

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/204470

Paraskevopoulos, N.; Sebastiano, F.; Garcia Almudever, C.; Feld, S. (2024). SpinQ:
Compilation strategies for scalable spin-qubit architectures. ACM Transactions on Quantum
Computing (Online). 5(1). https://doi.org/10.1145/3624484

https://doi.org/10.1145/3624484

Association for Computing Machinery

SpinQ: Compilation strategies for scalable spin-qubit architectures

N. Paraskevopoulos1,2, F. Sebastiano1,2, C. G. Almudever3, and S. Feld1,2
1Quantum and Computer Engineering Department, Delft University of Technology, 2628 CD Delft, The Netherlands

2QuTech, Delft University of Technology, 2628 CJ Delft, The Netherlands and
3Computer Engineering Department, Technical University of Valencia, Camino de Vera, s/n, 46022 València, Spain

In most qubit realizations, prototype devices are available and are already utilized in both industry and aca-
demic research. Despite being severely constrained, hardware- and algorithm-aware quantum circuit mapping
techniques have been developed for enabling successful algorithm executions during the NISQ era, targeting
mostly technologies with high qubit counts. Not so much attention has been paid to the implementation of com-
pilation methods for quantum processors based on spin-qubits due to the scarce availability of current experi-
mental devices and their small sizes. However, based on their high scalability potential and their rapid progress
it is timely to start exploring quantum circuit mapping solutions for these spin-qubit devices. In this work,
we discuss the unique mapping challenges of a scalable spin-qubit crossbar architecture with shared control
[1] and introduce SpinQ, the first native compilation framework for scalable spin-qubit architectures that maps
quantum algorithms on this crossbar architecture. At the core of SpinQ is the Integrated Strategy that addresses
the unique operational constraints of the crossbar while considering compilation (execution time) scalability,
having a O(n) computational complexity. To evaluate the performance of SpinQ on this novel architecture, we
compiled a broad set of well-defined quantum circuits and performed an in-depth analysis based on multiple
metrics such as gate overhead, depth overhead, and estimated success probability, which in turn allowed us to
create unique mapping and architectural insights. Finally, we propose novel mapping technique improvements
for the crossbar architecture that could increase algorithm success rates and potentially inspire further research
on quantum circuit mapping techniques for other scalable spin-qubit architectures.

I. INTRODUCTION

The prospect of quantum computing advantage is steadily
becoming a reality [2–4]. The community is anticipating fur-
ther advances that will allow quantum computing systems to
become practical and to reach computational advantage [5].
With such advancements, quantum computing systems are ex-
pected to solve a plethora of classically intractable problems.
Until then, current quantum systems belong to the so-called
Noisy Intermediate-Scale Quantum (NISQ) era [6], in which
devices can only handle small-sized quantum circuits. This is
due to limitations in the number of qubits and high operational
errors, the latter causing rapid quantum information deteriora-
tion. Combined with even more hardware constraints, such as
cross-talk and limited classical-control resources [7, 8], suc-
cessful quantum circuit execution is a difficult feat. Scientists,
both in academia and industry, face major engineering chal-
lenges in building both, hardware and corresponding system
software.

During the NISQ era, there have been significant efforts
[9–19] to extract the most out of these resource-constrained
and error-prone quantum computing systems. One of the ap-
proaches to do so is by developing hardware- and algorithm-
aware quantum circuit mapping techniques to maximize per-
formance. In general terms, mapping refers to the process of
modifying (potentially hardware-agnostic) quantum circuits
in such a way that they can be run on a given quantum com-
puting device by respecting all of its constraints while opti-
mizing performance (e.g., algorithm success rate). So far,
several mapping techniques have been developed mostly for
superconducting and ion-trap qubit devices, as they are nowa-
days one of the most well-recognized and most-developed
qubit implementation technologies in terms of qubit counts
and availability to users. However, spin-qubits emerge as

a promising technology for scaling up quantum computing
systems mainly due to their high integration potential [20–
25]. Therefore, the scientific community is envisioning two-
dimensional spin-qubit architectural proposals that could al-
leviate some of the major challenges towards scalability. Re-
cently, a crossbar array [26] has been experimentally demon-
strated showing great promise for architectures with shared
control. Such scalable architectural designs come with a new
set of hardware constraints for which novel quantum circuit
mapping techniques need to be developed.

In this paper, we present SpinQ, the first native compilation
framework focusing on scalable spin-qubit architectures. To
this purpose, we target the so-called crossbar architecture pro-
posed in [1]. By creating a deep understanding of its opera-
tional constraints, we draw a clear picture of unique mapping
challenges that arise in comparison to other qubit technolo-
gies. We discuss and implement possible mapping solutions
based on [27, 28] while improving those works from a scala-
bility standpoint. We emphasize the importance of performing
an extensive performance evaluation process of novel map-
ping techniques. Note, that this compilation framework will
not only allow quantum algorithm executions on scalable spin
qubit hardware but more importantly will also help to form
insights on the behaviour and performance of this new breed
of architectures and provide some design guidelines for future
developments.

The main contributions of this paper are:

1. An in-depth analysis of mapping challenges in order to
create novel mapping techniques for spin-qubit crossbar
architectures.

2. SpinQ – The first native compilation framework dedi-
cated to scalable spin-qubit architectures which utilizes
a more scalable compilation strategy compared to pre-

2

vious proposals.

3. A thorough performance analysis of the main sources of
gate/depth overhead and estimated success probability
when mapping well-defined quantum algorithms on the
crossbar architecture.

4. Deriving algorithmic- and hardware-specific mapping
insights for the crossbar architecture and other spin-
qubit architectures.

The remainder of this paper is structured as follows: In Sec.
II the current progress and challenges of scalable spin-qubit
architectures are presented. In Sec. III the crossbar architec-
ture is introduced as a potential candidate in scaling quantum
devices in two dimensions, as well as its native operations. In
Sec. IV we comprehensively analyse the unique challenges
of mapping quantum algorithms on the crossbar architecture
which require novel mapping techniques. Then, in Sec.V we
introduce SpinQ – the first native compilation framework for
scalable spin-qubit architectures. In Sec. VII we thoroughly
analyze the performance of SpinQ when mapping a broad and
well-defined range of quantum algorithms on the crossbar ar-
chitecture after which we form architectural and mapping in-
sights. In Sec. VIII we discuss potential improvements of our
compilation strategy and we compare its computational com-
plexity to previous proposals. Finally, we conclude our work
in Sec. IX.

II. SPIN QUBITS AS A SCALABLE PLATFORM

To fulfil the promise [6] of quantum computers being ma-
chines that solve some classically intractable problems, sub-
stantial system sizes have to be reached, i.e., a large number
of qubits [8, 29]. It still remains to be seen which qubit imple-
mentation technologies (e.g., superconducting, trapped ions,
quantum dots, photonics, defect-based on nitrogen-vacancy
diamond centres) will succeed in scaling up quantum comput-
ing systems with high-quality qubits [30, 31]. Spin qubits in
quantum dots are a promising technology for scalable quan-
tum computers due to the maturity of the semiconductor in-
dustry, the capability of high integration on a single die com-
pared to other qubit technologies, long coherence times, and
the ability to operate in super-kelvin temperatures [20–25].

Despite the advantages just mentioned, there are still sev-
eral challenges today towards scaling spin-qubit devices in a
sustainable manner. One major challenge is the wiring scheme
between the quantum processor and the classical interface, the
so-called interconnect bottleneck [22]. Formally, the intercon-
nect bottleneck is described by Rent’s exponent [32], which is
a measure of optimization in the wiring scheme in both, clas-
sical and quantum processors. The existing scheme in most
quantum devices of having at least one control line per qubit
is not scalable in the long term. This is, mostly, due to the fact
that dilution refrigerators have an upper limit to I/O cable ca-
pacity and that more cables will progressively make it harder
to reach the desired milli-Kelvin temperature due to higher
heat dissipation. Therefore, qubit architectures and classical-
control electronics have to support multi-qubit shared-control

that requires a sub-linear number of control lines with an in-
creasing number of qubits. In other words, each control line
needs to address multiple qubits to effectively mitigate the in-
terconnect bottleneck when scaling up quantum hardware.

