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In this paper, we design two parametric classes of iterative methods without
memory to solve nonlinear systems, whose convergence order is 4 and 7, respec-
tively. From their error equations and to increase the convergence order without
performing new functional evaluations, memory is introduced in these families
of different forms. That allows us to increase from 4 to 6 the convergence order
in the first family and from 7 to 11 in the second one. We perform some numer-
ical experiments with big size systems for confirming the theoretical results and
comparing the proposed methods along other known schemes.
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1 INTRODUCTION

It is very common that, when solving real problems in Engineering or Science, we need to solve F(x) = 0, being F ∶ D ⊆

R
n → R

n, where D is a neighborhood of a solution of F(x) = 0. In general, it is difficult to solve these systems in exact
way, so often an attempt is made to obtain an approximate solution rather than the exact solution. One way to achieve
this is by iterative methods. These methods obtain a sequence of approximations, {x(k)}, which, under certain conditions,
converges to the solution of the system. One of the best known schemes is Newton's procedure, which is expressed as

x(k+1) = x(k) −
[
F′(x(k))

]−1F(x(k)), k = 0, 1, … , (1)

denoting as F′(x) the Jacobian matrix related to F.
Newton's scheme is well-known for its efficiency and simplicity, as well as for its quadratic convergence. When the

derivative in (1) is replaced by the divided difference [x(k) + F(x(k)), x(k);F], we obtain Steffensen's scheme [1], which is
a derivative-free and also has quadratic convergence. The calculation of a inverse of F′ in the iterative expression of a
method can be a drawback when the function to be studied cannot be derived, its derivative is too expensive to calculate,
or the Jacobian matrix is singular.

Different techniques have been used to construct Newton-like procedures, as weight functions, direct composition,
estimations of the Jacobian matrices by using divided difference operators, and so on. Therefore, some iterative methods
for estimating the solutions of F(x) = 0 have been analyzed with different order of convergence. The aim of these proposals
is to accelerate the convergence or to improve the computational efficiency.
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Recently, new parametric families of iterative methods were proposed in earlier studies [2–4], including a fast procedure
for solving this kind of problems. Also, iterative methods avoiding the Jacobian matrix have been proposed in earlier
research [5–7], with good orders of convergence. In them, Jacobian matrix F′(·) is replaced by [·, ·;F], the divided difference
operator. Matrix weight function procedure plays also a key role in the design of iterative schemes, as can be seen in other
research [8, 9].

In the works cited in the previous paragraph, and many others in the literature, iterative methods with high order of
convergence are presented, but they considerably increase the computational cost. To avoid this increase, we resort to
memory methods, that is, schemes in which the iterative expression uses several previous iterations. Iterative schemes
for solving systems by means of memory have been very recently constructed in some paper. In them, a new iterate is
obtained from using at least two previous iterations. In this way, it is proven that the convergence order increases but
no new functional evaluations are added, that means, without performing any functional evaluations other than those
already performed by the original method; see previous works [10–13].

In order to increase the quadratic convergence of Newton's method, Traub [14] proposed the following scheme

𝑦(k) = x(k) − F′(x(k))−1F(x(k)),
x(k+1) = 𝑦(k) − F′(x(k))−1F(𝑦(k)), k = 0, 1, … ,

(2)

which has order of convergence three.
In this paper, we design a derivative-free variant of Traub's method by replacing the derivatives by a divided difference

with a parameter and a weight function. This yields the following parametric family, which as we shall see below is a class
of iterative methods of fourth-order, that we denote by M4,𝛾 .

𝑦(k) = x(k) − [w(k), x(k);F]−1F(x(k)),
x(k+1) = 𝑦(k) − H(𝜇(k))[𝑦(k), x(k);F]−1F(𝑦(k)), k = 0, 1, … ,

(3)

where w(k) = x(k) + 𝛾F(x(k)), 𝛾 ≠ 0, 𝛾 ∈ R and the variable of the weight function is 𝜇(k) = I − [w(k), x(k);F]−1[𝑦(k),w(k);F].
The first step of this method corresponds to Steffensen's scheme when 𝛾 = 1.

For increasing the order of convergence, we introduce one more step to the parametric family M4,𝛾 , obtaining the
following class which, as we will see, has order 7, and it is denoted by M7,𝛾 .

𝑦(k) = x(k) − [w(k), x(k);F]−1F(x(k)),
z(k) = 𝑦(k) − H(𝜇(k))[𝑦(k), x(k);F]−1F(𝑦(k)),

x(k+1) = z(k) − G(𝜇(k), 𝜈(k))[z(k), 𝑦(k);F]−1F(z(k)), k = 0, 1, … ,

(4)

where 𝜈(k) = I − [w(k), x(k);F]−1[z(k), 𝑦(k);F]H(𝜇(k)).
In addition, to design these families of iterative methods, we analyze several ways to introduce memory into their itera-

tive formulas, replacing the parameter with an expression that uses the previous iterates and their functional evaluations.
In this way, the order of the schemes is increased without adding new evaluations.

To prove the convergence order of the methods with memory, we use the Ortega–Rheinboldt Theorem, which appears
in Ortega and Rheinboldt [15].

Theorem 1. Let us consider a with memory iterative procedure 𝜙, generating the sequence {x(k)} that converges to its
root 𝛼. If there exists a constant 𝜂 nonzero and positive ti, i = 0, … ,m such that

|ek+1| ≤ 𝜂

m∏
i=0

|ek−i|ti ,

is held, then the R-order of convergence of 𝜙 is at least p, being p the unique positive root of

pm+1 −
m∑

i=0
tipm−i = 0.
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This manuscript is structured as follows. In Section 2, we study the order of convergence of the new classes of iterative
methods to solve nonlinear systems. We also study in Section 2 how to introduce memory to these parametric families
in order to increase the order of convergence without performing new functional evaluations. In Section 3, we perform
some numerical experiments for confirming the theoretical results. The paper finishes with some conclusions and the
references used in it.

