
Citation: Ortiz, L.; Guasque, A.;

Balbastre, P.; Simó, J.; Crespo, A.

Schedulability Analysis

in Fixed-Priority Real-Time Multicore

Systems with Contention. Appl. Sci.

2024, 14, 4033. https://doi.org/

10.3390/app14104033

Received: 18 March 2024

Revised: 22 April 2024

Accepted: 7 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Schedulability Analysis in Fixed-Priority Real-Time Multicore
Systems with Contention
Luis Ortiz † , Ana Guasque *,† , Patricia Balbastre † , José Simó † and Alfons Crespo †

Instituto de Automática e Informática Industrial (ai2), Universitat Politècnica de València, 46022 Valencia, Spain;
luioren@ai2.upv.es (L.O.); patricia@ai2.upv.es (P.B.); jsimo@ai2.upv.es (J.S.); acrespo@ai2.upv.es (A.C.)
* Correspondence: anguaor@ai2.upv.es
† All authors contributed equally to this work.

Abstract: In the scheduling of hard real-time systems on multicore platforms, significant unpre-
dictability arises from interference caused by shared hardware resources. The objective of this paper
is to offer a schedulability analysis for such systems by assuming a general model that introduces
interference as a time parameter for each task. The analysis assumes constrained deadlines and is
provided for fixed priorities. It is based on worst-case response time analysis, which exists in the
literature for monocore systems. We demonstrate that the worst-case response time is an upper
bound, and we evaluate our proposal with synthetic loads and execution on a real platform.

Keywords: static scheduling; real-time systems; partitioned systems; multicore systems; worst-case
response time

1. Introduction

Multicore platforms are growing in importance in critical systems, such as automotive
or avionic applications. In these systems, failure to meet any requirement may lead
to catastrophic consequences. Therefore, compliance with deadlines in hard real-time
multicore systems is a crucial aspect.

The scheduling problem in multicore systems in turn requires solving two problems:
(1) decide which tasks are executed in each core (allocation problem) and (2) execute each
task to meet all the deadlines (scheduling problem). In partitioned multicore systems
where migration is not allowed, each core can be executed independently, so that monocore
scheduling theory can be applied. But this is not possible when shared hardware resources
exist. When a task runs in parallel with other tasks in other cores, it may lead to delays
due to shared hardware resources, such as caches, buses, and memories [1,2]. In this case,
interference among cores is produced, and it causes unpredictability, which is undesired
in critical systems.

Modeling interference is not an easy task, and it has been a hot topic in recent years.
There are two main trends to take into account for interference in the temporal model.
On the one hand, there are methods that focus on the modeling and interference mit-
igation of specific hardware resources [3]. These methods are only valid for this type
of resources, but they are able to adjust the interference produced in a very accurate way.
On the other hand, other methods analyze contention for multiple resources and their
integration in schedulability analysis. When multiple shared resources are considered,
the contention model must cope with any of the resources, so a general contention model is
required [4]. The drawback is that the interference produced is overestimated, but some-
times, it is the only feasible approach when the chip vendor does not provide details about
hardware behavior.

In addition to modeling interference, it is also necessary to act in both the allocation
and scheduling stages to reduce the overall interference produced. The allocation problem
is recognized to be NP-hard in the strictest sense [5]. In multicore systems, the way tasks are

Appl. Sci. 2024, 14, 4033. https://doi.org/10.3390/app14104033 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14104033
https://doi.org/10.3390/app14104033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0002-1376-0650
https://orcid.org/0000-0002-2900-8466
https://orcid.org/0000-0001-9458-4083
https://orcid.org/0000-0003-4677-7627
https://orcid.org/0000-0002-6606-7406
https://doi.org/10.3390/app14104033
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14104033?type=check_update&version=2

Appl. Sci. 2024, 14, 4033 2 of 19

allocated to cores largely determines the global interference [6]. Some of the main allocation
techniques are heuristics based on bin packing, such as First Fit, Worst Fit [7,8], etc. These tech-
niques consist of mapping tasks to cores according to their loads (or utilization), without
considering interference. But the allocation strategy Wmin, presented in [4], reduces overall
interference, as it aims to group tasks with interference in the same core, whenever possible.
This work assumes a general model for interference where this parameter is added to the
traditional parameters of a task.

If the allocation strategy greatly reduces interference, as is the case with Wmin, tra-
ditional scheduling algorithms such as fixed or dynamic priorities can be adopted in the
scheduling phase. Because the temporal task model is modified by the inclusion of in-
terference due to contention, it is necessary to provide new schedulability tests for these
models. The work presented in [9] presents schedulability tests for dynamic priorities
under the assumption of the temporal model presented in [4].

When it comes to schedulability tests for fixed priorities, they are based on worst-case
response time (WCRT). WCRT is the length of the longest interval from a task’s release
till its completion [10]. These schedulability tests do not consider interference, so this
work fills this gap. Furthermore, when interference is taken into account, the worst-case
scenario may occur at any point in time during the entire execution window, not necessarily
upon the first activation of the task [9]. Extending the concept of WCRT to consider this is
also challenging.

Regarding scheduling strategies to reduce interference, the recent work [6] proposes
the Rolling Horizon MILP Algorithm (RHMA), which not only achieves a feasible sched-
ule but also minimizes the interference generated by shared hardware resources within
the context of hard real-time multicore systems.

Contribution

This paper proposes a schedulability test for fixed priorities in hard real-time multicore
systems. We assume the temporal model defined in [4], which considers the interference
generated by shared hardware resources. We extend the work presented in [9] to consider
fixed priorities in hard real-time systems. In particular, we propose a schedulability test
based on WCRT. The novelty of the contribution is that both the task model and worst-case
response time equation incorporate interference due to shared hardware resources.

The rest of the paper is organized as follows: Section 2 presents the main contributions
in the related research area. In Section 3, we present the system model for constrained-
deadline systems that is used throughout this paper. Section 4 reviews the classical schedu-
lability analysis for multicore systems with fixed priorities. Then, we propose an upper
bound for the classical worst-case response time analysis, considering contention due
to shared hardware resources. We also propose the corresponding schedulability test. The
experimental evaluation in Section 5 exposes the compliance of our schedulability test.
It also assesses different allocation techniques by comparing how closely the suggested
algorithm matches the real value. These results are confirmed by a real case. Finally,
Section 6 presents the main conclusions and further lines of research.

2. Related Works

The evolution from single-core to multicore computing systems has been a gradual
process. Beginning with initial investigations into hard real-time multicore scheduling
in the late 1960s, the field has seen a steady stream of research developments aimed
at adapting traditional single-core scheduling techniques to multicore environments. Vari-
ous approaches have been proposed and explored over the years, each contributing to the
evolving landscape of multicore scheduling methodologies.

