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Abstract
Olive oil production generates a large amount of wastewater called olive mill wastewater. This paper presents the study of 
the effect of transmembrane pressure and cross flow velocity on the decrease in permeate flux of different ultrafiltration 
membranes (material and pore size) when treating a two-phase olive mill wastewater (olive oil washing wastewater). Both 
semi-empirical models (Hermia models adapted to tangential filtration, combined model, and series resistance model), as 
well as statistical and machine learning methods (response surface methodology and artificial neural networks), were studied. 
Regarding the Hermia model, despite the good fit, the main drawback is that it does not consider the possibility that these 
mechanisms occur simultaneously in the same process. According to the accuracy of the fit of the models, in terms of R2 
and SD, both the series resistance model and the combined model were able to represent the experimental data well. This 
indicates that both cake layer formation and pore blockage contributed to membrane fouling. The inorganic membranes 
showed a greater tendency to irreversible fouling, with higher values of the  Ra/RT (adsorption/total resistance) ratio. Response 
surface methodology ANOVA showed that both cross flow velocity and transmembrane pressure are significant variables 
with respect to permeate flux for all membranes studied. Regarding artificial neural networks, the tansig function presented 
better results than the selu function, all presenting high R2, ranging from 0.96 to 0.99. However, the comparison of all the 
analyzed models showed that depending on the membrane, one model fits better than the others. Finally, through this work, 
it was possible to provide a better understanding of the data modelling of different ultrafiltration membranes used for the 
treatment of olive mill wastewater.
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Introduction

Olive oil is one of the fundamental pillars on which the 
Mediterranean diet is built. The relevance of this product is 
based, among other reasons, on the versatility of olive oil. 
The antioxidant nature, derived from the presence of phenolic 
compounds, and the prevention of diseases such as diabetes, 

obesity, and cancer make olive oil an essential product in 
people’s diet. Currently, there are three different methods 
for the production of olive oil, traditional or pressed process, 
three-phase continuous centrifugation, and two-phase con-
tinuous centrifugation. The latter is the most widely used 
in Spain, and due to its lower water consumption, more 
countries are expected to adopt this production methodol-
ogy (Maaitah et al., 2020). Olive oil washing wastewater 
(OOWW) is, together with two-phase olive pomace (alpe-
rujo in Spanish), the characteristic residue of the two-phase 
centrifugation process (Borja et al., 2006).

Membrane processes have become a widely used technique 
in the food industry, either for the treatment of food products 
or by-products. Membrane processes provide gentle treat-
ment of product at low (to moderate) temperature, they pro-
duce no chemical damage, can be highly automated and easy 
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operated, and they have low energy consumption compared 
to other processes and achieve high separation and selectivity. 
Although there are many experimental studies with pressure-
driven membranes for olive mill wastewater (OMW) treat-
ment, few are focused on analysis modelling studies of fouling 
membranes (Ochando-Pulido & Martínez-Ferez, 2017; Poerio 
et al., 2022; Stoller & Bravi, 2010; Stoller et al., 2017), and 
few refer to ultrafiltration (UF) (Saf et al., 2022; Turano et al., 
2002). Specifically regarding OOWW, there are few experi-
mental studies with UF membranes (Cifuentes-Cabezas et al., 
2021, 2022; Ochando-Pulido et al., 2015a, b) and narrowing 
down even more when it comes to UF modelling (Ochando-
Pulido et al., 2015a, b). On the other hand, to the best of our 
knowledge, there is no study that compares theoretical models 
with statistical and machine learning methods to predict the 
permeate flux of the OMW ultrafiltration. The importance 
of the study through mathematical models of the behavior of 
the membranes in a specific process not only allows to iden-
tify the predominant type of fouling, but also to know what 
the optimal conditions are to carry out the separation process 
in the most efficient way. As Rajendran et al. (2021) point 
out, a better understanding of the molecular dynamics within 
membrane filtration systems will facilitate the fabrication and 
design of improved systems.

UF, either as a previous or final stage (pretreatment to 
post-treatment), has been studied experimentally, analyz-
ing different membranes and operational conditions; as well 
as through mathematical models (Ochando-Pulido, 2016). 
Membrane modelling helps to understand and mitigate the 
main bottleneck of membrane processes and membrane foul-
ing (Niu et al., 2022). The constant interaction between the 
feed particles and the membrane surface leads to fouling, 
which causes a partial or severe restriction of permeate pas-
sage. Fouling is caused by several complex kinetic processes 
that result in the continuous deposition of molecules on the 
membrane surface, leading to eventual substance adsorption 
and/or blockage of the membrane pores. This fouling depends 
on multiple factors such as the characteristics of the stream 
to be treated, type of membrane (material, configuration, 
and pore size), and operating conditions. Fouling is the main 
cause for the lack of large-scale implementation of these 
membrane separation processes. Severe membrane fouling 
not only increases operating time and cost (energy, cleaning, 
and maintenance), it also reduces membrane life and deterio-
rates permeate quality. Therefore, understanding the mecha-
nisms of membrane fouling and providing effective fouling 
control are crucial in membrane filtration research (Ahmed 
et al., 2022; Corbatón-Báguena et al., 2018; Ochando-Pulido, 
2016). There are various fouling mechanisms, which depend 
directly on the process (Ghernaout et al., 2018; Jradi et al., 
2022a). Fouling of UF membranes generally arises through 
mechanisms of adsorption, pore blockage, and cake or gel 
formation (Shi et al., 2014). This fouling is mainly organic 

fouling, due to the composition of OMW (Ulbricht et al., 
2009). Particulate/colloidal fouling could also occur, as some 
high molecular weight organic substances possess similar 
characteristics (to a certain extent) with inorganic colloidal 
particles (Guo et al., 2012).

To this end, wide varieties of models have been devel-
oped to study fouling, which can be classified into empiri-
cal, theoretical, or semi-empirical models. Among all the 
existing models in the literature, the semi-empirical ones 
proposed by Hermia (1982) are the most used to fit experi-
mental data in UF processes. These models were developed 
for conventional filtration processes, but their adaptation to 
tangential flow is, at the same time, widely used in the sci-
entific community. The main drawback of the models pro-
posed by Hermia lies in the fact that they do not take into 
account the possibility that these mechanisms occur simulta-
neously in the same process (Mondal & De, 2009). Various 
authors point out that the decrease in permeate flux is not 
only explained by one of these mechanisms but may be due 
to the action of various types of fouling. This is the case of 
Bowen et al. (1995) and Jonsson et al. (1996), who studied 
the fouling of microfiltration membranes during protein fil-
tration (BSA). They concluded that membrane fouling con-
sists of (complete or intermediate) pore blockage is followed 
by cake formation. Finally, hence, the need to propose a new 
mathematical model combines the phenomena of complete 
pore obstruction and cake formation, in an attempt to adjust 
more closely to reality (Corbatón-Báguena et al., 2015; de la 
Casa et al., 2008; Ho & Zydney, 2000). On the other hand, 
the most widely used empirical model is based on Darcy’s 
law and considers that the permeate flux decline is due to 
different hydraulic resistances (Choi et al., 2000).

In recent years, statistical and machine learning meth-
ods have been used in various areas (Ibrahim et al., 2022; 
Ly et al., 2022; Okolie et al., 2022; Sibiya & Amo-duodu, 
2022), as well as for the modelling of membrane processes 
(Kamali et al., 2021; Kovacs et al., 2022). One of the widely 
used statistical approaches is the response surface method-
ology (RSM) which can analyze complex multi-component 
processes by approximating the relationship between the 
independent variables and response variables in terms of a 
polynomial regression equation. RSM is a statistical method 
of data analysis that allows a better understanding of a pro-
cess than conventional experimental methods (Khan et al., 
2022). Machine learning relates to intelligent systems that 
can adapt their behavior during the system training stage 
to newly provided information. Modelling through intel-
ligent methods such as artificial neural networks (ANN) 
has proven to be a predominant option that is made up of a 
generic structure that has the ability to learn and memorize 
data trends and accurately predict response variables (Lowe 
et al., 2022). ANN has proven to be an effective predic-
tive tool for modelling the behavior of nonlinear dynamic 
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systems in engineering applications. They have been used 
successfully to model the permeate flux decline of ultra-
filtration and other membrane processes as a function of 
process operating variables (Curcio et al., 2006).

