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A B S T R A C T

The progress of some AI paradigms such as deep learning is said to be linked to an exponential growth in
the number of parameters. There are many studies corroborating these trends, but does this translate into an
exponential increase in energy consumption? In order to answer this question we focus on inference costs rather
than training costs, as the former account for most of the computing effort, solely because of the multiplicative
factors. Also, apart from algorithmic innovations, we account for more specific and powerful hardware (leading
to higher FLOPS) that is usually accompanied with important energy efficiency optimisations. We also move the
focus from the first implementation of a breakthrough paper towards the consolidated version of the techniques
one or two year later. Under this distinctive and comprehensive perspective, we analyse relevant models in
the areas of computer vision and natural language processing: for a sustained increase in performance we see
a much softer growth in energy consumption than previously anticipated. The only caveat is, yet again, the
multiplicative factor, as future AI increases penetration and becomes more pervasive.
1. Introduction

As Deep Neural Networks (DNNs) become more widespread in all
kinds of devices and situations, what is the associated energy cost? In
this work we explore the evolution of different metrics of deep learning
models, paying particular attention to inference, i.e., deployment of
a trained model, and its associated computational cost and energy
consumption. The full impact, and its final carbon footprint, not only
depends on the internalities (hardware and software directly involved
in their operation) but also on the externalities (all social and economic
activities around it). From the AI research community, we have more to
say and do about the former. Accordingly, more effort is needed, within
AI, to better account for the internalities, as we do in this paper.

In our study, we differentiate between training and inference. At
first look it seems that training cost is higher. However, for deployed
systems, inference costs exceed training costs, because of the multi-
plicative factor of using the system many times. Training, even if it
involves repetitions, is done once but inference is done repeatedly.
Several sources, including companies in the technology sector such
as Amazon or NVIDIA, estimate that inference can exceed the cost of
training in pervasive systems, and that inference accounts for up to 90%
of the machine learning costs for deployed AI systems [1–5]. There
are several studies about training computation and its environmental
impact [6–11] but there are very few focused on inference costs and
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their associated energy consumption (and many of them focused on
post-processing techniques to reduce the energy consumption [12,13]).

DNNs are deployed almost everywhere [14], from smartphones to
automobiles, all having their own compute, temperature and battery
limitations. Precisely because of this, there has been a pressure to
build DNNs that are less resource demanding, even if larger DNNs
usually outperform smaller ones. Alternatively to this in-device use,
many larger DNNs are run on data centres, with people accessing them
repeated in a transparent way, e.g., when using social networks [15].
Millions of requests imply millions of inferences over the same DNN.

Many studies report that the size of neural networks is growing
exponentially [16,17]. However, this does not necessarily imply that
the cost is also growing exponentially, as more weights could be
implemented with the same amount of energy, mostly due to hardware
specialisation but especially as the energy consumption per unit of com-
pute is decreasing. Also, there is the question of whether the changing
costs of energy and their carbon footprint [18] should be added to the
equation. Finally, many studies focus on the state-of-the-art (SOTA) or
the cutting-edge methods according to a given metric of performance,
but many algorithmic improvements usually come in the months or
few years after a new technique is introduced, in the form of general
use implementations having similar results with much lower compute
requirements. All these elements have been studied separately, but a
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more comprehensive and integrated analysis is necessary to properly
evaluate whether the impact of AI on energy consumption and its
carbon footprint is alarming or simply worrying, in order to calibrate
the measures to be taken in the following years and estimate the effect
in the future.

For conducting our analysis we chose two representative domains:
Computer Vision (CV) and Natural Language Processing (NLP). For
CV we analysed image classification models, and ImageNet [19] more
specifically, because there is a great quantity of historical data in this
area and many advances in this domain are normally brought to other
computer vision tasks, such as object detection, semantic segmentation,
action recognition, or video classification, among others. For NLP we
analysed results for the General Language Understanding Evaluation
(GLUE) benchmark [20], since language understanding is a core task
in NLP.

We focus our analysis on inference FLOPs (Floating Point Opera-
tions) required to process one input item (image or text fragment).
We collect inference FLOPs for many different DNNs architectures
following a comprehensive literature review. Since hardware manu-
facturers have been working on specific chips for DNN, adapting the
hardware to a specific case of use leads to performance and efficiency
improvements. We collect hardware data over the recent years, and
estimate how many FLOPs can be obtained with one Joule with each
chip. Having all this data we finally estimate how much energy is
needed to perform one inference step with a given DNN. Our main
objective is to study the evolution of the required energy for one
prediction over the years.

The main findings and contributions of this paper are to (1) show-
case that better results for DNN models are in part attributable to
algorithmic improvements and not only to more computing power;
(2) determine how much hardware improvements and specialisation
is decreasing DNNs energy consumption; (3) report that, while energy
consumption is still increasing exponentially for new cutting-edge mod-
els, DNN inference energy consumption could be maintained low for
increasing performance if the efficient models that come relatively soon
after the breakthrough are selected.

We provide all collected data and performed estimates as a data
set, publicly available in the appendixes and a repository in: https:
//bit.ly/3DTHvFC. The rest of the paper covers the background, in-
troduces the methodology and presents the analysis of hardware and
energy consumption of DNN models and expounds on some forecasts.
Discussion and future work close the paper.

2. Background

In line with other areas of computer science, there is some previous
work that analyses compute and its cost for AI, and DNNs more
specifically [6–11]. Many of these studies focus on training costs. For
instance, the ImageNet dataset has usually been used to determine
trends in compute requirements versus performance, usually referred
to as ‘AI efficiency’ [21]. This study shows that 44 times less compute
was required in 2020 to train a network with the same performance
AlexNet achieved seven years before.

Despite this increase in efficiency, the demand for better task per-
formance, linked with more complex DNNs and larger volumes of data,
has motivated a growth in AI compute that may not be compensated by
this increased efficiency. Thompson et al. [11] report the computational
demands of several Deep Learning applications, showing that progress
in them is still strongly reliant on increases in computing power. This is
expressed in the form of ‘scaling laws’. As a result, it has been estimated
that AI models have doubled the computational power they use every
3.4 months since 2012 [6]. Gholami et al. [7] report similar scaling
rates for AI training compute but they forecast that DNNs memory
requirements will soon become a problem. The focus is being put on
whether this exponential trend may have a limit on how far we can
improve performance in the future without a paradigm change.
2

The studies on compute, performance and resources are more im-
portant for another reason. They must help society and AI researchers
realise the issues about efficiency and energy consumption. For in-
stance, Schwartz et al. [22] analyses training costs and propose that
researchers should put more attention on efficiency and they should
report always the number of FLOPs. Strubell et al. [23] estimate the
energy consumption, cost and CO2 emissions of training some popular
NLP models. Henderson et al. [24] perform a systematic reporting of
the energy and carbon footprints of reinforcement learning algorithms.
Section 5.3 in Bommasani et al. [25] seeks to identify the assumptions
that shape the environmental impact for foundation models. All these
studies contribute to a better assessment of the problem and create
more incentives for their solution. For instance, new algorithms and
architectures such as EfficientNet [26] and EfficientNetV2 [27] have
aimed at this reduction in compute.

Compared to training costs, there are fewer studies on inference
costs, despite using a higher share of compute and energy, because of
multiplicative factors (number of inferences) [28]. Canziani et al. [8]
is one of the first studies focusing on inference costs. They analysed
accuracy, memory footprint, parameters, operations count, inference
time and power consumption of 14 ImageNet models. To measure the
power consumption they ran DNNs on a NVIDIA Jetson TX1 board. A
similar study [9] measures energy efficiency, Joules per image, for a
single forward and backward propagation iteration (a training step).
This study benchmarks 4 Convolutional Neural Networks (CNNs) on
CPUs and GPUs on different frameworks. Their work shows that GPUs
are more efficient than CPUs (for the analysed CNNs). Both publications
study model efficiency, but they do this for very concrete cases. In
this paper we will analyse a greater number of DNNs and hardware
components in a longer time frame.

3. Methodology

When dealing about computing effort and computing speed (hard-
ware performance), terminology is usually confusing. For instance, the
term ‘compute’ is used ambiguously, sometimes applied to the number
of operations or the number of operations per second. However, it is
important to clarify what kind of operations and the acronyms for them.
In this regard, we will use the acronym FLOPS to measure hardware
performance, by referring to the number of floating point operations
per second, as standardised in the industry, while FLOPs will be applied
to the amount of computation for a given task (e.g., a prediction or
inference pass), by referring to the number of operations, counting a
multiply-add operation pair as two operations. An extended discussion
about this can be found in the Appendix.

We collect most of our information directly from research papers
that report results, compute and other data for one or more newly
introduced techniques for the benchmarks and metrics we cover in
this work. We manually read and inspected the original paper and
frequently explored the official GitHub repository, if exists. However,
often there is missing information in these sources, so we need to get
the data from other sources, namely:

• Related papers: usually the authors of another paper that intro-
duces a new model compare it with previously existing models,
providing further information.

• Model implementations: PyTorch [29] contains many
(pre-trained) models, and their performance is reported. Other
projects do the same (see, e.g., [30,31]).

• Existing data compilations: there are some projects and public
databases collecting information about deep learning architec-
tures and their benchmarks, e.g., [7,32–35].

• Measuring tools: when no other source was available or reliable,
we used the ptflops library [36] or similar tools to calculate
the model’s FLOPs and parameters (when the implementation is
available).

https://bit.ly/3DTHvFC
https://bit.ly/3DTHvFC
https://bit.ly/3DTHvFC
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Given this general methodology, we now discuss in more detail how
we made the selection of CV and NLP models, and the information
about hardware.

3.1. CV models data compilation

There is a huge number of models for image classification, so we
selected models based on two criteria: popularity and accuracy. For
popularity we looked at the times the paper presenting the model
has been cited (from sources such as in Scopus2 or Google Scholar3)
and whether the model appears mentioned in other papers (e.g., for
comparative analyses). We focused on model’s accuracy as well because
having the best models per year in terms of accuracy is necessary for
analysing progress. To achieve this we used existing compilations [35]
and filtered by year and accuracy. For our selection, accuracy was more
important than popularity for recent models, as they are less cited
than the older ones because they have been published for a shorter
time. Once we selected the sources for image classification models, we
collected the following information: Top-1 accuracy on ImageNet, num-
ber of parameters, FLOPs per forward pass, release date and training
dataset. Further details about model selection, FLOPs estimation, image
cropping [37] and resolution [38,39] can be found in the Appendix
(and Table B.2).