Going a step further, the inability to achieve a scalable
wiring scheme also originates from the low device unifor-
mity achieved by today’s fabrication tools. In most cases,
this implies that qubits can not be made homogeneous enough
to control them effectively in a scalable architecture. The
low uniformity results in resonance frequency deviations or
other control variations. This means that in an inhomoge-
neous device, a driving signal for a particular operation will
have to vary from one qubit to another to get the same out-
come [1, 22, 33]. This makes it difficult to successfully con-
trol many qubits with the same control line, thus contributing
to the wiring scheme challenge (i.e., the interconnect bottle-
neck).

There have been significant efforts [1, 22, 32, 34–38] to re-
duce the number of control lines reaching the qubits as de-
vices become ever denser. Such efforts take advantage of
the miniaturization capabilities of spin qubits and the large-
scale integration of solid-state circuits to address the afore-
mentioned challenges. However, current experimental work
primarily has been focused on one-dimensional spin-qubit ar-
rays of small sizes [22], which are not easily scalable. Re-
cently, a 2×2 spin-qubit processor [39] and a 4×4 spin-qubit
device based on a crossbar architecture [1, 26] with shared
control has demonstrated the potential to scale spin-qubit de-
vices in two dimensions. As the technology is advancing
and further reducing Rent’s exponent, there will be a need to
effectively map quantum algorithms on two-dimensional de-
vices such as the crossbar architecture which comes not only
with limited qubit connectivity but also with a new set of con-
straints. Therefore, there is an opportunity to explore its map-
ping challenges and propose novel solutions.

However, the sample space of these proposals is sparse and
lacks a detailed description of hardware constraints. In com-
bination with a lack of available devices for testing, leads to
a lack of a proper evaluation tool capable of benchmarking
various quantum algorithms. Therefore, mapping techniques
have not been studied as much as other qubit technologies
such as superconducting and ion traps. It also remains un-
clear whether existing techniques could be applicable. Then,
even if such techniques are realized they could be incompati-
ble with existing quantum compilation frameworks made for
other qubit technologies. This could be due to completely
different development requirements imposed by the particular
spin-qubit constraints and their scalability prospects. In other
words, a dedicated compilation framework for spin-qubit ar-
chitectures with a focus on scalability is still missing. All
these obstacles make it difficult to evaluate and compare var-
ious architectural proposals under relevant application cate-
gories.

3

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 QL0

QL1

QL2

QL3

FIG. 1: Schematic overview of the crossbar architecture and
operational control lines [1].

III. THE CROSSBAR ARCHITECTURE

The crossbar architecture for arranging spin qubits was in-
troduced in [1] as a scalable solution to the interconnect bot-
tleneck. Inspired by the crossbar architecture used in today’s
classical processors [1, 34], it adopts a similar characteristic,
namely shared control. This leads to a quadratic reduction
in control lines per qubit [28] and opens up the possibility
for high integration of up to 1, 000 qubits in a single pack-
age. Qubits are defined by electron (or hole) spin states in
Si-based quantum dots. In Figure 1, we illustrate a schematic
overview of the crossbar architecture in which each site (cir-
cles) represents a quantum dot, some of which are occupied
by spin-qubits (numbered, green circles). Spin qubits are
usually sparsely initialized in a checker-board pattern to re-
duce potential cross-talk and to allow for long-range entan-
glement through shuttling qubits across the array [1]. Finally,
the crossbar architecture requires high uniformity in the fab-
rication of materials to minimize operational errors. Fortu-
nately, it is possible to mitigate such errors or even vanish
them by operating the crossbar at low magnetic fields and with
proper tuning (e.g., separated resonance frequencies between
columns). Furthermore, a crossbar module is envisioned to be
self-contained and to be duplicated in a network of modules.
This can provide the means to realize quantum error correc-
tion (QEC) in large-scale systems enabled by fast-shuttling,
low-error communication links. In this crossbar architecture,
three different kinds of shared control lines are used to per-
form operations on the qubits: vertical (column line, CL),
horizontal(row line, RL), and diagonal (qubit line, QL). No-
tably, each line affects all the sites that it is connected to. For
instance, in Fig. 1 line QL−2 affects the sites in which spin-
qubits 5 and 7 reside in. This imposes some restrictions in
the parallelization of instructions, which we will discuss in
Sec. IV. Below, we will abstractly describe the control prop-
erties for executing gates native to the crossbar architecture.

A more detailed explanation is provided in [28]. Two-qubit
gates. Two two-qubit gates CPHASE and

√
SWAP are

supported by the crossbar, with the latter being chosen for this
work due to its higher operational fidelity and faster execu-
tion time according to [1]. A

√
SWAP can be performed

when two qubits are vertically adjacent (i.e. same column)
and the horizontal barrier between them is lowered. Then the
QL lines going through the two qubits need to be in the same
voltage potential for a specific duration of time to complete
the
√
SWAP . Qubit shuttling. In the crossbar architecture,

qubits can be moved around by performing shuttling opera-
tions. In this operation, the vertical and horizontal lines are
used as barrier gates. Lowering or raising these barriers can
create pathways from which qubits can move (shuttle) from
one site to another with the use of DC signals through the
diagonal lines. Fig. 2 shows an example of shuttling, in
which spin-qubit 3 is moved one site to the left. Although
this architecture can support gate-based communication with
two subsequent

√
SWAP gates as in superconducting qubits,

shuttling qubits is preferred due to higher operation fidelity
and shorter execution time. It should be noted that shuttling
horizontally, i.e., between columns, causes a Z-phase rota-
tion which should be mitigated by timing such operations well
([1]). In the crossbar architecture, single-qubit gate rotations
should be separated into two categories: Z-phase rotations and
X or Y rotations. Z-phase rotations. Z-phase qubit rotations
are controlled by a well-timed qubit shuttling to and from a
neighbouring column [1, 27, 28]. This is due to the differences
in Zeeman energies from column to column which imposes
an alternating magnetic field on qubits, thus rotating them in
the Z axis. When this shuttle is timed correctly, it rotates the
qubit in the correct Z state. The diagonal qubit line provides
the means to address multiple qubits, thus enabling parallel Z
phase shifts across the topology. X or Y rotations. As for
X or Y rotations, either all qubits belonging to red-coloured
columns or all qubits in blue-coloured columns are rotated
(see Fig. 1). This is called semi-global qubit rotation im-
plemented by electron-spin-resonance ([40]). Measurement.
The process of readout allows for local single qubit measure-
ments based on the Pauli Spin Blockade (PSB) process [41].
With this process, the measurement outcome is determined by
whether a qubit shuttle towards a horizontally adjacent ancilla
qubit was successful or not.

IV. QUANTUM CIRCUIT MAPPING CHALLENGES OF
THE CROSSBAR ARCHITECTURE

The quantum circuit mapping process plays an essential
role in the successful execution of algorithms on a quantum
computer. It consists of a cascade of routines that trans-
form a (potentially hardware-agnostic) quantum circuit to a
hardware-compatible version. However, current NISQ quan-
tum processors are severely constrained and cannot run use-
ful applications successfully, yet. Examples of hardware con-
straints are low qubit connectivity, cross-talk, reduced prim-
itive gate set, low coherence time, fabrication imperfections,
and limited classical-control resources. Therefore, a mapping

4

process needs to consider such limitations and try to optimize
performance as much as possible to increase the algorithm’s
success rate. So far, there are a plethora of proposed solu-
tions which differ in strategy, methodology and performance
metrics to optimize [9–19, 42].

Mapping techniques have been mostly developed for super-
conducting and ion-trap qubit devices. However, as of now,
there is not much focus on spin-qubit architectures and their
particular characteristics. Although spin-qubits are now in a
rather early development stage, their scalability potential is
undeniable and therefore it is timely to lay grounds for devel-
oping novel mapping techniques and inspire further research.
As previously mentioned, in this work we focus on the cross-
bar architecture that comes with a unique set of constraints
that affect the parallelization of quantum operations, the ap-
plication of X or Y rotations on single qubits, and the routing
of qubits (i.e. moving qubits around).