The aim of this work is to study the effect of transmembrane 
pressure (TMP) and cross flow velocity (CFV) on the decrease 
in permeate flux of different ultrafiltration membranes when 
treating OOWW. For this purpose, the Hermia adapted to 
cross flow filtration models, combined model, and series 
resistance model were studied to identify the main fouling 
mechanism. Then, RSM and ANN were used to obtain the 
best operational conditions for each membrane. Finally, the 
models were compared with each other. There are interesting 
modelling works about UF membranes fouling in the 
treatment of OMW, such as the one carried out by Tsagaraki 
and Lazarides (2012). However, they are only focused on a 
particular membrane material/configuration (in this case, on 
polysulfone membranes in tubular configuration). As far as 
we are concerned, there are no works on mathematical models 
implemented to understand the fouling of ultrafiltration 
membranes of different pore sizes, both inorganic and organic, 
when treating OOWW. On the other hand, no studies were 
found on the use of non-phenomenological models for the 
study of OMW (including OOWW).

Theory: Modelling of Ultrafiltration Membranes

The models used in this study are presented in this section.

Hermia Model Adapted to Cross Flow Filtration

The model is based on the one formulated by Hermia for 
dead-end filtration at constant pressure. The model adapted 
to cross flow ultrafiltration incorporates the flow associated 
with mass transfer by reverse transport. Equation 1 presents 
the general equation for the Hermia model adapted to cross-
flow filtration (Hermia, 1982):

where K is the constant of the Hermia model, J is the per-
meate flux, Jss is the steady-state permeate flux, and n is 
the parameter indicating the type of fouling. Four different 
types of membrane fouling mechanisms are considered in this 
model. Each fouling mechanism has a mathematical equation 
to predict the permeate flux as a function of time, which will 
depend on the value of n: complete pore blocking (n = 2), 
intermediate blocking (n = 1), standard blocking (n = 1.5), 
and cake layer formation (n = 0) (Lipnizki et al., 2021).

(1)−
dJ

dt
= K

(

J − Jss
)

∙ J2−n

Combined Model

This model arises from the impossibility of explaining the 
typical evolution of permeate flux with a single fouling 
mechanism. It was developed by Ho and Zydney (2000) 
and then simplified and modified by different authors (de 
la Casa et al., 2008; Taniguchi et al., 2003; Yuan et al., 
2002). This model combines two stages, a first abrupt 
decline in the first minutes, due to pore blocking phenom-
ena, followed by a slow decrease in permeate flow caused 
mainly by the accumulation of molecules on the mem-
brane surface resulting in a cake layer. The model shows 
a smooth transition between the two fouling mechanisms 
proposed by Hermia, the complete blocking model and the 
cake layer formation model. The combined model repre-
sents a more realistic model to explain membrane fouling 
than models considering only one fouling mechanism (de 
la Casa et al., 2008).

Each model has a constant; Kcb is for the complete 
pore blocking model, and Kcf is for the cake formation 
model. In this model, only a fraction of the membrane 
pores is completely blocked, represented by the parameter 
α. Finally, the equation for the combined model is the one 
presented in Eq. 2.

Resistance in Series Model

This model considers that decline in permeate flux is caused 
by different hydraulic resistances. These are the resistance 
of the membrane itself (Rm), the resistance due to adsorp-
tion and concentration polarization (Ra), and resistance due 
to cake layer formation (Rcf). The parameter called total 
hydraulic resistance (R) is the sum of individual resistances. 
The general equation follows the Darcy’s law and is pre-
sented in Eq. 3 (Fane et al., 2006):

where ΔP is the transmembrane pressure and μ is the feed 
solution viscosity. Furthermore, Ra can be adjusted using an 
exponential equation. Finally, the general equation for the 
resistance in series model is the following:

With Ra′ representing the steady-state adsorption and con-
centration polarization resistance and b, the fouling rate, due 
to adsorption (Corbatón-Báguena et al., 2018).

(2)Jcombined model = � ∙ Jcomplete blocking model + (1 − �) ∙ Jcake layer formation model

(3)J =
ΔP

� ∙ R

(4)J =
ΔP

�

(

Rm + Ra
�
(

1 − e−b∙t
)

+ Rcf

)
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Response Surface Methodology

Response surface methodology (RSM) predicts the relation 
between input and output variables by means of a complex 
process where the interaction of different variables with 
each other is considered and thus be able to determine the 
optimal operating conditions (Martí-Calatayud et al., 2010). 
To obtain a reliable analysis, a multivariate statistical analy-
sis of the experimental data was performed. In multifac-
torial statistical analysis of experimental data, all factors 
vary simultaneously. The influence of TMP and CFV on 
the average permeate flux (Ja) and cumulative flux decline 
(SFD) was studied, using Eqs. 5 and 6 (Martí-Calatayud 
et al., 2010):

where J(t) is the evolution of the permeate flux over time 
obtained from experimental data, t is time, and tN is the time 
corresponding to the last permeate flux value considered. 
The technique to achieve the desired models was backward 
elimination, and it starts with all the variables in the model 
and eliminates them one at a time until only the significant 
variables are left in the model. Once the regression coef-
ficients are obtained, the equation that defines the model 
is also obtained as a result of analysis of the significance 
of each of the variables considered and obtained after the 
analysis of variance (ANOVA).

Artificial Neural Networks

Artificial neural networks (ANN) use a black box model. 
Therefore, ANN predictions are completely empirical and 
can be considered not phenomenological. ANN predict out-
put values from input data but do not provide information 
about the process. A neural network has two components: 
the node, which consists of a neuron with positioning infor-
mation, and a connection, which consists of a weight with 
node addressing information. Neurons (single processing 
elements) are interconnected through a set of synapses or 
connecting links, each of which is characterized by a sca-
lar weight (w). For each neuron receiving n inputs from 
various sources, the input signals are weighted according 
to the neuron’s respective synaptic weights, then added to 
another externally applied scalar, called bias (b), according 
to the following equation (Bui et al., 2021; Thompson & 
Kramer, 1994):

(5)Ja =
1

tN
⋅ ∫

t

0

J(t) ⋅ dt

(6)SFD =
∑N

i=1

J(0) − J(i)

J(0)

With xi representing the ith input variable. In this work, 
a type of non-recurrent feed-forward ANN with corrective 
supervised learning is used, in which the inputs and targets 
are known (Dasgupta et al., 2017). The type of network 
is known as a multilayer perceptron (MLP). MLP ANNs 
(Fig. 1) are known as universal function approximators and 
with a single hidden layer and an output layer; they predict 
nearly any relationship between input and output variables. 
As Bui et al. (2021) correctly pointed out, to design an ANN, 
different steps must be followed. In our case, a pre-processing 
of the raw data was first performed to ensure the viability 
of the network. Then, the architecture of the network was 
analyzed by varying the number of hidden layers and neu-
rons. With the different structures of the ANN network, the 
network is trained and then validated (with cross validation). 
Finally, the relationship between inputs (factors) and outputs 
(target) is tested with new data. The process carried out for 
the selection of the ANN is described in greater detail below.

The feed-forward neural network usually has one or more 
hidden layers, which allow the network to model complex 
and non-linear functions (Rahmanian et al., 2011). There 
are studies that indicate that working with two or more hid-
den layers is better than working with one (Gökmen et al., 
2009), and others comment that more hidden layers gener-
ate an excessive focus of the network on the idiosyncra-
sies of the individual samples, making it difficult for the 
model to adapt to the new inputs (Torrecilla et al., 2004). 
Regarding the number of neurons, as Sarkar et al. (2009) 
well explained, there is no concrete rule for the selection 
of the number of hidden neurons, rather than it is mainly 
determined by experience and trial and error. However, it 
is important to note that the number of neurons is a critical 
point for network performance. In this way, too few neurons 
can waste a large amount of training time to find the opti-
mal representation, while too many neurons can lead the 

(7)Sum =
∑n

i=1
xi ∙ wi + b

Fig. 1  Diagram of multilayer perceptron (MLP) neural network struc-
ture, example for 1 hidden layer with 5 neurons
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system to memorize the pattern in the data or to overtraining 
(Nourbakhsh et al., 2014). Finally, each neural network will 
be specific to a given system, always keeping in mind that 
the neural network must be as simple as possible to make 
good predictions; otherwise, overfitting problems may occur 
(Razavi et al., 2003). Therefore, it was decided to evaluate 
working with one or two hidden layers, increasing the num-
ber of neurons until verifying that the improvement in the 
measure of fit with one more neuron was not significant. 
The selection of the data partition for network training and 
validation is another important factor to consider. Generally, 
the training group is the one with the higher amount of data, 
with around 70% or 80% of all the data used in this group, 
whereas the remaining data are used for validation and pre-
diction (Jawad et al., 2021). Therefore, the experimental 
data were randomly divided into three groups, but with the 
higher weight of number for the training group (70% data 
for training group, 15% data for validation group, and 15% 
for test group). A cross validation was performed with the 
first two groups of data, repeating the training and validation 
steps 3 times before being tested with the test group. Once 
the neural network is trained, the analysis of the regression 
results for the 3 groups of data mentioned above is of spe-
cial importance because it provides information about the 
accuracy of the ANN. It is important to highlight that the R2 
obtained in the training, validation, and test sets is a reflec-
tion of the total R2, and this was also used to assess the pre-
diction quality of the network. The R2 was calculated using 
Eq. 8 (Corbatón-Báguena et al., 2016). It is also important 
to check whether the error histogram fits a narrow normal 
distribution around zero error. Apart from R2, to evaluate 
the best combination, it was decided to maximize the RMSE 
statistical precision index, since it has been shown that it can 
help to determine the optimal number of neurons in the hid-
den layer (Jradi et al., 2020). For this purpose, the root mean 
square error (RMSE) was calculated from the experimental 
flux data (Y), predicted flux data (y), and dataset size (N). 
Its mathematical expression is presented in Eq. 10 (Jradi 
et al., 2022b).

