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A B S T R A C T   

This paper presents a comparative analysis of three distinct Zero Defect Manufacturing (ZDM) strategies: 
Detection - Repair (DR), Detection - Prevention (DP), and Prediction - Prevention (PP). We evaluated these 
strategies based on their effectiveness in optimizing ZDM parameters, considering the specific needs and con
straints of various manufacturing setups. Our analysis found that while DR and DP simulation models closely 
reflected original results, PP models demonstrated lower predictability, underscoring the need for further 
research and specialized modeling approaches. Nonetheless, the selection of an optimal strategy was determined 
to be context-dependent, hinging on the characteristics of the manufacturing system. The study also highlights 
the necessity of validating these strategies across diverse manufacturing setups to assess their performance and 
suitability. This research augments the existing body of knowledge on ZDM, offering insights to drive future 
investigations for the development of robust, accurate, and efficient ZDM modeling techniques. The ultimate 
objective is to move modern manufacturing industries towards a zero-defect environment, thereby enhancing 
their efficiency, reliability, and overall productivity.   

1. Introduction 

The industrial revolution, Industry 4.0, is centered on automation, 
interconnectivity, machine learning, and real-time data, is gradually 
reshaping the global manufacturing sector (Psarommatis et al., Jun. 
2023; Tsaramirsis, Jun. 2022). With these advancements, the bar for 
quality assurance and production efficiency has been raised. Central to 
this elevation is the concept of zero-defect manufacturing (ZDM), which 
aspires for a defect-free production process (Psarommatis et al., 2020; 
Powell et al., Apr. 2022). In the contemporary industrial environment, 
achieving operational excellence is a priority, and manufacturing pro
cesses are continuously evolving to meet this objective. One of the shifts 
in recent years that aims at higher manufacturing sustainability is the 
progression towards the ZDM paradigm (Psarommatis et al., 2020). 
According to (Caiazzo et al., Jan. 2022), the move towards ZDM not only 
focuses on the integration of innovative techniques and methodologies 
but also emphasizes the importance of understanding and addressing the 
existing challenges in the field. Their comprehensive review highlights 
the state-of-the-art methods employed in ZDM and underscores the open 
challenges that researchers and industry professionals should focus on. 

As the manufacturing landscape becomes increasingly complex with the 
infusion of Industry 4.0 and now Industry 5.0 principles, understanding 
and leveraging the potential of ZDM becomes paramount. The numerous 
benefits, such as improved product quality, reduced production costs, 
and diminished waste, underscore the significance of ZDM (Psar
ommatis et al., 2020; Dhingra et al., Aug. 2019). Given this context, the 
identification of optimal parameters for achieving ZDM becomes crucial 
and has taken center stage in recent research (Psarommatis and May, 
Jan. 2023; Psarommatis et al., Jan. 2021). 

Complementing this research thrust, modeling and simulation play 
pivotal roles in the analysis and optimization of complex manufacturing 
systems (Mourtzis, 2019) and on the creation of digital twins (Psar
ommatis and May, Jul. 2022; Psarommatis, Apr. 2021). When aiming for 
ZDM, simulation-based optimization strategies provide a cost-effective 
means to identify the optimal parameters without the expense and risk 
of real-world experimentation (Psarommatis and May, Jul. 2022; Psar
ommatis et al., 2022). While full-scale models provide an accurate 
representation of the system, their complexity and computational re
quirements often render them impractical for extensive iterative opti
mization (Ruiz et al., 2021). This challenge has instigated the 
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development of simplified models, which are inherently less accurate 
but more computationally efficient. 

An aspect that adds to this computational challenge is the inherent 
complexity of scheduling in manufacturing, recognized as NP-hard 
problems (Pinedo, 2016). Consequently, a significant amount of 
computational power is required to achieve satisfactory results that 
align with the desired objective functions. Extensive research, as indi
cated by the literature review, has been dedicated to developing various 
heuristic algorithms capable of solving scheduling problems within an 
acceptable timeframe (Grobler-Dębska et al., Feb. 2022; Psarommatis 
et al., Jan. 2020; Karimi-Mamaghan et al., Sep. 2020; Zhang and Xing, 
Aug. 2019). This challenge is further intensified in manufacturing con
texts that involve multiple stages, where events at each stage have a 
direct impact on the scheduling of subsequent stages. 

Literature Gap and Study Aim: While numerous studies have 
investigated ZDM methodologies and their implications, there remains a 
significant gap in understanding the computational efficiency and time- 
related challenges associated with ZDM simulations. Moreover, the 
comparative efficacy of different strategies like Defects Reduction (DR), 
Defects Prediction (DP), and Predictive Policing (PP) within the ZDM 
paradigm has not been exhaustively explored. This study seeks to bridge 
this gap by proposing a simplification process for the original simulation 
model, aiming to strike a balance between computational time and 
simulation accuracy. Additionally, this paper conducts an in-depth 
analysis of the three aforementioned strategies, comparing them in 
terms of both performance and computational demands. 