1. Parallelization of quantum operations

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 > QL0

>

QL1

QL2

QL3

FIG. 2: Shuttling example of qubit 3 moved one site to the
left, as the barrier CL0 between origin and destination site is

lowered and voltage of QL−1 is larger than > QL0.

Most of the operation parallelization restrictions come from
the fact that control lines are shared among multiple qubits,
while each line has a specific role and relation to one another.
It should also be noted that most operations must be imple-
mented with strict pulse durations and time intervals depend-
ing on the site that gets addressed [1] due to fabrication imper-
fections [28]. Although such pulse durations have to be care-
fully considered in the mapping process by providing recent
calibration data [13, 17, 18], in this work we consider an ideal
crossbar architecture, as such data are not available yet. De-
spite that, the mapping techniques proposed in this work are
compatible with such considerations and can be added once
calibration data are available.

To better illustrate what the conditions and constraints are

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 > QL0

><

QL1

<

QL2

>

QL3

FIG. 3: Parallelizing shuttles of qubit 3 and 6 is not allowed
due to violation of constraints.

when trying to parallelize quantum operations, let us consider
the following example in which two shuttles are performed in
parallel. As shown in Fig. 2, the following requirements must
be fulfilled to shuttle qubit 3 one site to the left:

1. The destination site must not be occupied by another
qubit.

2. The barrier between destination and origin sites must be
lowered. This is depicted as a dashed vertical CL0 line.

3. All barriers surrounding the origin and destination sites
must be raised. This is shown as solid red RL (RL0 and
RL1) and blue CL lines (CL1 and the always-raised
most-left CL line).

4. The voltage going through the QL line of the destination
site (QL−1) must be higher than the one going through
the origin site (QL0). This is shown as QL−1 > QL0

in the top-right of Fig. 2.

5. To prevent other qubits in these two columns from shut-
tling, the voltage going through their QL lines must be
higher than their adjacent empty sites. This is depicted
as voltage level relations between QL lines. Note that
QLs with no voltage relations are irrelevant for this par-
ticular shuttle operation.

Now, we assume a shuttle of qubit 6 to the right (as de-
picted in Fig. 3) in parallel to the left shuttle of qubit 3.
This implies that all previously listed requirements (of qubit
3) need to be satisfied along with the new ones (of qubit 6).
However, the fourth requirement can not be satisfied as the
QL0 > QL1 relation we had before would have to be changed
to QL0 < QL1. If this change is allowed, we violate the fifth
requirement of the first shuttle and, as a consequence, qubit 1
will shuttle to the right. Therefore, we can not shuttle qubits
3 and 6 at the same time.

5

Thus, we see that scheduling parallel gates in the crossbar
implies a strict simultaneous satisfaction of all signal require-
ments for each gate. Any violation of these conditions would
potentially result in shuttling of unwanted qubits, in unwanted
qubit interactions or unknown qubit states. As seen in the
previous example, performing quantum operations in parallel
without affecting other qubits and meeting all signal require-
ments is not always possible regardless of qubit distance. In
fact, it does not matter how far qubits are away from each
other, but whether control lines are shared between them or
not, and whether their operational requirements and relations
match or not. Unlike more popular qubit architectures based
on superconducting or ion traps, this form of operational con-
straint is unique. On one hand, sharing control lines tackles
the interconnect bottleneck, on the other hand, it intrinsically
constraints its parallelization capabilities.

Finally, in other qubit architectures, it is possible to per-
form different gate types in parallel. In the crossbar archi-
tecture, this is not always the case. For example, applying
single-qubit gates and shuttling operations at the same time is
not possible (see Fig. 4a), because the former CL lines need
to carry an alternating current (AC) signal while the latter re-
quire DC signals for raising or lowering the barriers.

2. Application of X or Y rotations on single qubits

As established in Sec. III, X or Y qubit rotations are im-
plemented semi-globally, meaning that either all qubits in odd
or even column parities will be rotated. However, during an
arbitrary cycle of algorithm execution, not all qubits in odd
or even columns should be rotated. Therefore, to compen-
sate for unwanted X or Y rotations, one has to come up with
a specific rotation scheme such that only the targeted qubits
are rotated. In this work, we have implemented the scheme
introduced by [28]. We illustrate how it works in Fig. 4, in
which we are interested in rotating only qubit 5. This is an-
other unique characteristic of this architecture, as additional
gates are needed to perform single-qubit rotations on specific
qubits, which impose new challenges to the mapping process.

3. Routing of Qubits

While we previously described the operational constraints
to parallelize various gates in the crossbar architecture, we
will now expand specifically on the qubit routing challenges.

Routing a qubit in the crossbar means that an electron
(or a hole) is physically ”pushed” to an empty site (i.e., an
empty quantum dot). This mechanism is similar to a Quan-
tum charged coupled device (QCCD) ion trap device when
ions are shuttled through a common channel from trap to trap,
assuming sufficient destination ion trap capacity [43]. The
QCCD architecture and the crossbar architecture fundamen-
tally differ in topology, but both require special algorithms or
additional routing routines to maintain control of qubit posi-
tions and avoid potential conflicts.

Focusing on the crossbar, shuttling a qubit does not only
depend on specific control signal requirements and available
empty sites but on the positions of other qubits as well. We
illustrate this fact with an example in Fig. 5, in which a verti-
cal shuttle operation of qubit 3 is indicated by a black arrow.
In this case, the horizontal barrier RL0 has to be lowered and
the QL lines have to be pulsed in certain voltage relations to
allow for correct shuttling. However, an unwanted interaction
between two other qubits in the same row (qubits 2 and 4, cir-
cled) is concurrently caused, regardless of the QL2 and QL3

relation. Analogously, the same issue exists with a horizontal
shuttle when having two horizontally adjacent qubits in the
same columns where the shuttle takes place [27, 28]. Lastly,
there can be a blocked path conflict where there is no empty
site for a qubit to shuttle to.

Therefore, a dedicated qubit routing algorithm for the
crossbar architecture has to be developed to avoid collisions,
blocked paths, and unwanted interactions. Furthermore, even
if we had such a dedicated routing algorithm, the same con-
flicts have to be considered and prevented when scheduling
gates in parallel. For that, control signals and qubit posi-
tions must be carefully monitored within the mapping pro-
cess. From the description above, it is clear that both, routing
and scheduling processes, need to jointly work in a strategy to
avoid conflicts and optimize for algorithm success rate. This
will be part of SpinQ, presented in the following section.

V. SPINQ – THE FIRST NATIVE COMPILATION
FRAMEWORK FOR SCALABLE SPIN-QUBIT

ARCHITECTURES

In this work, we present the first native compilation frame-
work – SpinQ – dedicated to compiling and mapping quan-
tum circuits onto scalable spin-qubit architectures, such as the
previously described crossbar. We have based our mapping
techniques on previous works from [27, 28] while improving
them from a scalability standpoint.

Fig. 6 shows the schematic structure of our framework. As
input, SpinQ accepts QASM format files that describe quan-
tum circuits (used as benchmarks) in a device-independent
manner. To increase flexibility, custom operations and their
particular attributes can be defined in a hardware architec-
tural configuration file. It can include operational attributes
such as the duration of a gate, the mathematical description
of the unitary matrices, associated gate fidelities, and archi-
tectural constraints, among others. Moving on, the compiler
consists of a series of steps (called passes) to decompose
gates, route qubits, and schedule instructions. To address the
unique mapping constraints of the crossbar architecture, we
have conceptualized and developed the integrated strategy.
We did so not necessarily to maximize the performance of the
algorithms when being executed on the crossbar, but rather to
study how they behave on such architecture and focus on the
scalability potential of spin-qubit technologies (see also Sec.
VIII). The compiler’s output is a QASM file which is compat-
ible to be executed on the given crossbar architecture. Option-
ally, a verification step can take place to ensure the compiled

6

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 QL0

QL1

QL2

QL3

(a) Step 1

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 < QL-1 < QL0

>

QL1

QL2

QL3

(b) Step 2

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 QL0

QL1

QL2

QL3

(c) Step 3

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 < QL0

>

QL1

QL2

QL3

(d) Step 4

FIG. 4: Single-qubit gate on qubit 5: (a) Step 1: AC signals through the CL lines induce magnetic fields on qubits 1, 5, 6 and 2,
thus changing their state. The direction and frequency of these signals determine which columns (red or blue) and what rotation
(X or Y gate) will be applied to the corresponding qubits. (b) Step 2: The targeted qubit 5 is moved with a shuttle operation to
a different column parity. For this operation, the orthogonal lines (CL and RL) open and close as barriers and the diagonal lines

(QL) create potential gradients to allow for qubit 5 to move (shuttle). Note that QL needs to have voltage relations with their
neighbour QL lines. (c) Step 3: An inverse rotation is applied to qubits 1, 6 and 2 similarly to Step 1. (d) Step 4: Target qubit 5

is moved with a shuttle operation to the initial position.