(8)R2 =

(

cov(y,Y)

�(y) ∙ �(Y)

)2

(9)cov(Y , y) =

⎛

⎜

⎜

⎝

∑N

k=1
(yk − y) ∙ (Yk−

−

Y)

N − 1

⎞

⎟

⎟

⎠

(10)RMSE =

�

∑N

k=1

�

Yk − yk
�2

N

Experimental Methodology

Seven membranes were tested for the OOWW treatment. 
The feed samples were obtained at the outlet of the vertical 
centrifuge after washing the olive oil, where the two-phase 
continuous centrifuge process is used. Prior to the ultrafil-
tration stage, the samples were pretreated by sedimenta-
tion, flotation, and cartridge filtration (60 microns). The 
experimental data, as well as the analysis of the results, 
were presented in previous studies (Cifuentes-Cabezas 
et al., 2021, 2022). OOWW is characterized by its acid 
profile, high organic load (COD around 24 g∙L−1), high 
suspended solid content, and high turbidity values. On the 
other hand, it has fats and oils, sugars (around 1.6 g∙L−1), 
and a significant concentration of phenolic compounds 
(more than 1 g∙L−1). The operational conditions were 
CFVs between 1.5 and 3.4 m∙s−1 and TMPs between 1 
and 3 bar for the organic membranes and CFVs between 
2 and 4 m∙s−1 and TMPs between 1 and 3 bar for inor-
ganic membranes. Table 1 shows the characteristics of the 
membranes used. It can be seen that they differ in their 
molecular weight cut-off (MWCO) as well as in material 
and configuration.

Software

Hermia models and the combined model were fitted to 
the experimental data using MathCad®15 software (PTC 
Needham, EE.UU), for fouling mechanism analysis. The 
fitting was carried out with the Genfit algorithm, which 
uses an optimized version of the Levenberg–Marquardt 
curve-fitting method. The fitting accuracy for each operat-
ing condition tested was evaluated in terms of the regres-
sion coefficient (R2) and the standard deviation (SD). 
Statgraphics Centurion 18 software was used for RSM 
analysis. For ANN, MATLAB® R2021b (MathWorks, 
USA) was used. The transfer functions used for both the 
hidden layers and the output layer were the sigmoidal 
function (tansig), the scaled exponential linear unit (selu), 
and the linear function (purelin). The training algorithm 
used is trainlm, which uses the Levenberg–Marquardt 
algorithm, which offers the fastest convergence capacity 
among the available training methods. The statistical study 
(ANOVA) was carried out with the Statgraphics Centurion 
18 software. The validity of the model was determined 
from the significance of the model and the lack of fit, 
where R2, F-ratio, T-statistic, and p-value were used for 
the evaluation of the model. Regarding the measure of 
correlation between observed and predicted responses (R2 
coefficient of determination), the higher its value, the bet-
ter the model fitting accuracy. The F-ratio indicates how 
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much variability there is between groups compared to the 
variability within groups. Higher values of F-value over 
0.05 for the independent process variable mean that the 
effect of that variable is greater. The T-statistic is obtained 
by dividing the coefficient by its standard error. High val-
ues of T indicate that this factor is statistically significant. 
Finally, regarding p-value, the model must have a p-value 
of less than 0.05 (confidence level of 95%) to significantly 
show the relationship between the response and the fac-
tors (Jradi et al., 2022c; Martí-Calatayud et al., 2010; 
Ochando-Pulido et al., 2020).

Results

Analysis of Membrane Fouling Mechanisms 
by Means of Hermia Model

When analyzing the results obtained with the Hermia 
model (Supplementary Material Tables S1-S2), it was 
observed that in most of the cases studied, the models 
fit the experimental data with almost the same precision 
(acceptable values of R2 and SD). However, the stand-
ard pore blockage model (n = 1.5) did not accurately fit 
the experimental data and was therefore not considered 
in this analysis. Figure 2 shows the fit obtained using the 
Hermia model for organic membranes at fixed conditions 
(TMP of 2 bar and CFV of 2 m·s−1). It can be seen how 
the difference between the Hermia models for organic 
membranes was minimal; this was observed in most of 

the operating conditions tested (Table S1-S4). This was 
also reflected in the values of R2, obtaining very similar 
mean values for the different models. The mean R2 values 
from complete pore blocking, intermediate pore block-
ing, and cake formation were between 0.87 and 0.95, 0.89 
and 0.94, 0.82 and 0.95, and 0.81 and 0.91 from UH004, 
UP005, RC70PP, and UH050, respectively. Considering 
all the experiments, for the UP005, UH004, and RC70PP 
membranes, the model that best fits the experimental 
results was complete pore blocking (n = 2), followed by 
intermediate pore blockage (n = 1), and cake formation 
(n = 0). Similar results were obtained by Luján-Facundo 
et al. (2017) in their study on ultrafiltration membrane 
fouling in whey processing. They observed similar R2 val-
ues for the UP005. The models that fitted the best in their 
case were the intermediate blocking model and the com-
plete blocking model. They related it to the fact that both 
fouling mechanisms occurred simultaneously since both 
models consider external fouling to occur on the mem-
brane surface. This could also be explained by the MWCO, 
since external membrane fouling is directly related to the 
size difference between the solute molecule and the mem-
brane pores (Brião & Tavares, 2012). The complete pore 
blockage model assumes that the molecules in the feed are 
much larger than the pore size of the membranes (Amosa 
et al., 2019). Therefore, larger particles can be deposited 
on the surface of membranes with low MWCO. Regarding 
the RC70PP membrane, Wang et al. (2012) also obtained 
similar results when studying the mechanism of membrane 
fouling in broth succinic acid fermentation ultrafiltration. 

Table 1  Characteristics of the UF membranes analyzed in this work (manufacturer data)

*Water at 25 °C
a MWCO molecular weight cut-off
b PESH permanently hydrophilic polyethersulfone
c PES polyethersulfone
d TiO2/TiO2 support and active layer of titanium dioxide
e RCA  regenerated cellulose acetate
f TiO2/ZrO2 support layer of titanium dioxide and active layer of zirconium dioxide
g Manufacturer data
h Experimentally determined in previous works

Membrane UH004 UP005 Inside Céram 5 RC70PP Inside Céram 15 UH050 Inside Céram 50

Manufacturer Microdyn Nadir Microdyn Nadir Tami Industries Alfa Laval Tami Industries Microdyn Nadir Tami Industries
Material PESHb PESc TiO2/TiO2

d RCA e TiO2/ZrO2
f PESHb TiO2/ZrO2

f

Configuration Flat Flat Tubular Flat Tubular Flat Tubular
MWCOa (kDa) 4 5 5 10 15 50 50
T max (°C) 95 95 300 60 300 95 300
pH 0–14 0–14 0–14 0–10 0–14 0–14 0–14
Hydraulic 

permeability*
 >  27 g  >  30 g  >  80 g  >  40 g  >  80 g  >  200 g  >  210 g

(L·h−1·m−2·bar−1) 32.67 h 44.07 h 94.99 h 78.50 h 100.26 h 191.75 h 223.33 h
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They found that the full pore-blocking model fitted the 
best; however, they also obtained high fitting accuracy 
using standard and intermediate blocking models.