A comprehensive survey of the existing literature on multicore scheduling, as compiled
in [11], serves as a valuable resource for understanding the breadth and depth of research
in this area. This compilation encapsulates the spectrum of techniques and findings relevant

Appl. Sci. 2024, 14, 4033 3 of 19

to multicore scheduling, providing insights into the progress made and the challenges that
lie ahead.

In recent years, there has been a surge in research focused on reducing interfer-
ence in multicore systems. A notable contribution to this field is the recent survey by
Lugo et al. [12], which highlights key advancements in interference reduction techniques
within multicore systems over the past five years. This survey provides a comprehensive
overview of the latest research efforts and their contributions to mitigating interference
in multicore environments.

Various interference models in the literature target specific sources of interference
within computer systems. Some models concentrate on interference stemming from the
main memory [13,14], while others focus on interference generated by cache memory [15,16],
and others yet address interference originating from the memory bus [17,18]. Each of these
models incorporates the impacts of interference into schedulability analysis, typically
focusing on a single shared hardware resource at a time.

Some of the works that consider a general model and are closer to our work are
detailed hereunder. Altmeyer et al. [19] presented the Multicore Response Time Analysis
(MRTA) framework, designed to integrate task demands on various shared resources with
the resources’ supply and to incorporate the resulting interference explicitly into response
time analysis. Notably, they eschewed the concept of worst-case execution time (WCET)
and instead assumed fixed-priority preemptive scheduling.

The research described in [20] introduced a response time analysis method tailored
for real-time partitioned multiprocessor systems. These systems consist of a set of inde-
pendent tasks with fixed priorities, which can be activated arbitrarily and share secondary
resources. In the above system model, the worst-case response time (WCRT) of a task
may exceed its period, allowing the task to potentially re-arrive before the completion
of its preceding job. Additionally, both local and global shared resources are accounted for,
and a cap on the maximum number of requests any task can make to a shared resource
is imposed.

The study outlined in [21] adopted the concept of superblocks to represent real-time
tasks. The WCRT of tasks is deduced from the worst-case completion time of a superblock,
determined by the upper bound on access requests to shared memory and the maximum
required computation time. The authors investigated various hardware access models and
their impact on schedulability.

Choi et al. [22] presented a response time analysis method tailored for synchronous
dataflow programs mapped to multiple parallel dependent tasks executing on a com-
puter cluster consisting of many cores. This technique extends the MRTA framework [19]
to suit a specific architecture. The WCRT analysis module determines the upper limit
of demand for shared resources based on the event stream model of each cluster in each
processing element.

The authors in [23] examined fixed-priority partitioned multiprocessor scheduling.
They demonstrated that for task systems with arbitrary deadlines, a greedy mapping
strategy achieves a speedup factor that holds true for both polynomial-time and exponential-
time schedulability tests. They provided schedulability tests specifically tailored for Deadline
Monotonic (DM) scheduling, encompassing implicit, constrained, or arbitrary deadline models.
However, none of these tests incorporate shared hardware resources into their definitions.

Chen et al. [24] introduced a schedulability condition initially designed for uniproces-
sor systems, later extending it to derive an upper limit on the number of cores necessary
for a periodic, non-preemptive task set. Additionally, they proposed a comprehensive
formula to determine valid start time offsets for a new task to collaborate with existing tasks
on the same processor. Consequently, offsets and non-preemption are incorporated, which
deviates from our temporal model, and the proposed schedulability condition overlooks
interference considerations.

Huang et al. [25] introduced an asymmetric analysis method for evaluating the re-
sponse time of task processing and access to shared resources, considering both the execu-

Appl. Sci. 2024, 14, 4033 4 of 19

tion and suspension intervals of tasks. Their model incorporates an upper limit on the exe-
cution time of shared resource access for each task and the maximum count of segments
for accessing resources per task, with each segment potentially comprising multiple consec-
utive data requests to access the shared resource. In contrast, our approach offers greater
flexibility by not constraining the amount of interference or the number of access times
in the model.

Choi et al. [26] proposed a fundamental technique for estimating the WCRT of syn-
chronous dataflow (SDF) applications in multicore systems, accounting for task dependency
and execution time variations. Their approach integrates schedule time bound analysis,
which accounts for interference between task instances within the same SDF graph, and
response time analysis, which addresses interference from other real-time tasks.

While both studies consider interference from other real-time tasks in response time
analysis, their work focuses on SDFs, whereas ours does not involve dataflows. In [27],
the allocation problem and exact computation of WCRT are addressed by using a composi-
tional framework based on time automata.

Andersson et al. [28] introduced a schedulability test for the fixed-priority preemptive
partitioned scheduling of sporadic, constrained-deadline tasks. Their approach accounts
for varying the execution times of tasks based on specific co-runners, which are determined
through static analysis or measurements. In a similar vein, Al-Bayati et al. [29] concentrated
on resource-aware partitioning approaches within the context of fixed-priority partitioned
scheduling. They proposed an Integer Linear Programming formulation to efficiently assign
tasks to cores, assign priorities to the tasks, and select resource protection mechanisms.

This work follows the general system model in [4], which introduced a scheduling
algorithm that precisely computes total interference and an allocator that aims to minimize
this interference. However, in the above work, the authors did not propose any schedula-
bility test to ensure the system’s feasibility. For this reason, [9] proposed two schedulability
tests for dynamic-priority, real-time systems with contention. Therefore, our work covers
the gap of the schedulability test in [4], but it is focused on fixed-priority, real-time systems
with contention.

3. System Task Model

We assume the same task model as the one presented in [4]. We suppose a multicore
system with m homogeneous cores (M0, M1, M2, ..., Mm−1) in which a task set τ of n inde-
pendent periodic or sporadic tasks must be statically allocated. Each task τi is represented
by the tuple

τi = (Ci, Di, Ti, Ii) (1)

where Ci is the WCET, Di is the relative deadline, Ti is the period, and Ii is the interference.
We assume constrained deadlines, so Di ≤ Ti.

The Ii parameter was first introduced in [4]; then, it was also used in [9]. Briefly, in-
terference parameter Ii is the worst-case time that it takes τi to access hardware resources
and means a “delay” in other tasks executing at the same time on all other cores due
to contention. Ii is the worst-case time that τi spends reading and writing memory oper-
ations. This is depicted in Figure 1, where we can see that all the time that τ0 dedicates
to these operations is included in interference parameter I0. Task execution times are repre-
sented by solid rectangles while interference is sketched in dashed rectangles. Considering
the viewpoint of other tasks, Ii is the additional time that τi causes in other tasks concur-
rently executing on other cores due to contention. For a more comprehensive understanding
of the interference parameter, please refer to the aforementioned articles.