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 < QL0

<

QL1

QL2

><

QL3

FIG. 5: Example of a conflict: the operational requirements
of shuttling qubit 3 downwards have lowered the RL0 barrier
thus causing an unwanted interaction between qubits 2 and 4

circuit meets all operational constraints of the crossbar archi-
tecture without any conflicts. This step is implemented to be
able to check the compatibility of architectural proposals that
are not physically realized yet. Finally, several performance
metrics are extracted from the compiled circuit to evaluate
algorithm performance. In the next sections, we will further
discuss each of the elements of the compiler.

A. Compilation steps

The compiler consists of the following steps:

Q
u

a
n

tu
m

A
lg

o
ri

th
m

s

(B
en

ch
m

a
rk

s)

Compiler

G
at

e
D

ec
o

m
p

o
si

ti
o

n

In
it

ia
l

P
la

ce
m

en
t

In
te

g
ra

te
d

 S
tr

at
eg

y
(R

o
u

ti
n

g
 a

n
d

 S
ch

ed
u

li
n

g
)

Architectural Configuration

C
o

m
p

il
ed

 C
ir

cu
it

Metrics

Verification

Depth

Overhead

Gate Overhead

Estimated

Success

Probability

Compilation

time

Operational fidelities

Operational durations

Architectural constraints

Topology

FIG. 6: Overview of our SpinQ framework proposed in this
paper.

Decomposition of quantum gates. Inputted QASM quan-
tum circuits are transformed into a custom-made intermediate
representation (IR) data format. Quantum gates are then de-
composed into gates native to the architecture based on the
decomposition sequences specified in the architectural con-
figuration file.

Physical initialization of spin qubits. A checkerboard pat-
tern has been proposed [42] to allow space for qubits and an-
cilla qubits to move [27, 28]. The physical space achieved be-
tween the qubits not only facilitates shuttling qubits avoiding
possible conflicts but also reduces crosstalk and enables sur-
face code error correction [1]. As we will discuss later, main-
taining this placement throughout a circuit execution plays an
integral role in our compilation strategy. Having said that,
initializing qubits in alternative patterns and changing them
during execution is possible. This flexibility can be particu-
larly advantageous to highly specialized mapping techniques
for the crossbar as well as spin-qubit architectures in general.

7

Virtual-to-physical qubit initial placement. The current
version of SpinQ associates virtual qubits of an algorithm with
physical qubits (placed in the checkerboard pattern) in a one-
to-one manner by numbering the physical qubits from left to
right and from bottom to top (as shown in Fig. 1. In the re-
sults sections VII and VIII, we will provide insights on how
common initial placement algorithms can be adapted to im-
prove the performance of spin-qubit architectures (such as the
crossbar).

Integrated Strategy for Routing and Scheduling. As ex-
plained in Sec. IV, both routing and scheduling techniques
must avoid conflicts. To do that, a specific strategy needs
to be followed. There can be various strategies for various
goals with trade-offs between performance and compilation
time. The presented Integrated Strategy tilts towards mini-
mizing compilation time while having great prospects to be
competitive against other solutions that focus on algorithm
performance as will be discussed in Sec. VIII.

Firstly, in the Integrated Strategy, the checkerboard pat-
tern qubit placement [1], also known as ”idle-configuration”
in [28], should be maintained as much as possible. This pro-
vides at least two empty sites for every qubit to move towards
to, at the beginning of each cycle. To maintain the checker-
board pattern throughout circuit execution when routing for
two-qubit gates, a conflict-free shuttle-based SWAP technique
can be used ([27]) as shown in Fig. 7. Note that this move-
ment of qubits results in a gate overhead of 4 (i.e., 4 shuttle
operations), but a depth overhead of 2, as these two shuttle
pairs can always be executed in parallel. To bring the two
qubits to the appropriate sites and allow two-qubit interac-
tions, multiple shuttle-based SWAPs might be performed. For
that, we have implemented a shortest-path algorithm based
on the Manhattan distance. When one of the qubits is placed
in the desired position, the next step is a horizontal shuttle,
either to the left or to the right, after which the target and
control qubits are vertically adjacent for interaction, and the
checkerboard pattern is temporarily broken. Proceeding the√
SWAP , a shuttle instruction returns the qubit to the previ-

ous position and the checkerboard pattern gets restored. Note
that the aforementioned process can be successfully executed
only in that particular order, otherwise there can be a routing
conflict.

So far, we have only talked about a routing technique
for bringing together qubits for performing two-qubit gates.
However, qubit routing is also needed for X or Y rotations to
a specific qubit(s) and for shuttle-based Z rotations, as dis-
cussed in Sec. III. As a consequence, the ”idle configura-
tion” should be maintained when routing for these gates as
well. But once again, routing for single-qubit gates before
the scheduling stage can be problematic as it can cause con-
flicts. For that reason, the second consideration of the Inte-
grated Strategy is the integration of single-qubit gate routing
within the scheduling stage, hence the name ”integrated”.

Then the Integrated Strategy continues with two passes. In
the first pass, the scheduler tries to parallelize X or Y gates
in an ideal manner and Z gates individually, ignoring any po-
tential conflicts. This is no different than other single-qubit
gate scheduling processes proposed for other qubit architec-

tures. However, it differs on the second pass which integrates
the routing procedures for X, Y and Z gates. The second pass
iterates over each cycle produced by the first pass. For each
cycle, there are two possibilities: (a) if no conflicts are de-
tected when scheduling the necessary shuttle instructions re-
quired for each single-qubit gate, the new shuttle instructions
are inserted between the current cycle and the next. (b) if con-
flict(s) are detected, the subset of the problematic gate(s) is
removed and stored. Once the non-problematic gate subset
is scheduled according to case (a), the problematic subset is
recalled and iterated again. This time it constitutes a conflict-
free cycle and is scheduled according to case (a). This way
the second pass loops in total two times whenever there is a
detected conflict.

Overall, the current implementation does not parallelize
gates of different types in the same cycle, and thus each cycle
is dedicated to one instruction type. Fortunately, the strategy
described above and suggested extensions in Sec. VIII can be
adapted to a real setup. As explained in Sec. IV, a fabricated
crossbar device will most likely have material imperfections,
thus requiring pulse calibration per site. As pointed out by
[28, 44], pulsing control lines prematurely to account for ma-
terial variations could cause an unwanted interaction. Since,
however, the Integrated Strategy (or an extension thereof) ex-
clusively schedules gates of the same type in each cycle, fine-
tuning pulses within the cycle is possible before moving to the
next.

B. Performance metrics

We will now introduce the metrics used in this work to eval-
uate the performance of SpinQ when mapping different algo-
rithms on the crossbar architecture.

