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Predicting COVID-19 pandemic
waves including vaccination data
with deep learning
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Introduction: During the recent COVID-19 pandemics, many models were
developed to predict the number of new infections. After almost a year, models
had also the challenge to include information about the waning e�ect of vaccines
and by infection, and also how this e�ect start to disappear.

Methods: We present a deep learning-based approach to predict the number
of daily COVID-19 cases in 30 countries, considering the non-pharmaceutical
interventions (NPIs) applied in those countries and including vaccination data of
the most used vaccines.

Results: We empirically validate the proposed approach for 4 months between
January and April 2021, once vaccination was available and applied to the
population and the COVID-19 variants were closer to the one considered for
developing the vaccines. With the predictions of new cases, we can prescribe NPIs
plans that present the best trade-o� between the expected number of COVID-19
cases and the social and economic cost of applying such interventions.

Discussion: Whereas, mathematical models which include the e�ect of vaccines
in the spread of the SARS-COV-2 pandemic are available, to the best of our
knowledge we are the first to propose a data driven method based on recurrent
neural networks that considers the waning e�ect of the immunization acquired
either by vaccine administration or by recovering from the illness. This work
contributes with an accurate, scalable, data-driven approach to modeling the
pandemic curves of cases when vaccination data is available.

KEYWORDS

SARS-CoV-2, COVID-19, vaccination, computational epidemiology, data science for
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1 Introduction

The COVID-19 pandemic was the first pandemic for which data related to the number of
infections, deaths, hospitalizations, and other relevant variables were captured and reported
daily in over 100 countries in the world (1, 2). Data scientists across the globe, working
with mathematicians and epidemiologists, developed computational models to predict the
pandemic spread using a variety of approaches, including compartmental meta-population
(e.g., SIR or SEIR) (3–6), statistical (7–10), agent-based (11–14), and deep learning-based
(15–18) models. These models consider the impact of the applied non-pharmaceutical
interventions (NPIs) and thus enable running simulations of what-if scenarios where
different NPIs were to be applied.

The SARS-CoV-2 outbreak inWuhan was made public on 31 December 2019. Its impact
and spreading potential were early noticed (19), and the virus genome was sequenced at
an early stage of the pandemic spread, showing its most remarkable features (20). The first
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vaccines were quickly developed due to a concerted effort by
pharmaceutical companies, scientists, and governments. Clinical
trials started in recorded time after the coronavirus pandemic was
declared (21–24). This allowed the first vaccine doses to be available
at the end of 2020 and the beginning of 2021 (25–27).

Estimating the immunity provided by the different vaccines
before setting up vaccination plans was critical in preventing
the spread of the infection and in estimating the reduction
of the breakthrough infection and other indirect effects. These
estimations across different population groups led to the proposal
of specific vaccination strategies (28). Another factor to consider is
each vaccine’s decrease in immunity over time (29, 30).

Several mathematical models that leverage such information
have been proposed to forecast the evolution of the pandemic under
different vaccination policies worldwide, such as (15, 31). Immunity
can be estimated in terms of confidence intervals, but, as described
later, the waning in immunity may be modeled through Weibull
distributions (32).

However, we are not aware of any deep learning-based
approach to predict the evolution of the COVID-19 pandemic
while considering the impact of vaccination. In this study, we
present a deep learning-based COVID-19 case predictor that
includes vaccination data and thus extends the previous study by
(17, 18).

We empirically test different implementations with data from
the first quarter of 2021 when vaccines started to be available. At
that time, the predominant variants of SARS-CoV-2 were Alpha,
Beta, and Gamma, which were closer to the variant considered to
develop the vaccines than the Delta variant.

This study is organized as follows: In Section 2, we present
the notation and the core computational epidemiological models
used by our predictor. The data sources used for this study are
described in Section 3. Section 4 presents the deep learning-based
architecture that we used to implement the different models to
predict the number of daily COVID-19 cases. Section 5 summarizes
our results, followed by our conclusion in Section 6.