Although our work introduces the interference parameter in the general model, there
are two commonly used approaches for modeling interference: one involves utilizing
a model tailored to the particular type of shared hardware, while the other proposes a gen-
eral model that is applicable to any type of hardware. The former approach provides a more
accurate estimation of interference but is limited to the specific hardware for which it was
developed. Additionally, this interference value is typically incorporated into WCET, result-

Appl. Sci. 2024, 14, 4033 5 of 19

ing in a highly pessimistic solution. On the other hand, the latter approach yields a higher
interference value, but by independently incorporating this parameter into the temporal
model, it is possible to derive a less pessimistic model.

Figure 1. Example of task interference.

The hyperperiod of τ, H, is the time after which the pattern of job release times starts
to repeat and is the least common multiple of the periods of all the tasks in that set. Ni is
the number of activations that task τi has throughout the hyperperiod (Ni = H/Ti).

Throughout this text, we talk about tasks that belong or not to a core. When we refer
to Mτi , we mean the core in which τi is allocated. Moreover, we denote by τMk the set
of tasks in τ that belong to core Mk. Therefore,

⋃m−1
k=0 τMk = τ.

Also from [4], a task is designated as a receiving task when it accesses shared hardware
resources, resulting in an increase in its computation time caused by interference from other
tasks allocated to different cores. Conversely, a task is classified as a broadcasting task
when its access to shared hardware resources triggers an increment in computation time
in other tasks allocated to different cores due to contention. If the interference parameter
of task τi is equal to zero (Ii = 0), then τi is neither a broadcasting nor a receiving task. If
Ii > 0 and there is at least one task τj in another core whose Ij > 0, τi is a broadcasting and
receiving task.

Once the model is defined, let us introduce the concept of interference in the schedula-
bility analysis of real-time multicore systems based on fixed priorities.

4. Interference-Aware Schedulability Analysis for Fixed Priorities

In this section, first, we present a well-known fixed-priority schedulability test for
constrained-deadline task models. Traditional models overlook the interference arising
from the concurrent execution of different tasks across multiple cores. Then, we contribute
to the field in this sense by including interference in the schedulability test.

4.1. Deadline Monotonic Schedulability Analysis

Fixed-priority schedulers assign an initial priority to tasks that remains constant during
all execution. Deadline Monotonic scheduling (DM) [30] considers task sets with deadlines
shorter than periods and assigns the highest priority to the task with the shortest deadline.
An exact schedulability test (necessary and sufficient condition) for fixed priorities is based
on calculating the WCRT of each task.

Appl. Sci. 2024, 14, 4033 6 of 19

The calculation of the WCRT of τi in a monocore system is presented in Equation (2) [31]:

WCRTi = Ci + ∑
∀τj∈hp(i)
∀τj∈Mτi

⌈
WCRTi

Tj

⌉
Cj (2)

The second term of the preceding equation signifies the execution of higher-priority
tasks in the worst case, that is, assuming the synchronous activation of tasks. Equation (2)
is solved by an iterative method. The stop conditions are the violation of a deadline
(WCRTi > Di for any task i) or convergence (WCRT(k + 1) = WCRT(k)).

Then, the task set is schedulable if and only if

WCRTi ≤ Di ∀τi ∈ τ (3)

The outcome of this test not only determines whether the system is schedulable
or not but also provides the worst-case response time (WCRT) of each task. Additionally,
it identifies which tasks are implicated in deadline misses, if any occur.

Without interference considerations, the WCRT of all tasks in the task set is obtained
when all tasks are activated simultaneously. It corresponds to the first activation of the tasks,
so the response time is not calculated for all the activations but only the first.

4.2. Interference-Aware Schedulability Analysis for Deadline Monotonic Scheduling

Given the monocore classical test presented above, this section proposes a schedulabil-
ity test that extends this test to multicore systems, considering the interference delay due
to contention.

First, we present an upper bound of WCRT, when interference is considered. This is
an upper bound because it assumes that the maximum interference is always produced.
Then, we provide the corresponding schedulability test. As we define an upper bound
of the response time, the test that we provide is sufficient but not necessary.

Let us start with some considerations to be taken into account. When we extend
the analysis to multiple cores, would it be sufficient to consider that the worst-case response
time of a task only depends on the computation times of higher-priority tasks of its core?
In multicore systems with contention, the response time of a task depends on the following:

• Its own computation time.
• The interference it is affected by (if it is a receiving task).
• The computation time of higher-priority tasks allocated to its core. And this, in turn,

depends on the interference they are affected by (if they are receiving tasks).

Therefore, these aspects may be considered when schedulability analysis is proposed.
As stated before, the WCRT of synchronous tasks executed in a monocore system

corresponds to the first activation of the tasks. In multicore systems, when interference is
considered, WCRT does not necessarily have to be relative to the first activation. Let us
consider an example to report this common misconception.

Let us take task set τ = [τ0, τ1, τ2], with τ0 = (1, 2, 3, 0), τ1 = (2, 4, 5, 1), and
τ2 = (1, 3, 5, 1), allocated to a dual-core platform (Table 1). τ0 and τ1 are allocated to core
M0, and τ2, to M1. After allocating tasks to cores, the DM algorithm schedules tasks in each
core. The execution chronogram of the task set is shown in Figure 2.

Table 1. System with task set τ.

Task τ C D T I Core M

0 1 2 3 0 0
1 2 4 5 1 0
2 1 3 5 1 1

Appl. Sci. 2024, 14, 4033 7 of 19

Figure 2. WCRT of tasks in multicore systems with contention.

Task τ0 possesses the highest priority, as it is the task with the shortest deadline.
As I0 = 0, it is not a receiving task, so it does not receive any interference. τ1 and τ2
are receiving/broadcasting tasks (I1, I2 > 0). Every time τ1 is active at the same time as
τ2 is, interference appears. As τ0 has the highest priority, τ1 starts its execution at time
1, when τ2 has just finished its execution, so interference does not appear. Therefore,
the response time of τ1 at its first activation is 3. However, at time 5, τ1 and τ2 are released
and coincide in execution. Due to this interference and its preemption due to the release
of τ0, the response time of τ1 at its second activation is 4. The same happens at the third
activation. Then, the WCRT of τ1 does not refer to its first activation. The same happens
with τ2.

With this example, we can conclude that when interference is considered, the WCRT
of a task may refer to any activation, not necessarily the first activation. For this reason,
in multicore systems with contention, all activations of all tasks must be studied in order
to ensure that the test is correct.

4.2.1. Previous Definitions

Below, let us derive an upper bound of the response time of all activations of all tasks
allocated to a multicore system with contention. For the subsequent analysis, we need
some definitions.

Definition 1. Let −−→vj→i be the activation pattern from a broadcasting task τj to a receiving task τi [9].