3.2. NLP models data compilation

For NLP models we noted that there is much less information about
inference (e.g., FLOPs) and the number of models for which we can get
the required information is smaller than for CV. We chose GLUE for
being sufficiently representative and its value determined for a good
number of architectures. To keep the numbers high we just included
all the models since 2017 for which we found inference compute
estimates [40]. Further details about FLOPs estimation and counting
can be found in the Appendix (selected models in Table I.7).

3.3. Hardware data compilation

Regarding hardware evolution, we collected data for Nvidia GPUs.4
We chose Nvidia GPUs because they represent one of the most effi-
cient hardware platforms for DNN5 and they have been used for Deep
Learning in the last 10 years, so we have a good temporal window for
exploration. Note that for this analysis we only focus on GPUs, as this
is the current trend in the area of AI compared to FPGAs [28,41,42].
As of today, in AI applications where speed and reaction times are
critical, GPUs deliver benefits in learning and reaction time, and they
have the capability to process large amounts of data needed for AI and
neural networks, compared to FPGAs. Only in those cases where the
algorithm we want to implement is ‘‘simple’’, can FPGAs be faster and
more energy efficient than a GPU [42,43]. This is because FPGAs turn
out to be more limited in terms of their usage and therefore require
that the algorithm can be easily implemented by combinational logic,
and that the programmable processor is not needed (i.e., instruction
fetching, decoding, control, etc. is just unnecessary overhead).

In particular, we collected GPU data for Nvidia GPUs from 2010
to 2021. The collected data is: FLOPS, memory size, power consump-
tion (reported as Thermal Design Power, TDP) and launch date. As
explained before, FLOPS is a measure of computer performance. From
the FLOPS and power consumption we calculate the efficiency, dividing

2 https://www.scopus.com
3 https://scholar.google.com/
4 https://developer.nvidia.com/deep-learning
5 We considered Google’s TPUs (https://cloud.google.com/tpu?hl=en) for

he analysis but there is not enough public information about them, as they
3

re not sold but only available as a service.
Fig. 1. Relation between the number of parameters and FLOPs (both axes are
logarithmic).

FLOPS by Watts. We use TDP and the reported peak FLOPS to calculate
efficiency. This means we are considering the efficiency (GLOPS/Watt)
when the GPU is at full utilisation. In practice the efficiency may
vary depending on the workload, but we consider this estimate (‘‘peak
FLOPS’’/TDP) accurate enough for analysing the trends and for giving
an approximation of energy consumption. In our compilation there are
desktop GPUs and server GPUs. We pay special attention to server
GPUs released in the last years, because they are more common for AI,
and DNNs in particular. We do not include in our analysis those low-
power embedded systems designed for standalone machines and other
embedded applications (e.g., NVIDIA Jetson family6). If this were the
case, the results on energy consumption would be optimistic, taking
into account that many implementations do not use these systems.
Also, to make any claim about compensating energy consumption
more credible, we have preferred to be conservative in this respect. A
discussion about discrepancies between theoretical and real FLOPS as
well as issues regarding Floating Point (FP) precision operations can be
found in the Appendix.

4. Computer vision analysis

In this section, we analyse the evolution of ImageNet [44] (one pass
inference) according to performance and compute. Further details in
the Appendix.

4.1. Number of parameters and FLOPs

The number of parameters is usually reported, but it is not directly
proportional to compute. For instance, in CNNs, convolution operations
dominate the computation: if 𝑑, 𝑤 and 𝑟 represent the network’s depth,

idth and input resolution, the FLOPs grow following the relation [26]:

LOPs ∝ 𝑑 +𝑤2 + 𝑟2

his means that FLOPs do not directly depend on the number of param-
ters. The number of parameters affect network depth (𝑑) or width (𝑤).
owever, distributing the same number of parameters in different ways

e.g., using different layer shapes, filters, etc.) will result in different
umbers of FLOPs. Moreover, the resolution (𝑟) does not depend on

the number of parameters directly, because the input resolution can be
increased without increasing network size.

Despite this, Fig. 1 shows a linear relation between FLOPs and
parameters. We attribute this to the balanced scaling of 𝑤, 𝑑 and 𝑟.
These dimensions are usually scaled together with bigger CNNs using
higher resolution. Note that recent transformer models [45] do not
follow the growth relation presented above. However, the correlation
between the number of parameters and FLOPs for CNNs is 0.772 and
the correlation for transformers is 0.994 (Fig. 1). This suggests that
usually in both architectures parameters and FLOPs scale in tandem.
We will use FLOPs, as they allow us to estimate the needed energy
relating hardware FLOPS with required FLOPs for a model [40,46].

6 https://developer.nvidia.com/embedded/jetson-modules

https://www.scopus.com
https://scholar.google.com/
https://developer.nvidia.com/deep-learning
https://cloud.google.com/tpu?hl=en
https://developer.nvidia.com/embedded/jetson-modules
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Fig. 2. Accuracy evolution over the years. The size of the balls represent the GFLOPs
of one forward pass.

Fig. 3. GFLOPs over the years. The dashed line is a linear fit (note the logarithmic
𝑦-axis) for the models with highest accuracy per year. The solid line includes all points.

4.2. Performance and compute

There has been very significant progress for ImageNet. In 2012,
AlexNet achieved 56% Top-1 accuracy (single model, one crop). In
2021, Meta Pseudo Labels (EfficientNet-L2) achieved 90.2% Top-1
accuracy (single model, one crop). However, this increase in accuracy
comes with an increase in the required FLOPs for a forward pass. A
forward pass for AlexNet is 1.42 GFLOPs while for EfficientNet-L2 is
1040 GFLOPs (details in the Appendix).

Fig. 2 shows the evolution from 2012 to 2021 in ImageNet ac-
curacy (with the size of the bubbles representing the FLOPs of one
forward pass). In recent papers some researchers began using more data
than those available in ImageNet1k for training the models. However,
using extra data only affects training FLOPs, but does not affect the
computational cost for inferring each classification (forward pass).

If we only look at models with the best accuracy for each year
we can see an exponential growth in compute (measured in FLOPs).
This can be observed clearly in Fig. 3: the dashed line represents an
exponential growth (shown as a linear fit since the 𝑦-axis is logarith-
mic). The line is fitted with the models with highest accuracy for each
year. However not all models released in the latest years need so much
compute. This is reflected by the solid line, which includes all points.
We also see that for the same number of FLOPs we have models with
increasing accuracy as time goes by.

In Table 1 there is a list of models having similar number of FLOPs
as AlexNet. In 2019 we have a model (EfficientNet-B1) with the same
number of operations as AlexNet achieving a Top-1 accuracy of 79.1%
without using extra data, and a model (NoisyStudent-B1) achieving
Top-1 accuracy of 81.5% using extra data. In a period of 7 years, we
have models with similar computation with much higher accuracy. We
observe that when a SOTA model is released it usually has a huge
number of FLOPs, and therefore consumes a large amount of energy,
but in a couple of years there is a model with similar accuracy but
with much lower number of FLOPs. These models are usually those
that become popular in many industry applications. This observation
confirms that better results for DNN models of general use are in part
4

Table 1
Results for several DNNs with a similar number of FLOPs as AlexNet.

Model Top-1 Accuracy GFLOPs Year

AlexNet [37] 56.52 1.42 2012
ZFNet [47] 60.21 2.34 2013
GoogleLeNet [48] 69.77 3.00 2014
MobileNet [49] 70.6 1.14 2017
MobileNetV2 1.4 [50] 74.7 1.18 2018
EfficientNet-B1 [26] 79.1 1.40 2019
NoisyStudent-B1 [51] 81.5 1.40 2019

Fig. 4. Relation between accuracy and GFLOPs.

attributable to algorithmic improvements and not only to the use of
more computing power.

Finally, Fig. 4 shows that the Pareto frontier (in grey) is composed
of new models (in yellow and green), whereas old models (in purple
and dark blue) are relegated below the Pareto. As expected, the models
which use extra data are normally those forming the Pareto frontier. Let
us note again that extra training data does not affect inference GFLOPs.

5. Natural language analysis

In this section, we analyse the trends in performance and inference
compute for NLP models. To analyse performance we use GLUE, which
is a popular benchmark for natural language understanding, one key
task in NLP. The GLUE benchmark7 is composed of nine sentence under-
standing tasks, which cover a broad range of domains. The description
of each task can be found in [20].

5.1. Performance and compute

We represent the improvement on the GLUE score in relation to
GFLOPs over the years in Fig. 5 (and in Fig. G.15 in the Appendix).
GFLOPs are for single input of length 128, which is a reasonable
sequence length for many use cases, being able to fit text messages or
short emails. We can observe a very similar evolution to the evolution
observed in ImageNet: SOTA models require a large number of FLOPs,
but in a short period of time other models appear, which require much
fewer FLOPs to reach the same score. There are many models that focus
on being efficient instead of reaching high score, and this is reflected
in their names too (e.g., MobileBERT [52] and SqueezeBERT [53]). We
note that the old models become inefficient (they have lower score with
higher number of GLOPs) compared to the new ones, as it happens in
CV models.

5.2. Compute trend

In Fig. 6 we include all models (regardless of having performance
results) for which we found inference FLOPs estimates. The dashed
line adjusts to the models with higher GFLOPs (models that, when
released, become the most demanding model) and the solid line to all

7 Many recent models are evaluated on SUPERGLUE, but we choose GLUE
to have a temporal window for our analysis.
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Fig. 5. GFLOPs per token analysis for NLP models.

Fig. 6. GFLOPs per token analysis for NLP models.

Fig. 7. Theoretical Nvidia GPUs GFLOPS per Watt. Data in Table J.8 in the appendix.

NLP models. In this plot we indicate the input sequence length, because
in this plot we represent models with different input sequence lengths.
We observe a similar trend as in CV: the GFLOPS of the most cutting-
edge models have a clear exponential growth, while the general trend,
i.e., considering all models, does not scale so aggressively. Actually,
there is a good pocket of low-compute models in the last year.