2 Computational epidemiological
model

2.1 Notation

We will use the following terms and notation as per (17).
Given an arbitrary country denoted by GEOj, we assume that its
population is constant and denoted by Pj. Its daily number of new
COVID-19 confirmed cases on the n − th day, starting from 1st
September 2020, will be denoted by X

j
n. In our estimations, we will

consider the smoothed averaged number of cases between the days
n− K + 1 and n, computed as Z

j
n = 1

K

∑K−1
i=0 X

j
n−1, with K = 7, to

smooth over 1 week.

Beyond the number of infected individuals on the n-th day at
GEOj, we also consider S

j
n, the number of susceptible individuals

who can be infected on the n-th day; V
j
n, the number of individuals

protected by a vaccine on the n − th day; and D
j
n, number of

retired (recovered or deceased) individuals in GEOj on the n − th

day. We compute the ratio of cases between 2 consecutive days as

C
j
n = Z

j
n/Z

j
n−1, which shows the growth/decrease in the number

of cases, and the rescaled ratio by the proportion of susceptible
individuals, denoted by R

j
n = C

j
n
Pj

S
j
n

. This last quotient captures

the effects of a finite population, as it depends on the proportion
of susceptible individuals.

We denote the estimations provided by our models with a ·̂

symbol, e.g., X̂
j
n denotes the estimated number of new COVID-

19 cases on the n-the day in GEOj, and R̂
j
n the estimated scaled

case ratio. Next, we present the two underlying computational
epidemiological models in which our deep neural network models
are based.

2.2 Compartmental SIR model

The classic compartmental metapopulation SIR model
computes the number of Susceptible (S), Infected (Z), and
Recovered (D) individuals as per the following differential
equations:

dS

dt
= −β

S

P
Z + σ (D), (1)

dZ

dt
= β

S

P
Z − µZ. (2)

dD

dt
= µZ − σ (D) (3)

where β is the infection rate, µ is the recovery or removal rate,
and σ (D) is a function of the retired individuals. This term is
not usually included in basic SIR model formulations, but as
the pandemic evolved, it is necessary to include it. The infection
rate β , and thus R

j
n, depend on the transmissibility rates of the

different variants circulating in GEO j at time n and on the applied
non-pharmaceutical interventions (NPIs) at GEO j. During the
period under consideration, there were several variants of concern
(VOC) (Alpha, Beta, and Gamma) which changed to variants being
monitored (VBM) in September 2021 due to the emergence and
expansion of the Delta variant since June 2021 (33).We assume that
the three VBM variants behave as a single one. As explained below,
the effect of β and µ will be captured jointly in R

j
n, thus estimating

them individually is not necessary.

2.3 Compartmental SIR model with
vaccination (SVIR)

The previous SIR model can be extended to incorporate
information regarding the level of vaccination in each GEO and the
efficiency of the vaccines. It is given by the following equations:

dS

dt
= −β

S

P
Z + σ (D)− α(P)+ γ (V), (4)

dV

dt
= α(P)− γ (V), (5)

dZ

dt
= β

S

P
Z − µZ, (6)

dD

dt
= µZ − σ (D). (7)
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This model has two additional terms with respect to
the previous one: α(P), which represents the daily vaccinated
population, and γ (V), which is a function indicating the vaccinated
population that becomes susceptible to the virus due to the waning
effect of the vaccines.

From the discrete version of dZ
dt
, either in 2 or 6, Z

j
n, the number

of infected individuals on the n-th day in GEOj is given as follows:

Z
j
n = Z

j
n−1 + β

S
j
n−1

Pj
Z
j
n−1 − µZ

j
n−1 (8)

=

(
1+ β

S
j
n−1

Pj
− µ

)
Z
j
n−1, (9)

where S
j
n−1 and Z

j
n−1 are the numbers of susceptible and infected

individuals GEOj on the day n− 1, β is the infection rate, and µ as

the recovery or removal rate, which yields the scaled case ratio, R
j
n

as in (16, 17):