2 CONVERGENCE ANALYSIS

The tools we are going to use, in demonstrating the convergence of these schemes, were defined and introduced by the
authors in Cordero and Torregrosa [16].

Let us consider F ∶ D ⊆ R
n → R

n as a sufficiently differentiable function in D, a neighborhood of a root 𝛼 of F(x) = 0;
we consider the operator

[x + h, x;F] = ∫
1

0
F′(x + th)dt, (5)

defined by Genochi–Hermite on Ortega and Rheinboldt [15]. Using the Taylor development of F′(x+ th) at x and by direct
integration, we get

[x + h, x;F] = F′(x) + 1
2

F′′(x)h + 1
6

F′′′(x)h2 + O(h3). (6)

Let us also consider X = R
n×n be the Banach space of size n×n real square matrixes and H ∶ X → X a function defined

as follows:

• H′(u)(v) = H1uv, where H′ ∶ X → (X) and H1 ∈ R,
• H′′(u, v)(w) = H2uvw, being H′′ ∶ X × X → (X) and H2 ∈ R,

where it is denoted by (X) the set of linear operators in X . When k → ∞, 𝜇(k) → 0, being 0 the zero matrix. Therefore,
there exist real numbers H0, H1, H2 such that H can be expanded around 0 as follows:

H(𝜇(k)) = H0I + H1𝜇
(k) + 1

2
H2(𝜇(k))2 + O((𝜇(k))3),

being I is the n × n identity matrix.
In the same way, we define a multivariable matrix function G(𝜇(k), 𝜈(k)) so there exist real numbers G0, G11, G12, G2i for

i = 1, 2, 3 and G3𝑗 for 𝑗 = 1, 2, 3, 4 such that G can be expanded around (0, 0) as follows:

G(𝜇(k), 𝜈(k)) = G0I + G11𝜇
(k) + G12𝜈

(k) + 1
2
(G21(𝜇(k))2 + G22𝜇

(k)𝜈(k)

+ G23(𝜈(k))2) + 1
6
(G31(𝜇(k))3 + G32(𝜇(k))2𝜈(k)

+ G33𝜇
(k)(𝜈(k))2 + G34(𝜈(k))3) + O4(𝜇(k), 𝜈(k)),

where O4(𝜇(k), 𝜈(k)) denotes all terms in which the sum of exponents of 𝜇(k) and 𝜈(k) is at least 4.

2.1 Convergence analysis of M4,𝛾

Next, we prove the order of convergence of parametric class M4,𝛾 .

Theorem 2. Let us consider F ∶ D ⊆ R
n → R

n a differentiable enough function defined in a neighborhood D of 𝛼, such
that F(𝛼) = 0. Let us also assume that F′(𝛼) is nonsingular. Let H(𝜇) be a real matrix function satisfying H0 = 1, H1 = 1
and |H2| < ∞, being I the n×n identity matrix. Therefore, being x(0) an initial guess sufficiently near to 𝛼, sequence {x(k)}
defined by M4,𝛾 converges to 𝛼 with order 4, for any nonzero value of parameter 𝛾 , and its error equation is as follows:

ek+1 =
(
−C3(I + 𝛾F′(𝛼)) + C2

((
3I − H2

2
I + 𝛾F′(𝛼)

)
C2 + 𝛾C2F′(𝛼)

))
C2

(
I + 𝛾F′(𝛼)

)
e4

k + O(e5
k), (7)

being Ci = 1
i!
[F′(𝛼)]−1F(i)(𝛼), i = 2, 3, … , and ek = x(k) − 𝛼.
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Proof. Let us consider the Taylor expansion of F(x(k)) around 𝛼

F(x(k)) = F′(𝛼)
(

ek + C2e2
k + C3e3

k + C4e4
k + O(e5

k)
)
. (8)

We also consider, equivalently to (8), the expansion of F(w(k)) around 𝛼, where ew = w(k) −𝛼. We calculate the Taylor
expansion of [w(k), x(k);F] by using (6)

[w(k), x(k);F] = F′(𝛼)
(

I + C2(2I + 𝛾F′(𝛼))ek +
(
𝛾C2F′(𝛼)C2 + C3(3I + 3𝛾F′(𝛼) + 𝛾2F′(𝛼)2)

)
e2

k
)
+ O(e3

k).

Next, for the inverse of the divided difference operator [w(k), x(k);F], we obtain

[w(k), x(k);F]−1 = (I + X2ek + X3e2
k + O(e3

k))F
′(𝛼)−1, (9)

where

X2 = −C2(2I + 𝛾F′(𝛼)),
X3 = 4C2

2 + 𝛾C2F′(𝛼)C2 + 2𝛾C2
2F′(𝛼) + 𝛾2(C2F′(𝛼))2 − C3(3I + 3𝛾F′(𝛼) + 𝛾2F′(𝛼)2).

Then,

𝑦(k) − 𝛼 = ek − [w(k), x(k);F]−1F(x(k))
= C2(I + 𝛾F′(𝛼))e2

k −
(
2C2

2 + 2𝛾C2
2F′(𝛼) + 𝛾2(C2F′(𝛼))2 − C3(2I + 3𝛾F′(𝛼) + 𝛾2F′(𝛼)2)

)
e3

k + O(e4
k).

(10)

In order to obtain the Taylor expansion of 𝜇(k) = I − [w(k), x(k);F]−1[𝑦(k),w(k);F], we have

[𝑦(k),w(k);F] = F′(𝛼)(I + C2(I + 𝛾F′(𝛼))ek +
(
𝛾C2

2F′(𝛼) + 𝛾C2F′(𝛼)C2 + C2
2 + C3(I + 2𝛾F′(𝛼) + 𝛾2F′(𝛼)2)

)
e2

k) + O(e3
k).

So,
𝜇(k) = C2ek + (−C2(C2(3I + 𝛾F′(𝛼)) + 𝛾F′(𝛼)C2) + C3(2I + 𝛾F′(𝛼)))e2

k + O(e3
k).

