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Abstract: Understanding consumer behavior is crucial for increasing the likelihood of product success.
Virtual Reality head-mounted displays incorporating physiological techniques such as eye-tracking
offer novel opportunities to study user behavior in decision-making tasks. These methods reveal
unconscious or undisclosed consumer responses. Yet, research into gaze patterns during virtual
product evaluations remains scarce. In this context, an experiment was conducted to investigate
users’ gaze behavior when evaluating their preferences for 64 virtual prototypes of a bedside table.
Here, 24 participants evaluated and selected their preferred design through eight repeated tasks of an
8-AFC, with individual evaluations conducted for each design to ensure the reliability of the findings.
Several eye-tracking metrics were computed (i.e., gaze time, visits, and time to first gaze), statistical
tests were applied, and a Long Short-Term Memory model was created to recognize decisions based
on attentional patterns. Our results revealed that the Gaze Cascade Model was replicated in virtual
environments and that a correlation between product liking and eye-tracking metrics exists. We
recognize subjects’ decisions with a 90% accuracy, based on their eye patterns during the three
seconds before their decision. The results suggest that eye-tracking can be an effective tool for
decision-making prediction during product assessment in virtual environments.

Keywords: virtual reality; extended reality; user experience; eye movements; gaze bias; decision
making; product evaluation; statistical learning

1. Introduction

One of the main goals of consumer researchers and marketing practitioners is to
identify, predict, and understand how consumers behave [1]. This is considered essential
to increase the chances of product success [2].

In this regard, researchers have increasingly focused on the complexity of consumer
decision-making [3,4]. Consequently, the definition of consumer behavior has expanded to
include the entire spectrum of the decision-making process, starting with the choice to con-
sume and concluding with product usage, disposal, and post-purchase contemplation [5].
In this context, the study of consumer behavior can help designers and marketers gain
insights into users’ needs and preferences, allowing them to create products that better
meet consumers’ expectations [2].

The development of new technologies has opened new possibilities for studying
consumer behavior and improving the design of products. In fact, e-commerce is becoming
increasingly important, and traditional forms of interaction with products in physical
stores are being replaced by digital means [6,7]. In an increasingly competitive market
where product presentation is becoming one of the key factors for standing out from the
competition, it is important to understand how consumers behave when presented with
products using these new visualization techniques.

Virtual Reality (VR) can help researchers to create immersive and interactive envi-
ronments that simulate real-world experiences with no limits [8]. The availability and
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affordability of VR in terms of both hardware and software have fueled its adoption in
many sectors [9]. This is highly based on the development of a new generation of low-cost
headsets which has democratized global purchases of VR devices. In this situation, a new
generation of Head Mounted Displays (HMDs) have emerged featuring more sophisti-
cated capabilities. Researchers can more accurately measure the cognitive and affective
responses of consumers to different stimuli and gain a better understanding of how these
responses influence behavior by using the collection of physiological measures (e.g., eye-
tracking), which can provide insight into the underlying neural processes involved in
decision-making.

Eye-tracking has been extensively used in traditional laboratory settings to study
visual attention and decision-making [10,11]. The use of eye-tracking techniques for product
evaluation has become increasingly popular in recent years as it provides more accurate
and objective information than conventional self-report questionnaires [12,13], such as the
procedure established by Felip et al. [14] or the Semantic Differential technique proposed by
Osgood et al. [15]. In fact, physiological techniques can reveal responses or reactions that
consumers may not be willing to disclose or are not consciously aware of, such as attitudes
towards products or brands that are socially undesirable [16]. In this regard, self-report
questionnaires have proven to be highly subjective [17], as they rely on the user’s own
perception and interpretation of their experience with the product [18]. This can lead to
biased or inaccurate feedback, as users may not always be aware of their own preferences
or may have difficulty articulating their thoughts and feelings about the product.