R
j
n =

Z
j
n

Z
j
n−1

Pj

S
j
n

=
(1− µ)Pj

S
j
n

+ β . (10)

Given that µ is constant in (10), the larger the infection rate β

is, the larger the R
j
n will be. If we predict R

j
n, we can estimate the

number of COVID-19 cases for the n-th day in GEOj as follows:

X̂
j
n =

(
R̂
j
n

S
j
n−1

Pj
− 1

)
KZ

j
n−1 + X

j
n−7. (11)

It is worth mentioning that Z
j
n is the resulting smoothed

number of infected people on GEOj over 7 days, from n − 6 up

to n. Moreover, X
j
n−7 is the real number of infected people on the

day n− 7 in GEOj.

While X̂
j
n is given by the same expression both in the SIR (1)

and SVIR (4) models, the estimation of the number of susceptible
individuals, S

j
n, is different due to the vaccination. In the case of the

SVIR model, the total population Pj for GEOj is given by Pj = S
j
n +

V
j
n+Z

j
n+D

j
n, for any n ∈ N, indicating that the total population on

GEOj is split on day n as the sum of the susceptible (S
j
n), vaccinated

(V
j
n), infected (Z

j
n), and removed individuals (D

j
n), including both

immunized and deceased individuals. Thus, discretizing dS
dt
, the

number of susceptible individuals on the n-th day inGEOj, denoted

as S
j
n, can be obtained as follows:

S
j
n = S

j
n−1 − Z

j
n−1 − α(P)

j
n−1 + σ (D)

j
n−1 + γ (V)

j
n−1, (12)

where α(P)
j
n−1 represents the total number of vaccinated

individuals on the day n − 1, γ (V)
j
n−1, reflects the vaccinated

individuals who have lost immunity on day n − 1, and γ (D)
j
n−1

corresponds to the infected individuals who have lost immunity on
day n− 1.

The impact of the loss on immunity by part of the population is
complex and hard to infer, as it depends on the types of vaccines

delivered in each GEO, the distribution of variants with their
respective infection rates, the number of doses administered, and
the number of partial and fully vaccinated individuals (34). For
instance, the Alpha variant was predominant with respect to the
Primal variant between January 2021 and June 2021, when the Delta
variant became a variant of concern (33). In our experiments we
assume that:

(1) All circulating SARS-CoV-2 variants are a unique variant during
the entire period of study; and

(2) All vaccines impact individuals equally, independently of their
age, gender, or ethnicity, given that such information is not
available in the compartmental metapopulation models.

2.4 Decay over time in the vaccine’s
immunity to SARS-CoV-2 infections

The decay of the vaccine’s immunity against a SARS-CoV-2
infection may be fitted using a Weibull or a lognormal model.
Both of them estimate a similar average protection, but the Weibull
model provides a slightly better fit over time (32). The waning
effect of the vaccine’s immunity on day n is modeled by the means
of a Weibull distribution of parameters k and ρ for the following
eight vaccines:

1. ChAdOx1 (Oxford/Astrazeneca, OA)
2. Ad5-nCoV Convidecia (Cansino, CA)
3. mRNA-1273 (Moderna Biotech, MO)
4. BBIBP-CorV (Sinopharm, SP)
5. CoronaVac (Sinovac, SV)
6. Sputnik V/Gam-COVID-Vac (Gamaleya, GA)
7. Ad26.COV2.S (Janssen, JA)
8. BNT162b2 (Pfizer/BioNTech, PB)

We denote by

F(n, λi, ki) = e−(n/λi)ki (13)

the complement of the Weibull distribution that models the
waning effect on day n of each of the eight vaccines listed
above. These models are known as accelerated failure time models
and are frequently used in survival analyses. We use the same
fitting parameters λi and ki as those reported in the study
mentioned in the reference (32, Table 4). As shown in the Table 1,
the parameter estimates are available for individuals who are
vaccinated with either a complete or incomplete dose and for
actively infected individuals.