Gate overhead. One commonly used metric to evaluate
the performance of a mapper and its underlying architecture
is gate overhead. We calculate it as the percentage relation of
additional gates inserted by the mapper to the number of gates
after decomposition. We do not count decomposition gate
overhead as it is always proportional to the number of gates.
Getting a clear view of the various sources of gate overhead
will help to form useful insights. Note that, unlike supercon-
ducting architectures where gate overhead results from rout-
ing instructions (i.e. SWAP gates) for performing two-qubit
gates, in the crossbar, it can be caused by single-qubit gates as
well. The main sources of gate overhead are the following:

• 4 additional shuttle instructions per shuttle-based
SWAP for two-qubit gates

• At least 3 additional instructions for each X or Y rota-
tion gate within the semi-global rotation scheme

• 2 additional shuttle instructions for each two-qubit gate

• 1 additional shuttle operation for each Z rotation gate

Depth overhead. Another commonly used metric to eval-
uate the performance of a mapper and its underlying architec-
ture is the depth overhead of a circuit. The depth of a circuit is

8

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 < QL-2 > QL-1 > QL0

<

QL1

QL2

QL3

(a) Horizontal shuttling

CL0 CL1 CL2

RL2

RL1

RL0

1

4

2

3

5 6

87

QL-3 QL-2 QL-1 < QL0

>

QL1

<

QL2

>

QL3

(b) Vertical shuttling

FIG. 7: Shuttle-based SWAP for two-qubit gate routing: With this technique, two diagonally neighbouring qubits exchange
their position by consecutively performing two horizontal and two vertical shuttles.

equal to the minimum number of time steps of a circuit when
executing gates in parallel [9, 10, 45–47]. We calculate depth
overhead as the percentage relation of additional depth pro-
duced by the mapper to the circuit depth after decomposition.
Note that the initial circuit depth is calculated after scheduling
the circuit only by its gate dependencies, meaning without any
architectural constraints. The main sources of depth overhead
are:

• At least 3 additional cycles for each X or Y rotation
gate due to the semi-global rotation scheme

• 2 additional cycles per shuttle-based SWAP for two-
qubit gates

• 2 additional cycles for each two-qubit gate

• 1 additional cycle for each Z rotation gate

Estimated Success Probability. A key metric to assess the
performance not only of the compiler but in general of a quan-
tum computing system is the algorithm success rate. From an
experimental point of view, the algorithm success rate is cal-
culated by executing the algorithm several times on a given
(real) quantum processor and creating the distribution of suc-
cessful executions, based on the expected measurement. An
alternative way to calculate the success rate without the need
for a real quantum processor is by using an approximation nu-
merical method. One of the most commonly used methods to
do so is considering the estimated success probability (ESP)
of an algorithm [48]:

ESP =
∏
i

∏
j

gate fidelityi,j (1)

where i represents the ith time step and j the jth gate in the
ith time step.

This method is far more efficient compared to using a
Hamiltonian model. However, the accuracy of the estima-
tion can be low due to its simplicity. To expand it, we have
considered a per-type and per-location variability of gate fi-
delities, based on a normal distribution. This implies that, for
instance, a two-qubit gate (

√
SWAP) will have lower fidelity

than a single-qubit gate and that the actual fidelity will depend
on the exact location in the topology. These expansions con-
stitute a more realistic, i.e., closer to a real device, estimation
of circuit success probability:

ESP =
∏
i

∏
j

gate fidelityx,yi,j (2)

where i represents the ith time step, j the jth gate in the ith
time step and and x, y are the physical qubit(s) coordinates.

Compilation time. In this work, we are not only inter-
ested in building mapping techniques themselves, but also in
their scalability potential. This necessitates that our proposed
SpinQ strategy should remain efficient for a variety of quan-
tum circuit parameters (e.g., number of qubits or percentage
of two-qubit gates). By measuring the compilation time for
mapping quantum circuits, we get a reference of the scalabil-
ity of our implementations.

C. Verification

A verification tool is important to this work due to the
lack of a working device for real-system testing. The tool
is searching for mismatches between all shuttling sequences
and the qubits position history stored during compilation. It
also checks for conflicts, architectural constraint violations
and state vector mismatches between and in each stage of the
mapper. The latter uses the Qiskit Aer library [49].

9

VI. EXPERIMENTAL METHODOLOGY

Benchmarks. We have generated 3, 630 random uniform
algorithms [50] containing X, Y, Z and

√
SWAP gates (all

native to the crossbar architecture) to be used as benchmarks.
With this set, we can vary on demand the number of gates,
number of qubits, and percentage of two-qubit gates. For
example, a random uniform benchmark with 50% of two-
qubit gates relative to single-qubit gates will have 33.33% of
X or Y gates, 33.33% of Z gates, and 33.33% of two-qubit
gates. Generating synthetic circuits provides a well-controlled
benchmark collection from which we can better understand
results and form insights. Moreover, we use real benchmarks
from the RevLib library in a [5 - 1400] gate range [51]. Quan-
tum circuits from this library are often used in related quantum
circuit compilation works [9, 11, 12] and it consists of quan-
tum algorithms with parameters ranging from 3 to 16 qubits,
18.75% to 100% of two-qubit gates and 5 to 512, 064 gates.
Finally, we also consider quantum circuits from the Qlib li-
brary [52] which contains real quantum algorithms in increas-
ing size.

Benchmarks characterization. When it comes to perfor-
mance evaluation, it is important to not only consider proper-
ties of the crossbar architecture but also the characteristics of
quantum circuits. The simplest and most commonly [14] used
parameters of quantum circuits are number of qubits, number
of gates, and absolute or relative (i.e., percentage) number of
two-qubit gates. However, only these three characteristics can
be misleading for two reasons. Firstly, two benchmarks, for
instance, could have the same parameter values but heavily
differ in the circuit’s structure [14]. When one of them has
all pairs of qubits interact with each other will require more
routing than the other which might have the same number of
interactions, but with only one pair of qubits interacting. The
structure of a quantum circuit is derived from its qubit inter-
action graph (QIG) which represents the number and distri-
bution of interactions (i.e., two-qubit gates) between virtual
qubits. Several internal circuit parameters can be extracted
from the QIG that better distil its properties [14]. Having said
that, we analyze QIGs visually only, as this is still an active
field of research [14]. Despite that, we can nonetheless make
concrete conclusions and form insights, making visual QIG
assessments a viable tool to characterize algorithms. The sec-
ond reason is that initial gates can be decomposed to natively
supported instructions for the underlying architecture. This
means that the number of gates and ratios (percentages) be-
tween each gate type can differ from the initial set to the actual
executable set, meaning that evaluations can become more ac-
curate when accounting for the decomposed set.

Experimental Setup. We run SpinQ on a laptop with an
Intel(R) Core(TM) i7-3610QM CPU @ 3.20GHz and 16GB
DDR3 memory. SpinQ is written in Python 3.9.6 version.

VII. EVALUATION AND ANALYSIS

In this Section, we present an in-depth performance anal-
ysis of SpinQ when mapping a broad range of quantum al-

gorithms on the crossbar architecture. We then form architec-
tural and mapping insights for each performance metric. More
specifically, gate overhead and corresponding insights are pre-
sented in Sec. VII A and VII B, depth overhead in Sec. VII C
and VII D, and ESP in Sec. VII E and VII F. Finally, we show
results regarding compilation time of SpinQ in Sec. VII G to
asses its scalability capability.

A. Gate Overhead

To start with, we analyse the gate overhead trend in a wide
range of quantum algorithms. In Fig. 8 we have mapped ran-
dom uniform circuits on the crossbar architecture. Focusing
on Fig. 8a, which reaches up to 25 qubits, we observe that as
we go from low to high number of qubits and from low to high
percentage of two-qubit gates, the gate overhead increases
(from blue to red color). More precisely, higher qubit counts
imply larger crossbar topologies, thus potentially longer rout-
ing distances, i.e., more shuttle-based SWAPs. Furthermore,
higher percentages of two-qubit gates potentially lead to more
routing of qubits. These observations verify that the main
source of gate overhead is indeed the routing of qubits for
two-qubit gates (see Sec. V A). We also notice that the num-
ber of gates has a small but noticeable influence on the gate
overhead. To further observe the trend when increasing the
number of qubits, we changed the range of qubits from [3
– 25] to [25 – 99] in Fig. 8b. We see once more that the
gate overhead increases as we go from low to high number
of qubits and percentage of two-qubit gates. As expected, the
gate overhead, shown on the color bars, of the [25 – 99] qubit
range is on average 102.49% higher than that of the [3 – 25]
qubit range because of the increased routing distances.