Comparing the results obtained for intermediate pore 
blockage and cake formation from the RC70PP with those 
of the UP005 and UH004 membranes, a slight increase in 
the value of R2 is observed for both fouling mechanisms. 
This may be due to the type of material (regenerated cellu-
lose acetate) and the specific characteristics of the RC70PP 
membrane surface, which give them different properties 
from PES membranes (UP005 and UH004) (Evans et al., 
2008). Also, the fact that the RC70PP membrane has 
a higher MWCO (10 kDa) than the UP005 (5 kDa) and 
UH004 (4 KDa) membranes favors the passage of larger 
particles, and it also influences the fouling mechanism. This 
can also be related with the result obtained with the UH050 
membrane; although, once again, the three models deliv-
ered acceptable values of accuracy (mean R2 value of 0.88), 
the cake layer formation fouling mechanism was the pre-
dominant one (mean R2 above 0.91). High MWCOs reduce 
the prevalence of fouling due to pore obstruction, giving 

greater weight to the formation of a cake layer. This was 
also observed by Yang et al. (2021) in his study of tanning 
wastewater treatment by ultrafiltration. When analyzing 
two membranes of the same MWCO (50 kDa) but differ-
ent material (PES and PVDF), they observed that the cake 
filtration was the main fouling mechanism (R2 over 0.92) 
in the process and was independent of membrane material. 
This fact can be explained by Fick’s law and the bound-
ary layer theory, since the higher the permeate flux is, the 
greater the backflow, and therefore, there will be a higher 
concentration of particles near the membrane surface, caus-
ing cake formation (Peppin, 2019).

On the other hand, if the results are analyzed based on 
the operating conditions of the experiment, an increase 
in TMP resulted in a better accuracy for the cake layer 
formation model. This was more significant for the mem-
brane with higher MWCO. This is because higher TMPs 
lead to a higher concentration of substances on the mem-
brane surface for a specific filtration time, which leads to 
a higher cake layer build up and thus an increase in the 
membrane resistance (Sari Erkan et al., 2018). Only the 

Fig. 2  Hermia model fitting for the organic membranes at a transmembrane pressure of 2 bar and cross flow velocity of 2 m·s.−1. A UH004. B 
UP005. C RC70PP. D UH050
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UH050 membrane showed a significant influence of CFV 
in the accuracy of the model, presenting the worst fits for 
complete pore blockage at higher CFVs. This was also 
noted by Alborzi et al. (2022) in their analysis of foul-
ing in ultrafiltration of produced water (the largest waste 
byproduct of oil and gas production), noting that more 
studies also reported this trend. Although the operating 
conditions influence the accuracy of each model, they do 
not change the predominant fouling mechanism for each 
membrane. For low MWCO membranes (UH004, UP005, 
and RC70PP), the fouling mechanisms are complete pore 
blockage, whereas for high MWCO membranes such as the 
UH050 membrane, the cake layer formation model fitted 
the best.

The inorganic membranes presented a very different 
behavior from the organic ones. The difference in the fit-
ting accuracy between models was significantly larger than 
that observed for organic membranes, with the cake forma-
tion model having the highest R2 (Table S3). These results 
are similar to those observed by Corbatón-Báguena et al. 
(2015). In their study of the fouling mechanism of ultrafiltra-
tion membranes fouled with whey model solution, they also 
observed better results with the cake layer formation model 

for the 15 kDa inorganic membrane than in the case of two 
organic membranes (5 and 30 kDa).

As can be seen in Fig. 3, the sharp flux decline obtained 
in the first few minutes is responsible for the low accuracy 
of the other models to predict the experimental data. Both R2 
and standard deviation values worsened as TMP increased 
at a fixed CFV or vice versa. The complete pore blocking 
model showed at the extreme operating conditions (TMP 
3 bar and CFV 4 m·s−1) fit values well below those for cake 
layer formation. On the other hand, at a fixed TMP and 
intermediate values of CFV, the models fit better than in 
the case of high or low values of CFV. Likewise, if the vari-
able that changes is the TMP, it can be observed that for the 
same CFV, the values of R2 are higher at low TMP. In the 
ultrafiltration, fouling studies with Huanggi (Radix astra-
galus, root of Astragalus) extracts carried out by Cai et al. 
(2013) also observed a strong influence of TMP on cake 
formation in a hollow fiber membrane of 10 kDa (Microza, 
USA), indicating that TMP is an important driving force for 
cake formation and the most important factor in UF mem-
brane fouling. As with the other inorganic membranes, the 
cake layer formation model fits the experimental data of the 
Inside Céram 50 membrane better than the other models. In 

Fig. 3  Hermia model fitting for the inorganic membranes at a transmembrane pressure of 2 bar and cross flow velocity of 2 m/s. A Inside Céram 
5. B Inside Céram 15. C Inside Céram 50
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this case, as with the UH050 membrane, the high permeate 
flux due to its high MWCO causes an increase in solute 
concentration at the membrane surface due to convective 
transport. The boundary layer will continue to grow until 
the permeate flux and the back-diffusion flux away from the 
membrane surface reach equilibrium. Therefore, the higher 
the permeate flux density is, the higher the concentration at 
the membrane surface, which favors the cake layer formation 
fouling mechanism.

Finally, the Hermia model was not able to accurately 
predict membrane fouling exclusively with one of the pro-
posed mechanisms for the most extreme operating condi-
tions tested. Very low R2 values of the three fouling models 
(sometimes 0.4) were obtained, especially for the higher 
MWCO membranes tested. The fact that the model cannot 
differentiate one mechanism from another may be because 
all the fouling mechanisms occur at the same time.

Analysis of Membrane Fouling Mechanisms by Means 
of the Resistance in Series and Combined Model

Continuing with the resistance in series and combined model 
(Tables S4-S7), both models achieved a higher R2 (over 
0.9) than Hermia models. Similar results were observed by 
Carbonell-Alcaina et al. (2016) in the study of the UP005 
membrane for the treatment of brine from the table olive 
production process. The combined model, which consid-
ers the intermediate pore blocking and the cake formation 
mechanisms proposed by Hermia, presented a better fit than 
the Hermia models separately. On the other hand, as in this 
study, they observed that the higher the CFV, the better 
the fit of both models. They also observed a direct rela-
tionship of model accuracy with the TMP. Higher accuracy 
was achieved as TMP increased. A high fitting accuracy of 
the combined and resistance in series models was observed 
(Fig. S1), which implies that the predominant fouling mech-
anisms for this case are the combination of different types 
of fouling. Therefore, both models are capable of predict-
ing the behavior of the flux both in the first minutes of the 
experiment, where the permeate flux falls sharply, and in the 
remaining minutes when the permeate flux becomes practi-
cally constant. However, taking into account the R2 values, 
the combined model presented a better fit than the resist-
ances in series model for all organic membranes. Similar 
results were obtained by Corbatón-Báguena et al. (2015). 
They observed that the combined model had the highest 
fitting accuracy for the polymeric membranes (UP005 and 
UH030) when treating a whey model solution. This is due 
to the fact that the two fouling mechanisms that this model 
takes into account manage to represent the real scenario. In 
this case, the fouling mechanism that represents the total 
obstruction of the pores is responsible for the pronounced 
decrease in permeate flux in the first minutes, giving way 

to a cake formation that induces stabilization and reaches a 
steady state.

Again, due to the good fits presented by both models 
(Fig. S2), it was difficult to select one, but again, it is the 
combined model that presents the best fitting accuracy. As for 
the organic membrane, it could be inferred that both fouling 
mechanisms, cake filtration, and pore blocking contribute to 
the fouling of the membrane. Huang et al. (2022) presented 
similar conclusions on 20 kDa ceramic membranes used for 
cold rolling emulsion wastewater treatment. They observed 
that for a CFV between 4 and 4.3 m∙s−1, both models offered 
similar precision. It is important to highlight that they worked 
with a plant made up of 6 modules, each of which contains 
36 tubular ceramic membranes with a filtration area of 0.47 
 m2 each, which allows them to work with a capacity of 24 
 m3∙h−1 of wastewater. Therefore, the fouling mechanism 
observed in this study with a laboratory scale plant can be 
extrapolated to industrial size plants.

Table 2 shows the parameters referring to the combined 
model and resistance in series model, for the boundary con-
ditions (lowest and highest CFV and TMP tested) of the 
organic membranes (full table in supplementary material). 
Although the Hermia model predicted that complete pore 
blockage was the most appropriate fouling mechanism, 
the cake formation mechanism is also an important part 
of fouling of low MWCO membranes. In the same way, 
when using the Hermia model, it was difficult to select the 
model that reflected the experimental data well. This can 
be explained with the combined model or the resistance in 
series model. As it was mentioned before, more than one 
process is responsible for fouling. It can be seen how, as the 
CFV increases the parameters α and Kcb increase, while 
Kcf decreases.