Figure 1 shows theWeibull functions thatmodel the probability
of immunity for infected and fully vaccinated individuals and for
each of the eight vaccines.

In Equation (13) and in the rest of the formulas, the index i = 0
represents the already infected population; i ∈ [1, 8] denotes each
one of the eight vaccines, following the order in which they are
listed above. We assume that: (1) protection starts on the 14th day
after the last –complete or partial– dose; and (2) individuals can get
reinfected after d0 = 14 days. Given these assumptions, the number
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of infected individuals who become susceptible again on GEOj and
on day n is given as follows:

σ (D)
j
n = (1− F(d0, λ0, k0))Zn−14 (14)

+

n−d0∑

l=1

(F(d0 − 1+ l, λ0, k0)− F(d0 + l, λ0, k0))Zn−l−14, (15)

for n ≥ d0 + 1, where λ0 = 87.3 and k0 = 1.4 as per (32).
The number of vaccinated individuals that become susceptible after
waning immunity is computed as follows:

γ (V)
j
n =

∑

v=p,f

8∑

i=1

(1− F(d0, λi,v, ki,v))V
i
n−14+ (16)

∑

v=p,f

8∑

i=1

n−d1∑

l=1

(F(d0 − 1+ l, λi,v, ki)− F(d0 + l, λi,v, ki,v))V
i
n−l−14,

(17)

TABLE 1 Fitted parameters for the Weibull distribution (λ, k), for complete

and incomplete doses from (32).

Vaccine
Complete dose Incomplete dose

λp kp λf kf

1 (OA) 205.6 2.9 65.6 1.3

2 (CA) 166.0 2.0 63.5 1.15

3 (MO) 217.0 3.6 83.5 1.15

4 (SP) 191.0 2.7 73.2 1.15

5 (SV) 184.9 2.5 70.1 1.2

6 (GA) 206.2 2.9 77.5 1.2

7 (JA) 178.6 3.0 — —

8 (PB) 235.3 2.7 92.0 1.1

for n ≥ n0 + d0 = 363, where V i
s is the number of

individuals that were vaccinated on day s with vaccine i; v indicates
whether individuals are partially (p) or fully vaccinated (f); and n0
corresponds to 14 December 2020 (349th day of the year) plus d0
days of latency until individuals may get infected again when the
vaccination started worldwide.

3 Data sources

The number of infected and vaccinated individuals and the
non-pharmaceutical interventions (NPIs) applied in each GEO of
interest were retrieved from the Oxford COVID-19 Government
Response Tracker (OxCGRT) (35). If a country has a negative
number of cases in 1 day, we replace this number with 0. The input
to the prediction model is the smoothed number of cases obtained
by computing their average over 7 days.

Table 2 shows the NPIs considered in this study. They are
categorical variables that indicate the level of intensity of applying
each NPI: the higher the level, the more restrictive the applied
measure is. Detailed information about these levels can be found
in the codebook of the OxCGRT (35) and in the Supplementary
material of (17).

One of these NPIs (H7) describes the population groups that
are covered by vaccination with the following levels: (0) vaccines
are not available; (1–3) vaccines are available to one or more of the
following groups (indicating the number of them): key workers,
clinically vulnerable groups, and older individuals; (4) vaccines
are available for broader groups; and (5) vaccines are universally
available. The complete description of each NPI can be found
at the study mentioned in the reference (36). All the predictor
models described in this study consider all confinement (C1 to
C8) and some public health interventions (H1 to H3 and H6). The
vaccination NPI (H7) may be used to incorporate vaccination into
an SIR model or complement an SVIR model, as explained below.

The number of administered vaccine doses per GEO and day
is obtained from the OxCGRT dataset. However, this information

FIGURE 1

Weibull distributions to model the decay e�ect of the 8 vaccines (OA, CA, MO, SP, SV, GA, JA, and PB) on infected and fully vaccinated individuals.
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TABLE 2 NPIs considered in this study and their possible activation values.