We require this information, represented as an array, to compute the interference that
a broadcasting task τj can induce on a receiving task τi. This array denotes the number
of activations of τj that occur within an activation of τi. Array−−→vj→i is calculated as a relation
of periods between broadcasting and receiving tasks.

This expression is valid for implicit deadline task sets. However, if this array is used
to calculate the interference between tasks when Di ≤ Ti, the interference obtained is highly
overestimated. The reason is that there are activations of a task that fall within an activation
of another that do not provoke interference because the deadline is not taken into account.

Then, let us propose an improved definition of the activation pattern for constrained
deadlines, noted as

−−→
v∗j→i.

Definition 2. Let
−−→
v∗j→i be the improved activation pattern from a broadcasting task τj to a receiving

task τi.

Appl. Sci. 2024, 14, 4033 8 of 19

This definition is similar to the one presented in [9] but considers the deadlines to count
the maximum number of overlaps among activations. In this sense, if the broadcasting
task is released when the deadline of the receiving task has expired and has not yet been
released again (and vice versa), this overlap is not counted. Note that if τi is not a receiving
task,

−−→
v∗j→i[a] = 0 ∀τj ∈ τ, ∀a ∈ Ni.
We use an example to show the differences of both parameters.
Let us consider a system with two tasks, τ′ = [τ′0, τ′1], with τ′0 = (1, 2, 3, 1) and

τ′1 = (1, 6, 7, 1), allocated to a dual-core platform. τ′0 is allocated to core M′0, and τ′1, to M′1
(Table 2). For simplicity, computation times are not shown.

Table 2. System with task set τ′.

Task τ′ C D T I Core M

0 1 2 3 1 0
1 1 6 7 1 1

As seen in Figure 3a, −−−→v1′→0′ = [1, 1, 2, 1, 2, 1, 1] from [9]. Equivalently, −−−→v0′→1′ = [3, 3, 3].
However, from Figure 3b,

−−−→
v∗1′→0′ = [1, 1, 1, 1, 1, 1, 1] and

−−−→
v∗0′→1′ = [2, 3, 2]. Then,−−−→v0′→1′ [2] = 2

and
−−−→
v∗0′→1′ [2] = 1. This difference is due to the fact that first activation of τ′1 does not overlap

with the third activation of τ′0 (considering deadlines), as D1 just expires when τ′0 is released.
However, as −−−→v1′→0′ does not consider deadlines but periods, this overlap is counted.

Figure 3. Example (a,b) of (a)−−→vj→i and (b)
−−→
v∗j→i for task set τ′ = [τ′0, τ′1] allocated to a dual-core platform.

The next theorem proves that
−−→
v∗j→i can be used to calculate an upper bound of interference.

Theorem 1. The maximum number of activations of broadcasting task τj that fall within the ath

activation of τi and may provoke interference is

−−→
v∗j→i[a] = K +

aTi+Di−1

∑
t=aTi+1

g(t) (4)

Appl. Sci. 2024, 14, 4033 9 of 19

where

K =

{
1 If aTi ∈ [nTj, nTj + Dj) ∀n ∈ Nj

0 Elsewhere
(5)

and

g(t) =

1 If t - Tj

⌊
t

Tj

⌋
= 0

0 Elsewhere
(6)

Proof. Let us suppose that any a′th activation of τi does not fall in the interval defined as
[nTj, nTj + Dj). Then, nTj + Dj ≤ a′Ti < nTj. In this case, K=0, which means that the receiving
task is released when the deadline of the broadcasting task has expired and that it has not
yet been released again. So, there is no interference. On the contrary, if the receiving task is
released when the broadcasting task has been released and its deadline has not expired, there
may be interference.

Let us assume now that there exists t′ so that t′ = α · Tj and aTi < t′ < aTi + Di.
In this case,

t′ − Tj

⌊
t′

Tj

⌋
= α · Tj − Tj

⌊
α · Tj

Tj

⌋
= 0

thus g(t′) = 1.
Thus, g(t) equals 1 only when broadcasting task τj is released within the interval

(aTi, aTi + Di). By analyzing g(t) throughout the preceding interval, we determine the num-
ber of activations that occur within activation a of τi, considering the term “activation” as
the period from the release to the deadline.

The sum of g(t) cannot exceed the total number of activations. Therefore, Equation (4)
accurately computes the maximum number of activations occurring within the interval.

Listing 1 presents the pseudo-code (python-like) for calculating
−−→
v∗j→i.

Listing 1. Maximum interference array algorithm.

1 # v a r i a b l e s d e f i n i t i o n and i n i t i a l i z a t i o n

2
−−→
v∗j→i = [None] Ni

3 L = [[* range (nTj , nTj + Dj , 1)] for~n in~range (Nj)]
4 i f Ii 6= 0 and Ij 6= 0 :
5 for~a~in range (Ni) :
6 K, g = 0
7 i f ~aTi in~L :
8 K=1
9 for~ t in~range (aTi +1 ,aTi + Di , 1) :

10 i f ~ t % Tj = = 0 :
11 g = g + 1

12
−−→
v∗j→i[a] = K + g

Once the
−−→
v∗j→i vector is defined, it is used to derive the upper bound of the WCRT

of task activations. This vector helps us to know whether a receiving task is affected by inter-
ference from tasks in other cores. Apart from this vector, we need to know the “delay” that
the tasks are subject to due to higher-priority tasks in the same core. For these reasons, we
need to identify which activations of the higher-priority tasks overlap with the activations
of the task under study.

Appl. Sci. 2024, 14, 4033 10 of 19

To do so, we need the following definition and properties.

Definition 3. Let Aij be a binary matrix of Ni×Nj. The value of Aijmn
indicates whether activation

mth of τi falls within activation nth of τj or not in the following way:

• Aijmn
= 1: activation mth of τi overlaps with activation nth of τj.

• Aijmn
= 0: activation mth of τi does not overlap with activation nth of τj.

This matrix serves as the basis to establish when an activation of task τi is subject to
the influence of activations of tasks with higher priority running in the same core.

Property 1. If a pair of tasks τi and τj are allocated to different cores, Mτi 6= Mτj ; then,
Aijmn

= 0 ∀m ∈ Ni, ∀n ∈ Nj.

Property 2. Aij = AT
ji ∀τi, τj ∈ τ.

Property 3. Aij = O if i = j.

We shall demonstrate the behavior of A with an example. We consider task set
τ′′ = [τ′′0 , τ′′1 τ′′2], with τ′′0 = (1, 2, 3, 1), τ′′1 = (2, 5, 5, 0), and τ′′2 = (1, 3, 5, 1), allocated
to a dual-core system, where τ′′0 and τ′′1 are allocated to M′′0 , and τ′′2 , to M′′1 (Table 3).