One interesting phenomenon that was observed using eye-tracking during the decision-
tasks is the Gaze Cascade Model proposed by Shimojo et al. [19], i.e., when monitoring
eye movements, the gaze is initially distributed between the stimuli presented, but then
gradually shifted toward the one that the user chooses. This was further studied by Glaholt
et al. [20], who discovered that this effect was accentuated using an eight Alternative
Forced-Choice (AFC) instead of the 2-AFC originally proposed. This suggests that through
the monitoring of eye movements, it might be feasible to ascertain an individual’s forth-
coming choice or preference even before they possess conscious awareness of it. This could
be achieved prior to an explicit response or even before their choice has been consciously
determined. At present, some studies continue to investigate the reproducibility of this
effect, such as Rojas et al. [21] who used eye-tracking as a method to understand consumer
preferences in children.

The integration of VR and eye-tracking measures has the potential to further inves-
tigate this effect in the context of product design and to identify the specific features
of products that elicit the strongest cognitive and affective responses in consumers. By
identifying these features, designers can create products that better meet the needs and
preferences of consumers, and thus improve their overall experience. This collaboration
between consumers, scientists, and marketing experts can lead to better identification,
recognition, and understanding of consumer behavior.

Despite the promise of this technology, there has been limited research investigating
the use of VR and physiological measures in predicting consumer behavior, particularly
in the context of product design. However, we believe that eye-tracking measures will
provide valuable insights into the underlying cognitive and affective processes involved in
consumer decision-making and will help inform the development of more effective product
designs. In this paper, we present a study that explores the use of eye-tracking in a VR
setting to predict consumer behavior in the context of product design.

2. Research Aim and Hypotheses

The primary objective of this research study was to investigate the recognition of
decision-making processes when presenting individuals with multiple stimulus alternatives
in an 8-AFC decision-making task through eye-tracking patterns. The study aimed to
explore how individuals perceive and process information when making decisions and
how this process may be influenced by the presentation of multiple stimuli. By examining
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these factors, the study sought to shed light on the underlying cognitive mechanisms
involved in decision-making and to provide insights into how these mechanisms may be
leveraged to improve decision-making processes in various domains. The information
that this investigation will give us using the behavior of gaze as an implicit measure can
contribute to the comparison of physiological measures and self-reports. In this context,
the following hypotheses were postulated:

• First, it was suggested that there would be a correlation between liking and eye-
tracking metrics (H1). The eye-tracking metrics examined in this research comprise
three variables, namely (1) gaze time, which is the duration of time that a participant’s
eyes remain fixated on a particular AOI, (2) visits, which is the number of times that
a participant’s gaze visits a particular AOI, and (3) time to first gaze, which is the
duration of time that elapses between the presentation of a visual stimulus and the
participant’s first fixation on a particular AOI. Consequently, H1 was divided into
three sub-hypotheses: there would be a correlation between liking and gaze time
(H1.1), visits (H1.2), and time to first gaze (H1.3).

• On the other hand, one of the objectives of this research is to examine whether there
are differences in eye-tracking metrics and liking scores among the products selected.
Thus, it is postulated that the selected stimuli would exhibit distinct patterns for
eye-tracking metrics and liking compared to the various distractors (H2).

• Additionally, we suggest that the Gaze Cascade Model would occur in the virtual
environment (H3). As described earlier, the Gaze Cascade Model has been considered
an indicator of users’ decision-making process. However, this has not been extensively
studied in virtual environments, and given the increasing popularity of VR in the
product evaluation process, it is interesting to see if the decision-making process occurs
in the same way during the virtual experience.

• Finally, it is proposed that we can predict the user’s decision by analyzing the gaze
time evolution in the last three seconds prior to the product selection (H4).

3. Materials and Methods
3.1. Experimental Design

A within-subject experiment was designed to test the postulated hypotheses men-
tioned above, where a group of participants completed two tasks in a fixed order: (1) an
8-AFC task, presenting participants with multiple product alternatives, and (2) an individ-
ual evaluation of each of the design alternatives selected.

The spatial arrangement of products in the virtual environment was considered as the
independent variable, and the eye-tracking metrics analyzed as the dependent variables:
(1) gaze time, i.e., the total time that each object has been seen, (2) visits, i.e., the total
number of visits defined as a group of consecutive gazes on the same object, and (3) time
to first gaze, i.e., the time between the start of the exploration and the first gaze on a
specific object. The evaluations obtained from the second task were also considered as a
dependent variable.