Therefore, if we denote M3 = −C2(C2(3I + 𝛾F′(𝛼)) + 𝛾F′(𝛼)C2) + C3(2I + 𝛾F′(𝛼)), then 𝜇(k) = C2ek + M3e2
k + O(e3

k) and

H(𝜇(k)) = H0 + H1𝜇
(k) + 1

2
H2(𝜇(k))2 + O3(𝜇(k)) = I + 𝜇(k) + H2

2
(𝜇(k))2 + O3(𝜇(k))

= I + C2ek +
(

M3 +
H2

2
C2

2

)
e2

k + O(e3
k).

Applying (6),
[𝑦(k), x(k);F] = F′(𝛼)

(
I + C2ek + (C3 + C2

2(I + 𝛾F′(𝛼)))e2
k
)
+ O(e3

k).

Then, [𝑦(k), x(k);F]−1 = (I + R2ek + R3e2
k + O(e3

k))F
′(𝛼)−1, where

R2 = −C2,

R3 = −C3 + C2(I + 𝛾F′(𝛼)C2 − 𝛾C2F′(𝛼)).

If we denote by e𝑦 = 𝑦(k) − 𝛼, then

ek+1 = e𝑦 −
(

I + C2ek +
(

M3 +
H2

2
C2

2

)
e2

k + O(e3
k)
)
((I + R2ek + R3e2

k + O(e3
k))(e𝑦 + C2e2

𝑦 + O(e3
𝑦))

=
(
−C3(I + 𝛾F′(𝛼)) + C2

((
I + 𝛾F′(𝛼)

)
C2 + C2

(
2I − H2

2
I + 𝛾F′(𝛼)

)))
C2

(
I + 𝛾F′(𝛼)

)
e4

k + O(e5
k).

(11)
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CORDERO ET AL.

It is proven that family M4,𝛾 has order 4 under these standard conditions. Moreover, if we assume that H2 = 2I, then
the expression of the error equation is

ek+1 =
(
−C3(I + 𝛾F′(𝛼)) + C2

((
I + 𝛾F′(𝛼)

)
C2 + C2(I + 𝛾F′(𝛼))

))
C2

(
I + 𝛾F′(𝛼)

)
e4

k + O(e5
k).

(12)

□

2.2 Introducing memory to M4,𝛾

We have shown that parametric family M4,𝛾 has order 4. Now, we are going to design other higher order methods from
this one by introducing memory.

From the error equation, if parameter 𝛾 is 𝛾 = −[F′(𝛼)]−1, then we increase the order, but as we do not know the solution
𝛼, we must estimate this expression.

A known way to approximate this expression is by using divided difference operators, whereby we approximate the
parameter as follows:

𝛾k = −[x(k), x(k−1);F]−1.

By replacing this on the family M4,𝛾 , we get a method with memory, denoted by M4D.
Another way to approximate this parameter is by using Kurchatov's divided difference operator, that is,

𝛾k = −[2x(k) − x(k−1), x(k−1);F]−1.

If we replace the parameter of the family M4,𝛾 by this approximation, we obtain a method with memory that we denote
by M4K.

Let us now calculate the order of these two methods with memory.
In the proof of these results, we use Theorem 1 and the following notation: If limk→∞

𝑓 (xk)
g(xk)

= C, being C a nonzero
constant, we denote is by 𝑓 ∼ Cg.

Theorem 3. Let us consider F ∶ D ⊆ R
n → R

n a differentiable enough function defined in an neighborhood D of the root
of F, 𝛼. We assume that F′(𝛼) is nonsingular. Let H(𝜇) be a real matrix function that satisfies H0 = 1, H1 = 1, and H2 = 2,
being I the n × n identity matrix. Therefore, being the initial guess x(0) sufficiently close to 𝛼, sequence {x(k)} obtained by
M4D converges to 𝛼 with order p = 2 +

√
6 ≈ 4.44949 and method M4K converges to the root 𝛼 with convergence order

p = 2 + 2
√

2 ≈ 4.82843.

Proof. Let us now consider the Taylor expansion of F(x(k−1)), F′(x(k−1)) and F′′(x(k−1)) around 𝛼 (8), in the same way
as in Theorem 2. Let us now calculate [x(k), x(k−1);F] using (6) with h = ek − ek−1,

[x(k), x(k−1);F] = F′(𝛼) (I + C2(ek + ek−1)) + O2 (ek, ek−1) .

Then,
[x(k), x(k−1);F]−1 = (I − C2(ek + ek−1))F′(𝛼)−1 + O2 (ek, ek−1) . (13)

Therefore, 𝛾k = −(I − C2(ek + ek−1))F′(𝛼)−1 + O2 (ek, ek−1) and

I + 𝛾kF′(𝛼) = C2(ek + ek−1)) + O2(ek−1, ek). (14)

Thus, I + 𝛾kF′(𝛼) ∼ ek−1. By the error equation (7) and (14), we have

ek+1 ∼ e2
k−1e4

k. (15)

In addition, suppose that the R-order of the method is at least p. Therefore, it is satisfied that

ek+1 ∼ Dk,pep
k,
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CORDERO ET AL.

where Dk,p tends to the asymptotic error constant, Dp, when k−→∞. Then,

ek+1 ∼ Dk,p(Dk−1,pep
k−1)

p = Dk,pDp
k−1,pep2

k−1. (16)

In the same way that relation (15) is obtained, it follows that

ek+1 ∼ e2
k−1(Dk−1,pep

k−1)
4 = D4

k−1,pe4p+2
k−1 . (17)

Then, by equaling the exponents of ek−1 in (16) and (17), we get that

p2 = 4p + 2,

whose only positive solution defines convergence order of M4D, being p = 2 +
√

6 ≈ 4.44949.
On the other hand, applying (6),

[2x(k) − x(k−1), x(k−1);F] = F′(𝛼)
(

I + 2C2ek − 2C3ek−1ek + C3e2
k−1 + 4C3e2

k
)
+ O3 (ek, ek−1) .