NPI name Values

C1. School closing [0, 1, 2, 3]

C2. Workplace closing [0, 1, 2, 3]

C3. Cancelation of public events [0, 1, 2]

C4. Restrictions on gatherings [0, 1, 2, 3]

C5. Close public transport [0, 1, 2]

C6. Stay at home requirements [0, 1, 2, 3]

C7. Internal movement restrict. [0, 1, 2]

C8. Intl. travel controls [0, 1, 2, 3]

H1. Public info. campaigns [0, 1, 2]

H2. Testing policy [0, 1, 2, 3]

H3. Contact tracing [0, 1, 2]

H6. Facial coverings [0, 1, 2, 3, 4]

H7. Vaccination policy [0, 1, 2, 3, 4, 5]

See the codebook of the OxCGRT (35) for the NPI-level description associated with each

categorical value.

is not provided per vaccine type. We obtained the vaccine specific
details from the study mentioned in the reference (2, 37) but only
for the following GEOs: Argentina, Austria, Belgium, Bulgaria,
Canada, Croatia, Cyprus, Czech Republic, Denmark, Ecuador,
Estonia, Finland, France, Germany, Hungary, Ireland, Italy,
Latvia, Lithuania, Luxembourg, the Netherlands, Norway, Poland,
Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland,
and United States. In the following, we refer to these countries
as GEOs, being GEOj the j-th country in this set. Once we have
defined the underlying computational epidemiological models and
described the data sources, the next sections present the different
implementations of the deep learning-based predictor of daily
COVID-19 cases and their evaluation with real data.

4 Predictors of COVID-19 cases with
vaccination

4.1 Basic architecture

We base our predictor architecture in the architecture
presented in the study by (17). It consists of two parallel branches
of bidirectional Long Short Term Memory layers (LSTM) (38), as
shown in Figure 2: one (top branch) to predict R

j
n, i.e., the COVID-

19 infection rate in GEOj on day n (context), and the other (bottom

branch) to model the effect of the applied NPIs (actions), A
j
n. Each

LSTM provides separate predictions from the context, denoted by h
and actions, denoted by h, combined using a lambda layer to yield
an estimated R̂

j
n. From R̂

j
n, the number of daily cases is computed

as per Equation (11). While we obtain a model for all the GEOs, for
conducting predictions on each GEO, we use its own context and
action data. The model is implemented in TensorFlow and Keras,
running in a computer with an RTX 3090 GPUwith 24 GB of RAM.

The architectural details of each of the branches are as
follows:

1. The context branch (top) consists of a one dimensional
convolutional layer with the ReLu activation function, followed
by a maxpool layer with pool size equal to two, and a
bidirectional LSTM followed by a dense layer. The convolutional
layer has 64 filters with kernel of size 8, and the bidirectional
LSTM with 32 units encodes the input sequence into states of
32 dimensions, which are then provided to the dense layer for
prediction. This architecture empirically generalized well for
many GEOs, achieving good performance in both short- and
long-term predictions (17). The outcome of this layer is denoted
by a function h in terms of the ratios of cases R

j
n.

2. The action branch (bottom) consists of an LSTM followed by
two dense layers to capture non-linearities. We use a sigmoid
activation function to ensure the output is in the [0, 1] range.
The outcome of this layer is denoted by a function g(A) in terms
of the NPi’s A

j
n applied in the GEO j. Moreover, we constrain

g(A) to satisfy the following condition: if the difference between
two sets of actions A and A′ is greater than or equal to 1,
(1− g(A)) must be lower or equal to (1− g(A′)).

3. Finally, a lambda layer combines the outcomes of the context

and action branches and provides the predictions of R̂
j
n that

permits estimating future cases.