6. Hardware progress

We use FLOPS as a measure of hardware performance and
FLOPS/Watt as a measure of hardware efficiency. We collected per-
formance for different precision formats and tensor cores for a wide
range of GPUs. The results are shown in Fig. 7. Note that the 𝑦-axis
is in logarithmic scale. Theoretical FLOPS for tensor cores are very
high in the plot. However, if we follow a more realistic estimation
for the Nvidia GPUs (V100, A100 and T4),8 the actual performance
for inference using tensor cores is not that high. The details of this
estimation are shown in Table E.3 in the appendix. Note that we have
not included ‘edge’ AI low-power accelerators in the analysis since
their performance and efficiency cannot be reliably estimated with the
used methodology. In the Appendix L, we have included an extended
discussion and insights regarding the performance of these accelerators.

With these estimates we have been able to obtain good linear fits
(with the 𝑦-axis in logarithmic scale) for each data set, one for CV
and another for NLP, as shown by the solid lines in Fig. 8. Note

8 Specifications in: https://www.nvidia.com/en-us/data-center/
5

Fig. 8. Nvidia GPU GFLOPS per Watt adapted for CV (CNNs) and NLP models. Data
in Table J.9 in the appendix.

Fig. 9. Estimated Joules of a forward pass (CV). The dashed line is a linear fit
(logarithmic 𝑦-axis) for the models with highest accuracy per year. The solid line fits
all models.

that there are some particular points in Fig. 8 that stand out among
the others by a large margin. This corresponds to GPUs using mixed
precision, i.e., GPUs optimised for DNNs. Particularly, the highest point
corresponds to the GPU T4, a GPU that is specifically designed for
inference, and this is why it is so efficient for this task.

7. Energy consumption analysis

Once we have estimated the inference FLOPs for a range of models
and the GFLOPS per Watt for different GPUs, we can estimate the
energy (in Joules) consumed in one inference. We do this by dividing
the FLOPs for the model by FLOPS per Watt for the GPU. But how
can we choose the FLOPS per Watt that correspond to the model? We
use the models presented in Fig. 8 to obtain an estimate of GLOPS per
Watt for the model’s release date. In this regard, the FLOPs for DNNs
can be misleading sometimes (as reported in [24]), usually due to
underlying optimisations of the firmware, frameworks, memory and
hardware that can influence energy efficiency. They show that energy
and FLOPs are highly correlated when analysing the same architecture,
but the correlation decreases when different architectures are mixed.
We consider that this low correlation does not significantly affect our
estimates, as we analyse trends over years and adjust for exponential
scaling, where the dispersion is reduced.

To perform a more precise analysis it would be necessary to measure
power consumption for each network with the original hardware and
software, as unfortunately the required energy per (one) inference
is rarely reported. Still, our estimates are comparable to real data
extracted from other experiments in the literature (see Appendix K).

We can express the efficiency metric FLOPS per Watt as FLOPs per
Joule, as shown in Eq. (1). Having this equivalence we can use it to
divide the FLOPs needed for a forward pass and obtain the required
Joules, see Eq. (2). Doing this operation we obtain the consumed energy
in Joules.

Efficiency = HW Perf.
Power in units:

𝐹𝐿𝑂𝑃𝑆
Watt

=
𝐹𝐿𝑂𝑃𝑠∕s
Joules∕s

=
𝐹𝐿𝑂𝑃𝑠
Joule

(1)

Energy = Fwd. Pass in units:
𝐹𝐿𝑂𝑃𝑠

= Joule (2)
Efficiency 𝐹𝐿𝑂𝑃𝑠∕Joule

https://www.nvidia.com/en-us/data-center/
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Fig. 10. Estimated Joules of a forward pass (NLP). Same interpretation as in Fig. 9.

Fig. 11. Relation between Joules and Top-1 Accuracy over the years (CV, ImageNet).

Applying this calculation to all collected models we obtain Fig. 9 for
CV. The dashed line represents an exponential trend (a linear fit as
the 𝑦-axis is logarithmic), adjusted to the models with highest accuracy
for each year, like in Fig. 2, and the dotted line represent the average
Joules for each year. By comparing both plots we can see that hardware
progress softens the growth observed for FLOPs, but the growth is still
clearly exponential for the models with high accuracy. The solid line is
almost horizontal, but in a logarithmic scale this may be interpreted as
having an exponential growth with a small base or a linear fit on the
semi log plot that is affected by the extreme points. In Fig. 10 we do
the same for NLP models and we see a similar picture.

Fig. 11 shows the relation between Top-1 Accuracy and Joules.
Joules are calculated in the same way as in Fig. 9. The relation is
similar as the observed in Fig. 4, but in Fig. 11 the older models are not
only positioned further down in the 𝑦-axis (performance) but they tend
to cluster on the bottom right part of the plot (high Joules), so their
position on the 𝑦-axis is worse than for Fig. 4 due to the evolution in
hardware. This is even more clear for NLP, as seen in Fig. 12.

8. Forecasting and multiplicative effect

In our analysis we see that DNNs as well as hardware are improving
their efficiency and do not show symptoms of standstill. This is con-
sistent with most studies in the literature: performance will continue
growing as compute grows, but at the same time efficiency is increas-
ing. However, this is the first work that analyses whether these two
things cancel, especially when we analyse inference and not training.
Our conclusion is that they not cancel out for the cutting-edge models
of each moment but this is less clear for the regular models in general
use by industries and individuals.

However, since we are focusing on inference costs, we need to
consider the multiplicative factor. How many inferences are performed
per capita? This has definitely increased very significantly with the use
of smart devices, Internet of things and many other devices around
us, which are incorporating DNN-based services. However, how many
inference passes per capita do we have at this moment, and how is this
growing? This is very difficult to estimate, and we leave it for future
work. However, it is interesting to analyse possible hypotheses: assume
there is one inference pass of a neural network application per second
per capita. What would this imply in terms of energy consumption?
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Fig. 12. Relation between Joules and GLUE score over the years (NLP, GLUE).

Fig. 13. Estimated Joules per forward pass (e.g., one prediction) compared to human
energy consumption in 1s (CV).

Fig. 14. Estimated Joules per forward pass (e.g., one prediction) compared to human
consumption in 1s (NLP).

In order to put this inference energy consumption in context we
calculate the value of average human body energy consumption (we
will refer to it as somatic or internal consumption) in one second and
the average energy that a human being consumes in one second with
all their commodities (we will refer to it as external consumption). The
internal consumption is calculated assuming 2000 KCal per person day,
and converting this to Joules/s, giving approximately 100 Joules/s. The
external consumption is the sum of total energy consumption, including
electricity, transport and heating, using the USA as a Ref. [54]. This
suggests 79,897 Kwh/year in 2019, which is approximately 10,000
Joules every second. The comparison of these two references with the
trends can be seen in Fig. 13 (CV). As we see, the energy consumed for
one inference of the best models approaches the energy consumed by
the human body in one second but stills far from the external energy
consumed in one second. If each human did an AI-based decision
implying a forward pass every second during the whole day (and night),
this would be still well below their internal consumption. However,
AI-based decisions are becoming more ubiquitous. For instance, a self-
driving car or a surveillance camera may be making many forward
passes per second. For NLP, the trends are similar but the best models
are growing much faster, as we see in Fig. 14, while the regular models
may even decrease. Here, the interpretation in terms of how many
decisions are made in a second is also hard to determine. For instance,
a language model interfaced by a human does not require more than
the basic 128-token windows per second. However, many applications
of language models can process data without interacting with humans
at a much higher speed.
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9. Discussion and future work

In this work we have combined the analysis of several elements
about AI, compute and energy consumption that allow us to have a
different and more comprehensive perspective about the energy impact
of AI. The most distinctive element of our analysis is that we focus on
inference cost, which is usually lower than the training cost when both
are reported in research papers, but because of multiplicative factors, it
is much higher overall. Many DNN models are trained once and applied
millions of times (forward passes).

Our findings are very different from the unbridled exponential
growth that is usually reported when just looking at the number of
parameters of new deep learning models [55–57]. When we focus on
inference costs of these networks, the energy that is associated is not
growing so fast, because of several factors that partially compensate
the growth, such as algorithmic improvements, hardware specialisation
and hardware consumption efficiency. The gap gets closer when we
analyse those models that settle, i.e., those models whose implementa-
tion become very popular one or two years after the breakthrough algo-
rithm was introduced. These general-use models can achieve systematic
growth in performance at an almost constant energy consumption.
The main conclusion is that even if the energy used by AI were kept
constant, the improvement in performance could be sustained with al-
gorithmic improvements and fast increase in the number of parameters.

This conclusion has an important limitation. It assumes a constant
multiplicative factor. As more and more devices use AI (locally or re-
motely) the energy consumption can escalate just by means of increased
penetration, in the same way that cars have become more efficient in
the past two decades but there are many more cars in the world today.

We hope this paper contributes to the increasing debate about AI
and energy consumption by analysing the inference costs. As these
are dominated by multiplicative factors, this should encourage not
only AI researchers but economists and social scientists to participate
in this analysis. Future studies would be enriched by socio-economic
indicators about the use of AI (the degree of penetration), the cost
of energy and devices as well as the carbon footprint per Joule [18].
Similarly, comparing energy consumption by AI and trends in human
salaries could help determine where automation becomes cost effective
in economic terms.

Finally, this paper has many limitations that originate from the
limited information reported in scientific papers. Many papers include
the number of hyperparameters, but it is less common to have complete
information about FLOPs and energy consumption. It is even rarer
when looking for inference costs. This information is not only necessary
for the transparency of the field but it is of utmost relevance for
producing studies such as the one we have presented here, with a
larger number of benchmarks and models. Also, it is important that new
techniques are reported with new but also old benchmarks, so that we
can have larger temporal windows where we can analyse the evolution
of the field. We hope that future studies can build on this one and better
publishing practices.

CRediT authorship contribution statement

Radosvet Desislavov: Conceptualization, Methodology, Data cura-
tion, Visualisation, Investigation, Writing – original draft, Reviewing
and editing. Fernando Martínez-Plumed: Conceptualization, Method-
ology, Data curation, Visualisation, Investigation, Writing – original
draft, Reviewing and editing. José Hernández-Orallo: Conceptualiza-
tion, Methodology, Data curation, Visualisation, Investigation, Writing
– original draft, Reviewing and editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
7

influence the work reported in this paper. a
Data availability

Data will be made available on request.

