

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/204466

Jose E. Roman; Alvarruiz Bermejo, F.; Campos, C.; Dalcin, L.; Jolivet, P.; Lamas Daviña, A.
(2023). Improvements to SLEPc in releases 3.14-3.18. ACM Transactions on Mathematical
Software. 49(3). https://doi.org/10.1145/3603373

https://doi.org/10.1145/3603373

Association for Computing Machinery

Improvements to SLEPc in releases 3.14–3.18∗

Jose E. Roman† Fernando Alvarruiz‡ Carmen Campos§ Lisandro Dalcin¶

Pierre Jolivet‖ Alejandro Lamas Daviña∗∗

September 29, 2023

Abstract

This short paper describes the main new features added to SLEPc, the Scalable Library
for Eigenvalue Problem Computations, in the last two and a half years, corresponding to
five release versions. The main novelty is the extension of the SVD module with new problem
types, such as the generalized SVD or the hyperbolic SVD. Additionally, many improvements
have been incorporated into different library parts, including contour integral eigensolvers,
preconditioning, and GPU support.

1 Overview of SLEPc

SLEPc, the Scalable Library for Eigenvalue Problem Computations [12, 20], is a parallel library
for solving large-scale eigenvalue problems and other related linear algebra problems. It is avail-
able for download at https://slepc.upv.es and https://gitlab.com/slepc/slepc under a
2-clause BSD license.

SLEPc is an extension of PETSc, the Portable, Extensible Toolkit for Scientific Computa-
tion [4]. It relies on its data classes, such as matrices and vectors, as well as its solvers for linear
systems of equations, which are required in some eigensolvers. Figure 1 shows a summary of the
functionality offered by PETSc and SLEPc.

SLEPc is often used to compute a few eigenvalues and eigenvectors of large-scale, sparse
matrices or matrix pairs, usually with Krylov methods, but also with other methods, including
Davidson-type [21], conjugate gradient-type (LOBPCG), or contour integral. SLEPc is unique
in offering specific functionality for polynomial eigenproblems [5, 6] and general nonlinear eigen-
problems [7]. SLEPc also provides some functionality related to matrix functions, both dense
and sparse, which are occasionally needed by some eigensolvers. The main SLEPc classes are:

• EPS: linear eigenvalue problem solver.

• PEP: polynomial eigenvalue problem solver.

• NEP: general nonlinear eigenvalue problem solver.

∗This work was supported by the Spanish Agencia Estatal de Investigación under grant PID2019-107379RB-I00
/ AEI / 10.13039/501100011033.

†DSIC, Universitat Politècnica de València, València, Spain (jroman@dsic.upv.es).
‡DSIC, Universitat Politècnica de València, València, Spain (fbermejo@dsic.upv.es).
§D. Didáctica de la Matemática, Universitat de València, València, Spain (carmen.campos-gonzalez@uv.es).
¶King Abdullah University of Science and Technology, Extreme Computing Research Center, Thuwal, Saudi

Arabia (dalcinl@gmail.com).
‖Sorbonne Université, CNRS, LIP6, 4 place Jussieu, Paris Cedex 05, 75252, France (pierre.jolivet@cnrs.fr).

∗∗DSIC, Universitat Politècnica de València, València, Spain (alejandro.lamas@dsic.upv.es).

1

https://slepc.upv.es
https://gitlab.com/slepc/slepc

PETSc

Matrices

CSR
Block
CSR

Dense CUSPARSE . . .

Vectors

MPI CUDA . . .

IS

. . .

Preconditioners

Additive
Schwarz

Block
Jacobi

Jacobi SOR GAMG ILU LU QR . . .

Krylov Subspace Methods

GMRES CG CGS Bi-CGStab TFQMR Rich. Cheby. LSQR . . .

Nonlinear Systems

Line
Search

Trust
Region

. . .

Time Steppers

Euler
Backward
Euler

RK BDF . . .