So far, the above random algorithms were generated to have
control of different circuit parameters (i.e., number of qubits
and gates and two-qubit gate percentage) in a way to broadly
cover the parameter space and up to certain boundaries. How-
ever, they might not be representative of real algorithms from
a circuit structure point of view (e.g., how two-qubit gates
are distributed among qubits or the degree of operation par-
allelism). Therefore, we then mapped real algorithms from
the RevLib and Qlib libraries resulting in the gate overhead
shown in Fig. 9, Fig. 10, and Fig. 11. In Fig. 9 we can
observe that benchmarks “cluster” together in similar colours,
namely shades of blue, green, yellow and red. This implies
that similar benchmarks, meaning with similar parameters and
structure, have similar gate overhead. Note that whereas ran-
dom uniform algorithms have all the same circuit structure
because of the way they are generated, RevLib algorithms
present different structural parameters not only compared to
the randomly generated circuits but also between them. For
this reason, correlations such as the higher the number of
qubits and percentage of two-qubit gates gets, the higher the
gate overhead will be, are not as evident as before (i.e. for
random circuits).

To further analyse how structural circuit parameters impact
the gate overhead, we mapped algorithms with similar number
of gates, qubits, percentage of two-qubit gates and QIG from

10

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

5

10

15

20

25 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

0

20

40

60

80

100

MAX=1114.28, AVG=473.69, MED=423.23, MIN=124.53
Gate Overhead [%]

200

400

600

800

1000

(a)

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

30
40

50
60

70
80

90
100 2-

Q
Ga

te
 P

er
ce

nt
ag

e
(b

ef
or

e
de

co
m

p.
)

0

20

40

60

80

100

MAX=2416.29, AVG=959.18, MED=871.93, MIN=65.03
Gate Overhead [%]

500

1000

1500

2000

(b)

FIG. 8: Resulting gate overhead when 3, 630 random uniform quantum algorithms are mapped onto the crossbar architecture.
The three axes correspond to benchmark characteristics, namely, the number of gates [50 - 20,000], number of qubits [3 - 99]

(split into two subfigures), and two-qubit gate percentage [0 – 100].

the Qlib library onto the crossbar architecture (see Fig. 10).
With these simulations, we also want to perform a scalability
analysis of the algorithms which is not possible with RevLib
circuits. First, note that the Cuccaro Adder (top line in Fig.
10) has a small drop in the percentage of two-qubit gates that
goes from 71.43% to 66.75% when increasing in size (num-
ber of qubits) whereas the Vbe Adder (bottom line) main-
tains a lower percentage of 50% for the same increase in size.
One can immediately observe that the Cuccaro Adder shows a
higher gate overhead up to 284% due to the higher two-qubit
gate percentage compared to the 271% of Vbe Adder, match-
ing the conclusions made in Fig. 8. However, as we empha-
sized above, in the case of real algorithms comparisons can
only be properly made when looking not only at their circuit
parameters but also at their more structural ones such as the
QIG.

For this reason, in Fig. 11 we show the derived QIGs from
Vbe Adders’ 40-qubit circuit, Cuccaro Adders’ 38-qubit cir-
cuit and Cuccaro Multipliers’ 21-qubit circuit alongside their
gate overhead in relation to the number of qubits and percent-
age of two-qubit gates. In these QIGs, nodes correspond to
qubits and edges to qubit interactions, i.e., two-qubit gates.
The particular size selection of these QIGs was made to easily
show their structure. We immediately observe similarities in
the QIGs of the two Adders as the distribution of interactions
is almost identical. More specifically, we see 2 to 3 inter-
actions per qubit on average, with others close to their logical
qubit number. Therefore, we can conclude that the higher gate
overhead of Cuccaro Adder is due to the higher percentage of

two-qubit gates, compared to Vbe Adder.
However, note that the Cuccaro Multiplier has the highest

gate overhead of all three (309%) despite having a lower two-
qubit gate percentage than the Cuccaro Adder. The reason be-
hind this is the difference in its QIG, which is much more con-
nected implying a denser qubit interaction distribution com-
pared to the others. Because of this, more routing is needed to
connect (nearly) all qubits across the entire topology.

B. Insights from gate overhead analysis

Accounting for the routing constraints, as discussed in Sec.
IV, mapping on the crossbar architecture is not a trivial task.
In fact, we have emphasized the importance of conceptu-
alizing and developing new routing techniques that specif-
ically can address the unique mapping challenges of spin-
qubit architectures. More specifically, with the adoption of
the checkerboard pattern combined with the shuttle-based
SWAPs, we can provide a scalable solution of qubit routing
for two-qubit gates. Additionally, the complexity only scales
with the number of two-qubit gates, therefore being a viable
solution for large-scale implementation. However, this tech-
nique makes two-qubit gate routing the highest source of gate
overhead and it can dramatically increase it with higher qubit
counts and a higher percentage of two-qubit gates (see Fig.
8 and 10). Moreover, in Fig. 11 we saw that gate overhead
can also be increased by a more connected QIG even if other
circuit parameter values are comparatively lower. This shows

11

Gates (before decomp.)

0 200 400
600

800
1000

1200
1400

Qub
its

4
6

8
10

12
14

16 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

20
30
40
50
60
70
80
90
100

MAX=306.6, AVG=210.59, MED=205.72, MIN=167.0
Gate Overhead of Integrated Strategy [%]

180

200

220

240

260

280

300

FIG. 9: Resulting gate overhead when mapping quantum
algorithms from the RevLib library onto the crossbar
architecture. The three axes correspond to benchmark

characteristics, namely, number of gates [5 - 1400], number
of qubits [3 - 16] and two-qubit gate percentage [18.75 -

100].

the importance of basing circuit performance evaluation not
only on simple circuit parameters but also on other ‘hidden’
structural characteristics such as the qubit interaction distribu-
tion.Having said that, the second biggest source of gate over-
head originates from X or Y qubit rotations, as it produces at
least 3 additional gates compared to 4 additional gates for each
shuttle-based SWAP. This is due to the unprecedented semi-
global rotation scheme which is the first time that single-qubit
gates require additional instructions (i.e., produce gate over-
head) compared to other qubit architectures. The previous
two facts inspire novel mapping techniques for the crossbar
architecture (and potentially for other spin-qubit architectures
with similar characteristics) that can increase performance,
namely:

1. Developing a routing solution dedicated to accounting
for potential conflicts and constraints can reduce the
gate overhead resulting from the shuttle-based SWAPs.
Such a generalized routing algorithm could also include
SWAP interactions (two consecutive

√
SWAP s) and

CPHASE interactions. For instance, there can be sce-
narios that choosing a more noisy two-qubit interaction,
for the purpose of avoiding an upcoming conflict, that
could result in higher ESP. Additionally, such a heuris-
tic algorithm can allow multiple control or target qubits
([10]) to be shuttled around the topology allowing for
parallelization of many two-qubit gates while avoiding
high error variability in the topology [18]. However,

Gates (before decomp.)

0 50 100 150 200 250 300 350 400

Qub
its

0
20

40
60

80
100

120 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

50

55

60

65

70

 Gate Overhead [%]

200

220

240

260

280

FIG. 10: Resulting gate overhead when mapping the Cuccaro
Adder (top line of data points) and the Vbe Adder (bottom)
quantum algorithms from the Qlib library onto the crossbar

architecture. The three axes correspond to benchmark
characteristics, namely, number of gates [4 - 385], number of
qubits [4 - 130] and two-qubit gate percentage [50 - 71.43].

such a solution must be implemented with complexity
in mind such that it will not make it unviable on large
scale.

2. A more efficient routing algorithm for single-qubit
gates can significantly reduce the gate overhead, such
that a specific rotation scheme to rotate targeted qubits
is used less often. Such an algorithm can route qubits to
the appropriate odd or even columns before the execu-
tion of single-qubit gates without the need to apply any
scheme afterwards (see the example in Sec. IV).

3. Combining the previous two points, there can be a uni-
fied algorithm implementing both. In such an algo-
rithm, upcoming routing for single-qubit gates is ac-
counted for when routing for two-qubit gates, and vice
versa.

4. Finally, an initial placement algorithm can take into ac-
count not only two-qubit gates but single-qubit gates as
well. Since the positions of qubits influence the gate
overhead resulting from single-qubit gates (due to the
semi-global rotation scheme), an extension of an initial
placement algorithm accounting for single-qubit gates
can reduce the gate overhead.