On the other hand, at a fixed CFV, the increase in TMP 
generates an increase in the Kcf values (only for low CFV 
values). The parameter Kcb is related to complete pore block-
ing while Kcf is related to cake formation. On the other hand, 
the higher the value of α is, the greater the relevance of 
pore blockage in membrane fouling. Similar results were 
observed for the RC70PP membrane, and this observed 
trend could be explained by the accumulation of molecules 
on the membrane surface. The higher the pressure at low 
CFV, the higher the concentration of molecules on the mem-
brane surface, which will tend to form cake layer. Whereas 
an increase in CFV will generate greater turbulence at the 
membrane surface, thus minimizing the concentration 
polarization at the membrane surface, which significantly 
inhibits the formation of a cake layer. Regarding UH050, 
the values of α confirm that for low TMP, the predominant 
fouling mechanism is the complete blockage of the pores. 
On the other hand, observing the constants Kcb and Kcf, it 
can be concluded that at the same TMP, an increase in CFV 
generates less cake formation and greater pore obstruction. 
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The highest value of Kcb in UH050 membrane was expected 
since the blocking resistance increases with membrane pore 
size (Mondal & De, 2010).

The great influence of cake layer formation in low 
MWCO membranes could also be observed when analyzing 
the parameters of the resistance in series model, where the 
Rcf/Rt ratio was greater than the Ra/Rt. Elevated Rcf values, 
linked mainly to reversible fouling, were also observed in 
the study of the fractionation of the by-product of lignin 
processing by membrane processes to obtain phenolic com-
pounds performed by Knapp (2020). They observed that 
cake layer formation was responsible for almost 90% of the 
fouling of UH004 and UH030 membranes. It is important 
to note that for membranes with a lower MWCO, the influ-
ence of Rm is higher. This is due to the fact that the lower 
the pore size of the membrane is, the higher the value of 
Rm (Gökmen & Çetinkaya, 2007). In addition, the high-
est percentage of Rm/Rt presented by the UP005 could be 
related with the characteristics of the membrane. Gulec et al. 
(2017) observed that the Rm of the UC030 represented the 
61% of the total resistance. They attributed it to the greater 
the hydrophobicity of the membrane. Although the influence 
of Rm is low in the total membrane resistance, the Rm/Rt ratio 
slightly increases when the CFV increases at a fixed TMP. 
This could be due to the fact that a higher CFV reduces 
membrane fouling, improving the permeation flux through 
the membrane, which leads to a reduction of the retention 
coefficients that are external to the membrane (Barredo-
Damas et al., 2010).

Although all the membranes show a greater influence of 
Rcf than Ra in membrane performance, the UH050 mem-
brane was the one that showed the greatest influence of Ra, 
presenting values close to 90% of the total resistance. This, 
together with the high influence of Rcf on the total resistance 

of the UP005 and RC70PP membranes, makes sense when 
analyzing the flux recovery percentages obtained after 
the experimental tests. As discussed in the methodology 
section, the data analyzed in this work were analyzed in 
another study (Cifuentes-Cabezas et al., 2021), where dif-
ferent cleaning protocols were also analyzed to recover the 
membranes. These two membranes were found to achieve a 
higher recovery (over 90%) of the initial hydraulic perme-
ability after rinsing with osmosis water at 25 °C. Since foul-
ing due to cake layer formation is reversible (Amosa et al., 
2019; Knapp, 2020), these values correspond to the high 
recovery observed. The low irreversible resistance exhibited 
by 5 kDa PES membranes was also observed in studies with 
sequential application of ultrafiltration. Yilmaz and Bagci 
(2019) reported the results of the sequential UF of broc-
coli juice with PES membranes of 50 kDa, 10 kDa, and 
5 kDa of MWCO (the feed of the membrane with the lowest 
MWCO was the permeate obtained with the 10 kDa mem-
brane. These results are in accordance with those obtained 
in this work for the 5 kDa membrane in spite of the higher 
concentration of the wastewater used. On the other hand, 
the UH050 membrane was the one that presented the high-
est irreversible fouling, especially at the boundary operat-
ing conditions tested, which also agrees with the highest 
percentages of Ra.

Table 3 presents information similar to the previous 
table but for inorganic membranes. For the Inside Céram 
5 membrane, the values of α for low TMPs indicate that 
there is no clear predominance of a fouling mechanism for 
that operating pressure, regardless of CFV, that is, that the 
complete pore blockage mechanism would have, approxi-
mately the same weight in membrane fouling as the cake 
layer formation mechanism. It is necessary to increase TMP 
above 2.5 bar to observe a predominant fouling mechanism, 

Table 2  Combined model and resistance in series model parameters for organic membranes (boundary conditions)

Ra/Rt adsorption/total resistance ratio, Rcf/Rt cake layer formation/total resistance ratio, Rm/Rt membrane/total resistance ratio

Combined Resistance in series

Membrane CFV (m∙s−1) TMP (bar) Kcb  (s−1) Kcf·107 (s·m−2) α Ra/Rt (%) Rcf/Rt (%) Rm/Rt (%)

UH004 1.5 1 278.127 12.298 0.973 27.64 64.37 7.99
1.5 2.5 216.509 10.142 0.655 31.11 61.49 7.41
3.4 2.5 449.533 0.216 0.960 39.47 53.16 7.36

UP005 1.5 1 397.941 5.680 0.611 3.01 77.31 13.68
1.5 2.5 214.995 6.531 0.257 12.89 79.15 7.96
3.4 2.5 159.583 1.115 0.963 28.78 62.49 8.73

RC70PP 1.5 1 120.257 3.149 0.767 12.22 80.88 6.90
1.5 2.5 214.995 6.531 0.257 23.34 72.45 4.21
3.4 2.5 110.448 2.275 0.254 29.02 66.23 4.75

UH050 1.5 1 70.175 0.8286 0.963 33.96 62.24 3.80
1.5 2.5 166.403 10.66 0.687 30.45 66.02 3.52
3.4 2.5 226.229 3.411 0.676 45.92 48.78 5.29
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and that in this case, it is cake formation. These results are 
consistent with those obtained for the Hermia model. Simi-
lar results were obtained for the 15 kDa membrane, and the 
predominant fouling mechanism for high TMP was cake 
formation. For the membrane Inside Céram 50, the low val-
ues of α present in all the conditions analyzed affirm that 
the predominant fouling mechanism in this membrane is the 
formation of cake layer.

Several previous studies concluded that high MWCOs 
are more susceptible to irreversible fouling (due to block-
age and clogging of the pores) (Mondal et al., 2013). This 
justifies the higher percentage of Ra over Rt. It is important 
to highlight that the Ra parameter refers to both adsorption 
and concentration polarization resistance. The latter being an 
immovable resistance, that is, it can be removed by chemical 
cleaning, while that related to adsorption and pore blockage 
is an irreversible resistance, which is a permanent fouling 
that cannot be removed by any method (Saf et al., 2022). 
On the other hand, the high Rcf values presented by low 
MWCO organic membranes are linked to removable foul-
ing, which can be removed with water rinsing. These results 
agree with what was observed after the cleaning protocol 
implemented for both organic and inorganic membranes 
(presented in previous studies (Cifuentes-Cabezas et al., 
2021, 2022)). In general, low MWCO membranes presented 
the greatest recovery of the hydraulic permeability after rins-
ing with water, according to the following classification: 
UP005 > RC70PP > UH004 > Inside Céram 15 > Inside 
Céram 5 > UH050 > Inside Céram 50. The same trend was 
observed for the parameters Rcf and Kcf, while the param-
eter related to pore blocking and adsorption (Kcb, α, and Ra) 
showed an inverse trend.

Within the medium–low MWCO range, the greater irre-
versible fouling that inorganic membranes present respect 
to organic membranes could be explained by the character-
istics of the membrane itself and of the feed solution. Mem-
branes with a more hydrophobic character are less resistant 

to fouling (van der Marel et al., 2010). On the other hand, the 
roughness of the membrane contributes to the potential for 
irreversible fouling (Galiano et al., 2018). Inorganic mem-
branes are characterized by greater roughness. In the case 
of the ceramic membranes, the roughness parameters were 
20 and 50 nm for the Inside Céram 5 and 15 membranes, 
respectively. For the organic membranes UP005, UH004, 
and RC70PP, the roughness parameters were 30, 40, and 
60 nm, respectively.