SLEPc

Nonlinear Eigensolver

SLP RII
N-

Arnoldi
Interp. CISS NLEIGS

M. Function

Krylov Expokit

Polynomial Eigensolver

TOAR
Linear-
ization

CISS JD

SVD-Type Solver

Cross
Product

Cyclic
Matrix

Thick R.
Lanczos

Rand.

Linear Eigensolver

Krylov–Schur Subspace GD JD LOBPCG CISS . . .

Spectral Transformation

Shift
Shift-and-
invert

Cayley
Poly.
Filter

BV DS RG FN

.

Figure 1: Main components of the PETSc (left) and SLEPc (right) libraries. Every class contains
different sub-classes (types), each of them providing a particular implementation of a method.

• SVD: singular value decomposition and related problems.

• MFN: action of a matrix function on a vector.

• Auxiliary classes: ST for spectral transformations such as shift-and-invert; BV for man-
agement of basis vectors and their orthogonalization; DS for solving small-scale dense
eigenproblems via LAPACK [2]; RG to let the user define a region in the complex plane;
and FN to let the user define mathematical functions, allowing its evaluation on scalar
values as well as on small dense matrices.

This paper provides an overview of the major changes in five SLEPc releases: 3.14 (Sept. 30,
2020), 3.15 (March 31, 2021), 3.16 (Sept. 30, 2021), 3.17 (March 31, 2022), 3.18 (Oct. 1, 2022).
These are:

• New functionality for the SVD module, including a randomized solver for the SVD as well
as support for two new problem types, the GSVD and the HSVD (see Section 2).

• Improvements of contour integral eigensolvers, named CISS in Fig. 1, for the linear, poly-
nomial, and nonlinear eigenproblems (see Section 3).

• Improvements when linear solvers are used in combination with eigensolvers (see Section 4).

• Other miscellaneous changes related to Python, GPU, and external packages (see Sec-
tion 5).

2 New functionality for SVD-related problems

The SVD module appeared early in the development of SLEPc, to compute the partial singu-
lar value decomposition (SVD) of a matrix A, corresponding to either the largest or smallest
singular values. Essentially, it contained a couple of solvers based on Golub–Kahan–Lanczos
bidiagonalization [13], together with two solvers based on formulating an equivalent eigenprob-
lem with the cross product matrix A∗A (SVDCROSS) or the cyclic matrix

[
0 A
A∗ 0

]
(SVDCYCLIC).

We have extended this module with additional functionality, such as a new solver (Section 2.1).

2

In addition to the standard SVD, two new problem types that were not considered before have
been introduced: the GSVD and the HSVD (see Sections 2.2 and 2.3). This has required changes
in the user interface: now SVDSetOperators() must be used instead of SVDSetOperator(); a
new function SVDSetProblemType() has been added to specify the problem type; and, in the
case of the HSVD, the signature matrix can be established with SVDSetSignature().

2.1 Randomized solver

The randomized SVD method [11] is used for approximating the singular values and vectors of
low-rank matrices. An initial implementation of this method was added in SLEPc 3.15 with the
name SVDRANDOMIZED. This solver works as follows. Given a matrix A ∈ Rm×n, the following
operations [11] compute a rank-k approximation Ak of A,

Y = AΩ, (1)

B = QTA, with Q = orth(Y), (2)

Ak = QBk, (3)

where Ω ∈ Rm×(k+p) is a Gaussian random matrix, and Bk is the rank-k truncated SVD of B.
Note that we employ an oversampling parameter p that can be, e.g., equal to k. Suppose that
we knew the exact rank of A and set k = rank(A). Then the rank-k approximation is exact
(with high probability), and the truncated SVD of A can be obtained easily from the computed
quantities.

In the general case, the value of rank(A) is not known a priori. If we choose a value such
that k < rank(A), then [11] suggest repeating the steps of Eqs. (1) and (2) a couple of times to
obtain a sufficiently accurate rank-k approximation of A. However, in this case, the individual
singular vectors of A will not be determined unless we continue iterating until each residual is
below the given tolerance. This subspace iteration scheme is described in [10], which is what is
implemented in the SVDRANDOMIZED solver.