Table 3. System with task set τ′′.

Task τ′ C D T I Core M

0 1 2 3 1 0
1 2 5 5 0 0
2 1 3 5 1 1

Figure 4 shows how tasks are allocated to cores and the relation of deadlines and periods.
For simplicity, neither computation times nor interferences are depicted. Let us deduce
the values of A01, A02, A10, A12, A20, and A21. If tasks are not allocated to the same core, Aij
are null matrices. Then, A02 = A12 = A20 = A21 = O. Let us now calculate A10.

Figure 4. Representation of deadlines and periods of system τ′′ = [τ′′0 , τ′′1 τ′′2] allocated to a dual-core
platform to derive matrices Aij.

A10 is the matrix that relates τ1 and τ0 and is composed of N1 rows and N0 columns,
where N1 = H/T1 = 3 and N0 = H/T0 = 5. For each element a10ij , it is evaluated

if activation ith of τ′′1 overlaps with activation jth of τ′′0 , and it may be deduced by observing
Figure 4. For example, activation 0 of τ′′1 overlaps with activation 1 of τ′′0 . Then, a1001 = 1.
But activation 1 of τ′′1 does not overlap with activation 1 of τ′′0 . Then, a1011 = 0. By
evaluating the overlap among all activations of both tasks, A10 is obtained.

Appl. Sci. 2024, 14, 4033 11 of 19

A10 =

 1 1 0 0 0
0 0 1 1 0
0 0 0 1 1


The next section presents the definition of WCRT considering the interference pro-

duced in multicore systems, making use of the above definitions.

4.2.2. Worst-Case Response Time with Interference Considerations

In this section, we present a schedulability test based on WCRT by using the definitions
of activation pattern array (

−−→
v∗j→i) and binary matrix (Aij).

As stated at the beginning of Section 4.2, the WCRT of an activation of a task depends
on its own Ci, the interference from broadcasting tasks allocated to other cores that it
is affected by (if it is a receiving task), and the computation times of and interference
from the higher-priority tasks allocated to its core. With these three factors, Equation (7)
is formulated.

Definition 4. The upper bound of the WCRT of activation k of task τi considering multicore system
interference is

WCRTk(ub)

i = Ci + ∑
∀τz /∈Mτi

Ii 6=0

v∗z→i[k] · Iz + ∑
∀τj∈hp(i)

τj∈Mτi

⌈
k·Ti+Di

Tj

⌉
−1

∑
a=
⌊

k·Ti
Tj

⌋
Cj + ∑

∀τl /∈Mτj
Ij 6=0

v∗l→j[a] · Il

 · Aijka
(7)

As this is an upper bound, it considers that whenever there can be interference,
there is interference. In reality, it is possible that even if two tasks on different cores
have overlapping execution windows, one of them has already finished its activation
when the other one starts its own. That is why the above expression is an upper bound.
In addition, it is also important to note that in systems where there is no interference, this
definition also gives us an upper bound and it will not give an exact result like Equation (2).

Once interference is considered in the response time to provide an upper bound,
the schedulability test presented next applies.

Theorem 2. A task set τ is schedulable by fixed priorities if

WCRTub
i = max

k
(WCRTk(ub)

i) ≤ Di ∀k ∈ Ni, ∀τi ∈ τ (8)

Proof. As stated before, the WCRT of a task in multicore systems with interference depends
on the following three parameters, which are represented in the expression of WCRTk(ub)

:

1. The task’s computation time: Ci.
2. The interference the task is affected by: ∑∀τz /∈Mτi

Ii 6=0

v∗z→i[k] · Iz.

3. The computation time of higher-priority tasks allocated to the task’s core and the
interference they are affected by:

∑∀τj∈hp(i)
τj∈Mτi

∑

⌈
k·Ti+Di

Tj

⌉
−1

a=
⌊

k·Ti
Tj

⌋
Cj + ∑∀τl /∈Mτj

Ij 6=0

v∗l→j[a] · Il

 · Aijka
.

The last two terms are upper bounds on the real interference since they count the max-
imum number of possible overlaps of execution among tasks. There is no possibility
of further interference, as this would imply a higher number of overlaps and the maximum
is already calculated in both expressions.

Therefore, since WCRTub
i is an upper bound to WRCTi it means that

WCRTub
i ≥WCRTi ∀k ∈ Ni.

Appl. Sci. 2024, 14, 4033 12 of 19

In general, if WCRTi ≤ Di ∀τi ∈ τ, then the system is schedulable. So, if WCRTub
i ≤ Di,

the system is schedulable, as all the deadlines are met.

Example

Let us show the usage of Equation (7) to determine the upper bound of the WCRT
of all the activations involved in the system previously defined, i.e., τ′′. τ′′ = [τ′′0 , τ′′1 τ′′2],
with τ′′0 = (1, 2, 3, 1), τ′′1 = (2, 5, 5, 0), and τ′′2 = (1, 3, 5, 1), allocated to a dual-core system,
where τ′′0 and τ′′1 are allocated to M′′0 , and τ′′2 , to M′′1 . Considering that tasks are scheduled
according to the DM algorithm, the scheduling plan is shown in Figure 5.

Figure 5. Scheduling plan of system τ′′ = [τ′′0 , τ′′1 τ′′2] according to DM algorithm.

From the scheduling plan, we can deduce the actual WCRT of all activations of all tasks:
WCRT0 = (2, 1, 1, 1, 1), WCRT1 = (5, 3, 2), and WCRT2 = (2, 1, 1). (Note that the array
of WCRT details the WCRT of each activation. For example, WCRT1 = (5, 4, 2) means
that the WCRT of the first activation of τ1 is 5, that of the second activation is 4, and that
of the third activation is 2.)

In order to calculate the upper bound of WCRT, first, we calculate
−−→
v∗j→i and binary

matrix Aij. By applying Theorem 1,
−−→
v∗2→0 = (1, 0, 1, 1, 1) and

−−→
v∗0→2 = (1, 1, 2). τ1 is not a

broadcasting task, so
−−→
v∗j→1 =

−−→
v∗1→i = 0. Array A10 was calculated at the end of Section 4.2.1

(we avoid the calculation of other arrays because they do not allow for actions in the
formula of WCRT) as

A10 =

 1 1 0 0 0
0 0 1 1 0
0 0 0 1 1


With these above concepts, we can now apply Equation (7) to calculate WCRTk(ub)

i ∀k, i.

