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Catalytic enantioselective aza-Reformatsky
reaction with seven-membered cyclic imines
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A catalytic enantioselective aza-Reformatsky reaction is reported with cyclic dibenzo(b,f][1,4]loxazepines
and ethyl iodoacetate leading to the synthesis of chiral ethyl 2-(10,11-dihydrodibenzolb,f][1,4]oxazepin-
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Introduction

The dibenzo[b,f][1,4]oxazepine scaffold is an important
pharmacophore and, over the last few years, has attracted much
attention in the pharmaceutical industry and medicinal chem-
istry due to the fact that this structure is present in numerous
compounds with a broad range of biological activities." In this
context, several 11-substituted-10,11-dihydrodibenzo[b,f][1,4]
oxazepine derivatives have been described possessing different
physiological activities (Fig. 1). For example, Sintamil® and its
analogue compound A have antidepressant activity, compound
B is a progesterone receptor agonist,” while compound C pre-
sents antihistaminic activity. Despite the importance of this
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Fig. 1 Derivatives of cyclic amines containing the dibenzolb,f][1,4]
oxazepine motif.
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11-yl)acetate derivatives with excellent yields and high enantioselectivities (up to 98% yield and 97: 3 er)
using a readily available diaryl prolinol L4 as the chiral ligand and Me,Zn as the zinc source under an air
atmosphere. Furthermore, different transformations were carried out with the corresponding chiral
p-amino esters, preserving in all cases the optical purity.

pharmacophore, catalytic enantioselective methodologies to
prepare optically pure 11-substituted-10,11-dihydrodibenzo
[bf][1,4]oxazepine derivatives are scarce. So far, two organo-
catalyzed Mannich reactions,” an asymmetric alkynylation®
and iridium catalyzed asymmetric hydrogenations of the
corresponding seven-membered ketimines’” have been
reported. Consequently, the development of other catalytic
enantioselective reactions to prepare these chiral seven-
membered nitrogen heterocyclic compounds is an important
aim in organic synthesis.

On the other hand, chiral p-amino esters are a significant
class of building blocks in synthetic chemistry, which have
been used for the synthesis of optically pure f-amino alcohols
or f-amino acids. Chiral p-amino acids® are key structural
elements of peptides and peptidomimetics,” and are precur-
sors of flactams.'® The catalytic enantioselective
Reformatsky'"'? reaction using imines as electrophiles pro-
vides a suitable methodology for the synthesis of chiral
f-amino esters. However, the catalytic asymmetric Reformatsky
reaction with imines is hardly studied, in contrast to the
corresponding reaction using aldehydes'? or ketones.'* Only
two examples of the enantioselective aza-Reformatsky reaction
have been described in the literature by Cozzi'® and our
group.'® To the best of our knowledge, seven-membered cyclic
imines have not been used as electrophiles in this reaction.
We envisioned that the cyclic imines dibenzo[b,f][1,4]oxaze-
pines would be interesting electrophiles for the barely studied
asymmetric aza-Reformatsky reaction. Herein, we present our
results using these seven-membered cyclic imines as sub-
strates and ethyl iodoacetate as the reagent, in the presence of
a readily available diaryl prolinol as the chiral ligand and
Me,Zn as the zinc source under an air atmosphere, providing
chiral p-amino esters with high yields and enantioselectivities.
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Results and discussion

Our initial studies were focused on the addition of ethyl iodo-
acetate (2) to dibenzo[bf][1,4]oxazepine 1a in the presence of
Me,Zn and various chiral amino alcohols under an air atmo-
sphere. As shown in Table 1, when 20 mol% of quinine (L1)
was used in diethyl ether, 45% yield was obtained, providing
the compound ethyl 2-(10,11-dihydrodibenzo[b,f][1,4]oxazepin-
11-yl)acetate 3a with a poor enantiomeric ratio (43 :57). Later,
we tested N-methyl ephedrine L2, used by Cozzi,"> and the
corresponding f-amino ester 3a was obtained with a moderate
yield and higher enantiomeric ratio (34.5: 65.5). However, this
er was still unsatisfactory (entry 2, Table 1). Later, we decided
to investigate the use of several commercially available chiral
diaryl prolinols L3-L6 (entries 3-6, Table 1). We observed
higher enantioselectivities with this kind of ligand, obtaining
the highest er (73 : 27) when (S)-bis(3,5-dimethylphenyl)( pyrro-
lidin-2-yl)methanol L4 was used as the ligand. Therefore, we
continued the optimization process with L4, testing different

Table 1 Optimization of the reaction conditions?