Acknowledgements

We thank the reviewers for their insightful remarks, which have
helped improve the paper significantly. This work has been partially
supported by the MIT-Spain - INDITEX Sustainability Seed Fund un-
der project COST-OMIZE, the grant PID2021-122830OB-C42 funded
by MCIN/AEI/10.13039/501100011033 and ‘‘ERDF A way of making
Europe’’, Generalitat Valenciana under INNEST/2021/317 and PROM-
ETEO/2019/098, EU’s Horizon 2020 research and innovation pro-
gramme under grant agreement No. 952215 (TAILOR), the Future of
Life Institute, FLI, under grant RFP2-152, US DARPA HR00112120007
(RECoG-AI).

Appendix A. Flops vs flops

The terminology regarding computing effort and speed is usually
confusing. The term ‘compute’ is often ambiguous, and is sometimes
applied to a number of operations or to the number of operations per
second. In this sense, we use the acronym FLOPS to measure hardware
performance, referring to the number of floating point operations per
second, as standardised in the industry. For its part, FLOPs is applied
to the amount of computation for a given task (e.g., a prediction or
inference pass), referring to the number of operations, counting a pair
of multiply-add operations as two operations.

For instance, we found out that the acronym FLOP may be mis-
leading. By FLOP, we mean one floating point operation, a measure
of the amount of compute (computing effort) and by FLOPS, we mean
floating point operations per second, i.e., FLOPS = FLOP/s. However,
many papers, especially CV papers, use the terms FLOPs and FLOPS
to refer to the number of operations, but we will be just use FLOPs
as the plural of FLOP, never as FLOPS. Then there is the question of
what a FLOP is. When dealing with DNN, this is usually associated
with the number of multiply-add operations, even there are other type
of operations involved when executing a DNN. This is done this way
because it is usually a good estimate [40,46]. More specifically, we will
count one fused multiply-add operation as 2 FLOPs (note the lowercase
‘s’). Hardware manufacturers count them in this manner [58], because
in fact there are two mathematical operations. However, CV research
papers count a multiply-add operation as only one operation. In this
case, we will multiply the number of operations reported by 2. In sum,
the acronym FLOPS will be applied to measure hardware performance,
by referring to the number of floating point operations per second,
as standardised in the industry, while FLOPs will be applied to the
amount of computation for a given task (e.g., a prediction or inference
pass), by referring to the number of operations, counting a multiply-add
operation pair as two operations.

Appendix B. Methodology details for CV models

Accuracy and FLOPs metrics were collected carefully, taking into
account that there are different sampling techniques to reach a given
accuracy. For instance, in the AlexNet paper [37], to classify a single
image they make 10 predictions, they take 10 different crops9 from
the original image and average the 10 predictions to get the final
prediction. While this is a useful trick, it is not fair to compare the
accuracy of a model achieved with 10 crops with another achieved

9 Cropping is a common image manipulation process: while cropping the
iddle square (down-sampling) from input images is a good practice for
ata preparation, random cropping is also a good practice for train-data
ugmentation
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Table B.2
CV models data set. A citation next to a given value means that this value is extracted from that source, otherwise the values are from the paper (cited in model column). The
symbol † means that this value was obtained or checked from a model implementation using model analysis tools, and the symbol ∗ means that we estimated the value.

Model Top-1 Acc. Params (M) GFLOPs Extra data Date Architecture

AlexNet [37] 56.52 [29] 61.00 † 1.42 † No 01/06/2012 CNN
ZFNet-b [47] 63.63 [31] 107.63 [31] 4.96 [31] No 11/11/2013 CNN
ZFNet [47] 60.21 [31] 62.36 [31] 2.34 [31] No 12/11/2013 CNN
VGG-19 [38] 72.37 [29] 144.00 39.34 † No 04/09/2014 CNN
VGG-16 [38] 71.59 [29] 138.00 31.00 † No 04/09/2014 CNN
Inception V1/GoogleLeNet [48] 69.77 [29] 6.80 3.00 No 17/09/2014 CNN
Inception V2/Incepton BN [59] 74.80 11.29 [31] 4.10 [31] No 11/02/2015 CNN
Inception V3 [60] 78.80 23.83 11.48 No 02/12/2015 CNN
ResNet-50 [61] 75.30 [62] 26.00 [63] 7.60 No 10/12/2015 CNN
ResNet-101 [61] 76.40 [62] 45.00 [63] 15.20 No 10/12/2015 CNN
ResNet-152 [61] 77.00 [62] 60.00 [63] 22.60 No 10/12/2015 CNN
Inception V4 [64] 80.00 42.68 [31] 24.60 [31] No 23/02/2016 CNN
Inception ResNet V2 [64] 80.10 55.84 [31] 26.38 [31] No 23/02/2016 CNN
Densenet-121 [65] 74.98 7.98 [31] 5.74 [31] No 25/08/2016 CNN
Densenet-169 [65] 76.20 14.15 [31] 6.80 [31] No 25/08/2016 CNN
Densenet-201 [65] 77.42 20.01 [31] 8.68 [31] No 25/08/2016 CNN
Xception [66] 79.00 22.86 16.80 [31] No 07/10/2016 CNN
ResNeXt-50 (32 × 4d) [67] 77.80 25.00 8.40 No 16/11/2016 CNN
ResNeXt-101 (64 × 4d) [67] 79.60 83.46 31.20 † No 16/11/2016 CNN
MobileNet [49] 70.60 4.20 1.14 No 17/04/2017 CNN
ShuffleNet x1.0 (g=8) [68] 67.60 2.43 [31] 0.28 No 04/07/2017 CNN
DPN-131 (40 ×4d) [69] 80.07 79.50 32.00 No 06/07/2017 CNN
DPN-98 (40 ×4d) [69] 79.80 61.70 23.40 No 06/07/2017 CNN
DPN-92 (32 ×3d) [69] 79.30 37.80 13.00 No 06/07/2017 CNN
NASNet-A (6 @ 4032) [70] 82.70 88.90 47.60 No 21/07/2017 CNN
NASNet-A (7 @ 1920) [70] 80.80 22.60 9.86 No 21/07/2017 CNN
SENet-154 [71] 81.32 115.09 [31] 41.50 [31] No 05/09/2017 CNN
PNASNet-5 (N = 4, F = 216) [72] 82.90 86.10 50.00 No 02/12/2017 CNN
PNASNet-5 (N = 3, F = 54) [71] 74.20 5.10 1.18 No 02/12/2017 CNN
MobileNetV2 [50] 72.00 3.40 0.60 No 13/01/2018 CNN
MobileNetV2 1.4 [50] 74.70 6.90 1.18 No 13/01/2018 CNN
AmoebaNet-A (N=6, F=190) [73] 82.80 86.70 46.20 No 05/02/2018 CNN
AmoebaNet-A (N=6, F=448) [73] 83.90 469.00 208.00 No 05/02/2018 CNN
ResNeXt-101 32×32d [74] 85.10 466.00 174.00 Instagram 940M 02/05/2018 CNN
ResNeXt-101 32×48d [74] 85.40 829.00 306.00 Instagram 940M 02/05/2018 CNN
ShuffleNetV2 x1.0 [75] 69.40 2.28 [31] 0.30 No 30/07/2018 CNN
ResNeXt-101 32 × 16d [76,77] 84.80 193.00 72.00 Custom 940M 02/05/2019 CNN
ResNeXt-101 32 × 8d [76,77] 84.30 88.00 32.00 Custom 940M 02/05/2019 CNN
ResNeXt-50 32 × 4d [76,77] 82.20 25.00 8.00 Custom 940M 02/05/2019 CNN
EfficientNet-B0 [26] 77.10 5.30 0.78 No 28/05/2019 CNN
EfficientNet-B1 [26] 79.10 7.80 1.40 No 28/05/2019 CNN
EfficientNet-B2 [26] 80.10 9.20 2.00 No 28/05/2019 CNN
EfficientNet-B3 [26] 81.60 12.00 3.60 No 28/05/2019 CNN
EfficientNet-B4 [26] 82.90 19.00 8.40 No 28/05/2019 CNN
EfficientNet-B5 [26] 83.60 30.00 19.80 No 28/05/2019 CNN
EfficientNet-B6 [26] 84.00 43.00 38.00 No 28/05/2019 CNN
EfficientNet-B7 [26] 84.30 66.00 74.00 No 28/05/2019 CNN
NoisyStudent-B0 [51] 78.80 5.30 0.78 JFT 300M 11/11/2019 CNN
NoisyStudent-B1 [51] 81.50 7.80 1.40 JFT 300M 11/11/2019 CNN
NoisyStudent-B2 [51] 82.40 9.20 2.00 JFT 300M 11/11/2019 CNN
NoisyStudent-B3 [51] 84.10 12.00 3.60 JFT 300M 11/11/2019 CNN
NoisyStudent-B4 [51] 85.30 19.00 8.40 JFT 300M 11/11/2019 CNN
NoisyStudent-B5 [51] 86.10 30.00 19.80 JFT 300M 11/11/2019 CNN
NoisyStudent-B6 [51] 86.40 43.00 38.00 JFT 300M 11/11/2019 CNN
NoisyStudent-B7 [51] 86.90 66.00 74.00 JFT 300M 11/11/2019 CNN
NoisyStudent-L2 [51] 88.40 480.00 1040.00 ∗ JFT 300M 11/11/2019 CNN
FixEfficientNet-L2 [78] 88.50 480.00 585.00 ∗ JFT 300M 18/03/2020 CNN
FixEfficientNet-B7 [78] 85.30 66.00 82.00 ∗ No 18/03/2020 CNN
FixEfficientNet-B0 [78] 79.30 5.30 1.60 ∗ No 18/03/2020 CNN
Meta Pseudo Labels L2 [79] 90.20 480.00 1040.00 ∗ JFT 300M 23/03/2020 CNN
ResNeSt-269 [80] 84.50 111.00 155.8 † No 19/04/2020 CNN
ResNeSt-200 [80] 83.90 70.00 71.56 † No 19/04/2020 CNN
ResNeSt-50 [80] 81.13 27.50 10.78 No 19/04/2020 CNN
ViT-L/16 [81] 85.30 304.00 [27] 384.00 [27] ImageNet 21k 22/10/2020 Transformer
ViT-L/16 [81] 87.12 304.00 [27] 384.00 [27] JFT 300M 22/10/2020 Transformer
ViT-B/16 [81] 84.60 [27] 87.00 [27] 112.00 [27] ImageNet 21k 22/10/2020 Transformer
DeiT-small [82,83] 79.90 22.00 9.20 [84] No 23/12/2020 Transformer
DeiT-small-Distilled [82,83] 81.20 22.00 9.40 [84] No 23/12/2020 Transformer
DeiT-base [82,83] 81.80 86.00 36.00 [27] No 23/12/2020 Transformer
DeiT-base-384 [82,83] 82.90 86.00 112.00 [27] No 23/12/2020 Transformer
BotNet-T7 [85] 84.70 75.00 92.00 No 27/01/2021 Hybrid