Last but not least, we have emphasized that to concretely
evaluate results, there has to be sufficient characterization of

12

Cuccaro MultiplierVbe Adder

Cuccaro Adder

FIG. 11: Resulitng gate overhead when the Vbe Adder, Cuccaro Adder and Cuccaro Multiplier from the Qlib library are
mapped onto the crossbar architecture alongside their Quantum Interaction Graphs (QIG) consisting of 40, 38 and 21 qubits,

respectively. The y-axis represents the two-qubit gate percentage and the x-axis the number of qubits. We see gate overhead to
be influenced not only by the number of qubits and two-qubit gate percentage but also by the qubit interaction distribution.

benchmarks, especially when evaluating novel architectures
and mapping techniques. In our analysis, we did not rely only
on simple benchmark parameters, such as the percentage of
two-qubit gates, but also on the internal structure of bench-
marks using the Quantum Interaction Graph (QIG).

C. Depth Overhead

This time, we analyse the depth overhead when mapping
onto the crossbar the same random uniform benchmark set as
in Fig. 8. In Fig. 12, it can be observed that the trend (colours)
of the depth overhead changes for different ranges of number
of qubits as shown in the two subfigures. Knowing that the
main source of depth overhead originates from X or Y gates
(at least 3 additional cycles), we expect the depth overhead to
become higher in lower regions of two-qubit gate percentage.
That is observed in Fig. 12a, where the number of qubits goes
up to 25. However, moving on to Fig. 12b, we see that this
trend changes. Now, due to the higher number of qubits, rout-
ing distances have increased, thus routing for two-qubit gates
dominates the depth overhead. This is apparent by its increase
(from blue to red colour) as we go from lower qubit counts to

higher qubit counts, and as we go from low to higher percent-
age of two-qubit gates. Finally, this fact is also apparent in
the absolute values of depth overhead of the two subfigures.
Note also that the number of gates has a slight influence on
the depth overhead, but it is not as relevant as the other char-
acteristics discussed above.

Moving on, Fig. 13 shows the depth overhead of a Cuc-
caro Adder when scaling it up from 4 to 130 qubits. In the
range of 4 to 20 qubits, we observe an increase in depth over-
head as the percentage of two-qubit gates decreases, which
aligns with the remarks about the main source of depth over-
head (i.e., the X or Y gates). Then, for an increasing number
of qubits (from 20 qubits on) and at an almost constant two-
qubit gate percentage (67%), the depth overhead increases at
a slower rate. Here we conclude, once again, that two-qubit
gate routing starts to dominate the depth overhead as routing
distances become larger.

In most previous works, the amount of two-qubit gates is
the main circuit characteristic to anticipate how much qubit
routing will be needed for a specific quantum algorithm and
therefore the major and only source of gate/depth overhead.
However, in the crossbar architecture, and potentially in other
spin-qubit crossbar designs, single-qubit gates can also con-

13

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

5

10

15

20

25 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

0

20

40

60

80

100

MAX=6290.98, AVG=2217.92, MED=2132.74, MIN=262.0
Depth Overhead [%]

1000

2000

3000

4000

5000

6000

(a)

Gates (before decomp.)

0 2500500075001000012500150001750020000

Qub
its

30
40

50
60

70
80

90
100 2-

Q
Ga

te
 P

er
ce

nt
ag

e
(b

ef
or

e
de

co
m

p.
)

0

20

40

60

80

100

MAX=27786.21, AVG=12530.1, MED=11934.55, MIN=2250.0
Depth Overhead [%]

5000

10000

15000

20000

25000

(b)

FIG. 12: Resulting depth overhead when 3, 630 random uniform quantum algorithms are mapped onto the crossbar
architecture. The three axes correspond to benchmark characteristics, namely, number of gates [50 - 20,000], number of qubits

[3 - 99] (split into two subfigures), and two-qubit gate percentage [0% – 100%].

tribute to this overhead as discussed. It is then important to
have a closer look at the X or Y rotation gate percentage and
further analyse how it impacts the depth overhead. Addition-
ally, after the gate decomposition step, the percentages and
ratios between all gate types are changed. To illustrate this,
imagine a quantum circuit that originally consists of a low
number of CNOT gates and no Z gates. After the decompo-
sition to gates supported by the crossbar architecture, the per-
centage of Z rotation gates will increase, and consequently,
the two-qubit gate percentage will decrease, as CNOT gates
are decomposed as Ry(π2), two

√
SWAP , S, S†, Ry(−π2).

Thus, it is relevant to consider this change in gate percentage
in our analysis as ultimately the executable circuit will only
consist of native gates. To summarize, as overhead comes
from mapping different types of gates on the crossbar, indi-
vidually distinguishing between them, in particular after de-
composition, can increase the accuracy of our evaluations.

To illustrate the previous point, in Fig. 14 we show the
depth overhead of the Cuccaro Adder (upper dots) and the
Vbe Adder (lower dots) with the same ranges as in Fig. 10.
Note that the y-axis corresponds to the percentage of X or Y
rotation gates after decomposition. From this new perspective,
we clearly see their difference in actual (i.e., executed by the
architecture) X or Y rotation gate percentage. On average
the depth overhead of the Vbe adder is 196% higher than the
Cuccaro Adder for the same range of qubits. As explained
before, the highest source of depth overhead comes from X
or Y rotations gates, which explains the large depth overhead
difference between those two algorithms.

D. Insights from depth overhead analysis

From the previous analysis, we can observe that trends can
change based on the parameter ranges of benchmarks. This
is because different sources of depth overhead contribute with
different rates based on the number of qubits (i.e., crossbar
size). More specifically, the overhead contribution resulting
from mapping X/Y gates was higher up to a certain number
of qubits after which was exceeded by the contribution rate of
two-qubit gates. We saw that exceeding a threshold of more
than 20 qubits increases the depth overhead at a steadier pace,
which specifically favoured scalability for Cuccaro Adder in
Fig. 13 and 14. It is expected, however, that with different
algorithms, there will be different trends. With such observa-
tions, we stress the importance of distinguishing between all
gate types and especially after decomposition to better under-
stand the performance impact of mapping. With that knowl-
edge, we can create better mapping techniques and/or make
an informed selection of algorithms to execute.

As stated before, the fact that gate overhead can result from
mapping single-qubit gates is unprecedented. Furthermore,
we notice that mapping both, single- and two-qubit gates, re-
quires additional shuttles and they produce the highest gate
and depth overhead. Therefore, novel mapping techniques
minimizing all qubit movements (shuttles) can increase per-
formance substantially, such as the ones discussed in Sec.
VII B. From an architectural point of view, since the shuttle
operation is so relevant, there have to be as few operational

14

Gates (before decomp.)

0 50 100 150 200 250 300 350 400

Qub
its

0
20

40
60

80
100

120 2-
Q

Ga
te

 P
er

ce
nt

ag
e

(b
ef

or
e

de
co

m
p.

)

67

68

69

70

71

MAX=586.97, AVG=563.11, MED=570.28, MIN=450.0
 Depth Overhead [%]

460

480

500

520

540

560

580

FIG. 13: Resulting depth overhead when Cuccaro Adder
from the Qlib library is mapped onto the crossbar

architecture. The three axes correspond to benchmark
characteristics, namely, number of gates [4 - 385], number of

qubits [4 - 130] and two-qubit gate percentage [66.75 -
71.43].

0 20 40 60 80 100 120
Qubits

45.25

45.50

45.75

46.00

46.25

46.50

46.75

X/
Y

Ga
te

 P
er

ce
nt

ag
e

(a
fte

r d
ec

om
p.

)

Depth Overhead [%]

450

500

550

600

650

700

750

FIG. 14: Resulting depth overhead when Cuccaro Adder
(bottom line of data points) and Vbe Adder (top) from the

Qlib library are mapped onto the crossbar architecture. The
y-axis represents the X or Y gate percentage, and the x-axis

the number of qubits.

constraints as possible when mapping them.

E. Estimated Success Probability

In this section, we will show how the success probability of
an algorithm drops after mapping it to the crossbar architec-
ture. Before we continue, we have to mention that even with
operational fidelities as high as 99.99% for single-qubit gates
and shuttles (as suggested in [1]) and 99.98% for

√
SWAP s,

the ESP drops drastically to 0 in most algorithms with a high
number of gates. For that reason, we just focused on the
Bernstein-Vazirani algorithm as it has got a low percentage of
two-qubit gates (usually there are only one or two CNOT s),
therefore the error is mostly introduced by single-qubit gates.