Then,

[2x(k) − x(k−1), x(k−1);F]−1 = (I − 2C2ek − C3e2
k−1 + 2C3ek−1ek + 4(C2

2 − C3)e2
k)F

′(𝛼)−1 + O3 (ek, ek−1) .

Therefore,

I + 𝛾kF′(𝛼) = (2C2ek + C3e2
k−1 − 2C3ek−1ek − 4(C2

2 − C3)e2
k)F

′(𝛼)−1 + O3 (ek, ek−1) .

Thus, I + 𝛾kF′(𝛼) can have the behavior of ek, ekek−1, e2
k, or e2

k−1. Obviously, the factors ekek−1 and e2
k tend faster to 0

than ek, so we have to see whether ek or e2
k−1 converges faster. Let us assume now that the R-order of the scheme is, at

least, p. Therefore, it is satisfied
ek+1 ∼ Dk,pep

k,

where Dk,p tends to Dp, the asymptotic error constant, when k → ∞. Then, we have

ek

e2
k−1

∼
Dk−1,pep

k−1

e2
k−1

.

Then, if p > 2, we obtain that Dk−1,pep
k−1

e2
k−1

converges to 0 when k −→∞. Thus, if p > 2, then I + 𝛾kF′(𝛼) ∼ e2
k−1.

From error Equation (7) and the above relation, we obtain

ek+1 ∼ e4
k−1e4

k. (18)

In addition, by assuming that the R-order of the scheme is, at least, p, we have relation (16). In the same way that
we obtain relation (18), we have

ek+1 ∼ e4
k−1(Dk−1,pep

k−1)
4 = D4

k−1,pe4p+4
k−1 . (19)

Then, equaling the exponents of ek−1 in (16) and (19), it follows that

p2 = 4p + 4,

whose only positive solution is the order of convergence of method M4K (Theorem 1), being
p = 2 + 2

√
2 ≈ 4.82843. □
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CORDERO ET AL.

The previous two methods with memory have been obtained using the variable x(k−1). Now, we are going to see what
happens when the approximation 𝑦(k−1) is used instead, that is, we choose

𝛾k = −[x(k), 𝑦(k−1);F]−1,

and M4D𝑦 is defined by replacing this into the parametric family and we also choose

𝛾k = −[2x(k) − 𝑦(k−1), 𝑦(k−1);F]−1,

and M4K𝑦 is defined by replacing this into the parametric family.
Now, we establish the order of these two methods with memory, M4D𝑦 and M4K𝑦, whose demonstration is similar to

the previous one.

Theorem 4. Let us consider a sufficiently differentiable function F ∶ D ⊆ R
n → R

n defined in an neighborhood D of the
root 𝛼 of F. We assume that F′(𝛼) is nonsingular. Let H(𝜇) be a real matrix function satisfying H0 = 1, H1 = 1 and H2 = 2,
where I is the n × n identity matrix. Then, taking an estimate x(0) close enough to 𝛼, sequence {x(k)} generated by method
M4D𝑦 converges to 𝛼 with order p = 5 and the sequence generated by M4K𝑦 converges to the root 𝛼 with order p = 6.

2.3 Convergence analysis of M7,𝛾

In the next result, we establish the convergence of parametric class M7,𝛾 , which is independent of the value of parameter 𝛾 .

Theorem 5. Let us consider a sufficiently differentiable function F ∶ D ⊆ R
n → R

n defined in a neighborhood D of
the roof 𝛼 of F. We assume that F′(𝛼) is nonsingular. Let H(𝜇) be a real matrix function that satisfies H0 = 1, H1 = 1,
and |H2| < ∞, where I is the n × n identity matrix. Let us also consider a multivariate matrix function G(𝜇, 𝜈) such that
G0 = 1, G11 = G12 = 0, G21 = 0, G22 = 2, G23 = 0, and |G3i| < ∞ for i = 1, … , 4. Then, taking an initial guess x(0)
sufficiently close to the root 𝛼, sequence {x(k)} obtained by M7,𝛾 converges to 𝛼 with order 7.

Proof. We have already proven that

𝑦(k) − 𝛼 = C2(I + 𝛾F′(𝛼))e2
k −

(
2C2

2 + 2𝛾C2
2F′(𝛼) + 𝛾2(C2F′(𝛼))2 − C3(2I + 3𝛾F′(𝛼) + 𝛾2F′(𝛼)2)

)
e3

k + O(e4
k) (20)

and

z(k) − 𝛼 =
(
−C3(I + 𝛾F′(𝛼)) + C2

((
3I − H2

2
I + 𝛾F′(𝛼)

)
C2 + 𝛾C2F′(𝛼)

))
C2

(
I + 𝛾F′(𝛼)

)
e4

k + O(e5
k). (21)

We denote by Z1 the coefficient of e4
k in the error equation.

Applying (6), we obtain

[z(k), 𝑦(k);F] = F′(𝛼)
(

I + C2
2(I + 𝛾F′(𝛼))e2

k + D3e3
k

)
+ O(e4

k),

being D3 = −(2C2
2 + 2𝛾C2

2F′(𝛼) + 𝛾2((C2F′(𝛼))2 − C3(2I + 3𝛾F′(𝛼) + 𝛾2F′(𝛼))2) + C4
2(I + 𝛾F′(𝛼))).

Calculating the inverse of this divided difference operator as we have done above, we obtain

[z(k), 𝑦(k);F]−1 =
(

I − C2
2(I + 𝛾F′(𝛼))e2

k + J3e3
k + O(e4

k)
)

F′(𝛼)−1, (22)

being J3 = C2
2(I + 𝛾F′(𝛼))2 − D3.
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CORDERO ET AL.