Statistical Analysis ANOVA

To analyze which operating conditions and interactions 
between variables are more significant with respect to the 
response variable, an analysis of variance, ANOVA, was car-
ried out. Two independent variables were chosen to perform 
the statistical analysis, TMP and CFV, while average perme-
ate flux (Ja) and cumulative flux decline (SFD) were chosen 
as the response variable. All the statistical estimators (R2, 
F-ratio, T-statistic, and p-value) revealed that the response 
model was reliable from the statistical point of view for the 
prediction of the response variable in the range of values 
considered for the dependent variables. The graphs of the 
contour surface of the parameter Ja (Figs. S3 and S4) showed 
that for the case of organic membranes, the highest values 
of permeate flux were achieved for the maximum values of 
CFV and TMP tested, this was not observed for inorganic 
membranes. However, it should be noted that higher values 
of those parameters represent higher costs and may result 
in a greater decrease in permeate flux. It can be seen in 
Table 4 that Ja for most membranes seemed to be influ-
enced by at least two independent variables or factors. All 
the membranes showed influence of both the CFV and TMP 
parameters, either by one of them alone or by their coupled 
influence. For organic membranes, it was observed that as 
the MWCO increased, more factors were significant in the 
prediction of with Ja. The Ja for membranes UH004 and 

Table 3  Combined model and resistance in series model parameters for inorganic membranes (boundary conditions)

Ra/Rt adsorption/total resistance ratio, Rcf/Rt cake layer formation/total resistance ratio, Rm/Rt membrane/total resistance ratio

Combined Resistance in series

Membrane CFV (m∙s−1) TMP (bar) Kcb  (s−1) Kcf·108 (s·m−2) α Ra/Rt (%) Rcf/Rt (%) Rm/Rt (%)

Ins. Céram 5 2 1 187.126 2.467 0.630 38.28 48.47 13.25
2 3 47.005 0.094 0.093 34.80 51.63 13.57
4 3 60.478 1.701 0.128 36.56 49.82 13.62

Ins. Céram 15 2 1 54.013 2.467 0.388 40.32 40.85 8.83
2 3 4.140 3.304 0.097 39.96 48.85 11.19
4 3 47.241 19.890 0.290 34.03 54.99 10.98

Ins. Céram 50 2 1 33.961 3.391 0.220 53.65 41.17 5.18
2 3 18.267 5.658 0.080 52.99 41.53 5.47
4 3 15.786 5.133 0.440 54.07 40.95 4.98
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UP005 was influenced by two factors: TMP and CFV·(TMP 
in the case of the UH004 membrane and CFV and  TMP2 
in the case of the UP005) membrane, whereas the Ja for 
the RC70PP and UH050 membranes was influenced by 
three factors. The R2 value for the average permeate flux 
was between 90.78 and 97.28%, which is desirable. For 
the UH004 and UP005 membranes, the effects of CFV and 
TMP as standardized for both factors are positive, which 
implies that the average flux rate increases as CFV and TMP 
increase. The influence of the interaction between both fac-
tors was the most significant due to its higher T-statistical 
value. Regarding RC70PP and UH050, the influence of 
TMP alone and  CFV2 presents a positive influence, while 
the influence of  TMP2 is negative on Ja. On the other hand, 
the Ja for the inorganic membranes was influenced by CFV 
and  TMP2, with the Ja for the Inside Céram 50 also influ-
enced by TMP. The variable  TMP2 was the most significant 
one due to its lower p-value (between 0 and 0.007) and its 
higher value of the parameter T-statistic. The 50 kDa mem-
branes both organic and inorganic and the RC70PP mem-
brane responded to negative influences for the Ja parameter. 
The membranes were constrained by the effect of  TMP2, 
which is related to pore blockage and gel layer formation 
(Martí-Calatayud et al., 2010). This is in agreement with 
the results obtained when modelling fouling with theoreti-
cal models in the previous section (“Analysis of Membrane 
Fouling Mechanisms by Means of Hermia Model” section).

A different behavior was observed for SFD. All the mem-
branes presented at least one factor that negatively affects 
the SFD. In organic membranes, MWCOs have no influence 
on the number of factors that have an influence on SFD. 
In terms of SFD, the membrane UH050 was only affected 
by TMP (alone and squared value), while UP005 was 
only affected by the coupled effect of TMP·CFV (p-value 

0.0021). Regarding the low MWCO membranes (UP005, 
UH004, and Inside Céram, 5), it should be noted that the 
regression coefficient of the model predicted by ANOVA 
was the lowest, indicating that only 53.7% (mean value) of 
the variability in SFD is explained by the analysis (with the 
UP005 presenting the lowest percentage, 40.3%). Similar 
results were observed by Martí-Calatayud et al. (2010) in 
the study of the ultrafiltration of macromolecules. Obtain-
ing low precision for SFD with the Inside Céram 5 kDa 
membrane, attributing it to the fact that the permeate flux 
decline was more noticeable in the other membrane tested 
(Carbosep M2 membrane). Therefore, it is possible that the 
use of the SDF parameter is more representative in the case 
of the other membranes (higher MWCO) than in the case 
of these ones (UP005, UH004, and Inside Céram, 5). The 
UH050 membrane (R2 of 77.84%) also presented an R2 out-
side the average (R2 average 94.33%), but it was higher than 
that of the UP005.

Again, the Inside Céram membranes of 5 and 15 MWCO 
presented a similar behavior between them for SFD, being 
more influenced by TMP (positively). For Inside Céram 50, 
the combined effect of CFV·TMP had the most significant 
(positive) influence on SFD. The high CFV creates a tur-
bulence that breaks up larger molecules allowing smaller 
particles to come closer to the membrane surface. This phe-
nomenon favors both the blocking of some pores and the for-
mation of a more compact cake layer, which translates into 
a greater resistance to filtration and, therefore, in a decrease 
in the permeate flow rate. The counterproductive effect 
of CFV occurs at a high TMP when the tangential forces 
caused by CFV are lower than the driving force of TMP 
bringing solute molecules closer to the membrane surface 
(Alventosa-deLara et al., 2012). This agrees with the experi-
mental data obtained for the Inside Céram 50 membrane 

Table 4  Model equations 
obtained with ANOVA for all 
the membranes tested

Ja permeate flux average, SFD cumulative flux decline

Membrane Model equation

UH004 Ja = 11.8644 + 2.48071·TMP + 2.4381·CFV·TMP
SFD = 25.7359 − 12.6961·CFV + 83.7588·TMP − 15.604·TMP2

UP005 Ja = 8.73705 + 4.69545·CFV + 4.37459·TMP2

SFD = 109.508 − 2.24186·CFV·TMP
RC70PP Ja = 6.4518 + 20.862·TMP − 2.996·TMP2 + 0.583212·CFV2

SFD = 112.026 + 19.46·TMP − 3.486·TMP2 − 1.46967·CFV2 + 1.89379·TMP·CFV
UH050 Ja = 39.5799 + 23.2215·TMP − 4.07657·TMP2 + 1.14624·CFV2

SFD =  − 15.1328 + 122.313·TMP − 22.3806·TMP2

Ins. Céram 5 Ja = 35.7028 + 2.664·CFV + 1.01538·TMP2

SFD = 47.014 − 3.704·CFV + 76.6129·TMP − 13.5257·TMP2

Ins. Céram 15 Ja = 38.0768 + 2.02·CFV + 0.906483·TMP2

SFD = 52.326 − 4.348CFV + 73.2234·TMP − 12.6629·TMP2

Ins. Céram 50 Ja = 16.7443 + 15.7302·TMP − 10.8953·CFV − 0.632316·TMP2

SFD = 163.12 − 16.3768·CFV + 5.38967·TMP·CFV − 0.427848·TMP2
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(Cifuentes-Cabezas et al., 2022), and it is reflected in the 
contour surface of the parameter (Figs. S5 and S6).

Once the most suitable equations for each membrane have 
been obtained through multifactorial statistical analysis, the 
process is optimized using RSM. Second order models were 
applied to select the optimal operating conditions.