Within this context, we selected a nightstand as the product typology (Figure 1) due
to its possession of various interesting elements, which make it ideal for the generation of
numerous distinct design alternatives. In this regard, Glaholt and Reingold [22] found that
eye-tracking could better reveal subject preferences when presented with eight alternatives.
On the other hand, Rojas et al. [21] decided to display multiple sets of options to obtain
more robust results. For this reason, we have decided to design at least 64 alternatives of
the selected product by manipulating four key design elements: (1) leg design and (2) its
material, (3) top design, and (4) its material. We selected four alternative options for each
of dimensions 1 and 2, and two alternative options for dimensions 3 and 4, resulting in a
wide range of design possibilities.
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the study was determined to be exempt from institutional review board (IRB) approval, 
as it involved straightforward consumer acceptance testing without intervention. Addi-
tionally, all data collected were recorded in a manner that protected the privacy of the 
participants and maintained the confidentiality of the data. For the online portion of the 
study, participants provided verbal consent during a virtual meeting with a member of 
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Figure 1. One of the 64 alternatives of the bedside table in the virtual environment.

The stimuli selection for each 8-AFC was conducted using a semi-random approach,
following a set of guidelines aimed at ensuring diversity in the chosen options. The first
criterion was based on the material and design of the upper area of the product, requiring
the inclusion of two options for each material and two options for each available design.
The second criterion was based on the leg design, requiring the inclusion of four alternatives
for each of the options. The selection of materials for these alternatives was performed
through a random process.

3.2. Sample

To determine the appropriate sample size for the experiment, a comprehensive re-
view of the relevant literature was conducted [19–22]. Based on this review, a total of
24 volunteers participated in the study.

Before the experiment began, all participants were asked to rate their previous experi-
ence with VR technology on a four-point Likert scale ranging from 0 to 3, where 0 indicated
no prior experience with VR and 3 indicated significant experience. The results indicated
that 45.8% of the participants had no prior experience with VR, 37.5% rated their experience
as limited, 12.5% had considerable experience, and 4.8% reported significant experience.

Participants were recruited through web advertising on the university website. No
specific target population was identified, as any individual was eligible to participate.
Interested individuals were required to complete an online questionnaire that provided
detailed information about the experiment. Participants were subsequently contacted by a
member of the research team to schedule an appointment, and those who expressed interest
in receiving the results were contacted for debriefing after the experiment had concluded.

All participants provided verbal informed consent to participate in the study, and the
study was determined to be exempt from institutional review board (IRB) approval, as it
involved straightforward consumer acceptance testing without intervention. Additionally,
all data collected were recorded in a manner that protected the privacy of the participants
and maintained the confidentiality of the data. For the online portion of the study, partic-
ipants provided verbal consent during a virtual meeting with a member of the research
team prior to the commencement of the study.

3.3. Instrumentation

The virtual models were designed and texturized using Blender 2.93, and the VR
environment was created using Unity 2020.3.11f1. In this context, the Tobii XR SDK
3.0.1.179 was employed to incorporate the eye-tracking capabilities of the VR headset.
In addition, the XR Interaction Toolkit 2.0.2 was utilized to enable interactions with the
virtual environment (VE) using controllers to complete tasks. The XR Plugin Management
4.2.1 was integrated to facilitate the viewing of the VE through the VR headset. The
evaluation experience was specifically designed for the HP Omnicept Reverb G2 HMD,
which features eye-tracking sensors for collecting eye movement data and has a resolution
of 2160 × 2160 pixels per eye. Furthermore, to enhance the realism of the scene, the
Universal Render Pipeline 10.8.1 with baked lights was also used. Finally, all the data
processing was performed using Matlab R2013.



Appl. Sci. 2023, 13, 7124 5 of 14

3.4. Procedure

A scheme of the procedure is shown in Figure 2. Instructions were provided to each
participant before the experiment began, although they were displayed in front of the user
in the virtual environment prior to starting the first task. Additionally, a training scene
was designed to ensure that the volunteers understood the experiment and to address any
concerns they may have had.
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Figure 2. Scheme of the experimental procedure.

Prior to starting the experiment, a gaze calibration was performed using the HP Eye
Tracking Calibration Tool to ensure that data were collected accurately for each of the
subjects. This calibration was checked by the researcher by having the volunteer look at
points within the virtual environment. Once this calibration was validated, the experiment
could begin.