WCRTk(ub)

0 = C0 + v∗2→0[k] · I2 + ∅

WCRTk(ub)

1 = C1 + ∅ +
d k·5+5

3 e−1

∑
a=b k·5

3 c
(C0 + v∗2→0[a] · I2) · A10ka

Appl. Sci. 2024, 14, 4033 13 of 19

WCRTk(ub)

2 = C2 + v∗0→2[k] · I0 + ∅

Therefore, WCRTub
0 = (2, 1, 2, 2, 2), WCRTub

1 = (5, 6, 6), and WCRTub
2 = (2, 2, 3).

It can be observed that WCRTub
i ≥ WCRTi for all tasks and activations. However,

τ1 does not pass schedulability test (2), as WCRT1(ub)

1 = WCRT2(ub)

1 = 6 ≥ D1 = 5, but
the system is schedulable. So, the condition of schedulability is sufficient but not necessary.

5. Evaluation

In this section, we evaluate the proposed schedulability test in an experimental environ-
ment, first by means of a synthetic load generator and then by means of a real platform.

5.1. Simulations with Synthetic Workload

In this section, we present the evaluation of the proposed schedulability test with a
synthetic load in an experimental environment, as depicted in Figure 6. First, the load was
generated. Then, for each task set, the scheduling problem was solved. Finally, the results
were validated to evaluate some parameters. In parallel, the proposed schedulability test
was applied to the task sets, and all results were compared.

Let us explain each of these steps.

Figure 6. Experimental simulation.

We used the same synthetic task generator as in [9] with the experimental parameters
defined in Table 4.

With the total system utilization and a specified number of tasks for each set, the uti-
lization was distributed among the tasks by using the UUniFast discard algorithm from [32].
Periods were randomly generated within the range [20, 1000], and computation times were
determined based on system utilization. Deadlines were constrained to be less than or equal
to periods, and they were set to Di ∈ [0.5Ti, Ti].

The theoretical utilization ranges from 50 and 75% of the system’s maximum potential
load. For instance, the maximum load of a system with eight cores is 8; so, for evaluation
purposes, the initial utilization was set to the range 4.1 (≈50%) to 6 (75%).

Appl. Sci. 2024, 14, 4033 14 of 19

Table 4. Definition of experimental scenarios.

Number
of Cores Utilization Tasks Broadcasting

Tasks

Interference
with

WCET (%)
Scenario

2

1.1

4 2

10 1
20 2
30 3

1.5
10 4
20 5
30 6

4

2.4

12 3

10 7
20 8
30 9

3
10 10
20 11
30 12

6

3.1

16 4

10 13
20 14
30 15

4.5
10 16
20 17
30 18

8

4.1

20 5

10 19
20 20
30 21

6
10 22
20 23
30 24

10

5.1

28 7

10 25
20 26
30 27

7.5
10 28
20 29
30 30

The number of broadcasting tasks was configured to be 25% of the total number
of tasks, except for scenarios 1–6 (two cores), where it was set to 50%. In the latter case,
if only one task is a broadcasting task, no interference is generated. We evaluated every
combination of core count and utilization by testing interference levels of 10%, 20%, and
30% relative to the WCET. It is important to note that not all tasks in a task set have
the same interference value, but they all experience the same percentage of interference
with the WCET.

Once the load was generated, to solve the scheduling problem, tasks were allocated
to cores by different algorithms. On the one hand, we considered bin-packing algorithms
such as Worst Fit (WF) and First Fit (FF) [7,8] to allocate the tasks to cores. Tasks are ordered
in descending order of utilization (DU). On the other hand, the interference-aware Wmin
algorithm [4] assigns tasks to cores aiming to reduce contention.

Following the task allocation phase, we now move to the task scheduling phase.
For this purpose, we employed the contention-aware scheduling algorithm, as also pro-
posed in [4]. Specifically, we chose Deadline Monotonic (DM) as the priority-based algo-
rithm serving as the basis for this scheduling approach.

Next, the obtained scheduling plans were evaluated, and different parameters were
measured (validation phase). In this case, we focused on measuring the response times
of the activations of the tasks.

Independently of the above, the schedulability test stated in Theorem 2 was applied
to the task sets. This was compared with the results obtained in the validation phase.

Appl. Sci. 2024, 14, 4033 15 of 19

Figure 7 shows the actual schedulability rates measured in the validation phase.
As expected, when the number of cores and broadcasting tasks increased, the percentage
of schedulability decreased. In fact, in systems at higher loading, fixed-priority scheduling
techniques cannot guarantee all the deadlines, unlike other algorithms, such as Earliest
Deadline First [30,33]. The WFDU allocator is the one that provided better schedulability
rates than any other of the proposed algorithms. The FFDU allocator in combination with
DM is the algorithm with the worst schedulability rates. The peaks of the function imply
scenarios with lower-interference factors, so the schedulability rates are higher.

Figure 7. Schedulability ratio with DM and different allocators.

Figure 8 depicts the percentage of tasks that passed the schedulability test over those
tasks that were feasibly scheduled. Obviously, if the task set is not schedulable, it makes no
sense to apply the schedulability test. As seen in this figure, it is evident that as the number
of cores in the system increases, a greater number of tasks fail the schedulability test. This
occurs because the definition of WCRTk(ub)

is an upper bound, and it is overestimated
as the number of broadcasting tasks and the coefficient of interference increase. For FF
scenarios, as the schedulability ratio was zero from systems with four cores (from scenario
4 onwards), the schedulability test could not be applied (0 in Figure 8) The WF allocator is
the one with which the test provided better results. It is important to note that there is no
set that passes the schedulability test and is not schedulable. However, there are task sets
that fail the test and are schedulable. Then, the proposed test is sufficient but not necessary.

Appl. Sci. 2024, 14, 4033 16 of 19

Figure 8. Percentage of cases that pass the proposed schedulability test.

5.2. Simulations On A Real Platform

Besides the simulation environment, a real platform was used to test the proposed
contributions. We used a Zybo z7 (Digilent, Tokyo, Japan), which integrates a dual-core
ARM Cortex-A9 processor.

We implemented four real-time tasks in Ada language, which is a programming
language used for critical software. In particular, we used the Ravenscar profile [34]
to restrict the use of many tasking facilities so that the execution of the program was
predictable. The parameters of the four tasks are detailed in Table 5 and were created based
on a two-core scenario due to the board characteristics. In order to introduce interference,
50% of the tasks were broadcasting tasks.

The code that executed the tasks consisted of loops with mathematical operations read
and stored in a data array until the task execution time was completed.

Table 5. Task set parameters (ms) for the experimental use case.

Id C D T I

0 52 300 300 14

1 11 300 300 0

2 52 400 400 5

3 11 400 400 0

These tasks were allocated to the Zybo dual-core platform by the previously mentioned
algorithm, WFDU (Figure 9).

Appl. Sci. 2024, 14, 4033 17 of 19

Figure 9. WFDU allocation applied to the task set defined in Table 5.