4.2 Enhanced models with vaccination

We introduce two key modifications with respect to previously
described basic model. First, the rapid expansion of the
Alpha/Delta/Omicron variants enables learning a context model
for all GEOs simultaneously instead of clusters of countries.
Second, instead of a traditional SIR model, we include vaccination
information in two ways: (1) through an NPI (H7) as an action in
the action branch or (2) with an SVIR model that considers the
effects of vaccination. The hypothesis is that the SVIR model would
yield more accurate predictions once vaccinations are widespread,
as it considers the protective effect of vaccination. Nevertheless, as
time goes by, the probability of reinfection increases, it is necessary
to include waning immunity in the models.

We compare eight different predictors. First, we use the
baseline model (Baseline 1) introduced in the study mentioned
in the reference (16) and served as a baseline for the XPRIZE
Pandemic Response Challenge. We also benchmark our proposed
models against a second baseline model (Baseline2), the predictor
presented in the study mentioned in the reference (17) but
without performing any clustering of GEOs as we only consider
the 30 GEOs, where vaccination data were available as opposed
to 198 GEOs. With such a limited number of GEOs, a
clustering process is unsuitable. In neither of these predictors,
there is no reintroduction of infected individuals who have lost
immunity.

In addition, we consider six predictors to test
the different implementations of vaccination data.
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FIGURE 2

Given the previous contexts Rj

n−1 and actions Aj

n−1 on GEO j up to the n− 1-th day, the model computes an estimated R̂
j
n which is the infection rate

at n-th day for GEO j as a result of combining both branches with a lambda function.

TABLE 3 Accuracy of the predictors expressed in terms of MAE and Mean

Rank (M. Rank) from 1st January 2021 to 30th April 2021.

Predictor
SIR SVIR

MAE M. Rank MAE M. Rank

Baseline 1 24.87 4.10 — —

Baseline 2 24.69 3.88 — —

w/o H7 w/o
VacW

14.56 3.47 12.45 2.80

w/o H7 &
VacW

— — 11.21 2.77

H7 w/o VacW 13.84 3.71 11.59 2.32

H7 & VacW — — 10.98 1.86

Bold values indicate the best results in terms of MAE and Mean Rank.

All the predictors consider a waning immunity of
infected individuals. These are the models under
consideration, according to the nomenclature used in
Table 3:

1. SIR w/o H7 w/o VacW: SIR model that reintroduces infected
individuals that lost immunity but that neither considers NPI
H7 nor the waning in the vaccines’ immunity.

2. SIR H7 w/o VacW: SIR model that reintroduces infected
individuals that lost immunity and considers NPI H7 but does
not consider the waning in the vaccines’ immunity.

3. SVIR w/o H7 w/o VacW: SVIR model that reintroduces infected
individuals that lost immunity but that neither considers NPI
H7 nor the waning in the vaccines’ immunity.

4. SVIR w/o H7 & VacW: SVIR model that reintroduces infected
individuals that lost immunity considers the waning in the
vaccines’ immunity but does not include NPI H7.

5. SVIR H7 w/o VacW: SVIR model that reintroduces infected
individuals that lost immunity and considers NPI H7 but does
not consider the waning in the vaccines’ immunity.

6. SVIR H7 & VacW: SVIR model that reintroduces infected
individuals that lost immunity and considers both NPI H7 and
the waning in the vaccines’ immunity.

Notably, the SIR model only allows to include vaccination by
adding NPI H7. In our experiments, we compare these predictors
with real data in the 30 GEOs of study.

The input to the models consists of data from previous
confirmed cases and the NPIs implemented in each GEO.
The NPIs are represented as a vector of categorical values
that indicate the strength of each of the interventions, as
previously explained.