In the first task, gaze measurements were taken using the 8-AFC method [4]. The
layout consisted of a 3 × 3 grid organization of the products, with eight different options
from the total nightstands designed and distributed among them. Efforts were made
to arrange the 64 options into groups of eight that were sufficiently varied. The stimuli
were displayed in each “box” of the grid, except for the central, where a black point was
displayed as an indicator to start the task with a white number to indicate the number of
the set displayed (from 1 to 8). Participants were instructed to freely view the eight different
options and select their favorite one with no time limit. Once the volunteers had made
their selection, they had to gaze at the black point for two seconds until it turned green,
indicating the beginning of the decision-making part of the task. Participants were then
asked to return to their favorite stimuli and indicate their preference using the controller.
See Figure 3.

The second task involved an independent assessment of each stimulus using a 7-point
Likert scale, ranging from −3 (“I do not like it”) to +3 (“I like it”). The same 64 nightstands
from the first task were presented in front of the user randomly. The questionnaire was
presented in a virtual environment. Participants were asked to indicate their preference for
using the controller.
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3.5. Data Collection

Each of the components in the 3 × 3 grid was considered as an area of interest. Box
colliders were used to detect the collision between the gaze and the object in the virtual
environment. At a frequency of 120 hertz, the name of the object that was being looked
at was saved in a Comma Separated Value (CSV) file. If nothing was being looked at,
the name “none” was saved for better identification. Subsequently, this data underwent
processing to yield results that could be subject to interpretation. This dataset was collected
with the objective of analyzing the attention patterns during the exploration of the grid
until the subjects decided, considered as the moment that the subject started seeing the
dot. We did not consider if the subject sees the dot for less than two seconds and it did not
turn green.

The study focused on three primary eye-tracking metrics: (1) gaze time, (2) visits,
and (3) time to first gaze. Moreover, we collected the decision of each subject in each grid
exploration as the object that was observed after the dot turns to green. The rest of the
items were considered distractors ordered by gaze time from 1 to 7, being the first distractor
of the object with a higher gaze time prior to the decision.

Additionally, the data collected through the questionnaire was also saved in a CSV file
for further processing.

3.6. Data Analysis

Initially, Pearson correlations were performed to explore the relationship between
liking and eye-tracking metrics. Univariate outlier detection was applied based on a z-score
threshold of 2.56 to retain 99% of the distribution. Subsequently, the differences in these
metrics between decisions (chosen object vs. distractors) have been analyzed using four
repeated measures ANOVAs, where a decision is an independent feature and all others as
dependent variables in each model.

Moreover, the temporal evolution of gaze time prior to the decision was analyzed
descriptively using plots. We present the accumulated gaze time as a percentage during
the exploration in the last three seconds, with a resolution of 120 Hz. It is important to
note that in each instance, the sum of the values is 100%, as it represents the distribution of
accumulated gaze time across objects up to that moment. The plot averages all participants
and grid explorations to describe the patterns during the decision-making process.

Finally, we created a classifying model to recognize the decision based on the eye-
tracking dynamics during the last three seconds before the decision. It is based on the
hypothesis that the final attentional patterns can predict the future decision. We used a
deep learning model based on a Long Short-Term Memory (LSTM) that can recognize
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temporal evolutions. The input was a vector of 360 values with the accumulated gaze
time in milliseconds of the last 3 s at 120 Hz. The label of each sample was 1 if the object
was chosen, and 0 if not. In particular, the architecture includes a first LSTM layer of 50
neurons that returned the hidden state output for each input. The second layer is fully
connected with two neurons due to the 2-class problem. Finally, a SoftMax layer produces
the probability of each class and a classification layer computes the cross-entropy loss and
weighted classification tasks with mutually exclusive classes. The dataset was divided
into 80% for training/validation (1150 samples, 12.43% of true class), and 20% for testing
(287 samples, 16.38% of true class). The model was trained with an ADAM optimizer at
a learning rate of 0.001 and a batch size of 32. Due to the imbalance, we used weighted
cross entropy as a cost function. The maximum number of epochs was 100. We reported
accuracy, true positive rate, true negative rate, AUC, F-score, Cohen’s Kappa, and ROC
curve to evaluate the model using the test split. All the algorithms were implemented by
using Matlab R2022b.