Response Surface Methodology (RSM)

The RSM was carried out in order to obtain the optimal 
operating conditions, with the idea of achieving the highest 
average permeate flow and the minimum SFD. It is impor-
tant not to forget that the permeate flux decline with time 
is included in the SFD parameter, and the largest values of 
SFD indicate that a greater permeate flux decline has been 
obtained, so the smallest possible SFD value is of interest. 
Since for a CFV 4 m·s−1 it is considered that the membrane 
has reached the critical point, the data corresponding to 
these values will not be modelled. On the other hand, as 
a good fit for the model of the SFD response variable for 
the UP005 membrane was not achieved, the representation 
of the contour surface plot was not carried out. The model 
fails to explain the behavior of the UP005 membrane for 
the SFD variable. For this reason, the graph of two super-
imposed response variables was not obtained for this mem-
brane. For all membranes, an increase in the CFV produces 
an increase in the average permeate flux and a decrease in 
SFD (Fig. S7). The influence variable studied with respect to 
the response variable is also observed in the main effects of 
each of the variables obtained in the ANOVA analysis (see 
“Statistical Analysis ANOVA” section), and when the effect 
is positive, it means that by increasing the study variable 
(TMP, CFV), the response variable increases (Ja, SFD). All 
organic membranes showed an increase in Ja when increas-
ing CFV, due to the greater turbulence within the membrane 
module, which contributes to the back diffusion of the solute 
from the membrane surface, reducing the phenomenon of 
concentration polarization (Sánchez-Arévalo et al., 2021).

Table 5 shows the minimum (min.) (experimental con-
ditions that achieve the lowest value of SFD), maximum 
(max.) (experimental conditions that achieve the highest 
value of Ja), and optimal conditions of each membrane to 
obtain simultaneously the highest values of Ja and lowest 
values of SFD.

It can be seen in Table 5 how all the membranes, regard-
less of MWCO and material, presented the highest CFV as 
the optimum. Within organic membranes, it can be observed 
that the larger the pore size, the lower the optimal transmem-
brane pressure. The opposite occurs in the case of inorganic 
membranes, where the larger the pore size, the higher trans-
membrane pressure is needed to achieve an optimal perfor-
mance of the membrane process. This may be due to the fact 
that inorganic membranes present greater fouling compared 

to organic ones, which is why they need higher TMPs. This 
is observed with the highest values of SFD, which indicates 
a decrease in cumulative permeate flux decline throughout 
the process. Therefore, higher TMP are needed for a better 
permeate flux. It has also been observed that organic mem-
branes need higher transmembrane pressures than inorganic 
membranes, with the inorganic membranes presenting an 
optimal TMP between 1 and 1.57 bar. This may be because 
the latter membranes have higher permeabilities.

The UP005 membrane achieved a higher Ja value com-
pared to the RC70PP membrane despite having a smaller 
pore size. This can be explained considering that the 
RC70PP membrane is made of RCA, with a spongy pore 
morphology of the active layer that causes a higher resist-
ance to water penetration (Damar et  al., 2020). UH004 
showed the least cumulative flux decline for optimal condi-
tions. Higher values of SFD correspond to a faster and more 
evident decrease in permeate flux, so that the fouling of the 
membrane will be more severe. Although the range of SFD 
values corresponding to the UH050 membrane is higher 
than those of RC70PP membrane, the optimal values for the 
RC70PP membrane present the highest fouling within the 
organic membranes, followed by the UH050 membrane and 
the UH004 membrane. This means that, although the UH050 

Table 5  Summary of the minimum, maximum, and optimum of the 
study and response variables

Ja permeate flux average, SFD cumulative flux decline

Membrane TMP (bar) CFV 
(m·s−1)

Ja(L·h−1·m−2) SFD

UH004 Min 1.0 1.5 17.85 49.74
Max 2.5 3.4 37.94 112.32
Opt 2.45 3.4 37.84 88.21

UP005 Min 1.0 1.5 20.16 -
Max 2.5 3.4 52.05 -
Opt 2.5 3.4 52.04 -

RC70PP Min 1.0 1.5 25.63 116.3
Max 2.5 3.4 46.62 141.82
Opt 2.02 3.4 43.07 127.31

UH050 Min 1.0 1.5 61.30 84.79
Max 2.5 3.4 85.41 150.77
Opt 1.07 3.4 73.07 90.40

Ins. Céram 
5

Min 1.0 2.0 42.05 98.99
Max 3.0 3.0 52.83 147.71
Opt 1.02 3.0 44.71 98.99

Ins. Céram 
15

Min 1.0 2.0 43.38 98.99
Max 3.0 3.0 52.83 147.71
Opt 1.39 3.0 45.65 116.22

Ins. Céram 
50

Min 1.0 2.0 53.63 128.73
Max 3.0 3.0 90.93 158.85
Opt 1.57 3.0 72.61 138.37
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membrane achieves the highest level of fouling under the 
operating conditions tested, it is reduced when selecting the 
optimal conditions by reducing it below the values for the 
RC70PP membrane.

As in the case of inorganic membranes, Inside Céram 15, 
despite having a higher MWCO, reached average permeate 
flux values practically equal to Inside Céram 5. These values 
were of the same order of magnitude as the values obtained 
for the smaller MWCO organic membranes. This could 
explain why pore size is not always a key factor; sometimes, 
other membrane factors such as porosity and membrane 
material also affect it. The membrane that shows the greatest 
fouling is the Inside Céram 50 membrane (higher MWCO), 
followed by the organic membrane with the smallest pore 
size, the RC70PP membrane. In the same way, membranes 
with higher MWCO reach higher permeate flux values with 
low transmembrane pressures. Comparing membranes of 
the same MWCO (UP005 and Inside Céram 5), it can be 
seen how both achieve similar values of Ja, with the highest 
optimal value corresponding to the organic membrane. It 
is important to highlight that the regression coefficient of 
the model goes from the minimum of 0.9 to the maximum 
reached in the UP005 membrane with a value of 0.97.

Artificial Neural Network (ANN)

As commented in “Artificial Neural Networks” section, 
several network architectures were considered, varying both 
the transfer functions and the number of neurons and hid-
den layers. Tables S8, S9 and S10 show the total regression 
coefficients and the RMSE statistical parameter for the best 
conditions (1, 2, 3 hidden layers, with 5 and/or 6 neurons).

The analysis of the transfer functions used showed that the 
linear function (purelin) in the output layer turned out to be 
the best option for the prediction of the permeate flux. The 
combination using tansig or selu as output function resulted 
in lower fit values, even with a higher number of hidden 
layers and neurons. Therefore, it was decided to select the 
purelin function as the best output function. This function 
has also been selected for the output layer by several authors 
for the prediction of permeate flux in membrane processes 
(Al-Abri & Hilal, 2008; Mahadeva et al., 2022; Soleimani 
et al., 2013). Regarding the difference between using tan-
sig or selu as activation functions, it can be observed that 
in general, the results obtained present a similar trend and 
R2 values. For organic membranes, the highest R2 values 
were obtained in the case of the training and test sets, which 
were similar for each membrane. While in the case of the 
three ceramic membranes, the values of the R2 presented the 
following trend: R2 validation > R2 test > R2 training. It was 
observed that when working with a hidden layer with 5 to 6 
neurons, in general, the ANN R2 (complete data) does not 
present great changes. The UH050 membrane and Inside 

Céram 15 are the ones that are the most positively influ-
enced. However, working with two hidden layers improves 
R2 for all membranes compared to working with one hidden 
layer with either 5 or 6 neurons; although in most cases, 
this improvement is not significant, and a simplest network 
architecture with one layer is preferred. Inside Céram 15 
membrane was the one with the lowest R2 (1 hidden layer, 
5 neurons). The ANN model was the only one that showed 
differences in the measure of fit between the Inside Céram 
5 membrane and the Inside Céram 15 membrane, adjusting 
better to the membrane with lower MWCO. Regardless of 
the neurons or hidden layers used, the trend in the fitting 
accuracy of the different network architectures for the mem-
branes did not change, with Inside Céram 5, UP005, and 
Inside Céram 50 membranes always obtaining the best fits. 
It can be seen that, for ceramic membranes, using selu with 
2 hidden layers sometimes presents better results than when 
working with the tansig function. However, the increase in 
R2 is so slight that it is not competitive with working with a 
simpler architecture (1 hidden layer).