Now, we calculate 𝜈(k) and obtain that

𝜈(k) = I − [w(k), x(k);F]−1[z(k), 𝑦(k);F]H(𝜇(k))

= I − (I + X2ek + X3e2
k)(I + C2

2(I + 𝛾F′(𝛼))e2
k)
(

I + C2ek +
(

M3 +
H2

2

)
e2

k

)
+ O(e3

k)

= − (X2 + C2)ek −
(

X3 − C2(I + 𝛾F′(𝛼)) + X2C2 +
(

M3 +
H2

2

))
e2

k + O(e3
k)

= I − (X2 + C2)ek − V2e2
k + O(e3

k),

being V2 = X3 − C2(I + 𝛾F′(𝛼)) + X2C2 +
(

M3 + H2
2

)
.

Then,

G(𝜇(k), 𝜈(k)) = I + 𝜇(k)𝜈(k) + 1
6
(G31(𝜇(k))3 + G32(𝜇(k))2𝜈(k) + G33𝜇

(k)(𝜈(k))2

+ G34(𝜈(k))3)) + O4(𝜇(k), 𝜈(k))
= I + (C2ek + M3e2

k)(−(X2 + C2)ek − V2e2
k)

+ 1
6
(G31C3

2 − G32C2
2(X2 + C2) + G33C2(X2 + C2)2 − G34(X2 + C2)3))e3

k

= I − C2(X2 + C2)e2
k + (−M3(X2 + C2) − C2V2

+ 1
6
(G31C3

2 − G32C2
2(X2 + C2) + G33C2(X2 + C2)2 − G34(X2 + C2)3)))e3

k.

By denoting R = −M3(X2 + C2) − C2V2 + 1
6
(G31C3

2 − G32C2
2(X2 + C2) + G33C2(X2 + C2)2 − G34(X2 + C2)3)), we have

G(𝜇(k), 𝜈(k)) = I − C2(X2 + C2)e2
k + Re3

k + O(e4
k).

From that

x(k+1) − 𝛼 = ez − G(𝜇(k), 𝜈(k))[z(k), 𝑦(k);F]−1F(z(k))
= ez −

(
I − C2(X2 + C2)e2

k + Re3
k

) (
I − C2

2(I + 𝛾F′(𝛼))e2
k + J3e3

k

)
(ez + C2e2

z) + O(e8
k)

= ez −
(

I + (−C2(X2 + C2) − C2
2(I + 𝛾F′(𝛼)))e2

k + (R + J3)e3
k

)
(ez + C2e2

z) + O(e8
k).

(23)

As X2 = −C2(2I + 𝛾F′(𝛼)), then X2 + C2 = −C2(I + 𝛾F′(𝛼)), so −C2(X2 + C2) − C2
2(I + 𝛾F′(𝛼)) = 0. From this,

x(k+1) − 𝛼 = ez − G(𝜇(k), 𝜈(k))[z(k), 𝑦(k);F]−1F(z(k))
= ez −

(
I + (R + J3)e3

k

)
(ez + C2e2

z) + O(e8
k)

= −(R + J3)e3
kez + O(e8

k)
= −(R + J3)Z1e7

k + O(e8
k).

(24)

Thus, it is proven that parametric family M7,𝛾 has order of convergence 7.
In particular, if G31 = G32 = G34 = 0 and G33 = 13, then

ek+1 ∼ (I + 𝛾F′(𝛼))4e7
k. (25)

□

2.4 Introducing memory to M7,𝛾

As we did with class M4,𝛾 , in this section, we introduce memory, in different ways, to family M7,𝛾 .

• If we choose 𝛾k = −[x(k), x(k−1);F]−1, then replacing the parameter of family M7,𝛾 by this value, we obtain a method
with memory, denoted by M7D.
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CORDERO ET AL.

• Choosing 𝛾 = −[2x(k) − x(k−1), x(k−1);F]−1 and replacing it in family M7,𝛾 yield a method with memory denoted by M7K.
• If we choose 𝛾k = −[x(k), 𝑦(k−1);F]−1 and replacing it in M7,𝛾 , a new scheme with memory M7D𝑦 is obtained.
• Finally, choosing 𝛾 = −[2x(k) − 𝑦(k−1), 𝑦(k−1);F]−1 and replacing it in M7,𝛾 , a new scheme with memory, M7K𝑦, is

obtained.

The order of convergence of all these methods with memory is established in the next result, whose proof is similar to
that of the previous results.

Theorem 6. Let us consider a sufficiently differentiable function F ∶ D ⊆ R
n → R

n defined in a neighborhood D of
the roof 𝛼 of F. We assume that F′(𝛼) is nonsingular. Let H and G be real matrix functions that satisfy H0 = 1, H1 = 1,
and H2 = 2 and G0 = 1, G11 = G12 = 0, G21 = 0, G23 = 0, G22 = 2, G33 = 13, and G3i = 0 for i = 1, 2, 4. Therefore,
considering an initial guess x(0) sufficiently close to 𝛼, we have the following:

• sequence {x(k)} generated by M7D converges to 𝛼 with order p = 7+
√

65
2

≈ 7.53113.
• sequence {x(k)} defined by M7K converges to 𝛼 with order p = 8.
• sequence {x(k)} got by M7D𝑦 converges to 𝛼 with order p = 4 +

√
17 ≈ 8.12310.

• sequence{x(k)} generated by M7K𝑦 converges to 𝛼 with order p = 9+
√

89
2

≈ 9.21699.

In these methods with memory, we could also use variable z(k−1) in order to obtain a better approximation of the
parameter. Thus, if we choose

𝛾k = −[x(k), z(k−1);F]−1,

and replace the parameter of family M7,𝛾 by this expression, we obtain a new method with memory denoted by M7Dz.
In the same way, the approximation by the Kurchatov divided difference

𝛾 = −[2x(k) − z(k−1), z(k−1);F]−1

gives us a scheme with memory, M7Kz, whose convergence we are going establish.