To use the SLEPc solver, set nsv=k and ncv=k+ p. With the special convergence criterion
SVD CONV MAXIT, the solver will stop after the given maximum iterations are performed, which is
enough to obtain the subspaces for the rank-k approximation, while the usual stopping criterion
will provide singular vectors to the requested accuracy.

The algorithm’s adaptive variant [11] works with a prescribed tolerance and expands the
dimension of the subspace until the low-rank approximation satisfies the tolerance. This is
currently not supported in SLEPc, but may be added in the future.

2.2 The generalized SVD

The generalized singular value decomposition (GSVD) is an extension of the SVD to the case of
two matrices (cf. [9, §8.7.3] or [2, §2.3.5.3]), which appears in applications such as constrained
least-squares problems or regularized discrete ill-posed problems.

Given two matrices with the same column dimension, A ∈ Cm×n and B ∈ Cp×n, there exist
two unitary matrices U ∈ Cm×m and V ∈ Cp×p and an invertible matrix X ∈ Cn×n such that

U∗AX = C, V ∗BX = S. (4)

Suppose thatm ≥ n, then C = diag(c1, . . . , cn) and S = diag(sn−q+1, . . . , sn) with q = min(p, n),
where ci and si are real nonnegative values satisfying c2i + s2i = 1, and the generalized singular
values are given by the ratios σ(A,B) ≡ {c1/s1, . . . , cq/sq}. If p < n, the first n− p generalized
singular values are considered infinite, as if s1 = · · · = sn−p = 0, and the matrix S must be
padded with zeros on the left, as shown in Fig. 2. The decomposition represented in the figure

3

U∗
n

A

X =

C

V ∗
n B

X =

S

Figure 2: Scheme of the thin GSVD of two matrices A and B, for the case m > n and p < n.

is the thin GSVD, where Un denotes the first n columns of U . Similarly, the decomposition
can also be defined for m < n, in which case we have n − m zero generalized singular values,
and matrix C must be padded with zeros on the right accordingly. More precisely, it is rank(A)
and rank(B), rather than m and p, which determine the number of zero and infinite generalized
singular values, respectively. The above description assumes that the pair {A,B} is regular,
that is, that the matrix obtained by stacking A and B has full column rank.

The values ci and si are related to the CS decomposition [9, §2.6.4] associated with the
orthogonal factor of the QR factorization of the stacked A and B matrices, i.e., if

Z :=

[
A
B

]
=

[
QA

QB

]
R, (5)

then ci and si are the singular values of QA and QB, respectively. The matrix Z is relevant for
some algorithms; Lanczos methods, in particular, usually build it explicitly, see Section 2.2.2.

SLEPc solvers compute a partial GSVD, i.e., only a few columns (nsv) of U , V , and X
are obtained, corresponding to either the largest or smallest generalized singular values. Re-
garding the user interface, matrices A and B are specified with SVDSetOperators(), and the
computed solutions are retrieved via SVDGetSingularTriplet(). The latter function returns
only two vectors, for compatibility with the previously defined user interface. For the GSVD,
the right generalized singular vectors xi are returned in one of them, while the left vectors
(the corresponding columns of U and V) are returned stacked on top of each other as a single
(m+ p)-vector

[
u∗i v∗i

]∗
.

2.2.1 GSVD via an equivalent eigenproblem

It is possible to formulate the problem of computing generalized singular values and vectors
of a matrix pair {A,B} as a generalized eigenvalue problem involving two Hermitian matrices
related to A and B. This approach is analogous to what was done for the standard SVD in the
SVDCROSS and SVDCYCLIC solvers, so we have extended those solvers to support the GSVD case.
The advantage of this approach is the possibility of using most of the functionality offered by
SLEPc’s EPS module to solve the associated eigenvalue problem.

From the ith column of the relations of Eq. (4), we can see that vectors xi satisfy

s2iA
∗Axi = c2iB

∗Bxi, (6)

i.e., we have A∗Axi = σ2
iB

∗Bxi, a generalized eigenvalue problem for the pencil (A∗A,B∗B).
Once xi is computed, vectors ui and vi are obtained trivially by a simple product with A or B.