(continued on next page)
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Table B.2 (continued).
Model Top-1 Acc. Params (M) GFLOPs Extra data Date Architecture

BotNet-T5 [85] 83.50 75.10 38.60 No 27/01/2021 Hybrid
T2T-ViTt-14 [84] 81.70 21.50 12.20 No 28/01/2021 Transformer
T2T-ViTt-19 [84] 82.20 39.20 19.60 No 28/01/2021 Transformer
T2T-ViTt-24 [84] 82.60 64.10 30.00 No 28/01/2021 Transformer
NFNet-F4+ [86] 89.20 527.00 734.00 JFT 300M 11/02/2021 CNN
NFNet-F0 [86] 83.60 71.50 24.76 No 11/02/2021 CNN
NFNet-F6+SAM [86] 86.50 438.40 754.56 No 11/02/2021 CNN
Swin-B 224 [87] 85.20 88.00 30.80 ImageNet 21k 25/03/2021 Transformer
Swin-B 384 [87] 86.00 88.00 94.00 ImageNet 21k 25/03/2021 Transformer
Swin-L [87] 86.40 197.00 207.80 ImageNet 21k 25/03/2021 Transformer
CrossViT-15 [88] 81.50 27.40 11.60 No 27/03/2021 Transformer
CrossViT-18 [88] 82.50 43.30 18.06 No 27/03/2021 Transformer
CaiT-S36 [89] 83.30 68.00 27.80 No 31/03/2021 Transformer
CaiT-S36 dist [89] 84.00 68.00 27.80 No 31/03/2021 Transformer
CaiT-S24-384 dist [89] 85.10 46.90 64.40 No 31/03/2021 Transformer
CaiT-M48-448 dist [89] 86.50 356.00 659.20 No 31/03/2021 Transformer
EfficientNetV2-S [27] 83.90 24.00 17.60 No 01/04/2021 CNN
EfficientNetV2-M [27] 85.10 55.00 48.00 No 01/04/2021 CNN
EfficientNetV2-L [27] 85.70 121.00 106.00 No 01/04/2021 CNN
EfficientNetV2-S [27] 85.00 24.00 17.60 ImageNet 21k 01/04/2021 CNN
EfficientNetV2-M [27] 86.10 55.00 48.00 ImageNet 21k 01/04/2021 CNN
EfficientNetV2-L [27] 86.80 121.00 106.00 ImageNet 21k 01/04/2021 CNN
ViT-G/14 [39] 90.45 1843.00 5270.00 ∗ JFT 3B 08/06/2021 Transformer
with 1 crop. Furthermore, the use of several crops or other kinds of
repetitions is problematic, as the papers usually report the number of
FLOPs for one forward pass10 (if 10 forward passes are needed to make
a single prediction, then the FLOPs should be multiplied by 10). For
these reasons we only report 1-crop accuracy for all models, to make a
meaningful comparison.

Note that the FLOPs also depend of the input image resolution: the
higher the image resolution, the more operations (FLOPs) are required
to process it. Some researchers report results with different image
resolutions [38,39], and sometimes it is not clear which resolution the
results are reported for. In these cases, we need to investigate until we
find that information. In sum, all the collected FLOPs in this work are
for a forward pass with the resolution used for inference. The selected
models and their values are shown in Table B.2.

Appendix C. Methodology details for NLP models

As previously stated, for NLP models we just included all the models
since 2017 for which we find inference compute estimates. Many
papers do not explain how they count FLOPs (as single mathematical
operations or single hardware instructions), but we ultimately found
out this information explained in [40]. We compare the presented
numbers with estimates in other publications (we compare the numbers
for repeated and similar models) and we see that these numbers are
very similar. We assume that the other authors follow this as the
standard procedure to count FLOPs. In NLP, they count FLOPs as single
mathematical operations and not as a single hardware instructions (like
in CV). The important thing is that we use the same approach in all the
NLP models, as the comparison and analysis will be intra-domain and
never inter-domain.

Appendix D. Datasets

D.1. ImageNet

ImageNet is the most used dataset in the last decade for training
and evaluating CV models. The full dataset consists of 14,197,122

10 A ‘‘forward pass’’ refers to calculation process, values of the output layers
rom the inputs data. It is traversing through all neurons from first to last
ayer. A loss function is calculated from the output values.
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images distributed in 21,841 classes. Researchers refer to this dataset
as ImageNet21k or ImageNet22k. However, researchers commonly use
a subset of the full ImageNet dataset. This subset consists of 1.2 million
images for training and 50,000 images for validation distributed in
1,000 classes. This subset was released for ImageNet Large Scale Visual
Recognition Challenge 2012 (ILSVRC2012) and is usually referred as
ImageNet1k or just as ImageNet. In 2012 the AlexNet model [37]
won the ILSVRC 2012 Image Classification with an impressive result,
outperforming the other models by large margin. AlexNet was the first
DNN to win this competition. Since then many other DNNs have been
created for image classification.

D.2. GLUE

The General Language Understanding Evaluation (GLUE) bench-
mark [20] is a collection of resources for evaluating and analysing
the performance of models across a diverse range of existing NLP
tasks with the goal of driving ‘‘research in the development of general
and robust natural language understanding systems’’. The collection in
GLUE consists of nine ‘‘difficult and diverse’’ tasks, mostly adopted from
existing datasets. The tasks involve sentiment analysis, acceptability,
paraphrasing, natural language inference and coreference resolution.
GLUE is model-agnostic, but it incentivises sharing knowledge across
tasks (using parameter sharing or other transfer learning techniques)
due to the limited training data for certain tasks.

Appendix E. Hardware data compilation: floating point precision
details

At the end of 2017 Nvidia launched GPUs with new features for AI
acceleration (improved lower precision performance and tensor cores,
which can improve low-precision calculations) [90]. For instance, many
new GPUs have accelerated FP16 operations through tensor cores (DNN
can operate at low precision in many calculations without problems)
and combine them with FP32 precision operations when is necessary. In
this way we benefit from higher performance, maintaining calculation’s
precision. Nvidia specifies different FLOPS for FP16 and for tensor
cores. Nowadays, frameworks as PyTorch and TensorFlow allow to
train and infer with a DNN with mixed precision, i.e., taking advantage
of the tensor cores, easily without practically any significant reduction
in accuracy. Because of all this, we consider necessary to include the
performance achieved with tensor cores in our analysis.

Theoretical FLOPS using tensor cores are very high, but this increase
in FLOPS does not correspond with the gain seen in practice for deep
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Table E.3
Throughput measures for V100, A100 and T4 GPUs on different Models. The ‘speed-up’ column is the speed-up achieved with respect to FP32 throughput using different precision
formats. A100 speed-up is calculated with respect to V100 FP32 throughput.
Source: The data is obtained from NVIDIA NGC catalog (https://ngc.nvidia.com/catalog/resources).

Task Model Framework Batch size GPU Precision Throughput Speed-up

CV

efficientnet-b0 PyTorch 256 V100 16GB FP32 2968 1.00
efficientnet-b0 PyTorch 256 V100 16GB Mixed 6176 2.08
efficientnet-b0 PyTorch 256 A100 80GB TF32 5154 1.74
efficientnet-b0 PyTorch 256 A100 80GB Mixed 10239 3.45
efficientnet-b4 PyTorch 128 V100 16GB FP32 376 1.00
efficientnet-b4 PyTorch 128 V100 16GB Mixed 843 2.24
efficientnet-b4 PyTorch 128 A100 80GB TF32 700 1.86
efficientnet-b4 PyTorch 128 A100 80GB Mixed 1418 3.77
ResNeXt101-32 × 4d PyTorch 256 V100 16GB FP32 533 1.00
ResNeXt101-32 × 4d PyTorch 256 V100 16GB Mixed 1746 3.28
ResNeXt101-32 × 4d PyTorch 256 T4 16GB FP32 161 1.00
ResNeXt101-32 × 4d PyTorch 256 T4 16GB Mixed 598 3.71
ResNet v1.5 PyTorch 256 V100 16GB FP32 1261 1.00
ResNet v1.5 PyTorch 256 V100 16GB Mixed 3382 2.68
ResNet v1.5 PyTorch 256 T4 16GB FP32 415 1.00
ResNet v1.5 PyTorch 256 T4 16GB Mixed 1198 2.89
ResNet v1.5 TensorFlow 256 V100 16GB FP32 1348.52 1.00
ResNet v1.5 TensorFlow 256 V100 16GB Mixed 2742.14 2.03
ResNet v1.5 TensorFlow 256 A100 40GB TF32 1911.96 1.42
ResNet v1.5 TensorFlow 256 A100 40GB Mixed 3229.32 2.39
ResNet v1.5 TensorFlow 256 T4 16GB FP32 425.72 1.00
ResNet v1.5 TensorFlow 256 T4 16GB Mixed 993.39 2.33
SSD v1.1 PyTorch 32 V100 16GB FP32 271.73 1.00
SSD v1.1 PyTorch 32 V100 16GB Mixed 438.85 1.62
SSD v1.1 PyTorch 32 A100 40GB TF32 548.75 2.02
SSD v1.1 PyTorch 32 A100 40GB Mixed 910.17 3.35
UNet Industrial TensorFlow 16 V100 16GB FP32 250.23 1.00
UNet Industrial TensorFlow 16 V100 16GB Mixed 469.27 1.88
UNet Industrial TensorFlow 16 A100 40GB TF32 424.57 1.70
UNet Industrial TensorFlow 16 A100 40GB Mixed 823.46 3.29
SE-ResNeXt101-32 × 4d TensorFlow 128 V100 16GB FP32 460.82 1.00
SE-ResNeXt101-32 × 4d TensorFlow 128 V100 16GB Mixed 1102 2.39
SE-ResNeXt101-32 × 4d TensorFlow 128 A100 40GB TF32 802.64 1.74
SE-ResNeXt101-32 × 4d TensorFlow 128 A100 40GB Mixed 1728.27 3.75
SE-ResNeXt101-32 × 4d TensorFlow 128 T4 16GB FP32 105.16 1.00
SE-ResNeXt101-32 × 4d TensorFlow 128 T4 16GB Mixed 195.17 1.86