This paper presents a methodology for simplifying scheduling 
models, with a goal to significantly reduce the simulation time and 
provide rapid, yet accurate, results for design towards ZDM. This need 
was observed during the conduction of this research (Psarommatis, Apr. 
2021), where the simulation times for the experiments were in the order 
of days. More specifically, we developed and compared three different 
strategies for the simplification of the initial models, not only between 
each other but also with the initial one. Furthermore, we explored the 
trade-offs between model accuracy and computational efficiency and 
evaluated their applicability in various manufacturing scenarios. The 
insights from this study are expected to guide practitioners, modelers, 
and researchers in creating fast and accurate simulation models. In this 
study, the simplified models are intended to be used for selecting an 
appropriate modeling strategy for specific manufacturing setups, 
thereby facilitating the identification of optimal ZDM parameters in a 
computationally efficient manner. By formulating different strategies 
based on the modeling of tasks, task relationships, and defect rates, this 
research explores various trade-offs between accuracy and computa
tional efficiency. The work investigates their ability to replicate the 
dynamics of a complex manufacturing system, emphasizing their 
effectiveness in identifying optimal ZDM parameters (Psarommatis, Apr. 
2021). 

The remainder of the paper is organized as follows: Section 2 pro
vides a comprehensive review of the current state of the art in simplified 
modeling strategies for ZDM, highlighting their strengths and weak
nesses. Section 3 details the specific problem statement that the research 
addresses, emphasizing the significance of the issue in the broader 
context of ZDM. Section 4 presents the methodology employed in the 
development and comparison of the three strategies. Section 5 describes 
the experimental setup used for model evaluation. Section 6 discusses 
the results, and provides an overall discussion of the findings, comparing 
the three strategies. Section 7 acknowledges the limitations of the study 
and proposes areas for future research. The paper concludes with final 
remarks on the outcomes of the research and their implications for 
future work. Table 1 presents the abbreviations used in the rest of the 
paper for the ease of the reader. 

2. State of the art 

2.1. Overview of ZDM 

The concept of ZDM has evolved into a fundamental pillar within the 
Industry 4.0 landscape. Numerous methodologies and technologies have 
emerged to embody this concept, each aiming to eradicate 
manufacturing defects and thus enhance overall efficiency and product 
quality. On the technological front, several studies proposed the use of 
digital tools to enable ZDM. Psarommatis & Kiritsis (2022) put forth a 
Decision Support System for automated decision-making in response to 
defects (Psarommatis and Kiritsis, 2021). However, the system’s appli
cability across different production environments remains to be thor
oughly investigated. Extending this digital thread, Ruiz et al. (2021) 
introduced a Smart Digital Twin for ZDM-based job-shop scheduling 
(Ruiz et al., 2021). Despite the promise, potential hurdles in large-scale 
integration and widespread adoption cast some shadows. Venanzi et al. 
(2023) ventured further into the digital realm with a Big Data platform, 
which enables adaptive analytics for ZDM (Venanzi,May, 2023). Yet, the 
paper fell short of addressing the inherent challenges in platform 
implementation. 

Several studies focused on methodological advancements in the ZDM 
context. Psarommatis (2021) devised a novel methodology utilizing a 
digital twin for ZDM performance mapping. Despite its novelty, the 
implementation complexity related to digital twin technology might 
limit its wider adoption across industries (Psarommatis, Apr. 2021). 
Trebuna et al. (2022) conducted a comparative analysis of modern 
manufacturing tools and their influence on ZDM strategies. While this 
study was insightful, it lacked supportive real-world case studies (Tre
buna et al., 2022). 

Concerning more specific applications, Sousa et al. (2021) deployed 
data-driven technologies for ZDM within the natural stone industry 
(Sousa et al., 2021). Although effective within this particular context, 
the transferability of such solutions to other sectors is not assured. 
Babalola et al. (2023) underscored the significance of in-situ workpiece 
perception for achieving ZDM within Industry 4.0 compliant job shops 
(Babalola et al., Jun. 2023). Yet, the research did not adequately 
consider potential disruptions and technological demands that might 
occur during implementation. 

Several studies aimed to deal with unpredictability and scheduling 
within ZDM. Psarommatis et al. (2021) proposed a predictive model for 
calculating rescheduling time for unexpected events in ZDM (Psar
ommatis et al., Apr. 2021). However, the model’s efficiency hinges on 
the accurate prediction of such events, which presents a challenge in 
itself. Building on scheduling methods, Grobler-Dębska et al. (2022) 
introduced a formal method for ZDM (Grobler-Dębska et al., Feb. 2022), 
although its inherent complexity could deter wider application. Marti
nez et al. (2022) attempted to bridge the gap between physical and 
digital through a cyber-physical system approach to ZDM in light-gauge 
steel frame assemblies (Martinez et al., Jan. 2022). However, the 
assumption of high digital maturity in manufacturing companies may 
not always hold, casting doubts on its universal applicability. Table 2 is a 
summarizing table of the relevant literature in the relevant field of ZDM: 

Table 1 
Abbreviations list.  