4

This approach is followed in SVDCROSS. In the case of SVDCYCLIC, the formulation is a generalized
eigenvalue problem involving two symmetric matrices of order m+ n or p+ n [1].

In both schemes, the eigenvalue problem is symmetric-definite; hence it is possible to use
eigensolvers that exploit symmetry. For Lanczos-type methods, one typically has to (implicitly)
invert the matrix on the right side of the eigenvalue equation, which in this case is either A∗A or
B∗B, possibly concatenated with an identity block as in SVDCYCLIC. The user interface provides
an option for explicitly computing the matrices, e.g., SVDCrossSetExplicitMatrix(), to enable
more flexibility in the solution of the associated linear systems (e.g., Cholesky factorization of
B∗B). Otherwise, the matrices are kept in implicit form (shell matrices in PETSc’s terminology),
which restricts the linear solvers and preconditioners that can be used.

The above schemes are implemented via object composition: an SVD object of type SVDCROSS
contains an EPS object, which in turn holds an ST object internally and has a KSP object with a
PC object inside. This structure, combined with the use of command-line options, makes it easy
for the user to experiment with many different solver combinations, such as

$./ex -svd_nsv 4 -svd_smallest -svd_type cross -svd_cross_explicitmatrix

-svd_cross_eps_type lobpcg -svd_cross_st_ksp_type cg -svd_cross_st_pc_type icc

2.2.2 Thick restart Lanczos solver

We have also developed a solver based on thick-restarted joint Lanczos bidiagonalization. The
details of the method can be found in [1], and here we give a summary. The new method has
been implemented in the SVDTRLANCZOS solver as an extension of the previously existing code
that supported the standard SVD only.

The joint Lanczos bidiagonalization procedure can be seen as a way to simultaneously bidi-
agonalize matrices QA and QB from Eq. (5). This produces two bidiagonal matrices that can
be taken together as a small-sized GSVD problem resulting from the projection of the original
problem onto certain Krylov subspaces. In practice, matrices QA and QB cannot be used since
they are not explicitly available, but a trick can be applied to replace them by the action of QQ∗

on a vector. This operation can be implemented as a linear least-squares solve with coefficient
matrix Z from Eq. (5) within the Lanczos iteration. This least-squares problem is handled by
PETSc’s KSP/PC classes (with either a direct method, such as a sparse QR factorization, or an
iterative method, such as LSQR).

Apart from the basic joint bidiagonalization, we have incorporated several new ingredients:

• Thick restart, allowing to address problems with slow convergence. When the maximum
subspace dimension (ncv) is reached, the subspaces are compressed to a smaller dimension.

• Scale factor, which can often boost convergence in difficult problems.

• One-sided orthogonalization, to save some computation during the orthogonalization of
the various Krylov bases.

The new method’s implementation also involved adding a new DS type, DSGSVD, for the
generalized SVD of small dense matrices via a call to LAPACK’s subroutine ggsvd3.

2.3 The hyperbolic SVD

The hyperbolic singular value decomposition (HSVD) is a variation of the standard SVD that
appears in such applications as the covariance differencing problem in signal processing [19].
The difference with the SVD is that U is orthogonal with respect to a signature,

A = UΣV ∗, U∗ΩU = Ω̃, (7)

5

where Ω = diag(±1) is a user-provided m × m signature matrix, while Ω̃ is another signature
matrix obtained as part of the solution.

As in the case of the SVD, the problem’s solution consists of singular triplets (σi, ui, vi), with
σi real and nonnegative and sorted in nonincreasing order. With each singular triplet, there is
an associated sign ω̃i (either 1 or −1), the corresponding diagonal element of Ω̃.

The relations between left and right singular vectors differ slightly from those of the standard
SVD. We have AV = UΣ and A∗ΩU = V Σ∗Ω̃, so for m ≥ n

Avi = uiσi , i = 1, . . . , n, (8)

A∗Ωui = viσiω̃i , i = 1, . . . , n. (9)

SLEPc computes a partial HSVD of either the largest or smallest hyperbolic singular triplets.