Q MeoZn (7 eq.) Q
) o] Ligand L (20 mol%) o)
— NH
Nt l\)J\OEt o)
1 Solvent, T, air
a 2 3a OEt
=
OMe OH A;
NMe d
N 2 ” OH

L3, Ar=Ph
[ "oH L2 L4, Ar = 3,5-Me,-CgHs
N~ L5, Ar = 3,5-(CF3),-CgH3
L1 L6, Ar = 2-naphthyl
Ligand Yield?
Entry  (x mol%) Solvent T(°C) (%) er’
1 L1 (20 mol%) Et,0 rt 45 43:57
2 L2 (20 mol%) Et,O rt 42 34.5:65.5
3 L3 (20 mol%)  Et,0 rt 57 67:33
4 L4 (20 mol%)  Et,0 rt 42 73:27
5 L5 (20 mol%) Et,O rt 71 69.5:30.5
6 L6 (20 mol%)  Et,0 1t 36 71.5:28.5
7 L4 (20 mol%) iPr,O rt 54 76.5:23.5
8 L4 (20 mol%) MTBE rt 47 77.5:22.5
9 L4 (20 mol%) THF rt 63 74.5:25.5
10 L4 (20 mol%)  Toluene rt 33 68.5:31.5
11 L4 (20 mol%) CH,Cl, rt 44 76.5:23.5
12 L4 (20 mol%)  CICH,CH,CI 1t 51 78:22
13 L4 (20 mol%) CHCl; rt 29 73:27
14 L4 (20 mol%) CH;CN rt 53 74:26
15 L4 (20 mol%)  AcOEt rt 63 79.5:20.5
16 L4 (20 mol%)  AcOEt 0 22 94:6
17¢ L4 (20 mol%)  AcOEt 0 78 91:9
187 L4 (20 mol%)  AcOEt -10 40 94:6
19%° L4 (20 mol%)  AcOEt 0 75 84:16
20%/ L4 (20 mol%)  AcOEt 0 71 87:13
21%¢ L4 (20 mol%)  AcOEt 0 97 93.5:6.5
20%  14(10 mol%)  AcOEt 0 92 93:7

“1a (0.1 mmol), 2 (0.2 mmol), Me,Zn (7 eq.) and ligand (x mol%) in
3 mL of solvent. “Isolated yield after column chromatography.
°Determined by HPLC using the chiral stationary phase. ¢3 equiva-
lents of 2 were used. °7 equivalents of Et,Zn were used. /1.5 mL of
EtOAc was used. ¢ 6 mL of EtOAc was used.
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solvents (entries 7-15, Table 1). With ethereal solvents (iPr,O,
THF or MTBE) similar levels of enantioselectivities were
obtained for compound 3a.

Chlorinated solvents such as dichloromethane or dichloro-
ethane lead to similar enantiomeric ratios, while chloroform
gave lower yield and enantioselectivity. Finally, when EtOAc
was used as the solvent, the corresponding chiral pf-amino
ester was obtained with good yield (63%) and the best enantio-
selectivity (79.5:20.5 er, entry 15). Therefore, EtOAc was
chosen for further optimization. Lowering the reaction temp-
erature to 0 °C improves the enantioselectivity (94:6 er), but
the yield was low (22%). By increasing the number of the
equivalents of ethyl iodoacetate, we could improve the yield
(78%), keeping the enantioselectivity high (91:9 er) for the
aza-Reformatsky reaction. However, when we lowered the
temperature to —10 °C, the enantioselectivity increased but the
yield was much lower (40%). Consequently, we decided to
carry out the reaction at 0 °C. Furthermore, Et,Zn was used as
the zinc source in the model reaction (entry 19), obtaining
good yield (75%) but a lower enantioselectivity (84:16 er).
Working at lower concentrations (entry 21) had an improve-
ment both in yield and enantioselectivity (97% yield and
93.5:6.5 er). A reduction of the catalyst load to 10 mol% had a
slightly deleterious effect on the yield (92%) but not on the
enantioselectivity of the reaction (93 : 7 er, entry 22)."”

Under the optimized reaction conditions (entries 21 and 22,
Table 1), a variety of substituted dibenzo[b,f][1,4]oxazepines were
subjected to the aza-Reformatsky reaction (Scheme 1). A wide
range of substituted cyclic imines 1, with both electron-donating
and electron-withdrawing substituents at different positions of
the two aromatic rings, afforded the corresponding chiral
f-amino esters 3a-3o0 with high yields (up to 99%) and enantio-
selectivities (up to 97 : 3 er). For the cyclic imine 1k, bearing two
methoxy groups in the aromatic ring, a lower enantioselectivity
was obtained (89.5:10.5 er) probably due to the presence of the
methoxy group next to the C=N electrophilic bond. However,
the yield was excellent (94% yield). Cyclic imines bearing a
naphthyl ring (1m-10) afforded the corresponding products
with high enantiomeric ratios and excellent yields.'®

The absolute configuration of the stereogenic center in
compound 30 was determined to be (S) on the basis of X-ray
crystallographic analysis (Fig. 2); the configuration of the rest
of the products 3 was assigned on the assumption of a
uniform mechanistic pathway."’