Theorem 7. Let us consider a sufficiently differentiable function F ∶ D ⊆ R
n → R

n defined in a neighborhood D of the
roof 𝛼 of F. We assume that F′(𝛼) is nonsingular. Let H and G be real matrix functions that satisfy H0 = 1, H1 = 1, and
H2 = 2 and that G0 = 1, G11 = G12 = 0, G21 = 0, G23 = 0, G22 = 2, G33 = 13 and, G3i = 0 for i = 1, 2, 4. Therefore,
choosing an initial guess x(0) sufficiently close to the root 𝛼, sequence {x(k)} defined by M7Dz converges to 𝛼 with order
9+

√
89

2
≈ 9.21699, and sequence {x(k)} defined by M7Kz converges to 𝛼 with order 11.

Proof. Let us consider the Taylor development of F(z(k−1)), F′(z(k−1)) and F′′(z(k−1)) around 𝛼 as was done in Theorem
3. Applying (6), we obtain

[x(k), z(k−1);F] = F′(𝛼)
(

I + C2(ek + ez,k−1)
)
+ O2

(
ek, ez,k−1

)
.

Then, we get
[x(k), z(k−1);F]−1 = (I − C2(ek + ez,k−1))F′(𝛼)−1 + O2

(
ek, ez,k−1

)
.

Therefore,
I + 𝛾kF′(𝛼) = C2(ek + ez,k−1)) + O2(ez,k−1, ek). (26)

Let us assume that sequence {z(k)} has R-order p1 and the R-order of the scheme is p.
Then, it follows that

ek

ez,k−1
=

ep
k−1

ep1
k−1

= ep−p1
k−1 .

Thus, I + 𝛾kF′(𝛼) ∼ ez,k−1 if it is verified that p > p1. By the error Equation (25) and the above relation, we have

ek+1 ∼ e4
z,k−1e7

k. (27)
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CORDERO ET AL.

Assuming that the R-order of the scheme is p, we have (16). In the same way that relation (27) is obtained and
supposing that the sequence {z(k)} has R-order at least p1, we obtain

ek+1 ∼ e4
z,k−1e7

k ∼ (ep1
k−1)

4(ep
k−1)

7 ∼ e7p+4p1
k−1 . (28)

By other way, from the error equation of ez,k, we have

ez,k ∼
(
−C3(I + 𝛾F′(𝛼)) + C2

((
I + 𝛾F′(𝛼)

)
C2 + C2(I + 𝛾F′(𝛼))

))
C2

(
I + 𝛾F′(𝛼)

)
e4

k ∼ e2
z,k−1e4

k ∼ e4p+2p1
k−1 . (29)

Assuming that {z(k)} has R-order p1, we assure that

ez,k ∼ ep1
k ∼ epp1

k−1. (30)

Then, by equaling the exponents of ek−1 of (16) and (28) and by equaling the exponents of ek−1 of (29) and (30), it
follows that

p2 = 7p + 4p1,

pp1 = 4p + 2p1,

whose only positive solution is the order of M7Dz scheme, where p = 9+
√

89
2

≈ 9.21699.
Now, we calculate [2x(k) − z(k−1), z(k−1);F] by using (6)

[2x(k) − z(k−1), z(k−1);F] = F′(𝛼)
(

I + 2C2ek − 2C3ez,k−1ek + C3e2
z,k−1 + 4C3e2

k

)
+ O3

(
ek, ez,k−1

)
.

Then, the inverse of this divided difference operator is as follows:

[2x(k) − z(k−1), z(k−1);F]−1 = (I − 2C2ek − C3e2
z,k−1 + 2C3ez,k−1ek + 4(C2

2 − C3)e2
k)F

′(𝛼)−1 + O3
(

ek, ez,k−1
)
.

Therefore,

I + 𝛾kF′(𝛼) = 2C2ek + C3e2
z,k−1 − 2C3ez,k−1ek − 4(C2

2 − C3)e2
k)F

′(𝛼)−1 + O3
(

ek, ez,k−1
)
.

Thus, I + 𝛾kF′(𝛼) can have the behavior of ek or e2
z,k−1, since the factors ekez,k−1 and e2

k tend to have higher speed at
0 than ek, so we have to see whether ek or e2

z,k−1 converges faster. Assume that the R-order of the scheme is p. On the
other hand, as sequence z(k) has R-order p1, we have

ek

e2
z,k−1

∼
Dk−1,pep

k−1

e2p1
k−1

.

Then, if we assume that p > 2p1, we have that the behavior will be like that of e2
z,k−1, that is, I + 𝛾kF′(𝛼) ∼ e2

z,k−1.
From (25) and the above relationship, the following relation is obtained

ek+1 ∼ e8
z,k−1e7

k. (31)

In addition, relation (16) holds since the R-order of the procedure is p.
In the same way that relation (31) is obtained and taking into account that sequence z(k) has R-order p1, we obtain

ek+1 ∼ e8
z,k−1(e

p
k−1)

7 ∼ e8p1
k−1e7p

k−1 ∼ e7p+8p1
k−1 . (32)
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CORDERO ET AL.

On the other hand, by the error equation of ez,k, it is obtained that

ez,k ∼ e4
z,k−1e4

k. (33)

Then by equaling the exponents of ek−1 of (16) and (32) and by equaling the exponents of ek−1 of (33) and (30), it is
obtained that

p2 = 7p + 8p1,

pp1 = 4p + 4p1,

whose only positive solution is p ≈ 11.3523 and p1 ≈ 6.17; therefore, it does not satisfy the property for which
I + 𝛾kF′(𝛼) ∼ e2

z,k−1; thus, I + 𝛾kF′(𝛼) ∼ ek, and therefore,

ek+1 ∼ e4
ke7

k ∼ e11
k . (34)

Thus, we conclude that the order of method M7Kz is p = 11. □

As we can see, by introducing memory to families M4,𝛾 and M7,𝛾 , we have managed to increase the order up to 2 and 4
units, thus obtaining methods with memory up to order 6 and 11, respectively. Let us note that p = 11 is the maximum
order that can be reached by introducing memory in family M7,𝛾 .

3 NUMERICAL EXPERIMENTS

Now, we perform several numerical experiments in order to see the behavior of our M4,𝛾 , M7,𝛾 families and the meth-
ods derived from them when introducing memory. We present two numerical experiments, one of them applied to the
Hammerstein equation and other applied to academical nonlinear system, in which we also make a comparison with two
known methods of order 8.