4. Results
4.1. Liking and Gaze

First, linear correlations between liking and eye-tracking metrics were performed using
Pearson correlations, namely, gaze time, visits, and time to first gaze (Figure 4). Results
show that there is a weak positive correlation between liking and gaze time (r = 0.21),
while no significant correlation is observed with visits or time to first gaze (r < |0.1|). A
strong positive correlation is presented between gaze time and visits (r = 0.55), and a weak
negative correlation with the time to first gaze (r = −0.17). In addition, a weak negative
correlation is also shown between visits and time to first gaze (r = −0.21). All correlations
were statistically significant (p-value < 0.001).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 14 
 

Finally, we created a classifying model to recognize the decision based on the eye-
tracking dynamics during the last three seconds before the decision. It is based on the 
hypothesis that the final attentional patterns can predict the future decision. We used a 
deep learning model based on a Long Short-Term Memory (LSTM) that can recognize 
temporal evolutions. The input was a vector of 360 values with the accumulated gaze time 
in milliseconds of the last 3 s at 120 Hz. The label of each sample was 1 if the object was 
chosen, and 0 if not. In particular, the architecture includes a first LSTM layer of 50 neu-
rons that returned the hidden state output for each input. The second layer is fully con-
nected with two neurons due to the 2-class problem. Finally, a SoftMax layer produces the 
probability of each class and a classification layer computes the cross-entropy loss and 
weighted classification tasks with mutually exclusive classes. The dataset was divided into 
80% for training/validation (1150 samples, 12.43% of true class), and 20% for testing (287 
samples, 16.38% of true class). The model was trained with an ADAM optimizer at a learn-
ing rate of 0.001 and a batch size of 32. Due to the imbalance, we used weighted cross 
entropy as a cost function. The maximum number of epochs was 100. We reported accu-
racy, true positive rate, true negative rate, AUC, F-score, Cohen’s Kappa, and ROC curve 
to evaluate the model using the test split. All the algorithms were implemented by using 
Matlab R2022b. 

4. Results 
4.1. Liking and Gaze 

First, linear correlations between liking and eye-tracking metrics were performed us-
ing Pearson correlations, namely, gaze time, visits, and time to first gaze (Figure 4). Results 
show that there is a weak positive correlation between liking and gaze time (r = 0.21), 
while no significant correlation is observed with visits or time to first gaze (r < |0.1|). A 
strong positive correlation is presented between gaze time and visits (r = 0.55), and a weak 
negative correlation with the time to first gaze (r = −0.17). In addition, a weak negative 
correlation is also shown between visits and time to first gaze (r = −0.21). All correlations 
were statistically significant (p-value < 0.001). 

 
Figure 4. Correlation matrix between liking and eye-tracking metrics. Figure 4. Correlation matrix between liking and eye-tracking metrics.

4.2. Eye Patterns of Decisions

Table 1 displays the mean and standard deviation of liking and eye-tracking metrics,
differentiated by the chosen stimuli and the distractors. Repeated measures ANOVAs
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were performed to analyze differences in each metric based on the decision group. Fur-
thermore, post-hoc analysis was conducted for pairwise comparisons between groups
(Figure 5). Statistical differences in liking were presented according to the decision group
(F(7,1337) = 34.24, p < 0.001). The chosen stimuli exhibited higher liking in comparison
to all distractors, with a substantial gap observed between the chosen stimuli and the
rest. Gaze time also showed differences based on the decision group (F(7,1337) = 314.95,
p < 0.001). The chosen stimuli recorded a higher gaze time relative to all distractors. It was
noted that groups with very low values displayed an overlap within the confidence inter-
vals of the pairwise analysis. In addition, visits also presented differences (F(7,1337) = 40.79,
p < 0.001). The chosen stimuli exhibited differences only with the 6th and 7th distractors.
Consequently, in general, there are no differences between the chosen stimuli and the first
distractors, but there are noticeable differences with the later distractors. Lastly, statisti-
cal differences in the time to first gaze were identified in relation to the decision group
(F(7,1337) = 40.19, p < 0.001). The chosen stimuli showed differences with all distractors
except for the first one.