Term Description Term Desciption 

ZDM Zero-Defect Manufacturing Cmaxj  

DM Defects Management Cminj  

KPIs Key Performance Indicators Cij  

Tx Task x (where “x” is a number 
representing a specific task) 

Ty Task y (where “y” is a number 
representing a specific 
simplified task) 

MFG Manufacturing stage Wj Weight for the j-th KPI  
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2.2. Transition from Industry 4.0 to Industry 5.0 

While Industry 4.0 marked a significant move towards automation, 
interconnectivity, and real-time data processing, Industry 5.0 introduces 
the next phase of manufacturing evolution. Industry 5.0 builds upon the 
foundational concepts of Industry 4.0 by emphasizing a synergetic 
collaboration between humans and machines. This collaboration aims to 
enhance the human touch in manufacturing processes, thereby ensuring 
products cater more closely to individual needs, preferences, and values. 

One of the hallmarks of Industry 5.0 is its focus on enhanced cus
tomization. As consumer demand shifts from mass-produced items to 
more personalized products, the industry needs to pivot its operations to 
accommodate this demand. Through advanced technologies such as 
artificial intelligence, augmented reality, and robotics, Industry 5.0 in
tegrates customization right from the design phase to post-production, 
ensuring a tailored user experience at every stage (Leng, Oct. 2022). 

Furthermore, another crucial distinction lies in the integration of 
sustainability principles. Unlike previous industrial phases, Industry 5.0 
not only emphasizes producing more with less but also stresses the 
importance of sustainable production. The nexus between sustainability 
and manufacturing has never been more pronounced. This renewed 
focus entails the utilization of eco-friendly materials, energy-efficient 
processes, and a comprehensive life-cycle assessment to minimize 
environmental impacts and ensure the well-being of both consumers and 
the planet (De Giovanni, Jan. 2023). 

Conclusively, while Industry 4.0 laid the groundwork for an inter
connected, digitized manufacturing landscape, Industry 5.0 aspires for a 
holistic approach, harmonizing technology with human values, and 
underlining the essence of sustainable, customized production. 

2.3. Sustainability in the context of ZDM 

ZDM not only strives for impeccable product quality but also inad
vertently aligns with many sustainability principles. By minimizing 
waste, rework, and recalls, ZDM practices can reduce the consumption 
of raw materials, energy, and other resources, leading to both environ
mental and economic benefits (Lindström, Jan. 2019). 

Moreover, the push towards ZDM has broader societal implications. 
The reduction of defective products means less wastage, which trans
lates into a decrease in landfill contributions. When manufacturing units 
produce fewer defects, they also decrease emissions and harmful by- 
products that can result from re-manufacturing or correcting those de
fects. This directly aligns with the global pursuit of a more circular 
economy, where resources are used more efficiently, and waste is 
minimized at every step of the product lifecycle. 

Furthermore, from a consumer perspective, ZDM enhances trust and 
confidence in products. As manufacturing processes become more 
transparent and companies emphasize their commitment to ZDM, con
sumers are more likely to support brands that ensure high-quality, 
defect-free products. This not only fosters brand loyalty but also en
courages sustainable consumer behavior, as fewer replacements and 
repairs are needed over the product’s life span. 

2.4. Linking Industry 5.0, sustainability and ZDM 

Industry 5.0 offers the technological tools and frameworks that can 
further enhance the implementation of ZDM. With its emphasis on 
human–machine collaboration, there is potential for improved defect 
detection, as humans can provide the intuitive understanding and ma
chines offer precision. Furthermore, the emphasis on sustainability in 
Industry 5.0 and ZDM means that manufacturers are not just aiming for 
zero defects but are also considering the environmental and social im
plications of their manufacturing processes. 

2.5. Gap addressed and contribution of our study 

Despite the substantial advancements in ZDM strategies, our review 
of the current state-of-the-art reveals a striking gap: the absence of a 
balanced approach to model complexity and computational efficiency in 
simulation-based optimization strategies. This deficiency is particularly 
apparent considering the scarcity of comparative studies on simplified 
modeling strategies within the ZDM sphere. 

Our study addresses this void by conducting a detailed comparative 
study of three distinct ZDM strategies: Detection - Repair (DR), Detec
tion - Prevention (DP), and Prediction - Prevention (PP) (Psarommatis 
et al., 2020; Psarommatis et al., 2022). We evaluated each strategy for 
their effectiveness in ZDM parameter optimization, considering different 
manufacturing setups’ specific needs and constraints. By probing into 
the trade-offs between model accuracy and computational efficiency, 
our study provides valuable insights to guide the selection of the most 
suitable strategy according to the unique needs of each manufacturing 
setup. 

Our work emphasizes that the optimal strategy selection is contin
gent on the context, reflecting the dynamism inherent in the 
manufacturing industry. Our analysis contributes to a broader under
standing and future improvement of modeling strategies in ZDM. This 
research offers valuable insights and is a novel contribution to the ZDM 
knowledge base, propelling the modern manufacturing industries to
wards a zero-defect environment. We anticipate a substantial positive 
impact on the global manufacturing sector through the enhanced effi
ciency, reliability, and productivity that comes with the optimal selec
tion of ZDM strategies. 