2.3.1 HSVD via an equivalent eigenproblem

As in the SVD and GSVD, it is possible to formulate cross and cyclic schemes to compute the
HSVD by solving an eigenvalue problem in the SVDCROSS and SVDCYCLIC solvers. The cross
product matrix approach has two forms, one more convenient when m ≥ n and the other when
m < n. The first form

A∗ΩAvi = σ2
i ω̃ivi, (10)

is derived by pre-multiplying Eq. (8) by A∗Ω and then using Eq. (9). This eigenproblem can be
solved as a Hermitian eigenvalue problem (EPS HEP) and may have both positive and negative
eigenvalues, corresponding to ω̃i = 1 and ω̃i = −1, respectively. Once the right vector vi has
been computed, the corresponding left vector can be obtained using Eq. (8) as ui = σ−1

i Avi.
The second form computes left vectors first, multiplying Eq. (9) by A and then using Eq. (8),

AA∗Ωui = σ2
i ω̃iui. (11)

Then, the right singular vectors are obtained as vi = (σiω̃i)
−1A∗Ωui. The coefficient ma-

trix of Eq. (11) is non-Hermitian, so the eigenproblem should be solved as non-Hermitian
(EPS NHEP). Instead, we currently solve it as a generalized Hermitian-indefinite eigenvalue prob-
lem (EPS GHIEP)

AA∗ûi = σ2
i ω̃iΩûi, with ûi = Ωui. (12)

The cyclic matrix approach for the HSVD implies a generalized eigenvalue problem defined
by two symmetric matrices of order m+ n.

3 Contour integral solvers

Contour integral methods compute eigenvalues located inside a closed path in the complex plane,
C, by employing an approximation of the spectral projector to the corresponding eigenspace.
In a subspace iteration scheme, the projector, given by Cauchy’s integral formula, multiplies a
block of vectors V . This operation can be approximated with a quadrature rule,

1

2πi

∮
C
(zI −A)−1 V dz ≈

nc∑
j=0

ωj (zjI −A)−1 V, (13)

where zj and ωj are the quadrature points and the corresponding weights, j = 0, 1, . . . , nc. A
more general scheme uses high-order moments, i.e., the integrand of Eq. (13) is multiplied by zk,
k = 0, 1, . . . , nm, and the results of the nm moments are combined. SLEPc currently implements

6

the latter case, and the solvers are called CISS. This methodology can be applied to both linear
and nonlinear eigenvalue problems. Contour integral solvers are typically more expensive than
other classes of solvers. However, they are usually better in scalability terms, provided that this
aspect is kept in mind in the implementation.

The contour integral solvers for EPS and NEP were originally developed and contributed by
Y. Maeda and T. Sakurai [18]. In recent versions, we have incorporated many improvements, in
particular:

• The NEPCISS solver has been reworked completely. In addition to the original variant
based on block Hankel matrices, it now provides two new variants that can be selected
with NEPCISSSetExtraction(): one using a Rayleigh–Ritz projection and another one
based on the CAA technique [22, 15]. In the Rayleigh–Ritz variant, the projected problem
is also a nonlinear eigenproblem, which is solved with a reimplemented DSNEP that performs
a dense-matrix contour integral eigensolution, combined with Newton iterative refinement.
This approach improves the robustness of the overall solver considerably.

• The new NEPCISS solver also supports subcommunicators so that different subsets of in-
tegration points are processed by independent groups of MPI processes, improving the
overall scalability. Subcommunicators were used in the EPS solver but not in the NEP one.

• A contour integral solver has also been added to the polynomial eigensolver class: PEPCISS.
The implementation is very similar to the one in NEP but exploits the structure of the
projected problem (a polynomial eigenproblem in the case of the Rayleigh–Ritz, DSPEP).

• All code has been refactored to minimize code duplication in the three contour integral
solvers in EPS, PEP, and NEP.

4 Improvements to linear solvers

Many eigensolvers in SLEPc must be combined with a KSP object that solves the required linear
systems. In EPS and PEP, this object is contained in the spectral transformation object ST, while
in NEP, it is associated directly with some of the solvers.