Table 1. Mean and standard deviation of the liking and eye-gaze metrics by decision.

Decision Liking Gaze Time Visits Time to First Gaze

Chosen 1.639 (1.197) 2.123 (0.818) 3.506 (1.583) 1.9 (1.656)
1◦ dis. 0.569 (1.452) 1.657 (0.78) 3.374 (1.888) 1.499 (1.497)
2◦ dis. 0.278 (1.425) 1.253 (0.661) 2.947 (1.585) 1.487 (1.382)
3◦ dis. 0.09 (1.476) 0.931 (0.51) 2.511 (1.342) 2.097 (1.743)
4◦ dis. 0.072 (1.524) 0.781 (0.434) 2.448 (1.518) 2.395 (1.889)
5◦ dis. −0.063 (1.427) 0.615 (0.386) 2.257 (1.538) 2.449 (1.859)
6◦ dis. −0.086 (1.455) 0.484 (0.329) 2.043 (1.385) 3.002 (1.909)
7◦ dis. −0.205 (1.562) 0.374 (0.283) 1.795 (1.19) 3.724 (2.069)
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The circles and bars in Figure 5 represent the means and confidence intervals for the
groups based on Tukey’s honestly significant difference procedure. Two group means are
significantly different if their intervals are disjoint. Blue represents the stimuli chosen, while
red and grey represent a group with significant and non-significant differences respectively
against chosen stimuli.

4.3. Gaze Cascade Effect

Figure 6 illustrates the temporal evolution of the accumulated percentage of gaze time
for both the chosen stimuli and the distractors. The most viewed stimulus appears to be the
chosen one, as previously analyzed. However, this trend begins to manifest approximately
1.5 s prior to the decision, at which point the chosen stimuli exceed the first distractor in
terms of relative accumulated gaze time.
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4.4. Decision Recognition

A deep learning model was developed to distinguish each stimulus’s decision (chosen
vs. non-chosen) based on the evolution of gaze time in the final three seconds before the
decision. This architecture employs an LSTM framework to model the temporal evolution
of the gaze pattern. The model’s performance is demonstrated using an independent test
set of 287 stimuli, maintaining a 2-class balance with 16.38% in the true class, i.e., chosen
stimuli. The model discerns the decision with a general accuracy of 90.59% and an AUC
of 0.891. Figure 7 presents the ROC curve. Specifically, the chosen stimuli were correctly
identified 59.57% of the time, whereas non-chosen stimuli were accurately recognized
96.67% of the time, as shown in Table 2.

Table 2. Performance scores of the LSTM model to recognize decisions based on gaze time dynamics.

Test Set
Performance Accuracy True

Positive Rate
True

Negative Rate AUC F-Score Cohen’s
Kappa

LSTM model 90.59% 59.57% 96.67% 0.891 0.731 0.562
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5. Discussion

The primary objective of this research study was to investigate the recognition of
decision-making processes when presenting individuals with multiple stimulus alternatives
in an 8-AFC decision-making task through eye-tracking patterns. In an era where VR is
becoming more prevalent and is being effectively utilized in product evaluation, this
verification enables an evaluation of the decision-making process without relying on
traditional self-report methods. Within this context, an experiment was designed to study
the preferences of a group of participants towards 64 virtual prototypes exhibiting varying
designs of a singular product (i.e., a bedside table). The participants were required to
evaluate and subsequently select their preferred design through a series of 8-AFC tasks.
Moreover, individual evaluations were conducted for each design.