3. Problem statement 

Designing a manufacturing system for ZDM is a complex task that 

Table 2 
Relevant literature in the relevant field of zdm.  

Paper 
No. 

Authors & Year Key Contributions 
(þ) 

Shortcomings (-) 

1 Psarommatis & 
Kiritsis, 2022 ( 
Psarommatis and 
Kiritsis, 2021) 

Automated decision- 
making for defect 
management 

Unclear efficiency in 
different production 
environments 

2 Psarommatis, 2021 
(Psarommatis, Apr. 
2021) 

Digital twin for ZDM 
performance mapping 

Complexity of digital 
twin technology might 
limit wide 
implementation 

3 Trebuna et al., 2022 
(Trebuna et al., 
2022) 

Comparative study of 
manufacturing tools’ 
impact on ZDM 

Lack of real-world case 
studies 

4 Babalola et al., 
2023 (Babalola 
et al., Jun. 2023) 

In-situ workpiece 
perception for ZDM in 
job shops 

Potential disruptions 
during implementation 
not addressed 

5 Ruiz et al., 2021 ( 
Ruiz et al., 2021) 

Smart Digital Twin for 
ZDM-based 
scheduling 

Challenges with large 
scale integration and 
adoption 

6 Sousa et al., 2021 ( 
Sousa et al., 2021) 

Application of data- 
driven technologies 
for ZDM in the stone 
industry 

Uncertainty in 
solutions’ 
transferability to other 
sectors 

7 Psarommatis et al., 
2021 (Psarommatis 
et al., Apr. 2021) 

Rescheduling model 
for unexpected events 
in ZDM 

Model’s effectiveness 
relies on accurate 
prediction of 
unexpected events 

8 Grobler-Dębska 
et al., 2022 ( 
Grobler-Dębska 
et al., Feb. 2022) 

Formal scheduling 
method for ZDM 

Complexity may hinder 
wide application 

9 Martinez et al., 
2022 (Martinez 
et al., Jan. 2022) 

Cyber-physical system 
approach to ZDM in 
light-gauge steel 
assemblies 

Assumption of high 
digital maturity may 
not be applicable in all 
scenarios 

10 Venanzi et al., 2023 
(Venanzi,May, 
2023) 

Big Data platform for 
adaptive analytics in 
ZDM 

Insufficient discussion 
on potential 
implementation 
challenges  
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requires a significant number of simulations to accurately quantify the 
specifications of the ZDM-related equipment. This is required to ensure 
that there is minimal or ideally, no performance loss in the 
manufacturing system. In this study, we utilized a methodology known 
as “design for ZDM” from the literature (Psarommatis, Apr. 2021). 
Although in the the simulation method involves utilizes the design of 
experiments (M. s., 1995), there is still a very high number of required 
simulations (millions) needed to map a manufacturing system for ZDM 
strategies. The process is that a set of simulations is performed and then, 
using the methodology developed in (Psarommatis, Apr. 2021), con
verting the results into a digital twin of the modeled manufacturing 
system. Fig. 1 illustrates the simplified steps for the design for ZDM 
methodology. 

This study is centered on the process, indicated in red, of creating 
simulation models and carrying out simulations. The use of real-life 
production data is highly promising for creating accurate Digital 
twins; however, it demands a significant amount of computational time. 
Within the manufacturing scenario under investigation, the simulation 
process involves scheduling and executing a full year’s production, with 
the average simulation time reaching 14 days on an Intel® Core™ i7- 
8700 K processor with 32 GB of RAM. Consequently, in this paper, we 
develop simplified models of the same production line setup and assess 
their impact on the final results using the identical scheduling tool. Our 
goal is to further diminish the computational time required, making the 
production design for ZDM even more cost-effective and resource- 
efficient. 

Within the domain of ZDM, several strategies related to defect detect, 
repair, prevention, and prediction were proposed (Psarommatis et al., 
2020; Psarommatis et al., 2022). The introduction of these tasks into the 
manufacturing stages opens up opportunities for optimization. The key 
question then becomes: what is the optimal approach for planning these 
ZDM tasks and incorporating them into the manufacturing processes to 
deliver zero-defect products while minimizing costs? 

In response to this challenge, an innovative scheduling tool and DT 
methodology, has been developed, aiming at optimizing the ZDM 
strategy and quality control specifications for a production line (Psar
ommatis, Apr. 2021; Psarommatis et al., Jan. 2020; Psarommatis et al., 
Apr. 2021; Psarommatis et al., Jan. 2021; Psarommatis et al., Jan. 2020). 
This ground-breaking solution enables the identification of the optimal 
ZDM strategy and parameters without the need to run the scheduling 
tool itself. Instead, the tool generates a set of graphs that manufacturers 
can easily use to select the most suitable ZDM strategy and quality 
control parameters, eliminating the need for time-consuming simula
tions. This streamlined approach saves manufacturers a significant 
amount of time in the production design process for ZDM. 