All error histograms (tansig and selu function) showed 
low error when comparing experimental target values and 
neural network output values, while the number of times 
large errors occur is low (narrow zero-centered normal 
distribution with small amplitude). Despite the differences 
between neurons and hidden layers, the regression percent-
ages are acceptable (R2 > 0.9). As it was mentioned before in 
“Artificial Neural Networks” section, several authors (Nandi 
et al., 2010; Purkait et al., 2009) reported that MLP with two 
hidden layers can often produce a better approximation with 
fewer weights than an MLP with one hidden layer. However, 
it has also been reported that a hidden layer is sufficient to 
approximate any continuous nonlinear function (Rai et al., 
2005). In this case, it was found that either one or two hidden 
layers provided good fits (Fig. 4), and that the number of 
neurons has a greater impact in R2 than the number of hidden 
layers. However, a larger difference in ANN fitting accu-
racy was expected when changing the number of neurons. 
Ghandehari et al. (2011) observed something similar when 
they studied cross-flow microfiltration using ANN, where 
no significant improvement occurred with an additional 
increase from 7 to 10 neurons. Finally, the optimal neuronal 
architecture for the membranes was not the same for all of 
them. Considering a good adjustment without overly com-
plicating the neural network, the following neuronal archi-
tectures were selected. For the UH004, UP005, RC70PP, 
Inside Céram 5, and Inside Céram 50 membranes, it was 
selected to work with 1 hidden layer and 5 neurons, whereas 
in the case of the Inside Céram 15 and UH0050 membranes, 
a network architecture with 1 hidden layer and 6 neurons was 
selected. Regarding the RMSE statistical parameter used for 
the optimization of the ANN architecture, it can be observed 
that the lowest value corresponds to the highest value of 
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R2 obtained in the validation of the ANN architecture. This 
reaffirms the selected number of neurons and the hidden 
layers for each membrane.

Regarding the results presented in Fig.  4, the ANN 
model was able to accurately predict the non-linear evo-
lution of the permeate flux at any time during ultrafiltra-
tion. However, in some cases, there were some deviations. 
It can be observed that these deviations were independent 
of the ANN architecture. For the UH004 membrane at a 
CFV 2 m∙s−1 at low TMPs, the values of experimental data 
and ANN predictions for short time scales present a slight 
deviation. A similar trend was observed with the UP005 
membrane at CFVs of 1.5 and 2 m∙s−1 and low TMPs, but 
the difference was small. At the same CFV conditions but 
at higher TMP for the RC70PP membrane, the ANN pre-
dictions vary slightly with respect to the experimental data 
except near steady-state conditions. Regarding the UH050 
membrane, it is observed that in the first minutes, the ANN 
predictions vary slightly with respect to the experimen-
tal data for all the experimental conditions tested. This is 
observed to a greater extent for a CFV 2.5 m∙s−1 and high 
TMPs. For inorganic membranes at low time scales, the 
model predictions and experimental values do not show 
exactly the same trend. This was observed at CFV of 
2 m∙s−1 for all inorganic membranes.

The validity of ANN models has been tested with good 
results, since they offer a fairly accurate description of 
the evolution of the experimental flux, achieving a better 
approach to process optimization. In addition to a precise 

description of the global process, the models manage to 
adapt to very different operating conditions. Therefore, the 
number of experimental tests was sufficient for the train-
ing procedure. An advantage of these models is that since 
flux is a constantly monitored parameter in all ultrafiltration 
systems, whether operated in cross flow or dead-end flow 
mode, the application of ANN models can be extrapolated to 
large-scale treatment plants (Teodosiu et al., 2000).

Comparison Between Models

Once all the models were analyzed separately, they were 
compared with each other. The Hermia models were not 
included in the analysis because it was shown that it cannot 
give an accurate permeate flux prediction because more than 
one fouling mechanisms are involved in the ultrafiltration 
of OOWW. As Corbatón-Báguena et al. (2016) well com-
mented, the regression coefficient R2 sometimes exceeds its 
maximum value (R2 > 1) or has a negative value in some 
cases. Although this was not observed in our case, for a 
possible future comparison with other works, it was decided 
to use [− log10(1 − R2)], a normal distribution of R2 to com-
pare between models. The study was performed with a 95% 
confidence level. As was commented above, for the compari-
son of the models, for the ANN, the data obtained with one 
hidden layer and 5 neurons were used for UH004, UP005, 
RC70PP, Inside Céram 5, and Inside Céram 50 membranes 
in ANN, and in the case of the other two membranes, one 
hidden layer with 6 neurons was selected. The results shown 
in Fig. 5 correspond to the mean values for the fitting accu-
racy obtained for each model for all the combinations of 
TMP and CFV analyzed.

Figure 5 shows the means and LSD values for the fit-
ting accuracy achieved for models tested for organic and 
inorganic membranes, respectively. When comparing the 
models, it was observed that there is no single model that 
best represents all the membranes under the operating con-
ditions tested. Low MWCO organic membranes showed 
similar results in terms of fitting accuracy for the four mod-
els considered. The best predictions were obtained by the 
ANN model flowed by the CM, RSM, and RISM models. 
Although the RC70PP membrane also shows this trend, 
the accuracy of the models is much similar between ANN 
and CM models. The main differences were observed with 
UH050 membrane. In that case, the ANN model achieved 
the worst accuracy, and the CM and RSM models showed a 
similar and better accuracy.

Regarding the inorganic membranes, the ANN model is 
classified in second and first place in terms of fitting accu-
racy for the membrane Inside Céram 5 and 15, respectively. 
For Inside Céram 50, ANN fitting accuracy is well below 
that of RSM, which is the model with the highest accuracy. 
Interestingly, a different trend is again observed between 

Fig. 4  Comparison between different ANN architectures and experi-
mental results, example for Inside Céram 5, CFV 4 m·s−1, and TMP 
1 bar. Exp, experimental flux; 1hd, 5n, one hidden layer with 5 neu-
rons flux; 1hd, 6n, one hidden layer with 6 neurons flux; 2hd, 5n, two 
hidden layers with 5 neurons each flux
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Inside Céram 5 and 15, with RSM having better accuracy 
for the first one but the worse for the latter membrane. It is 
important to note that the RSM model does not consider the 
CFV 4 m∙s−1 condition in inorganic membranes that may 
justify its greater accuracy.

Although it could not be said that a particular model 
better predicts the flux of all the membranes, in general, 
ANN presented good accuracy for all the membranes. As 
an example, Fig. 6 presents the result obtained for RC70PP 
membrane under a fixed condition of CFV 3.4 m·s−1 and 
TMP 1.5 bar. It can be clearly seen that the CM model 
presents difficulties in the first minutes, without achieving 
a real representation of the experimental data until 80 min. 
In the zoom, it is possible to see how the RSM and ANN 

models are the ones that best fit the data, the last being 
the best. Other authors have also demonstrated the model-
ling capacity of ANN and RSM for other studies related to 
membranes, specifically fouling. Khan et al. (2022) evalu-
ated SBM (empirical slot-pore blocking model), RSM, and 
ANN modelling techniques for accurate mapping of TMP 
by oscillating slotted pore membrane to treat deformable oil 
droplets, varying permeate fluxes. Noting that while both 
RSM and ANN delivered good results, ANN achieved bet-
ter data modelling.

The analyzed models provide a detailed study of the foul-
ing of ultrafiltration membranes using OOWW. Through 
semi-empirical models, it was possible to identify the type 
of fouling characteristic for each group of membranes 

Fig. 5  Comparison between 
models fitting accuracy, 
means, and LSD value of all 
membranes for all combina-
tion of TMP and CFV tested. 
CM, combined model; RISM, 
resistance in series model. A 
UH004. B UP005. C RC70PP. 
D UH050. E Inside Céram 5. 
F Inside Céram 15. G Inside 
Céram 50
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(organic and inorganic), as well as the specific fouling 
mechanisms occurring for each membrane. The semi-
empirical models, RSM, and ANN presented good fittings 
and advantages when it comes to predicting larger data sets. 
Using RSM allowed the optimization of the parameters, 
since it analyzes the significance of these parameters and 
the interaction effects between them that affect the output 
response. With ANN, a good prediction of the permeate 
flux density was achieved.

This leads us to the idea that a joint study, such as the 
one carried out in this work, allows us to know in depth the 
membrane fouling mechanisms to select the best working 
conditions and to predict the permeate flux.

Conclusions

Theoretical models showed that more than one fouling 
mechanism occurs simultaneously in the same process, 
achieving both the series resistance model and the com-
bined model, a good representation of the experimental 
data. This indicates that both cake layer formation and pore 
blockage contributed to membrane fouling. The ANOVA 
performed by fitting the response surface models shows that 
both CFV and TMP are significant variables with respect 
to permeate flux.

RSM made it possible to study the best operating condi-
tions for membrane processes. Using ANN, the model fits all 
provided data with high regression coefficients R2. Regard-
ing the activation function, tansig presented better results 
than selu. When comparing all the models, it was shown that 
depending on the membrane, one model fits better than the 

others; however, the ANN model is the one that best fits all 
the experimental data of low/medium MWCO ultrafiltration 
membranes. It is important to note that the results obtained 
are adjusted only to the conditions analyzed in this study and 
are not necessarily extrapolated to other conditions (TMPs 
and CFVs) or a different wastewater. The work carried out 
provides extensive knowledge of the data modelling of ultra-
filtration membranes used for the treatment of OMW.
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