First, we postulated that there could be a correlation between liking and eye-tracking
metrics (H1). This hypothesis was divided according to the eye-tracking metrics studied:
gaze time (H1.1), visits, and time (H1.2) to first gaze (H1.3). In this context, the main results
are shown in Figure 4, which presents the Pearson correlation between liking and eye-
tracking metrics. These results showed that there was a weak positive correlation between
liking and gaze time, so H1.1 is accepted. This finding implies that participants directed a
slightly longer amount of gaze time towards stimuli that they favored in comparison to
those that they found less appealing. Nevertheless, this observed correlation proved to be
of weak magnitude, signifying the possible presence of additional factors that may impact
the duration of gaze time beyond mere liking. In this context, other researchers have also
demonstrated that the product that is most well-liked by participants tends to be the one
that receives the most visual attention [23]. This is in line with results obtained by other
authors [23–25] and suggests that the level of liking or preference a person has for an object
can influence how they examine it and the time they spend on it. If an object has features
that appeal or seem to be important to the user, they are more likely to spend more time
and attention on it [26], which in turn could lead to a higher liking score. Furthermore, if
the user finds an object less attractive, they may examine it with less attention and spend
less time on it, which could lead to a lower liking score, which in our case corresponds with
results obtained by each of the distractors and aligns with [27]. On the contrary, results
showed no correlation between liking and visits nor time to first gaze, so H1.2 and H1.3 are
rejected. The correlation coefficient value indicates that the linear relationship between the
two variables was very weak and that most of the data points do not follow a clear line. In
other words, although there may be a linear relationship between the two variables, it is
not a strong or reliable relationship.
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In this context, results also indicated a weak negative correlation between gaze time
and time to first gaze and a strong positive correlation between gaze time and visits. A
weak negative correlation between gaze time and time to first gaze suggests that when
participants take longer to first look at an AOI, they tend to spend less time looking at
it overall. This might be attributed to the fact that they lose interest in that area after
initial exposure or because they find the product unimportant. On the other hand, a strong
positive correlation between gaze time and visits suggests that the more time participants
spend looking at one product, the more likely they are to return to that AOI multiple times.
This could be because they find the product interesting or engaging, or because they need
more time to process the information presented.

We also postulated that the selected stimuli would exhibit distinct patterns for eye-
tracking metrics and scores for liking compared to the various distractors (H2). In this
regard, the repeated measures ANOVAs (Figure 5) and results shown in Table 1 corrobo-
rated this hypothesis, so H2 is accepted. Firstly, results showed that there was a statistically
significant difference in the liking score obtained for the product between the final selection
and the other distractors, and descriptive statistics showed a higher score for this data set
for the chosen stimuli. Moreover, the analysis revealed statistically significant differences
between the selected stimulus and the other distractors across two eye-tracking metrics:
(1) gaze time and (2) number of visits. In this sense, descriptive statistics showed that par-
ticipants allocated a significantly higher amount of gaze time towards the chosen stimulus,
and similarly, volunteers tended to revisit the chosen stimulus more frequently than the
distractors, indicating a heightened level of attention and attraction towards the selected
item. On the other hand, although there were some statistically significant differences be-
tween groups for the metric of Time to First Gaze, these differences were not as prominent
as those found in Gaze time and the number of visits. From these results, we can infer that
a user’s level of liking for an object can influence the amount of time they spend examining
it according to [25], which in turn could influence the final selection of the object. Therefore,
analyzing the relationship between examination time and liking level can provide valuable
information for understanding how users interact with objects and how their preference
for them is formed.

On the other hand, it was postulated that the Gaze Cascade Model would occur in
virtual environments (H3). For this, we studied the relationship between choices and
distractors of 8-AFC with the visual attention patterns during the last seconds before the de-
cision. In this regard, the results of ANOVA of gaze time indicate that our main hypothesis
is accepted, since in the last instant before the decision, the choice is the most viewed. This
is in line with results obtained by other authors in 2D environments [19,21,22]. Analyzing
the last seconds before the decision (Figure 6), this trend was manifested approximately
1.5 s prior to the decision. This result was also obtained by [21], who demonstrated that
this time may increase for more complex stimuli, so we recommend conducting this type of
study with different furniture items with varying complexity levels to observe whether this
duration increases or decreases.

