitney formula. Using the
parametrization provided by the eigenvalues λ and taking into account that the infimum can
be computed separately for each coordinate, the formulas are, for every (x0, y0) ∈ R

2,

P1
(
(φ|E0 )W (x0, y0)

) =
∧

λ∈[− 1
2 , 12 ]

(
λ x(λ) + 3

√
3

8
· ∣∣x(λ) − x0

∣∣
)

∧ 3
√
3

8
· |x0|

= inf
λ∈[− 1

2 , 12 ]

{
1

2

(
1 ±

√
1 − 4λ2

)
+ 3

√
3

8
·
∣
∣∣
∣
1

2λ

(
1 ±

√
1 − 4λ2

)
− x0

∣
∣∣
∣

}

∧ 3
√
3

8
· |x0|,

and

P2
(
(φ|E0 )W (x0, y0)

) =
∧

λ∈[− 1
2 , 12 ]

(
λ y(λ) + 3

√
3

8
· ∣
∣y(λ) − y0

∣
∣
)

∧ 3
√
3

8
· |y0|

= inf
λ∈[− 1

2 , 12 ]

{
1

2

(
1 ±

√
1 − 4λ2

)
+ 3

√
3

8
·
∣
∣
∣∣
1

2λ

(
1 ±

√
1 − 4λ2

)
− y0

∣
∣
∣∣

}

∧ 3
√
3

8
· |y0|,
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where

(φ|E0)
W (x0, y0) = (

P1
(
(φ|E0)

W (x0, y0)
)
, P2

(
(φ|E0)

W (x0, y0)
))

.

As a consequence of Corollary 7, we know that this extension formula (and also the
McShane formula) coincides with the original function. Note, however, that we can also use
these formulas if we take a (proper) subset of eigenvectors. In case that such a subset does
not contain the axis, the coincidence of the extension with the function need not occur.
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