Every ZDM approach has unique control parameters that have an 
impact on the efficacy and functionality of the ZDM implementation. 
Three control parameters were established for each ZDM technique in 
this work and are shown in Table 2. These variables were included 
because they are the most crucial variables to consider while choosing 
ZDM equipment. The following strategy was developed and used for the 
simulations and development of the DT model due to the fact that each 
industrial application is distinct and there is no merit in generalizing 
based on data from a particular use case. Each product has some nominal 
properties that are computed assuming that there are no flaws or any 
unforeseen events that would disrupt the regular flow of production. In 
this instance, the absolute use-case specific values were converted to 
relative values by calculating the overall cost and time for producing the 
product. Equation (1), which is just the absolute value of the ZDM 

parameter divided by the matching total estimated product value, was 
used to achieve this. The ratio technique that was chosen gave a relative 
indication of how much more time or money is needed to operate the 
ZDM strategy. This straightforward concept seeks to delink results from 
one situation so that they can be used to other cases where the product is 
different, but the ratios are the same [55]. As a result, only the param
eters denoted by an “R” in Table 3 have relative values; the others only 
have percentages. 

Relative factor Value =
Absolute ZDM Value
Estimated Total Value

(1)  

4. Model simplification: proposed strategies 

In this section, we detail our proposed methodology for simplifying 
simulation models to minimize computational time, emphasizing its 
applicability to the ’design for ZDM’ approach. Firstly, the essence of our 
methodology lies in its focus on single manufacturing stages, capturing 
KPI effects at each unique stage. We have developed two distinct 
methods, with the goal to ascertain the most efficient one based on 
specific use cases. The ’Cycle Time Approach’ serves as our primary 
simplification strategy, where tasks are consolidated excluding the 
application of ZDM. This is visually represented in Fig. 2. Depending on 
the specific scenario—whether the task for ZDM implementation is part 
of the longest process chain or not—our approach varies, as elaborated 
in Figs. 3 and 4. Subsequent to this, our study assesses the outcomes 

Fig. 1. Desing for ZDM methodology steps.  

Table 3 
ZDM control parameters (Psarommatis, Apr. 2021).  

Parameter Name ZDM 
strategy 

Parameter Description 

Inspection Cost (IC), R Dt The cost related to the operation of the 
inspection machine per item inspected 

Inspection Time (IT), 
R 

Dt The time that the inspection equipment 
requires in order to inspect one part 

Detection Accuracy 
(DA), % 

Dt The accuracy that the inspection equipment 
has. Measured in percentage. 

Repairing Cost (RC), R Rp The average repairing cost. This cost 
includes the extra raw materials needed for 
the repair and the labor and machine 
operational cost for performing the repair 

Repairing Time (RT), 
R 

Rp The time that is required in order to perform 
the repair 

Reparability (Rep), % Rp Reparability represents a percentage that 
shows how many parts are reparable out of 
the total. 

Prevention Cost (PvC), 
R 

Pv The related cost for the raw materials and 
operator time cost that are required for the 
implementation of the prevention actions. 

Prevention Time 
(PvT), R 

Pv The time that is required in order for the 
operator to implement the prevention 
actions. Those prevention actions could be 
either small maintenance or machine tuning 

Prevention success 
Rate (PvSR), % 

Pv It is a percentage that indicates the 
probability of the prevention actions to 
have real effect to the production line. In 
other words, if the prevention actions are 
successful or there was a miss-diagnose. 

Prediction Horizon 
(PdH), R 

Pd Is the timeframe that the prediction 
algorithm looks ahead 

Prediction Accuracy 
(PdA), % 

Pd Is the probability of successfully predicting 
a defect in the given prediction horizon 

Prevention Reaction 
Time (PdReaT), R 

Pd Is the time that is required for implementing 
the prevention actions.  
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using a set of seven KPIs, as tabulated in Table 2, which consider factors 
ranging from time and energy consumption to costs associated with 
defect management. 

4.1. Simplification strategy: the cycle time approach 

The strategy outlined herein is designed to streamline production 
processes by simplifying tasks excluding the application of ZDM. This is 
achieved by introducing a new task, which combines all the tasks except 
the task to apply ZDM. Fig. 2 illustrates the overarching concept of 

strategy 1′s approach. Specifically, the task earmarked for ZDM imple
mentation is represented in blue. The proposed simplification strategy 
implies that the cycle time and various machine-oriented parameters 
(such as machine operational cost, energy consumption) of all remaining 
tasks are consolidated into a single task, in line with the process branch 
they belong to. To adhere to this approach, two distinct scenarios must 
be defined to properly categorize the problem and accommodate 
different cases.  

1. The task to apply ZDM is a component of the longest process chain 
that determines the cycle time  

2. The task to apply ZDM does not belong to the longest process chain 
that determines the cycle time 

These two different scenarios bear significance as the combined task 
will assume a different value depending on the scenario. To calculate 
and identify the processing time of each process chain, the following 
steps must be followed: identify the task to analyze and calculate the 
different process chains. Once the task to analyze is selected, the various 
process chains are defined by the number of distinct tasks at the same 
level as the level of the task to analyze. This implies, in Fig. 2, if the task 
to analyze is Tx2, then there are two process chains to be evaluated. The 
process preceding the selected task (Tx1) is common in both scenarios. 
One branch consists of Tx1, Tx2, Tx3, Tx4, Tx5 and Tx6, while the other 
includes Tx1 and Tx7. 