The solution of linear systems must often be done with direct methods, typically obtained
via external packages such as MUMPS. We have improved how such packages are integrated
into SLEPc. For instance, the new function EPSKrylovSchurGetKSP() allows extracting the
KSP object used in spectrum slicing runs so that MUMPS options can be prescribed in the code,
even in multi-communicator configurations. This was not possible before. It is now also easier
to set command-line options applicable to the linear solver, as the associated Mat object has the
same prefix as the KSP, e.g. -st mat mumps icntl 13 1.

4.1 Preconditioners in split form

We have added the possibility of using custom preconditioners in split form, which means that the
user passes a set of matrices from which the preconditioner must be computed. For instance, in
shift-and-invert, the preconditioner must be an approximation of the matrix A−σB, so if A0 and
B0 are given as approximations of A and B, then the preconditioner M−1 ≈ (A0−σB0)

−1 can be
built internally. This procedure is better than passing an approximation of A−σB since it is valid
for any value of σ (which may be changed internally by the solver). Similarly, for polynomial
eigenproblems, the user can pass approximations for all coefficient matrices with the function
STSetSplitPreconditioner(). In the case of nonlinear eigenproblems where the operator is
represented in split form, we have added an analog function NEPSetSplitPreconditioner().

7

import sys, slepc4py

slepc4py.init(sys.argv)

from petsc4py import PETSc

from slepc4py import SLEPc

.

. # build matrix A

.

evals = solve_eigen(A)

def solve_eigen(A,nev=4):

E = SLEPc.EPS(); E.create()

E.setOperators(A)

E.setProblemType(SLEPc.EPS.ProblemType.HEP)

E.setDimensions(nev)

E.setFromOptions()

E.solve()

evals = []

nconv = E.getConverged()

for i in range(nconv):

evals.append(E.getEigenpair(i))

return evals

Figure 3: Simple example illustrating the use of SLEPc Python bindings.

The addition of the split preconditioners was motivated by an application [14] where the
problem matrices are not assembled explicitly, but a first-order approximation can be formed
and used to build the preconditioner.

4.2 Support for block linear solves

In the case of eigensolvers where the operator is applied to a set of vectors simultaneously, it
is much better to also apply the preconditioner or linear solver in a block fashion; otherwise,
the overall efficiency is seriously spoiled. For this, we have implemented operations such as
STMatMatSolve() to attain higher arithmetic intensity, especially in parallel. Solvers such as
EPSLOBPCG, EPSCISS, or EPSSUBSPACE can now operate entirely by blocks, provided that the
linear solver and preconditioner also support this, such as KSPHPDDM and PCHPDDM [16] or PCMG.

5 Miscellaneous changes

5.1 Python interface

The slepc4py Python bindings for SLEPc used to be a separate project, but now it has been
integrated into the SLEPc source tree and repository, in the same way as petsc4py [8] has been
included in PETSc. Now the configure script has a --with-slepc4py option to switch on the
compilation of the Python bindings.

Python bindings are crucial to expand the user base of SLEPc to Python-based projects.
slepc4py is included in popular package management systems such as Conda or PyPI. It can
also be used via third-party software such as Firedrake or FEniCS.

Figure 3 lists a minimal example of slepc4py’s basic usage.

5.2 Configuration script and external packages

SLEPc’s configure script is much simpler than PETSc’s counterpart because we inherit from
it most of the configuration settings, such as compilers, MPI, and the like. Still, we continue
improving it over the years for a smooth compilation on different systems and optimal integration
with PETSc and other software. One of the changes we introduced in version 3.18 is that
configure arguments intended to provide linker flags (and libraries) now must be specified via
a quoted string instead of a comma-separated list. This is a better approach to install SLEPc
from source-based package managers and is consistent with PETSc’s configure.