NLP

BERT-LARGE TensorFlow 8 V100 16GB FP32 44.03 1.00
BERT-LARGE TensorFlow 8 V100 16GB Mixed 168.34 3.82
BERT-LARGE TensorFlow 8 A100 80GB TF32 241.68 5.49
BERT-LARGE TensorFlow 8 A100 80GB Mixed 342.22 7.77
BERT-LARGE TensorFlow 8 T4 16GB FP32 16.04 1.00
BERT-LARGE TensorFlow 8 T4 16GB Mixed 62.99 3.93
BERT-Base TensorFlow 8 V100 16GB FP32 146.15 1.00
BERT-Base TensorFlow 8 V100 16GB Mixed 504.24 3.45
BERT-Base TensorFlow 8 A100 80GB TF32 645.88 4.42
BERT-Base TensorFlow 8 A100 80GB Mixed 846.81 5.79
BERT-Base TensorFlow 8 T4 16GB FP32 51.33 1.00
BERT-Base TensorFlow 8 T4 16GB Mixed 192.61 3.75
Transformer-XL TensorFlow 32 V100 16GB FP32 8555.6 1.00
Transformer-XL TensorFlow 32 V100 16GB Mixed 11215.5 1.31
Transformer-XL TensorFlow 32 A100 40GB TF32 19434.5 2.27
Transformer-XL TensorFlow 32 A100 40GB Mixed 21854.7 2.55
Transformer-XL TensorFlow 32 T4 16GB FP32 3439.1 1.00
Transformer-XL TensorFlow 32 T4 16GB Mixed 6174.3 1.80
Transformer PyTorch 10240 V100 16GB FP32 3782 1.00
Transformer PyTorch 10240 V100 16GB Mixed 7464 1.97
Transformer PyTorch 10240 A100 40GB TF32 7755 2.05
Transformer PyTorch 10240 A100 40GB Mixed 9653 2.55
learning applications (maybe gaming is different). This is because it
is not possible to use tensor cores for all operations. To solve the
discrepancy between tensor core FLOPS and the real utilisation of these
FLOPS, we calculate the speed up achieved for DNN when inference is
done with mixed precision. We have looked for experimental results to
adjust the tensor FP16/FP32 FLOPS to real performance improvement,
the inference experimental results that we use are available in Nvidia
NGC Catalog.11 The collected data can be found in Table E.3.

11 https://ngc.nvidia.com/catalog/resources
10
We do not include estimated mixed precision performance for all
GPUs that support it because we have not found sufficient benchmarks
for all GPUs to carry out an estimation. Also, we do not consider
INT8 precision format because in many cases using this format leads
to performance downgrade, and therefore the accuracy metric of the
models should be adapted for a fair analysis. We perform a different
estimation for CV and for NLP networks because these two kinds of
networks operate in different ways and take different advantage of
mixed precision. During training the speed-up from mixed precision in
comparison to FP32 is usually of 2x for image models, and up to 4x for
language models [91]. This is corroborated in information about some
benchmarks on Nvidia blogs too [92].

https://ngc.nvidia.com/catalog/resources
https://ngc.nvidia.com/catalog/resources


Sustainable Computing: Informatics and Systems 38 (2023) 100857R. Desislavov et al.

A

h
f
p
m
e
V
s
a
T

A

w
a
f
W
I
p
t

A

H

r
p
i

F

f

f

H

t
t
t
t
f
a
(
G
s
r
r
3
1

A

o
w
t
a

Table F.4
Mixed precision speed ups from experimental results for inference.

GPU Precision speed up CV models NLP models

V100 Mixed speed up ratio to V100 FP32 2.27 2.64

A100 TF32 speed up ratio to V100 FP32 1.75 3.56
Mixed speed up ratio to V100 FP32 3.33 4.67

T4 Mixed speed up ratio to T4 FP32 2.7 3.16

Fig. G.15. GFLOPs per token analysis for NLP models.

ppendix F. Hardware mixed precision speed-ups

As we have discussed, theoretical FLOPS for tensor cores are very
igh, as we can see in Fig. 7 in the main text. However, the performance
or inference using tensor cores is not so high. For this reason we
ropose an estimate for the Nvidia GPUS: V100, A100 and T4 for CV
odels and for NLP models. For these calculations we collected infer-

nce data from NVIDIA NGC. The estimates for A100 are in relation to
100 because there is no data about FP32 for A100 (because FP32 is
ubstituted by TF32,12 which is a precision format in between of FP32
nd FP16), so we estimated the speed-up to V100 FP32 FLOPS (see
able F.4).

ppendix G. Performance and compute (NLP)

We represent the improvement on the GLUE score over the years as
ell as models inference GFLOPs (bubbles size) in Fig. G.15. GFLOPs
re for single input of length 128, which is a reasonable sequence length
or many use cases, being able to fit text messages or short emails.

e can observe a very similar evolution to the evolution observed in
mageNet: SOTA models require a large number of FLOPs, but in a short
eriod of time other models appear, which require much fewer FLOPs
o reach the same score.

ppendix H. FLOPS estimation for CV models

.1. EfficientNet-based models FLOPs estimation

There are many EfficientNet variations, mostly using different input
esolution or scaling. For these modifications, FLOPs are not always re-
orted. In this work, we estimate them following the relation presented
n Eq. (H.1)

LOPs ∝ 𝑑 +𝑤2 + 𝑟2 (H.1)

or the following models:

• NoisyStudent-L2: Having the scale factors of the networks (Ta-
ble H.5) we estimate NoisyStudent-L2 FLOPs as shown in Eq. (H.2)

12 https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-
ormat/
11

w

Table H.5
EfficientNet models architecture specifications obtained from [51].

Model w d Test Resolution

EfficientNet-B7 2 3.1 600 × 600
EfficientNet-L2 4.3 5.3 800 × 800

Table H.6
ViT-G/14 GFLOPs from.

Model GFLOPS

224 × 224 384 × 384

ViT-G/14 965.3 2859.9

NoisyStudent-L2 FLOPs =
= EfficientNet-B7 FLOPs ⋅ 𝑑𝜎 ⋅𝑤2

𝜎 ⋅ 𝑟2𝜎
(H.2)

where 𝑑𝜎 , 𝑤𝜎 and 𝑟𝜎 are the scaled factors for, respectively,
the network depth, width and input resolutions. By using the
values from Table H.5, 𝑑𝜎 = 5.3∕3.1 = 1.7097, 𝑤𝜎 = 4.3∕2 =
2.15 and 𝑟𝜎 = 800∕600 = 1.3334. Knowing that the GFLOPS
for EfficientNet-B7 are 74, substituting in (H.2), we obtain the
estimate of 74 GFLOPs ⋅ 1.7097 ⋅ 2.152 ⋅ 1.33342 ≈ 1040 GFLOPS for
NoisyStudent-L2.

• Meta Pseudo Labels L2: We use the estimate of NoisyStudent-L2
FLOPs for Meta Pseudo Labels L2, because it is the same model
and only changes the training strategy.

• FixEfficientNet-L2: In FixEfficientNet-L2 they use a resolution
of 600 × 600 for testing, so the estimation is the same as for
NoisyStudent-L2 but without taking into account the resolution
scaling (𝑟𝜎). Then, the estimated GFLOPS are 74 GFLOPs ⋅ 1.7097 ⋅
2.152 ≈ 585 GFLOPS.

• FixEfficientNet-B7: This model is the same as EfficientNet-B7 but
using a slightly different resolution (632 × 632). Therefore, 𝑟𝜎 =
632∕600 = 1.0534 and, thus we estimate 74 GFLOPs ⋅ 1.05342 ≈ 82
GFLOPs.

• FixEfficientNet-B0: This model is the same as EfficientNet-B0 but
using a higher resolution (320 × 320). Therefore, 𝑟𝜎 = 320∕224 =
1.4286 and, thus we estimate 0.78 GFLOPs ⋅ 1.42862 ≈ 1.6 GFLOPs.

.2. Vit-g/14 FLOPs estimation

In the paper [39] introducing the model, although authors provide
he GFLOPs for 224 × 224 and 384 × 384 resolutions (see Table H.6),
hey also use 518 × 518 resolution for ViT-G finetuning, so we assume
hey use the same resolution for testing too. ViT-G/14 is a vision
ransformer model, so the scale relation presented in (H.1) do not apply
or this kind of models. However, knowing the GFLOPs for 224 × 224
nd 384 × 384, we may calculate how GFLOPs scale with resolution
given that 𝑟2𝜎 = (384∕224)2 = 2.9388). In this regard, we calculate the
FLOPs ratio as 2859.9∕965.3 = 2.9627 and we observe that GFLOPs

cale quadratically with respect to resolution. Note, in this paper they
eport ‘‘real’’ FLOPs and not multiply-add operations. Therefore, we
ecalculate 𝑟𝜎 = 518∕384 = 1.3490 and multiply the GFLOPs for
84 × 384 resolution by this scale factor estimating 2859.9 GFLOPs ⋅
.34902 ≈ 5270 GFLOPs for the ViT-G/14 model.

ppendix I. NLP data

Many times researchers report GLUE score without the punctuation
n the WNLI task, because this task is problematic. We have marked
hich scores are reported without this task. Since there are 9 tasks in

otal, we consider that excluding one of them is not problematic for our
nalysis.