In this regard, achieving similar results between 2D and 3D media may raise questions
about the efficacy of VR in evaluating decision-making processes, as presenting stimuli in
an immersive VR environment may require a greater investment of time and resources com-
pared to the use of 2D images. However, some research has demonstrated that perceptual
differences exist when displaying products using different visualization techniques [28–30],
differences which may be minimized through the use of more sophisticated visualization
techniques given its ability to convey more information than basic representations such
as images [31,32]. Therefore, the observation that similar effects are manifest in virtual
environments represents a significant improvement in the evaluation process of a range of
products, since the feedback provided by users will be more accurate and comparable to
the evaluation of the real product. Furthermore, VR can help minimize the cost associated
with the evaluation process, as the use of physical prototyping can be significantly reduced.
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Finally, it was proposed that we could predict the user’s decision by analyzing the
gaze time evolution in the last three seconds leading up to the product selection (H4), which
was accepted. Our results are in line with other authors [33,34], who correlated eye-tracking
metrics with the consumer’s choice. In our case, more complex statistical modeling was
conducted to demonstrate this hypothesis, since statistical hypothesis testing as ANOVA
or correlation does not directly imply that user choices can be predicted. A deep learning
2-class model was developed to recognize chosen and non-chosen stimuli based on the gaze
time patterns in the final three seconds prior to the decision. We selected this time window
based on the previous results of the Gaze Cascade Model (Figure 6). The architecture
chosen was an LSTM since it can model the temporal dynamics of a signal. Recent studies
used this architecture to recognize the patterns of eye-tracking in VR environments [35].
To evaluate the model, we used an independent test set of 287 decisions. The results
demonstrated that the model achieved an overall accuracy of 90.59% when predicting the
decision (specifically, the chosen stimuli were correctly identified 59.57% of the time, while
non-chosen stimuli were accurately recognized 96.67% of the time). These findings suggest
that gaze time can serve as a valuable indicator of decision-making, and the deep learning
model has shown accuracy in predicting user choices using eye-tracking metrics. The
high accuracy in recognizing non-chosen stimuli indicates that the model can effectively
differentiate between selected and non-selected options. Overall, this research highlights
the potential of using gaze time analysis and deep learning techniques for understanding
and predicting user decisions. Further investigations and refinements to the model could
lead to even more accurate predictions, making it a valuable tool for product evaluation
and user research in various fields.

6. Conclusions

This study represents a significant step forward in understanding consumer behavior
in virtual environments, specifically in the realm of product design and development.
In this research, the eye-tracking technique was used to record and analyze participants’
eye movements while interacting with virtual products. This physiological measurement
method is particularly valuable in decision-making research because it provides objective
information about participants’ preferences and attitudes, even those that are unconscious
or difficult to verbalize. In fact, information obtained through eye-tracking can be more
accurate and reliable than that collected through self-report questionnaires, which often
rely on participants’ memory and subjective interpretation.

In this context, the findings demonstrate that the decision-making process in virtual
environments is comparable to that in other media (i.e., 2D images) or with other types
of stimuli (i.e., logos, toys, or faces). Furthermore, we demonstrated that it is possible to
predict the user’s choice toward different product design alternatives through eye-tracking
metrics and that a correlation exists between certain eye-tracking measures and users’ pref-
erences towards products. This information is particularly valuable for industrial designers
who are tasked with developing new products and must choose from various alternative
concepts. By analyzing eye movements, designers can gain a better understanding of users’
attentional patterns, and this knowledge can then be used to optimize product designs
and improve user satisfaction. On the other hand, this is a relatively easy technique to use,
as eye-trackers are properly integrated into HMDs. This could speed up the evaluation
process, which results in cost reduction.

Moreover, the use of VR in product design offers numerous advantages in terms of
cost and logistics. Specifically, this technology allows for the reduction of costs and time
associated with the creation of physical prototypes and the conduct of usability tests in real
environments. Additionally, virtual environments enable designers and manufacturers to
experiment with a wide variety of designs and materials quickly and economically, leading
to greater innovation and the creation of more attractive products for consumers.

Therefore, the combination of eye-tracking techniques with VR in the product design
process can be a highly effective strategy for improving the quality and efficiency of
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creating new products and services. In summary, research on consumer behavior in virtual
environments, coupled with the use of virtual reality in the design process, can offer
companies a more precise and cost-effective approach to creating innovative and attractive
products for consumers.

We acknowledge the limitations of our study, which primarily serves as an initial anal-
ysis of user behavior in virtual environments concerning decision-making tasks. However,
we recognize the need for future work to conduct a more comprehensive and detailed
analysis specifically examining how gaze influences each individual design dimension
selected for a product, rather than solely considering the product as a whole.
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