For this task set, the hyperperiod was H = 1200. Then, we calculated the WCRT
measured on the platform and the WCRTub of each k activation. The results are shown
in Table 6.

Table 6. WCRT measured on the platform and the WCRTub of each k activation when the task set is
allocated with the WFDU algorithm (Figure 9).

(a) Measured WCRT

Activation k

0 1 2 3
τ0 55.707 59.031 55.704 55.713
τ1 10.0023 10.00231 10.00231 10.00231
τ2 60.688 50.4036 50.3931 -
τ3 81.0023 81.0021 81.0021 -

(b) WCRTub

Activation k

0 1 2 3
τ0 57 62 62 57
τ1 11 11 11 11
τ2 102 102 102 -
τ3 130 135 130 -

From these results, we can deduce that the proposed upper bound is, in all cases,
greater than the actual values measured on the platform. Apart from that, when all
parameters in the system are integers, we may assume without loss of generality that all
preemptions occur at integer time values. So, throughout this paper, we have assumed that
all parameters are indeed integers. However, on a real platform using Ada, we make use
of the package Ada.Real_Time, which has a reliable clock for real-time applications.

6. Conclusions

This paper proposes a schedulability assessment utilizing worst-case response time
analysis for hard real-time multicore systems. This analysis assumes fixed-priority and
constrained-deadline task models. We assume a general model in which interference is
a temporal parameter for each task. In other works, schedulability analysis has previously
been proposed for this model for dynamic priorities but did not exist for fixed priorities.
With this work, we complete the schedulability analysis of the general interference model
proposed in [4]. The proposed test is sufficient, as it is an upper bound of the response time
of task sets allocated in multicore systems, where tasks suffer from contention with other
tasks running simultaneously in other cores. The test was tested with simulations with
synthetic workloads and simulations on a real platform.

As future work, we would like to explore how to expand our work into the areas
of power consumption and interference reduction. To tackle the consumption problem,
frequency reduction in idle instants of time might be a feasible approximation. Also, incor-
porating the modeling of the consumption of each task in the scheduling phase could lead

Appl. Sci. 2024, 14, 4033 18 of 19

to interesting results. To lessen the effect of interference, the use of AI techniques might lead
to a breakthrough in this aspect of scheduling, mainly based on mathematical models.

Author Contributions: Conceptualization, L.O., A.G., P.B., J.S. and A.C.; methodology, L.O., A.G.,
P.B., J.S. and A.C.; software, L.O., A.G. and P.B.; validation, L.O., A.G. and P.B.; formal analysis, L.O.,
A.G., P.B., J.S. and A.C.; investigation, L.O., A.G., P.B., J.S. and A.C.; resources, L.O., A.G., P.B., J.S.
and A.C.; data curation, L.O., A.G., P.B., J.S. and A.C.; writing—original draft preparation, L.O., A.G.
and P.B.; writing—review and editing, L.O., A.G., P.B., J.S. and A.C.; visualization, L.O., A.G., P.B., J.S.
and A.C.; supervision, P.B., J.S. and A.C.; project administration, A.G.; funding acquisition, P.B., J.S.
and A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by MCIN/AEI/10.13039/501100011033/ grant PID2021-124502OB-
C41 (PRESECREL), and by PAID-10-20 (Universitat Politècnica de València).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon reasonable request. The data are not publicly
available due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript;
or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

WCRT worst-case response time
WCET worst-case execution time
DM Deadline Monotonic
WF Worst Fit
FF First Fit
WFDU Worst-Fit Decreasing Utilization
FFDU First-Fit Decreasing Utilization

References
1. Dasari, D.; Akesson, B.; Nélis, V.; Awan, M.A.; Petters, S.M. Identifying the sources of unpredictability in COTS-based multicore

systems. In Proceedings of the 2013 8th IEEE International Symposium on Industrial Embedded Systems (SIES), Porto, Portugal,
19–21 June 2013; pp. 39–48. [CrossRef]

2. Karuppiah, N. The Impact of Interference due to Resource Contention in Multicore Platform for Safety-critical Avionics Systems.
Int. J. Res. Eng. Appl. Manag. (IJREAM) 2016, 2, 39–48.

3. Kim, H.; de Niz, D.; Andersson, B.; Klein, M.; Mutlu, O.; Rajkumar, R. Bounding memory interference delay in COTS-based
multi-core systems. In Proceedings of the 2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), St. Louis, MI, USA, 22–24 April 2014; pp. 145–154. [CrossRef]

4. Aceituno, J.M.; Guasque, A.; Balbastre, P.; Simó, J.; Crespo, A. Hardware resources contention-aware scheduling of hard real-time
multiprocessor systems. J. Syst. Archit. 2021, 118, 102223. [CrossRef]

5. Johnson, D.S. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1973.

6. Aceituno, J.M.; Guasque, A.; Balbastre, P.; Blanes, F.; Pomante, L. Optimized Scheduling of Periodic Hard Real-Time Multicore
Systems. IEEE Access 2023, 11, 30027–30039. [CrossRef]

7. Oh, Y.; Son, S.H. Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems. Real-Time Syst. 1995, 9, 207–239. [CrossRef]
8. Coffman, E.G.; Garey, M.R.; Johnson, D.S., Approximation Algorithms for Bin Packing: A Survey. In Approximation Algorithms

for NP-Hard Problems; PWS Publishing Co.: Boston, MA, USA, 1996; pp. 46–93.
9. Guasque, A.; Aceituno, J.M.; Balbastre, P.; Simó, J.; Crespo, A. Schedulability Analysis of Dynamic Priority Real-Time Systems

with Contention. J. Supercomput. 2022, 78, 14703–14725. [CrossRef]
10. Bril, R.; Lukkien, J.; Verhaegh, W. Worst-Case Response Time Analysis of Real-Time Tasks under Fixed-Priority Scheduling with

Deferred Preemption Revisited. Real-Time Syst. 2007, 42, 269–279.

http://doi.org/10.1109/SIES.2013.6601469
http://dx.doi.org/10.1109/RTAS.2014.6925998
http://dx.doi.org/10.1016/j.sysarc.2021.102223
http://dx.doi.org/10.1109/ACCESS.2023.3261130
http://dx.doi.org/10.1007/BF01088806
http://dx.doi.org/10.1007/s11227-022-04446-y

Appl. Sci. 2024, 14, 4033 19 of 19

11. Davis, R.I.; Burns, A. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems. ACM Comput. Surv. 2011, 43, 1–44.
[CrossRef]

12. Lugo, T.; Lozano, S.; Fernández, J.; Carretero, J. A Survey of Techniques for Reducing Interference in Real-Time Applications
on Multicore Platforms. IEEE Access 2022, 10, 21853–21882. [CrossRef]