8

One of the main roles of configure is to enable external packages when building SLEPc.
Since the early days, SLEPc has allowed using packages such as ARPACK, PRIMME, or TRLAN
in the same way as native SLEPc solvers. In recent versions, we have made the following changes:

• New interfaces to dense eigen- and SVD solvers from ScaLAPACK, Elemental, and ELPA [3]
(note that configuration with ScaLAPACK and Elemental is handled by PETSc’s configure).
SLEPc is intended primarily for sparse matrices, but integrating these external libraries
allows users to compute the whole spectrum of dense (or sparse) matrices using the same
programming interface.

• New interface in EPS to the external package EVSL [17], which can be used for computing
all eigenvalues in an interval of symmetric eigenproblems using polynomial filters. Similar
functionality is also available natively in SLEPc via STFILTER.

• The interface to FEAST has been reintroduced, but now it is supported via Intel MKL
only.

• The interface to BLZPACK has been removed since it is no longer available for download.

5.3 GPU support

Following the improved support for GPU computing in PETSc, we have also enhanced this aspect
in SLEPc. In particular, some of the code that operates with dense matrices has been adapted
to support GPU matrices of type MATSEQDENSECUDA. These matrices store the matrix entries in
both the CPU and GPU memory, synchronizating only when required so that computation can
be carried out on the GPU with minimal overhead.

• Dense matrix functions. The functionality in the FN class related to matrix functions, i.e.,
FNEvaluateFunctionMat() and FNEvaluateFunctionMatVec(), can now take arguments
of type MATSEQDENSECUDA. In this way, the computation can be done on the GPU. This
change required writing GPU implementations of methods such as scaling and squaring
with Padé approximant for the matrix exponential or the Denman–Beavers method for
the matrix square root, among others.

• Projected problems. The DS class does not have GPU support yet, but it has been reworked
to always use the Mat interface rather than raw pointers. This is the first step towards
eventually enabling GPU support in future versions, which will require replacing calls to
LAPACK with the analog ones from MAGMA.

6 Conclusion

This paper summarizes the new functionality that has been added to SLEPc in recent versions,
which often enables its applicability to situations where it could not be used before. Apart
from the new features, SLEPc has also matured in the last years in other aspects such as
more professional development (better software engineering practices, continuous integration
using pipelines, exhaustive test battery with code coverage of more than 90%, comprehensive
documentation, etc.) and community building (collaboration with other groups, interaction with
users via issue notification and contribution of patches via merge requests).

9

Future work We are currently working on a thick-restart Lanczos method for the HSVD,
which will complement the functionality described in Section 2.3. A possible future addi-
tion would be a new problem type for the generalized hyperbolic singular value decomposition
(GHSVD), a mixture of the GSVD and HSVD problems. Other variations of the SVD might be
considered as well. There are many other potential lines for future development, such as block
eigensolvers, structured eigensolvers, solvers for the nonlinear eigenvector problem, improved
support for GPU computing, etc. As always, the priority of the different lines can be biased by
user requests.

Citing SLEPc In order to justify the work invested in SLEPc’s development, we request that
users cite at least one of the SLEPc papers in their publications. The most common way is by
citing the main SLEPc article [12] or the user’s guide [20]. Please reference the present document
to acknowledge the use of one of the versions in the range 3.14–3.18. If you rely on specific library
features, please consider citing any of the papers listed on the website. Alternatively, any SLEPc-
based application code can be run with the option -citations slepc.bib (in addition to all
the options required for normal execution), which will generate a list of BibTEX references
appropriate for that computation.

Acknowledgments In addition to the authors of this paper, the following people contributed
code to the releases: Fande Kong, Barry Smith, Satish Balay, Matthew Knepley, Stefano
Zampini, Jacob Faibussowitsch, Murat Keçeli, William Dawn, Marco Morandini, Alexei Colin,
Jan Blechta, Jack Hale, Elisa Schenone. Their contributions are much appreciated!

References

[1] F. Alvarruiz, C. Campos, and J. E. Roman. Thick-restarted joint Lanczos bidiagonalization
for the GSVD. arXiv:2206.03768 : retrieved 9 Jun 2022, 2022.