The first thing we would like to point out is that in this case, Matlab 2020b has been used to carry out the numerical
experiments, with an arithmetical precision variable of 1000 digits. As stopping criterion, we choose that ‖‖x(k+1) − x(k)‖‖2+‖‖F(x(k+1))‖‖2 is less than a chosen tolerance. We use also a maximum of 100 iterations.

For all methods and all numerical experiments, the following matrix functions have been selected as weight functions:

• H(𝜇) = 𝜇2 + 𝜇 + I,
• G(𝜇, 𝜈) = I + 𝜇𝜈 + 13

6
𝜇𝜈2,

being I the identity matrix.
In the different tables we show,

• the norm ‖‖F(x(k+1)‖‖2,
• the norm ‖‖x(k+1) − x(k)‖‖2,
• the number of iterations necessary to satisfy the required tolerance,
• and the ACOC, approximated computational order of convergence, defined by Cordero and Torregrosa [17], which has

the following expression:

p ≈ ACOC =
ln

(‖‖x(k+1) − x(k)‖‖2∕‖‖x(k) − x(k−1)‖‖2
)

ln
(‖‖x(k) − x(k−1)‖‖2∕‖‖x(k−1) − x(k−2)‖‖2

) .

3.1 Hammerstein equation
In this test, we consider the Hammerstein integral equation, appearing, for example, in Ortega and Rheinboldt [15],

x(s) = 1 + 1
5 ∫

1

0
F(s, t)x(t)3dt, (35)
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CORDERO ET AL.

being

F(s, t) =
{

(1 − s)t, t ≤ s,
s(1 − t), s ≤ t

and s, t ∈ [0, 1], x ∈ [0, 1].
By means of Gauss–Legendre quadrature, Hammerstein equation is transformed in

∫
1

0
𝑓 (t)dt ≈

7∑
i=1

𝜔i𝑓 (ti),

appearing the abscissas ti and the weights 𝜔i for n = 7 in the following table.

i Weight 𝝎i Nodes ti

1 0.0647424831 0.0254460438
2 0.1398526957 0.1292344072
3 0.1909150252 0.2970774243
4 0.2089799185 0.5
5 0.1909150252 0.7029225757
6 0.1398526955 0.8707655928
7 0.0647424831 0.9745539561

Let us also denote by xi, i = 1, … , 7 the approximations of x(ti). Then,

5xi − 5 −
7∑

𝑗=1
ai𝑗x3

𝑗
= 0,

where i = 1, … , 7 and

ai𝑗 =
{

w𝑗 t𝑗(1 − ti) 𝑗 ≤ i,
w𝑗 ti(1 − t𝑗) i < 𝑗.

We initialize the process with x(0) = (0.5, … , 0.5)T , we choose as initial approximations for x(−1), 𝑦(−1), and z(−1) vec-
tor (0.4, … , 0.4)T , and we use a tolerance of 10−50. In Table 1, we can see the results obtained by each method for
Hammerstein's equation.

We can see that in all cases, the ACOC is close to the theoretical convergence order demonstrated in Section 2 and that
the number of iterations required is similar for the methods of the same family, being one unit higher in the case of the
methods without memory.

We notice that in all cases, the required tolerance is well below the results obtained. It can be seen that the best results
for these numerical experiments are given by the memory methods that use the Kurchatov divided difference operator to

TABLE 1 Numerical results of Hammerstein's equation. Method ||x(k+1) − x(k)||2 ||F(x(k+1))||2 Iteration ACOC
M4,−1 1.01573e-166 2.41351e-666 5 3.99986
M4D 2.05575e-154 4.58506e-688 4 4.4952
M4K 7.31331e-177 2.37182e-853 4 4.9600
M4D𝑦 7.12038e-204 1.62192e-1021 4 4.9971
M4K𝑦 1.31159e-295 3.12493e-1776 4 5.9975
M7,−1 4.53896e-171 9.75609e-1027 4 6.9996
M7D 2.42252e-79 3.32054e-516 3 7.5291
M7K 2.45812e-82 3.43156e-571 3 7.8613
M7D𝑦 2.35271e-88 4.7518e-622 3 8.1898
M7K𝑦 3.16092e-101 7.79194e-813 3 9.1692
M7Dz 3.17456e-99 2.21039e-796 3 9.2162
M7Kz 2.85847e-114 1.65181e-1032 3 10.9981

Abbreviation: ACOC, approximated computational order of convergence.
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Method ||x(k+1) − x(k)||2 ||F(x(k+1))||2 Iteration ACOC
M4,−1 2.61975e-71 2.275e-102 5 3.92262
M4D 1.84221e-51 6.63527e-83 4 4.36222
M4K 5.58564e-57 5.32079e-89 4 4.71234
M4D𝑦 3.72943e-54 1.45955e-85 4 5.1739
M4K𝑦 1.51937e-63 1.46077e-95 4 5.9701
M7,−1 4.32096e-77 1.40986e-123 4 6.93731
M7D 1.10549e-89 2.70395e-137 4 7.53147
M7K 8.76112e-51 6.9915e-401 3 7.85679
M7D𝑦 1.52107e-94 1.2392e-139 4 8.19609
M7K𝑦 8.76112e-51 6.9915e-401 3 9.18679
M7Dz 5.21322e-97 8.1106e-144 4 9.22566
M7Kz 8.76112e-51 6.9915e-401 3 10.9754
CCGT1 2.64372e-64 1.59087e-516 4 8.09479
NM8 2.81063e-292 3.0869e-2337 4 8.0

Abbreviation: ACOC, approximated computational order of convergence.

TABLE 2 Numerical results for system F.

approximate the family parameter. These methods give the closest approximations to the solution and the biggest ACOC.