We did not find inference GFLOPs for the model Bert-Large, but

e have ELECTRA-Large GFLOPs and this is actually the same model

https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
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Table I.7
NLP models data set. If there is a citation next to the GFLOPs value means that GFLOPs and Input Tokens values are extracted
from that source, otherwise the values are from the paper (cited in the ‘Model’ column). The symbol ♠ means that GLUE
score was calculated without punctuation on the WNLI task; the symbol ∗ means that we estimated the value and ♣ means
that GLUE score is for GLUE dev set instead of test set.
Model Input tokens GFLOPs Params (M) Date GLUE test set

Transformer [45] 512 54 [7] 65 12/06/2017 –
ELMo [93] 128 26 [40] 96 15/02/2018 71.2 [40] ♣

GPT-1 [94] 128 30 [40] 117 11/06/2018 75.1 [95] ♠

BERT Large [95] 128 79 335 ∗ 11/10/2018 82.1 ♠

BERT-Small [95] 128 3.7 [40] 14 11/10/2018 –
BERT-Base [95] 128 29 [40] 110 11/10/2018 79.6 ♠

GPT-2 [96] 1024 3400 [7] 1500 14/02/2019 –
Megatron [97] 1024 18000 [7] 8300 17/09/2019 –
ALBERT-xxl [98] 512 2500 [7] 235 26/09/2019 –
ALBERT-base [98] 128 22.5 [53] 12 26/09/2019 –
Theseus 6/768 [99] 128 11.3 [53] 66 07/02/2020 77.1 [53]
Microsoft T-NLG [100] 1024 36000 [7] 17000 13/02/2020 –
ELECTRA Large [40] 128 79 [7] 335 23/03/2020 88.6 ♠

ELECTRA-Small [40] 128 3.7 14 23/03/2020 78 ♠

ELECTRA-Base [40] 128 29 110 23/03/2020 83.5 ♠

MobileBERT [52] 128 5.36 25.3 06/04/2020 78.5 ♠

MobileBERT tiny [52] 128 3.1 15.1 06/04/2020 75.8 ♠

GPT-3 [101] 2048 740000 [7] 175000 28/05/2020 –
SqueezeBERT [53] 128 7.42 51.1 19/06/2020 78.1
but following a different training strategy. In this sense, we use take
ELECTRA-Large GFLOPs as BERT-Large GFLOPs. For ELMo we take
GLUE ‘‘dev-set’’ score because we do not found the score on the test
set (we assume this score should be close to the test set). Values shown
in Table I.7.

Appendix J. GPU consumption data

Tables J.8 and J.9 show further technical details regarding, re-
spectively, the GPU’s theoretical characteristics (compiled from the
manufacturer’s specification sheet and reference manuals), and their
12
throughput and power consumption ‘‘adapted’’, if necessary, to the
specifics of CV or NLP tasks.

Appendix K. Energy consumption estimates

For an accurate analysis of energy consumption in inference, it
would be necessary to measure the energy consumption of each net-
work with the original hardware and software (e.g., using energy
meters). However, this is not usually the case and, unfortunately, the
energy required by (an) inference is rarely reported. In order to validate
our model, We have scrutinised the literature extensively to try to find
Table J.8
Nvidia GPUs theoretical data recopilation.

GPU Precision TFLOPS Watts Launch date Type GFLOPS/Watt

GeForce GTX 580 FP32 1.58 244 09/11/2010 Desktop 6.48
GeForce GTX 590 FP32 2.49 365 24/03/2011 Desktop 6.82
GeForce GTX 680 FP32 3.09 195 22/03/2012 Desktop 15.85
GeForce GTX 690 FP32 5.62 300 29/04/2012 Desktop 18.73
GeForce GTX 780 FP32 4.16 250 23/04/2013 Desktop 16.62
GeForce GTX 780 TI FP32 5.35 250 07/11/2013 Desktop 21.38
GeForce GTX Titan Black FP32 5.65 250 18/02/2014 Desktop 22.58
GeForce GTX Titan Z FP32 8.12 375 28/05/2014 Desktop 21.66
GeForce GTX 980 FP32 4.98 165 18/09/2014 Desktop 30.19
GeForce GTX 980 Ti FP32 6.06 250 02/06/2015 Desktop 24.24
GeForce GTX TITAN X FP32 6.69 250 17/03/2015 Desktop 26.76
GeForce GTX 1080 FP32 8.87 180 26/05/2016 Desktop 49.29
GeForce GTX 1080 Ti FP32 11.34 250 10/03/2017 Desktop 45.36
TITAN X Pascal FP32 10.97 250 02/08/2016 Desktop 43.88
TITAN XP FP32 12.15 250 06/04/2017 Desktop 48.60
GeForce RTX 2080 FP32 10.07 215 20/09/2018 Desktop 46.84
GeForce RTX 2080 Ti FP32 13.45 250 20/09/2018 Desktop 53.80
Nvidia Titan RTX FP32 16.31 280 18/12/2018 Desktop 58.26
GeForce RTX 3080 FP32 29.80 320 01/09/2020 Desktop 93.13
GeForce RTX 3090 FP32 35.60 350 01/09/2020 Desktop 101.71
GeForce RTX 2080 FP16 20.14 215 20/09/2018 Desktop 93.67
GeForce RTX 2080 Ti FP16 26.90 250 20/09/2018 Desktop 107.60
Nvidia Titan RTX FP16 32.62 280 18/12/2018 Desktop 116.50
GeForce RTX 3080 FP16 29.80 320 01/09/2020 Desktop 93.13
GeForce RTX 3090 FP16 35.60 350 01/09/2020 Desktop 101.71
GeForce RTX 2080 FP16/FP32 Tensor 40.30 215 20/09/2018 Desktop 187.44
GeForce RTX 2080 Ti FP16/FP32 Tensor 56.90 250 20/09/2018 Desktop 227.60
Nvidia Titan RTX FP16/FP32 Tensor 130.50 280 18/12/2018 Desktop 466.07
GeForce RTX 3080 FP16/FP32 Tensor 59.50 320 01/09/2020 Desktop 185.94
GeForce RTX 3090 FP16/FP32 Tensor 71.00 350 01/09/2020 Desktop 202.86
Tesla K10 FP32 4.58 225 01/05/2012 Server 20.36
Tesla K20x FP32 3.94 235 12/11/2012 Server 16.74
Tesla K40 FP32 5.04 235 08/10/2013 Server 21.45
Tesla K80 FP32 8.22 300 17/10/2014 Server 27.40

(continued on next page)



Sustainable Computing: Informatics and Systems 38 (2023) 100857R. Desislavov et al.
Table J.8 (continued).
GPU Precision TFLOPS Watts Launch date Type GFLOPS/Watt

Tesla M40 FP32 6.84 250 10/10/2015 Server 27.36
Tesla M60 FP32 9.65 300 30/08/2015 Server 32.17
Tesla P100 FP16 21.20 300 20/05/2016 Server 70.67
Tesla V100 FP16 31.40 300 27/03/2018 Server 104.67
A100 FP16 78.00 400 14/04/2020 Server 195.00
Tesla P100 FP32 10.60 300 20/05/2016 Server 35.33
Tesla V100 FP32 15.70 300 27/03/2018 Server 52.33
A100 FP32 19.50 400 14/04/2020 Server 48.75
A30 FP32 10.30 165 12/04/2021 Server 62.42
A40 FP32 37.4 300 05/10/2020 Server 124.00
Tesla V100 FP16/FP32 Tensor 125.00 300 27/03/2018 Server 416.67
A100 FP16/FP32 Tensor 312.00 400 14/04/2020 Server 780.00
A30 FP16/FP32 Tensor 165.00 165 12/04/2021 Server 1000.00
A40 FP16/FP32 Tensor 149.70 300 05/10/2020 Server 499.00
T4 FP32 8.10 70 13/09/2018 Server 115.71
T4 FP16/FP32 Tensor 65.00 70 13/09/2018 Server 928.57
Table J.9
GPUs throughput and power consumption data compilation.
Adapted GPU Precision TFLOPS Watts Launch date Type GFLOPS/Watt

No

GeForce GTX 580 FP32 1.58 244 09/11/2010 Desktop 6.48
GeForce GTX 590 FP32 2.49 365 24/03/2011 Desktop 6.82
GeForce GTX 680 FP32 3.09 195 22/03/2012 Desktop 15.85
GeForce GTX 690 FP32 5.62 300 29/04/2012 Desktop 18.73
Tesla K10 FP32 4.58 225 01/05/2012 Server 20.36
Tesla K20x FP32 3.94 235 12/11/2012 Server 16.77
GeForce GTX 780 FP32 4.16 250 23/04/2013 Desktop 16.64
Tesla K40 FP32 5.04 235 08/10/2013 Server 21.45
GeForce GTX 780 TI FP32 5.35 250 07/11/2013 Desktop 21.40
GeForce GTX Titan Black FP32 5.65 250 18/02/2014 Desktop 22.60
GeForce GTX Titan Z FP32 8.12 375 28/05/2014 Desktop 21.65
GeForce GTX 980 FP32 4.98 165 18/09/2014 Desktop 30.18
Tesla K80 FP32 8.22 300 17/10/2014 Server 27.40
GeForce GTX TITAN X FP32 6.69 250 17/03/2015 Desktop 26.76
GeForce GTX 980 Ti FP32 6.06 250 02/06/2015 Desktop 24.24
Tesla M60 FP32 9.65 300 30/08/2015 Server 32.17
Tesla M40 FP32 6.84 250 10/10/2015 Server 27.36
GeForce GTX 1080 FP32 8.87 180 26/05/2016 Desktop 49.28
TITAN X Pascal FP32 10.97 250 02/08/2016 Desktop 43.88
GeForce GTX 1080 Ti FP32 11.34 250 10/03/2017 Desktop 45.36
TITAN XP FP32 12.15 250 06/04/2017 Desktop 48.60
Tesla V100 FP32 15.70 300 27/03/2018 Server 52.33
Tesla T4 FP32 8.10 70 13/09/2018 Server 115.71
GeForce RTX 2080 FP32 10.07 215 20/09/2018 Desktop 46.84
GeForce RTX 2080 Ti FP32 13.45 250 20/09/2018 Desktop 53.80
Nvidia Titan RTX FP32 16.31 280 18/12/2018 Desktop 58.25
GeForce RTX 3080 FP32 29.80 320 01/09/2020 Desktop 93.13
GeForce RTX 3090 FP32 35.60 350 01/09/2020 Desktop 101.71

For CNN

Tesla V100 Mixed 35.71 300 27/03/2018 Server 119.03
Tesla T4 Mixed 21.85 70 13/09/2018 Server 312.15
A100 TF32 27.41 400 14/04/2020 Server 68.52
A100 Mixed 52.35 400 14/04/2020 Server 130.88

For NLP

Tesla V100 Mixed 41.44 300 27/03/2018 Server 138.13
Tesla T4 Mixed 25.58 70 13/09/2018 Server 365.46
A100 TF32 55.85 400 14/04/2020 Server 139.64
A100 Mixed 73.29 400 14/04/2020 Server 183.23
Table K.10
Energy consumption of DNN inference. Reported measured values compared with our
estimates.