Fig. 2. Simplification strategy overall concept.  

Fig. 3. Task part of the longest process chain simplification process.  

Fig. 4. Task not part of the longest process chain simplification process.  
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4.1.1. Scenario 1: Task simplification when tasks in the longest process 
chain 

If the task is part of the longest process chain, then the simplified 
model is created based on the concept depicted in Fig. 3. In the example 
presented, the task we want to study for ZDM implementation is Tx2. As 
mentioned before, there are two process branches: one marked in purple 
and the other in black. Since the task is part of the longest process cycle, 
task T7x does not influence the overall cycle time. Therefore, in terms of 
time, task Tx7 is disregarded, but the remaining characteristics of the 
task, such as material cost, machine operational cost, machine mainte
nance cost, and energy consumption are transferred to the immediate 
parent task - in this case, Tx1. Thus, as shown in Fig. 3, the two tasks Tx1 
and Tx7 are combined to Ty1. Following the same principle, all the tasks 
marked in purple are combined to Ty2, as indicated by red arrows. This 
simplification means that for this example, instead of seven tasks, our 
simplified model has only three, which will significantly reduce 
computational time. 

4.1.2. Scenario 2: Task simplification when task NOT in the longest process 
chain 

Fig. 4 illustrates the procedure to be followed for model simplifica
tion, when the task to be simplified is not part of the longest process 
chain. In this instance, Tx7 represents the longest process cycle that 
determines the cycle time, but since Tx2 is the task of interest, it should 
not be neglected or combined. The colour-coded arrows in Fig. 4 
represent the steps of simplification. The tasks in purple are simplified in 
exactly the same manner to Ty2, but the process branch to which Tx7 
belongs is simplified to Ty3. In this example, this process branch consists 
of only one task, but it could include more. The exact same logic applies 
to Tx1 and Ty1. In this case, the simplified model is larger - four tasks 
instead of seven. 

4.2. Key performance indicators (KPIs) for evaluation 

The simulations that are going to be performed will be evaluated 
using a set of seven KPIs. Table 4 illustrates the various KPIs that will be 
used for the evaluation of the alternative schedules. The first two KPIs 
concern time, specifically weighted tardiness and the average makespan 
of the entire production (as defined in equations 1 and 2 respectively). 
The third KPI pertains to the energy consumption of production, and 
equation 4 details the production cost. The remaining KPIs relate to the 
implementation of the different ZDM strategies. In order to arrive at a 
single value that encapsulates all the defined KPIs, equations (8) and (9) 
are utilized. Equation (8) is used for each KPI to normalize its value (this 
particular equation is used for normalizing KPIs with cost behavior, 
where smaller values are better). Once all the KPIs are normalized, a 
weighted sum formula is used (equation (9) to aggregate all the 
normalized values. The resulting “utility value” lies within the range 
[0,1], with the best possible value being 1. 

Ĉij =
Cmax

j − Cij

Cmax
j − Cmin

j
(8)  

Ui =
∑m

j=1
Wj Ĉij (9)  

5. Method validation and performance measurement of 
simplification 

5.1. Industrial scenario 

Fig. 5 illustrates the Bill of Processes (BoP) for the product under 
investigation, presenting the sequence of all 15 tasks. These tasks pertain 
only to the manufacturing tasks and do not include tasks related to the 
ZDM implementation. The product being investigated is a printed circuit 
board from the semiconductor domain, intended for use in medical 
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devices. Each of these 15 tasks can only be performed by one machine; 
hence, for 15 manufacturing tasks, there are 15 machines (MFG). The 
design for the ZDM method suggests that for each MFG, all three ZDM 
strategies are simulated to quantify the impact each ZDM strategy has on 
the performance of the manufacturing system. 

In essence, the experiments should be performed using a specific 
methodology known as design of experiments. More specifically, the 
Taguchi approach is utilized, and due to the involvement of six design 
parameters in each experiment and the need for high accuracy, the L25 
orthogonal array is used. This implies that for analyzing each MFG for 
each of the ZDM strategies, 25 experiments are required. Consequently, 
a total of 15 × 3 × 25 = 1,125 simulations are needed solely for the 
simplified scenario presented in Fig. 5. This suggests that if the 
manufacturing system is larger or there are more design factors, the 
method’s scalability becomes unfeasible. Therefore, the development of 
the proposed model simplification method is crucial for making the 
design for ZDM method scalable. 

5.2. Simulation results 

This section compares the results of the three discussed scenarios 
with the original results. For each scenario, absolute utility values are 
calculated for all 531,441 factor combinations, considering 15 
manufacturing stages and 3 ZDM strategies. To make comparison with 
the original results easier, the results obtained are normalized along 
with the original results. 