13. Pan, X.; Mueller, F. NUMA-aware memory coloring for multicore real-time systems. J. Syst. Archit. 2021, 118, 102188. [CrossRef]
14. Hassan, M. Reduced latency DRAM for multi-core safety-critical real-time systems. Real-Time Syst. 2019, 56, 171–206. [CrossRef]
15. Mancuso, R.; Dudko, R.; Betti, E.; Cesati, M.; Caccamo, M.; Pellizzoni, R. Real-time cache management framework for multi-core

architectures. In Proceedings of the 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
Philadelphia, PA, USA, 9–11 April 2013; pp. 45–54. [CrossRef]

16. Sun, G.; Shen, J.; Veidenbaum, A.V. Combining prefetch control and cache partitioning to improve multicore performance.
In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil
20–24 May 2019; pp. 953–962. [CrossRef]

17. Yun, H.; Yao, G.; Pellizzoni, R.; Caccamo, M.; Sha, L. Memory Bandwidth Management for Efficient Performance Isolation in
Multi-Core Platforms. IEEE Trans. Comput. 2015, 65, 562–576. [CrossRef]

18. Xu, M.; Gifford, R.; Phan, L.T.X. Holistic multi-resource allocation for multicore real-time virtualization. In Proceedings of the 56th
Annual Design Automation Conference, Las Vegas, NV, USA, 2–6 June 2019; pp. 1–6. [CrossRef]

19. Altmeyer, S.; Davis, R.I.; Indrusiak, L.; Maiza, C.; Nelis, V.; Reineke, J. A generic and compositional framework for multicore
response time analysis. In Proceedings of the Proceedings of the 23rd International Conference on Real Time and Networks
Systems, Dortmund, Germany, 7–8 June 2015; pp. 129–138. [CrossRef]

20. Negrean, M.; Schliecker, S.; Ernst, R. Response-time analysis of arbitrarily activated tasks in multiprocessor systems with
shared resources. In Proceedings of the 2009 Design, Automation & Test in Europe Conference & Exhibition, Nice, France,
20–24 April 2009; pp. 524–529. [CrossRef]

21. Schranzhofer, A.; Pellizzoni, R.; Chen, J.J.; Thiele, L.; Caccamo, M. Worst-case response time analysis of resource access models in
multi-core systems. In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 July 2010; pp. 332–337.
[CrossRef]

22. Choi, J.; Kang, D.; Ha, S. Conservative modeling of shared resource contention for dependent tasks in partitioned multi-core
systems. In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany
14–18 March 2016; pp. 181–186. [CrossRef]

23. Chen, J.J. Partitioned multiprocessor fixed-priority scheduling of sporadic real-time tasks. In Proceedings of the 2016 28th
Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 5–8 July 2016; pp. 251–261. [CrossRef]

24. Chen, J.; Du, C.; Xie, F.; Yang, Z. Schedulability Analysis of Non-Preemptive Strictly Periodic Tasks in Multi-Core Real-Time
Systems. Real-Time Syst. 2016, 52, 239–271. [CrossRef]

25. Huang, W.H.; Chen, J.J.; Reineke, J. MIRROR: Symmetric timing analysis for real-time tasks on multicore platforms with
shared resources. In Proceedings of the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA,
5–9 July 2016; pp. 1–6. [CrossRef]

26. Choi, J.; Ha, S. Worst-Case Response Time Analysis of a Synchronous Dataflow Graph in a Multiprocessor System with Real-Time
Tasks. ACM Trans. Des. Autom. Electron. Syst. 2017, 22, 1–26. [CrossRef]

27. Foughali, M.; Hladik, P.E.; Zuepke, A. Compositional verification of embedded real-time systems. J. Syst. Archit. 2023, 142, 102928.
[CrossRef]

28. Andersson, B.; Kim, H.; Niz, D.D.; Klein, M.; Rajkumar, R.R.; Lehoczky, J. Schedulability Analysis of Tasks with Corunner-
Dependent Execution Times. ACM Trans. Embed. Comput. Syst. 2018, 17, 1–29. [CrossRef]

29. Al-bayati, Z.; Sun, Y.; Zeng, H.; Natale, M.D.; Zhu, Q.; Meyer, B.H. Partitioning and Selection of Data Consistency Mechanisms
for Multicore Real-Time Systems. ACM Trans. Embed. Comput. Syst. 2019, 18, 1–28. [CrossRef]

30. Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 1973, 20, 46–61.
[CrossRef]

31. Joseph, M.; Pandya, P. Finding Response Times in a Real-Time System. Comput. J. 1986, 29, 390–395. [CrossRef]
32. Davis, R.I.; Burns, A. Priority assignment for global fixed priority pre-emptive scheduling in multiprocessor real-time systems.

In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, Washington, DC, USA, 1–4 December 2009; pp. 398–409.
[CrossRef]

33. Buttazzo, G.C. Rate Monotonic vs. EDF: Judgment Day. Real-Time Syst. 2003, 29, 5–26. [CrossRef]
34. Burns, A.; Dobbing, B.; Vardanega, T. Guide for the Use of the Ada Ravenscar Profile in High Integrity Systems. Ada Lett. 2004,

24, 1–74. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1109/ACCESS.2022.3151891
http://dx.doi.org/10.1016/j.sysarc.2021.102188
http://dx.doi.org/10.1007/s11241-019-09338-8
http://dx.doi.org/10.1109/RTAS.2013.6531078
http://dx.doi.org/10.1109/IPDPS.2019.00103
http://dx.doi.org/10.1109/TC.2015.2425889
http://dx.doi.org/10.1145/3316781.3317840
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1109/DATE.2009.5090720
http://dx.doi.org/10.1145/1837274.1837359
http://dx.doi.org/10.3850/9783981537079_0101
http://dx.doi.org/10.1109/ECRTS.2016.26
http://dx.doi.org/10.1007/s11241-015-9226-z
http://dx.doi.org/10.1145/2897937.2898046
http://dx.doi.org/10.1145/2997644
http://dx.doi.org/10.1016/j.sysarc.2023.102928
http://dx.doi.org/10.1145/3203407
http://dx.doi.org/10.1145/3320271
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1109/RTSS.2009.31
http://dx.doi.org/10.1007/978-3-540-45212-6_6
http://dx.doi.org/10.1145/997119.997120

	Introduction
	Related Works
	System Task Model
	Interference-Aware Schedulability Analysis for Fixed Priorities
	Deadline Monotonic Schedulability Analysis
	Interference-Aware Schedulability Analysis for Deadline Monotonic Scheduling
	Previous Definitions
	Worst-Case Response Time with Interference Considerations

	Evaluation
	Simulations with Synthetic Workload
	Simulations On A Real Platform

	Conclusions
	References