3.2 Academical problems
We also approximate the solution of the following academic system of nonlinear equations. In this case, we compare the
results obtained with the different methods proposed with those provided by two known schemes, both of order 8. These
schemes are the CCGT1 method which can be found in Cordero et al. [18] and the NM8 method which can be found in
Wang [19].

The system that we use in our experiment, denoted by System F, is as follows:

Fi(x) = x2
i xi+1 − 1,

F200(x) = x2
200x1 − 1,

a system with 200 unknown and 200 equations.
For this example, we use a tolerance of 10−50, an initial estimation x(0) = (0.9, … , 0.9)T , and as initial approximations

for x(−1), 𝑦(−1), and z(−1) vector (0.7, … , 0.7)T .
The results obtained for System F and for each method are shown in Table 2. We can see from the table that the number

of iterations change for the family M7,𝛾 and their memory methods. In this case, the iterations range between 3 and 4,
making the methods that perform four iterations have the ACOC closer to the theoretical convergence order and those
that perform three iterations not so close since the tolerance is small.

It can be seen that the best results for these numerical experiments are given by the memory methods that use Kurcha-
tov's divided difference operator to approximate the family parameter, although these are also the ones that perform the
fewest iterations, which means that they are still closer to the solution than the rest, although their ACOC is not adequate
for three iterations.

As we can see in the tables, our methods M7K, M7K𝑦, and M7Kz are quite similar to the results obtained by the CCGT1
method and that the NM8 method performs one more iteration than them to verify the tolerance, so it would be more
advisable to use the methods derived from the parametric family.

3.3 An example of real dynamics
In the previous section, we have introduced memory to two parametric families and studied the order of convergence
of the resulting methods. These are important concepts of iterative methods but not the only ones. Another important
concept is the behavior of the method according to the initial estimation chosen, since we would like to know a priori if
the method converge to any of the solutions according to the estimate taken. This analysis is the study of the stability of
the method, also called dynamical study.
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In this section, we will only show the dynamical planes associated with each of the methods when they are applied on
a simple system of quadratic polynomials. In this case, the mentioned polynomial system is

x2
1 − 1 = 0,

x2
2 − 1 = 0,

where (x1, x2)T ∈ R
2.

The appearance of an iterative scheme with memory using only two previous iterations is as follows:

x(k+1) = 𝜙(x(k−1), x(k)), k ≥ 1,

being the initial estimations x(0) and x(1). It is clear that no fixed point can be defined in a function from R
n × R

n to R
n.

Therefore, we define an auxiliary function O defined in vectorial form as follows:

O(x(k−1), x(k)) = (x(k), 𝜙(x(k−1), x(k))), k = 1, 2, …

If (x(k−1), x(k)) is a fixed point of O, then O(x(k−1), x(k)) = (x(k−1), x(k)), and from the definition of O, we have that (x(k−1), x(k)) =
(x(k), x(k+1)). Thus, the discrete dynamical system O ∶ R

n × R
n → R

n ×R
n is defined as

O(z, x) = (x, 𝜙(z, x)),

being 𝜙 is the operator of the iterative scheme with memory. Then, a point (z, x) is a fixed pint of O if z = x and x = 𝜙(z, x).
If a fixed point (z, x) of the operator O does not verify that F(x) = 0, it is called strange fixed point.

FIGURE 1 Dynamical planes of M4,𝛾 and their methods with memory. [Colour figure can be viewed at wileyonlinelibrary.com]
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CORDERO ET AL.

FIGURE 2 Dynamical planes of M7,𝛾 and their methods with memory. [Colour figure can be viewed at wileyonlinelibrary.com]

The basin of attraction of a fixed point x∗ is defined as follows:

(x∗) = {𝑦 ∈ R
n ∶ Om(𝑦) → x∗, m → ∞}.

We know that the roots of the polynomial system are as follows:

• (1,−1)T ,
• (−1, 1)T ,
• (−1,−1)T ,
• (1, 1)T .

For all methods, the following matrix functions have been selected as weight functions:

• H(𝜇) = 𝜇2 + 𝜇 + I,
• G(𝜇, 𝜈) = I + 𝜇𝜈 + 13

6
𝜇𝜈2,

being I is the 2 × 2 identity matrix.
To generate the dynamical planes, we have chosen a mesh of 400 × 400 points, and what we will do is apply our meth-

ods to each of these points, taking the point as the initial estimate. We have also defined that the maximum number of
iterations that each initial estimate must do is 80 and that we will determine that the initial point converges to one of
the solutions if the distance to that solution is less than 10−3. We paint in orange the initial points converging to (1, 1)T ,
in green the initial points converging to (1,−1)T , in blue the initial points converging to (−1, 1)T , in red the initial points
converging to (−1,−1)T , and in black the initial guesses not converging to any of the roots.

In Figure 1, we see the dynamical planes of M4,𝛾 , for 𝛾 = −1 and 𝛾 = −0.1, and their corresponding methods with
memory. Analogously, in Figure 2, we show the same dynamical planes for M7,𝛾 .
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In addition, to having increased the convergence order by introducing memory, it has been seen in the above dynamical
planes that for the selected system, the introduction of memory has also helped to obtain a more stable behavior and
easier to predict behavior as the convergence zones of the roots are simpler.

4 CONCLUSIONS

In this work, two parametric classes of iterative methods with orders of convergence 4 and 7, respectively, for solving
nonlinear systems, have been designed.

Memory has been introduced, in different ways, to these two families in order to obtain iterative methods with higher
convergence order without the need to increase the number of functional evaluations per iteration. These methods with
memory have managed to increase the order by up to 2 units for the family of order 4 and up to 4 units for the family of
order 7.

But not only does the introduction of memory improve the order of convergence, but as we have seen in the dynamical
planes that have been carried out, it has also improved the behavior of the method, since we obtain that more points
converge when it comes to the methods with memory or else the attraction zones of the roots are simpler.

In the numerical experiments, the theoretical results are confirmed, and when comparing our methods with other
known ones of high order (order of convergence 8), it can be seen that most of the proposed methods obtain a closer
approximation to the solution than the known methods.
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