Table 5 shows a sample of the raw results. As depicted in Table 5, the 
x-axis represents the 531,441 factor combinations resulting from all 
possible permutations of the 6 factors, each having 9 levels (96 =

531,441). The y-axis displays the utility values for each factor combi
nation. This arrangement facilitates the selection of optimal factor levels 
and ZDM strategies based on the utility values. 

Upon examining the results, it can be deduced that all strategies 
exhibit similar trends for DR (Defect Rate) and DP (Delivery Perfor
mance). The peaks of Factor 1 and Factor 2 align closely with the cor
responding peaks in the original results. However, in the case of PP 
(Predict Prevent), substantial deviations are observed. These significant 

variations could be ascribed to the stochastic nature of the PP strategy. 
These results suggest that relying solely on PP may not offer reliable 
guidance for selecting the optimal ZDM parameters. To delve deeper 
into the quality of each strategy, the results will undergo quantitative 
analysis using various measures in the subsequent sections of this paper. 
This methodology is intended to offer a more comprehensive evaluation 
of the effectiveness of the strategies. 

5.2.1. Relative difference comparison 
By leveraging the calculation of relative difference, the quality of the 

proposed simplification method can be quantified in terms of the devi
ation of utility values, as demonstrated in Fig. 6. In general, it is noted 
that the average relative difference is below 3 %, indicating a good 
alignment of the simplified model with the original one. 

RelativeDifference =
|Uo − Ui|
(

Uo+Ui
2

) × 100 (10)  

5.2.2. Coefficient of Variation (CV) 
CV can act as another tool for quantifying the quality of each strategy 

in relation to the original results. CV evaluates the dispersion or spread 
of utility values around the mean values. This analysis provides insights 
into the stochastic nature of the results, allowing for a more compre
hensive understanding of the performance variability in among different 
strategies. 

CoefficientofVariation =
σ
μ  

As depicted in Fig. 7, the proposed simplification strategy presents CV 
values that are closely aligned with the original results, signifying a 
similar spread of utility values around the mean utility values. Notably, 
it accomplishes an exceptionally close CV value for PP in comparison to 
the original results (0.01654 vs. 0.1662). These findings further support 
the notion that the simplification process effectively maintains the dy
namics of the original system, resulting in relatively accurate results. 

Fig. 5. Bill of Process (Left) and Task Processing Time (Right).  
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Table 5 
Results from simulation for each mfg of the product under investigation.  
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6. Discussions of results 

In this section of the paper, below methods were employed to 
analyze the results:  

• Visual inspection of trends.  
• Relative difference of utility values on each factor combination.  
• CV calculations. 

6.1. Implications of the reduced simulation time 

The substantial reduction in computational time is an integral 
finding in this study. With an average reduction of 90 %, we can 
conclude that the manufacturing industry stands to benefit from 
increased efficiency in the optimization process for ZDM. Previously, 
computations took 14 days using an Intel® Core™ i7-8700 K processor 
with 32 GB of RAM, which can be considered as a significant resource 
investment. With the introduction of the simplified models, the same 
process can be completed on average between [12.4, 260.32] minutes, 
depending on the size of the model. This drastic reduction in compu
tational time paves the way for faster decision-making processes, lead
ing to quicker optimization of production processes. This efficiency gain 
can potentially translate into cost savings, making the manufacturing 
process more economical. 

6.2. Analysis of accuracy Trade-Off 

Despite the impressive gain in computational efficiency, it is 
important to address the trade-off involving a slight reduction in accu
racy. For the Defects Reduction (DR) and Defects Prediction (DP) stra
tegies, the proposed method exhibited similar trends and absolute utility 
values when compared to the original results. However, the PP strategy 
did not fare as well, with the accuracy taking a slight hit. While effi
ciency is desirable, the accuracy of these models is pivotal to making 
correct decisions in the manufacturing process. Under what conditions 
would this trade-off be acceptable? This is a question that future 
research could focus on, taking into account the nature of the 
manufacturing process, and the acceptable margin of error. 

6.3. Assessment of different strategies (DR, DP, PP) 

When analyzing the three strategies, it was found that the DR and DP 
strategies fared well with the proposed method, both in terms of trends 
and absolute utility values. However, for the Predictive Policing (PP) 
strategy, the results were less consistent, hinting at an inherent sto
chasticity in the strategy. It appears that there is more randomness in the 
results of the PP strategy, leading to the potential for sub-optimal ZDM 
parameters being chosen based solely on utility values. This suggests 
that the choice of strategy should depend on the specific conditions and 
requirements of the manufacturing process, and a ’one-size-fits-all’ 
approach may not be appropriate. 

Fig. 6. Relative Difference of Results.  

Fig. 7. Coefficient of Variation Comparison.  
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6.4. Unpredictability of the PP strategy 

The unpredictable nature of the PP strategy highlights an area that 
requires further investigation. Despite the lower relative difference 
measures compared to DR and DP, the PP strategy produced more 
random and less consistent results. This inconsistency could potentially 
lead to the selection of sub-optimal ZDM parameters. These deviations 
can be attributed to the underlying stochastic nature of the PP strategy. 
Simplified models were unable to fully replicate these dynamics due to 
the loss of certain system dynamics in the scheduling process. 