With the above successful results, we further investigated
the aza-Reformatsky reaction of dibenzo[bf][1,4]thiazepine 4
with ethyl iodoacetate (Scheme 2). Dihydrodibenzothiazine is
also an important and widely used scaffold in medicinal chem-
istry,?® although its synthesis using catalytic asymmetric pro-
cedures is limited to the asymmetric hydrogenation of the
corresponding seven-membered ketimines.?! When the cyclic
imine 4 was used as a substrate, the corresponding f-amino
ester 5 was obtained with excellent yield (95%) and high enan-
tiomeric ratio (94.5 : 5.5).

To highlight the synthetic utility of this methodology, we
have applied several chemical transformations for the syn-

Org. Chem. Front, 2017, 4, 1624-1628 | 1625
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Scheme 1 Scope of the aza-Reformatsky reaction with dibenzolb,f]
[1,4]oxazepines 1: 1 (0.1 mmol), 2 (0.3 mmol), Me,Zn (7 eq.) and L4
(x mol%) in 6 mL of AcOEt. Isolated yields after column chromatography.
Enantiomeric ratio was determined by HPLC using the chiral stationary
phase. 210 mol% of L4 was used. ® 20 mol% of L4 was used.
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Fig. 2 X-ray structure of compound 3o.
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Scheme 2 Aza-Reformatsky reaction with dibenzolb,f][1,4]thiazepine
4: 4 (0.1 mmol), 2 (0.3 mmol), Me,Zn (7 eq.) and L4 (20 mol%) in 6 mL of
AcOEt. Isolated yields after column chromatography. Enantiomeric ratio
was determined by HPLC using the chiral stationary phase.

thesis of interesting chiral compounds bearing a dibenzo[b, f]
[1,4]oxazepine scaffold (Scheme 3). The ester moiety of
product 3a provides a convenient site for further modification.
For example, chiral f-amino acid 6 was prepared in 86% yield
and without the loss of optical purity by simple saponification
of the ester moiety. Chiral amino alcohol 7 was synthesized by
reduction of the f-amino ester with LiAlH,. Furthermore, the
interesting 11-vinyl-10,11-dihydrodibenzo[bf][1,4]oxazepine 8
was easily synthesized by a three step reaction sequence with
an overall yield of 54% and maintaining the optical purity.”>
Finally, a Suzuki cross-coupling reaction was performed using
(4-methoxyphenyl)boronic acid and the chiral 10,11-dihydro-
dibenzo[b,f][1,4]oxazepine 30, obtaining the corresponding
chiral product 9 in 83% yield and 95:5 er.

(@)

NH
o,

6, 86% yield, 93.5:6.5 er

5
O,

7, 88% yield, 93:7 er

&
g OQ

b) ¢) d) NH

8, 54% yield after 3 steps, 93:7 er

Br Ar
30,955 er 9, 83% yield, 95:5 er

Scheme 3 Synthetic transformations: (a) NaOH 1 M in EtOH at 75 °C.
(b) LiAlH4 in THF at O °C. (c) o-Nitrophenyl selenocyanate (2.4 eq.) and
PBus (2.5 eq.) in THF at rt. (d) 5 eq. of H,O, (50% aqueous solution) in
THF at 0 °C, and then at rt. (e) ArB(OH), (2 eq.), KsPO,4 (8 eq.) and
PdCl,(PPhs), (10 mol%) in DMF at 80 °C. Ar = p-MeOCgH,4—.
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Conclusions

In summary, we have developed a catalytic enantioselective
aza-Reformatsky reaction with seven membered cyclic imines.
In our methodology, dibenzo[bf][1,4]oxazepines 1 and
dibenzo[b,f][1,4]thiazepine 4 can be used as electrophiles
obtaining chiral f-amino esters with high enantiomeric ratios.
Our approach represents the first catalytic enantioselective
aza-Reformatsky reaction with this class of cyclic imines.
Moreover, several transformations have been made with the
chiral f-amino esters obtained. Studies to further extend the
scope of this reaction are currently underway in our laboratory.
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