Architecture Joules
P100 V100 RTX 2080 Ti
NVML Estimate NVML Estimate NVML Estimate

AlexNet 0.033 0.035 0.023 0.022 0.037 0.019
GoogleNet 0.077 0.074 0.055 0.046 0.090 0.040
ResNet50 0.179 0.189 0.132 0.116 0.190 0.102
Vgg16 0.542 0.769 0.373 0.473 0.555 0.417

papers with experimental data of energy consumption. Unfortunately,
we have found very few papers where energy consumption (for infer-
ence) is reported. But with these, we show that our estimates of energy
consumption are comparable to direct measurements in the literature
(in those cases where such comparisons can be made).

Before that comparison, let us review some papers that do direct
measurement but that are not comparable to our estimations. In [9], Li
13
et al. report energy values for three particular architectures (AlexNet,
OverFeat, VGG and GoogleNet) on two GPUs (Nvidia K20 m and
TitanX), but they only analyse the energy consumption for training the
models. They only provide data for single forward/backward propaga-
tion iterations. In [24], Henderson et al. provide kWh measurements
for a good number of networks (such as densenet, vgg, squeezenet,
etc.) evaluated in ImageNet, as well as a handful of transformers-based
networks evaluated in a translation benchmark. However, they run the
inference process with batches of one image. Using a batch size of this
size does not take advantage of the parallelisation capabilities of the
GPU, and usually leads to worse energy efficiency compared to using
larger batch sizes [9] (in our estimations we assume maximum GPU
usage). In [102], Cao et al. estimate the inference consumption for
multiple transformers-based networks for NLP tasks. They also measure
real energy consumption data with an emonPi13 device to prove that

13 https://guide.openenergymonitor.org/technical/emonpi/

https://guide.openenergymonitor.org/technical/emonpi/
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Table K.11
Energy consumption of DNN inference for ResNet-50 with different GPUs. Reported measured values compared with our
estimates.
GPU Imgs/s FP32 Imgs/s FP16 Watts J/img FP32 J/img FP16 J/img estimated
Nvidia Titan RTX 1617 5672 288 0.1781 0.0507 0.1026
Nvidia RTX 2080 Ti 1515 5318 266 0.1755 0.0500 0.1021
Nvidia Tesla T4 532 2195 74 0.1390 0.0337 0.0958
their estimates are quite good. They use two GPUs (gtx 1080 Ti and
gtx 1070) but, in this case, they measure the energy consumed by the
whole system, which includes CPU, RAM, etc., and we focus on the
energy consumed by the GPU.

We now cover a couple of sources which do provide energy data
comparable to our estimations. Tang et al. [103] measure the im-
pact on the energy consumption for inference for three particular
NVIDIA GPUs (P100, V100 and RTX 2080 Ti) and four DNNs (alexNet,
resnet50, vgg16, and googleNet) when addressing different convolution
algorithms (image processing). In this case, power consumption (for
inference) is measured by the NVIDIA management library (NVML)
API [104], showing the energy consumption as the average energy
required by inferring an image depending on the architecture and core
frequency of the GPU used.

We compare our estimates with the values measured using the
higher core frequency (since we suppose peak TFLOPS and maximum
energy consumption for GPUs in our analysis). Our estimates are cal-
culated following the same procedure used to estimate the energy in
the main analysis; specifically, we take the number of FLOPs for each
network and divide it by the hardware energy efficiency for the launch
date of the GPU. In this way we estimate how much energy is required
(as per today) to run an inference.

As can be seen in Table K.10, our methodology provides a co-
herent estimation compared to the actual measurements of energy
consumption. Measured values for P100 and V100 are very close to
our estimates; in many cases are basically the same. With RTX 2080 Ti
the estimates differ slightly from the measured values. This difference
is because RTX 2080 Ti is a desktop GPU specialised in gaming.
Consequently, it is not as efficient as server GPUs, which are optimised
for AI. Since we have included various server AI GPUs, the measured
values with this gaming GPU are higher than the estimated ones.

Additionally, we have found an online review [105] in which
different GPUs are reviewed and tested for inference for the ResNet-
50 architecture using ImageNet as a benchmark. In this case, the GPUs
power consumption is measured and the results can be compared to
ours. In this regard, we have calculated the energy (Joules) dividing
the GPU power by the images per second for the larger batch size. We
have compared the data of the benchmark with our estimates, see K.11.
It can be seen that our estimated values (last column in Table K.11)
are between the measured values for FP32 and FP16. This is in perfect
agreement with what is expected since, in our case, we have used FP32
and FP16 performance data to create our estimation model.

Appendix L. Edge devices

In this section we want to stress the difficulty of including ‘edge’
AI devices (e.g., low-power accelerators) in our analysis due to the
reason that they cannot be directly compared with GPUs. This is mainly
because these devices usually work with different arithmetic (INT8,
Fixed-point arithmetic, etc.) and the provided performance metric is
not comparable to the GPUs performance metrics.

The above issues have already been confronted in the literature
(e.g., [106]), and different sort of estimations had to be done to
compare the different devices to each other. Moreover, some of these
edge accelerators can only run a certain type of DNNs, so comparing
an optimised device for a certain DNN with a GPU capable of working
with all kinds of DNNs would not be fair. Furthermore, AI accelerators
in the IoT field usually work with quantised models, i.e., models
14
Table L.12
Edge AI devices theoretical efficiency in GOPs/W. CGRA refers to Coarse-Grained
Reconfigurable Architecture accelerators.

Device Year Type GOPs/W
Kneron 2018 Edge AI Accelerator 434
Eyeriss (MIT) 2016 Edge AI Accelerator 302
1.42TOPS/W 2016 Edge AI Accelerator 1422
Myriad x (Intel) 2017 Edge AI Accelerator 1500
NVIDIA Tegra X1 2019 Edge AI Accelerator 142
Rockchip RK1808 2018 Edge AI Accelerator 91
Texas InstrumentsAM5729 2019 Edge AI Accelerator 18
GTI Lightspeeur SPR2801S 2019 Edge AI Accelerator 15750
Optimising FPGA-based 2015 Edge AI Accelerator 3
Google Edge TPU 2018 Edge AI Accelerator 1000
ADRES 2017 CGRA 228
VERSAT 2016 CGRA 160
FPCA 2014 CGRA 4333
SURE BasedREDEFINE 2016 CGRA 165
TRANSPIRE 2020 CGRA 239
DT-CGRA 2016 CGRA 53
Heterogeneous PULP 2018 CGRA 386
SOFTBRAIN 2017 CGRA 474
Lopes et al. 2017 2017 CGRA 774
Eyeriss v2 2016 CGRA 960
Nvidia T4 2018 GPU 929
Nvidia A100 2020 GPU 780
Nvidia A30 2021 GPU 1000

performing some or all of the operations with reduced precision rather
than FP32. According to our investigations and further calculations,
quantised models tend to have a lower accuracy because of the lower
arithmetic precision used and the estimation of energy consumption
based on FLOPS for these models is not reliable. This lack of reliability
is due to the fact that the theoretical yield increase in TOPS for INT8
(e.g., 8x for Nvidia Titan RTX [107], 16x for Nvidia T4 [108], or 30x for
Nvidia A100 [109]) does not usually correspond to the actual one, and
we find many examples in the literature. For instance, when running
PyTorch, INT8 computations are typically 2 to 4 times faster on average
compared to FP32 compute [110]. For TensorFlow, the speedup is more
than 3x [111]. Also, in [112], Kim et al. directly deployed quantised
models and measured the end-to-end inference latency, showing that
models such as I-BERT can achieve up to 4.00x speedup when using
INT8 on a Tesla T4 GPU as compared to floating point baseline (which
is far from the 16x that can be observed in the GPU specifications).
It is not always possible to fully exploit the INT8 hardware optimisa-
tions. In your analysis we have included hardware optimisations in the
estimation model but without considering experimental data.

We can, however, provide some insights on the performance of
this sort of accelerators. For this, we have gathered the theoretical
values of GOPs/W from [106]. Results are shown in Table L.12. It can
be observed that the efficiency for the different accelerators is very
diverse. This can be attributed to the newness of the technology and the
fact that there is still a lot of experimentation to be performed. It should
also be noted, as already mentioned, that these devices are specifically
optimised for certain DNNs. Still, apart from a few exceptions (such
as the GTI Lightspeeur SPR2801S which has extremely high efficiency),
it can be observed that, in general, the theoretical efficiency of edge
accelerators is not very far from the theoretical efficiency of GPUs using
mixed precision FP16/FP32 on tensor cores.

We have also collected experimental measurements. In L.13 we find
the performance (img/s) on ResNet-50, the power of the devices and
the energy consumption (which is calculated dividing power by img/s).

Similar to what we can observe in the previous table, there is a big
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Table L.13
Edge AI devices energy consumption per image for ResNet-50. Auvidea X220-LC AGX Xavier 32GB and Auvidea JNX30 Xavier NX img/s and power
measurements are extracted from MLPerf v1.1 Inference Edge (https://mlcommons.org/en/inference-edge-11/) ‘‘Closed-Power’’ division. Odroid
N2+, TurboX EB6 Edge AI Box, Firefly-RK3588S and NVIDIA Orin img/s and power measurements are extracted from MLPerf v2.1 Inference Edge
‘‘Closed-Power’’ division (https://mlcommons.org/en/inference-edge-21/). NVIDIA Jetson Nano power is from the manufacturer specifications
and img/s are from OpenBenchmarking (https://openbenchmarking.org/result/1908087-HV-1908018HV82).
System Launch year ResNet-50 img/s Power J/img
Auvidea X220-LC AGX Xavier 32GB (MaxQ, TensorRT) 2018 1.506.53 25.24 0.017
NVIDIA Jetson Nano 2019 42.65 10.00 0.238
Odroid N2+ 2020 3.84 3.89 1.013
Auvidea JNX30 Xavier NX (MaxQ, TensorRT) 2020 1,092.08 19.97 0.018
TurboX EB6 Edge AI Box 2021 7259.95 25.32 0.003
Firefly-RK3588S 2022 13.00 7.55 0.581
NVIDIA Orin (MaxQ, TensorRT) 2022 3525.91 23.06 0.007
difference between devices in terms of efficiency. Also, it is not possible
to extract a clear pattern from the data. This makes the task of analysing
overall trends considerably more difficult. Still, we can analyse the
systems individually. As a reference we can take the value of T4 for
INT16 and INT8 from the previous analysed benchmark [108]: the
resulting energy is 0.017 J/img for INT8 and 0.034 J/img for FP16 (the
T4 is from 2018). The INT8 value is the same as the Auvidea X220-LC
AGX Xavier system, one of the most efficient edge systems, as can be
seen in Table L.13.
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