5 Results

In this section, we first present the results of testing the
previously described models to predict the number of COVID-
19 cases globally between January and April 2021. We train
the predictor with data retrieved from OxCGRT data set to
predict the daily COVID-19 cases for the aforementioned list
of GEOs between 1st September 2020 and 30th April 2021. All
models were trained starting in 1st September 2020 until the day
before the first prediction day. The models have a cumulative
error since the prediction for the first day is used to make the
prediction for the second one. In our experiments, we observed
that for prediction periods longer than a fortnight, the error
in the predictions started to increase significantly. Thus, we
trained a new predictor every 15 days in the testing period and
tested it to predict the number of COVID-19 cases in the next
14 days. After summarizing, to predict the number of newly
infected individuals on day d0, the models are trained with data
up to d0 − 8. We run five simulations to predict the number
of new infections for d0 − 7 to d0 − 1 days. We select the
model with the lowest mean absolute error (MAE) and use it
to predict the number of COVID-19 cases for the period d0 to
d0 + 13. To prevent overfitting, we use a validation data set at
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FIGURE 3

Predictions from 25th January to 11th February of the number of COVID-19 cases vs. the ground truth (yellow dashed line) for Europe with MAE per
100,000 inhabitants.

FIGURE 4

Prediction of the number of COVID-19 cases vs. the ground truth for Poland with MAE per 100,000 inhabitants in January 2021.

each epoch at training and an early stopping callback such that
when the validation MAE stops decreasing, the training process is
also stopped.

Table 3 shows the MAE and Mean Rank of all the
models, including the baselines ones. Notably, the MAE is
normalized by 100,000 inhabitants to enable a fair comparison
across GEOs independently of the population size. To
compute the Mean Rank, the models are ranked on each
GEO and period, assigning 1 to the best-performing model
and a 7 to the worst-performing model. The mean of all

ranks on all GEOS is computed to obtain each predictor’s
Mean Rank.

Figure 3 shows the predictions of the two best-performing
predictors (H7 & VacW SVIR and w/o H7 & VacW SVIR)
compared with the ground truth (yellow dashed line) and the
baseline 2 model (red line), between mid-January and mid-
February 2021, immediately after the vaccinations started to have
an impact on the spread of COVID-19. Let us note how the
inclusion of H7 improves the estimation.
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FIGURE 5

Predictions of the number of COVID-19 cases vs. the ground truth for France with MAE per 100,000 inhabitants in February 2021.

FIGURE 6

Predictions of the number of COVID-19 cases vs. the ground truth for Ireland with MAE per 100,000 inhabitants in March 2021.

Figures 4–7 show the predictions of the two best-performing
predictors on data between January and March of 2021 on
several European countries with very different dynamics in the
evolution of their number of COVID-19 cases: Poland during
January 2021, when cases were increasing (Figure 4); France
during February 2021, when cases were stabilized (Figure 5);
Ireland during March 2021, when cases tended to decrease or
stabilize (Figure 5); and Italy during April 2021, when there were
two peaks of infections (Figure 7). Let us note how the H7&
VacW SVIR predictor is able to correctly capture the trends in

the pandemic curves even with such diversity of situations of
the pandemic.

6 Conclusion

In this study, we have presented a deep learning-based
predictor of COVID-19 cases in 30 countries that considers
both the daily Non-Pharmaceutical Interventions applied in each
country and vaccination data.
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FIGURE 7

Predictions of the number of COVID-19 cases vs. the ground truth for Italy with MAE per 100,000 inhabitants in April 2021.

It is worth mentioning that despite the abundance of data, it
is complex to consider information regarding age groups, doses
administered of each vaccine, and the coexistence of different
strains with different transmissibility rates, which were different
from the primal strain used for designing the vaccines. In addition,
the most efficient vaccines were the mRNA-based vaccines, which
were the first ones to be designed and massively applied with this
technology, and the duration of their effects on individuals from
different regions is still under study, which may lead to potential
biases (39).

Despite these difficulties and limitations, the proposed
approach effectively considers vaccination information in a
machine learning-based model that can be applied to different
countries to predict the number of COVID-19 cases. Our
models have shown a competitive performance over a long time
period between January and April of 2021, when the vaccination
campaigns started inmany countries. Our study illustrates the value
of having access to high-quality systematic data during a pandemic
to enable evidence-driven decision-making.

All code and files used in this study are available at https://
github.com/AhmedBegggaUA/frontiers_in_public_health.
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