[2] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[3] T. Auckenthaler, H.-J. Bungartz, T. Huckle, L. Krämer, B. Lang, and P. Willems. Develop-
ing algorithms and software for the parallel solution of the symmetric eigenvalue problem.
J. Comput. Sci., 2(3):272–278, 2011.

[4] S. Balay, S. Abhyankar, M. F. Adams, J. Brown S. Benson, P. Brune, K. Buschelman,
E. M. Constantinescu, L. Dalcin, A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp,
V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger,
D. A. May, L. Curfman McInnes, R. Tran Mills, L. Mitchell, T. Munson, J. E. Roman,
K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, and J. Zhang.
PETSc/TAO Users Manual Revision 3.18, 2022. Argonne Technical Memorandum ANL-
21/39.

[5] C. Campos and J. E. Roman. Parallel Krylov solvers for the polynomial eigenvalue problem
in SLEPc. SIAM J. Sci. Comput., 38(5):S385–S411, 2016.

[6] C. Campos and J. E. Roman. A polynomial Jacobi-Davidson solver with support for non-
monomial bases and deflation. BIT, 60(2):295–318, 2020.

10

[7] C. Campos and J. E. Roman. NEP: a module for the parallel solution of nonlinear eigenvalue
problems in SLEPc. ACM Trans. Math. Software, 47(3):23:1–23:29, 2021.

[8] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. Parallel distributed computing using
Python. Adv. Water Resour., 34(9):1124–1139, 2011.

[9] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

[10] M. Gu. Subspace iteration randomization and singular value problems. SIAM J. Sci.
Comput., 37(3):A1139–A1173, 2015.

[11] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM Rev.,
53(2):217–288, 2011.

[12] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible toolkit for the
solution of eigenvalue problems. ACM Trans. Math. Software, 31(3):351–362, 2005.

[13] Vicente Hernandez, Jose E. Roman, and Andres Tomas. A robust and efficient parallel
SVD solver based on restarted Lanczos bidiagonalization. Electron. Trans. Numer. Anal.,
31:68–85, 2008.

[14] V. Hiremath and J. E. Roman. Acoustic modal analysis with heat release fluctuations using
nonlinear eigensolvers. arXiv:2208.08717 : retrieved 23 Sep 2022, 2022.

[15] A. Imakura and T. Sakurai. Block SS–CAA: A complex moment-based parallel nonlinear
eigensolver using the block communication-avoiding arnoldi procedure. Parallel Comput.,
74:34–48, 2018.

[16] P. Jolivet, J. E. Roman, and S. Zampini. KSPHPDDM and PCHPDDM: Extending PETSc
with advanced Krylov methods and robust multilevel overlapping Schwarz preconditioners.
Comput. Math. Appl., 84:277–295, 2021.

[17] R. Li, Y. Xi, L. Erlandson, and Y. Saad. The eigenvalues slicing library (EVSL): algorithms,
implementation, and software. SIAM J. Sci. Comput., 41(4):C393–C415, 2019.

[18] Y. Maeda, T. Sakurai, and J. E. Roman. Contour integral spectrum slicing method in
SLEPc. Technical Report STR-11, Universitat Politècnica de València, 2016. Available at
https://slepc.upv.es.

[19] R. Onn, A. O. Steinhardt, and A. Bojanczyk. The hyperbolic singular value decomposition
and applications. IEEE Trans. Signal Proces., 39(7):1575–1588, 1991.

[20] J. E. Roman, C. Campos, L. Dalcin, E. Romero, and A. Tomas. SLEPc users manual. Tech-
nical Report DSIC-II/24/02–Revision 3.18, D. Sistemes Informàtics i Computació, Univer-
sitat Politècnica de València, 2022.

[21] E. Romero and J. E. Roman. A parallel implementation of Davidson methods for large-scale
eigenvalue problems in SLEPc. ACM Trans. Math. Software, 40(2):13:1–13:29, 2014.

[22] S. Yokota and T. Sakurai. A projection method for nonlinear eigenvalue problems using
contour integrals. JSIAM Letters, 5:41–44, 2013.

11

https://slepc.upv.es