6.5. Shortcomings and recommendations for further research 

This study provides valuable insights into the benefits and limita
tions of using simplified models to identify optimal ZDM parameters in 
production processes. However, more research is needed to fully un
derstand the trade-off between computational efficiency and accuracy, 
particularly in the context of the PP strategy. Future research could 
delve deeper into the development of more specialized approaches that 
can maintain computational efficiency while improving the accuracy of 
the results for the PP strategy. Additionally, there is room to investigate 
the application of these methods in different manufacturing contexts, 
considering the unique requirements and constraints of each context. 

Due to the poor accuracy observed in PP, selecting optimal ZDM 
parameters becomes challenging across the three ZDM strategies. The 
inherent stochasticity and lack of consistent trends in PP make it difficult 
to reliably identify the most suitable ZDM parameters based solely on 
the utility values. Therefore, additional considerations or alternative 
approaches may be necessary to effectively determine the optimal ZDM 
parameters in the context of PP. 

Fig. 8 provides an example that compares the utility values across all 
three ZDM strategies for MFG 8. From the graphs, it is evident that DR 
and DP for the proposed strategy closely resemble the original results in 
terms of trend. This suggests that using the proposed simplification 
strategy would likely result in selecting the same ZDM parameters for DR 
and DP as compared to the original results. However, the situation be
comes more complicated when considering PP, as it exhibits lower ac
curacy. In this specific example, there is a risk of underestimating the 
utility values of PP, which may lead to the selection of DR or DP instead 
of PP, even though PP might be more optimal given the available 
manufacturing setup. 

Therefore, further investigation is warranted to improve the 
modeling strategy specifically for PP. Additional research and devel
opment are needed to develop a separate modeling approach that can 
capture the dynamics and stochasticity of PP accurately. This would 
enable more precise parameter selection across all three ZDM strategies. 

Furthermore, it would be beneficial to validate the established 
modeling strategies by altering the manufacturing setup. Since the 

analyses suggest that task processing time correlates with the quality of 
the results, conducting simulations with both the simplified models and 
original models while varying the manufacturing setups would provide 
valuable insights and further validate the findings. 

However, like any simulation study, this research is not without 
limitations. The results obtained through simplified models may not 
fully replicate the inherent stochastic nature of certain manufacturing 
strategies, particularly those related to Production Planning (PP). 
Therefore, the study underscores the need for future work focused on 
improving the modeling strategy specifically for PP to ensure more 
precise parameter selection across all ZDM strategies. 

7. Concluding remarks 

The objective of this paper was to develop a method for reducing the 
simulation time necessary for performing sustainable deign for ZDM. 
The approach followed involved the development of a simplification 
process for the original model. The goal of the utilized Design for ZDM 
method was to quantify the impact of the ZDM parameters on the 
selected KPIs. The simulation results showed that the proposed model 
could significantly reduce the overall computational time by an average 
of 90 %. This computational time reduction came at the cost of slightly 
lower accuracy, with an average of 2.11 % relative difference from the 
full simulation model. However, this level of accuracy is sufficient for 
designing a system to achieve ZDM. 

The paper further evaluated three different strategies, namely De
fects Reduction (DR), Defects Prediction (DP), and Predictive Policing 
(PP), and drew comparative analyses. Comparative analyses performed 
on these strategies showed that DR and DP strategies demonstrated 
trends that were similar to the original results. The PP strategy, despite 
demonstrating lower predictability, might still emerge as an optimal 
choice under certain manufacturing conditions. Therefore, the choice of 
an optimal strategy is context-dependent and needs to be guided by the 
specific needs and constraints of the manufacturing system in question. 

In reflecting upon our research methodology and findings, we 
acknowledge several inherent limitations that merit consideration. 
Firstly, our simulation model, while comprehensive, may not encapsu
late all the nuanced intricacies of a real-world manufacturing environ
ment. This potential discrepancy may give rise to challenges when 
scaling our findings or applying them in diverse manufacturing contexts. 
Additionally, while our study integrates principles from both Industry 
5.0 and ZDM, it does not exhaustively cover all potential overlaps or 
conflicting areas between these domains, which may have nuanced ef
fects on certain key performance indicators. 

Our research, while offering valuable insights, also illuminates 
pathways for subsequent studies. A logical progression would be to 
refine the simulation models by integrating granular real-world data, 
ensuring they mirror actual manufacturing environments more closely. 

Fig. 8. MFG 8 Strategy 2 Comparison Across All ZDM Strategies.  
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This would enhance the generalizability and applicability of our results 
across varied manufacturing contexts. Furthermore, a deeper dive into 
the relationship between Industry 5.0, ZDM, and sustainability, espe
cially in the context of emerging markets or industries undergoing rapid 
technological shifts, could unearth critical insights. As Industry 5.0 
continues to evolve, a longitudinal study might also be beneficial, 
tracking its maturation and the implications this has for sustainable 
manufacturing practices. 
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