0 100 200 300 400 500

0

20

40

60

80

100

Es
tim

at
ed

 S
uc

ce
ss

 P
ro

ba
bi

lit
y

(E
SP

)

0 50 100 150 200 250
ESP
Original ESP

Gates (before mapping)

Gates (after mapping)

FIG. 15: Estimated success probability (ESP) before and
after compilation of Bernstein-Vazirani algorithm from 2 to

129 qubits.

Fig. 15 shows the ESP of the Bernstein-Vazirani algorithm
when scaling it from 2 to 129 qubits. The red line “Origi-
nal ESP” refers to the ESP before mapping, and the blue line
”ESP” refers to ESP after mapping. We observe a sharp ESP
decrease approaching 10% for 267 gates after mapping with
a slope rate of −0.6 which is caused by the increased num-
ber of gates. For 529 gates after mapping we obtained a 0%
ESP. Another reason for the ESP decrease is the semi-global
single-qubit rotation; for each of the X or Y gates contained
in the circuit (after decomposition), all qubits in odd or even
columns are rotated (even the ones that are not targeted for
rotation). This is further explained in Sec. IV 2.

15

F. Insights from Estimated Success Probability analysis

Our estimated success probability equation 2, although sim-
ple, is approximating a worse-case-scenario algorithm success
rate. We observed a rapid decline in ESP in a minimally
connected algorithm (mostly X or Y rotation gates), even
though our equation did not include decoherence-induced er-
rors [28, 44]. The main reason for this decrease is the result-
ing overhead when implementing single-qubit gates on spe-
cific qubits given the semi-global rotation scheme. Note that
in this case, all qubits in either column parities are rotated thus
each contributing to this ESP drop. Therefore, it is essential
to determine which algorithms could take advantage of the
semi-global control and/or develop architecture-specific map-
ping techniques to minimize the need for a scheme.

On real NISQ quantum devices there are other sources of
noise noise that impact algorithm execution. Fortunately, it
is expected that processors will gradually become more ro-
bust with better fabrication tolerances and improved error-
mitigation and mapping techniques will be developed and ul-
timately quantum error correction protocols will be used. It
remains challenging, however, to accurately simulate errors in
large-scale devices to derive algorithm’s success probability.

G. Compilation time

0 2500 5000 7500 10000 12500 15000 17500 20000
Gates

0

2

4

6

8

Se
co

nd
s

 Compilation Time [s]
qubits = 3
qubits = 12
qubits = 21
qubits = 30
qubits = 39
qubits = 48
qubits = 57
qubits = 66
qubits = 75
qubits = 84
qubits = 93

FIG. 16: Compilation time when mapping random uniform
algorithms with 50% of two-qubit gates onto the crossbar

architecture. We observe a linear relation which makes
SpinQ suitable for scalable spin-qubit crossbar architectures.

Finally, we measure the compilation time of our solution
to evaluate its scalability. The compilation time of SpinQ In-

tegrated Strategy can be seen in Fig. 16 for a subset of the
random uniform circuits that have been used in Fig. 8 and 12.
This subset consists of circuits with only 50% of two-qubit
gates. With this subset we map the same number of gates for
each gate type, thus all internal SpinQ processes are weighted
equally. We observe a linear increase in compilation time in
relation to the number of gates for each qubit count. This im-
plies that our strategy is suited for scalable spin-qubit crossbar
architectures. Improvements can be directed towards reducing
the slopes for each qubit count.

VIII. DISCUSSION AND FUTURE DIRECTIONS

TABLE I: Computational complexity comparison between
compilation strategies for the crossbar architecture [1]. With

n we denote the number of gates in a quantum circuit.

Strategy Complexity
Backtrack [27] O(n3)

Suffer a side effect [27] O(n2log(n))
Avoid the deadlock [27] O(n)

Integrated (ours) O(n)

Integrated strategy improvements. There can be a few
extensions to the Integrated Strategy that can provide better
performance (less overhead and higher ESP). These improve-
ments can be divided into two categories: a) improvements
that increase complexity marginally and b) improvements that
will increase complexity substantially. It is important to make
this differentiation because on large scale we have to consider
the trade-off between complexity (computation time as sizes
increase) and performance (less overhead and higher ESP).

Improvements in category (a) will involve a constraint and
conflict check for any shuttle-based type gate to enable com-
plete parallelization of all single-qubit gates within the second
pass. Note that, once again, each cycle remains dedicated to
one gate type, therefore, fine-tuning pulse durations in real
devices is still possible.

Moving on to the next category (b), it consists of all heuris-
tic mapping algorithms (routing and initial placement) dis-
cussed in Sections VII B, VII D and VII F, which can be ex-
tended to other scalable spin-qubit architectures. This will en-
able complete parallelization of two-qubit gates and less rout-
ing for both, one- and two-qubit gates.

Strategy Comparisons. As we discussed in Sec. IV, the
crossbar architecture comes with constraints that prevent full
parallelization of quantum instructions. The crossbar, how-
ever, may reach two types of conflicts (unwanted interactions
or blocked paths), even if all constraints are respected. For
that reason, there must be some kind of compilation strategy
between the scheduler and the router to prevent conflicts. In
this work, we have implemented the Integrated strategy which
is different from the three strategies suggested in [27]. Ta-
ble I compares the computational complexity of these three
strategies with our own. The backtrack strategy suggested in
[27] avoids conflicts by trying a different scheduling combi-

16

nation. If after repeating this process the scheduler has back-
tracked to the first instruction of the cycle (no more schedul-
ing combinations), a new routing path is given by the rout-
ing algorithm and the scheduling is repeated. This strategy
can be quite complex as the worst case scenario can un-route
and un-schedule all the gates going back to a completely un-
mapped circuit. An improved version of this strategy called
suffer a side effect, is a special case of the former and it
is only preferred whenever a corresponding conflict can be
corrected and if the correction is less costly than only fol-
lowing the ”backtracking” strategy. The final strategy, and
the one implemented in [27], is called avoid the deadlock.
This strategy, similar to our Integrated strategy, is trying to
avoid conflicts by parallelizing only X or Y gates. In this
way,

√
SWAP s and shuttle operations can not cause a con-

flict. However, in this strategy there is no synergy between the
routing and scheduling stages as our Integrated strategy has,
therefore there is little flexibility for improvements and per-
formance can not be easily improved while keeping the same
complexity. Our strategy is able to maintain the same O(n)
complexity even after improvements.

General discussion. When developing novel mapping
techniques for scalable quantum computing architectures such
as the si-spin crossbar two main factors have to be considered:
scalability and adaptability. As spin-qubit fabrication capa-
bilities are improving, new architectural designs with maybe
higher qubit counts will be explored. Therefore, from a com-
putation/compilation time point of view, mapping techniques
should be as scalable as the underlying technology. Practi-
cally, this implies that highly sophisticated and more complex
mapping techniques might be excellent for a particular archi-
tecture and up to a certain number of qubits, but could be
impractical for more qubits or even unusable for another ar-
chitecture. In addition, as we are slowly exiting the NISQ
era, quantum technologies will become more robust, espe-
cially with the use of quantum error correction techniques. By
that time, optimizing mapping techniques for specific hard-
ware and/or algorithm might not be as relevant as today, but
rather how fast and adaptable they are to a plethora of quan-
tum algorithms and increased number of qubits.

IX. CONCLUSION

Different quantum circuit mapping techniques have been
developed to deal with the limitations that current quantum
hardware presents and are being consistently improved to ex-
pand its computational capabilities by getting better and better
algorithm success rates. The most advanced mapping meth-
ods focus on ion-trap and superconducting devices due to
their ‘maturity’ compared with other quantum technologies.
However, spin-qubit-based processors have a great potential
to rapidly scale and the first 2D crossbar architectures have
been recently demonstrated. In this work, we focused on the
quantum circuit mapping challenges of the newly emerging
spin qubit technology for which highly-specialized mapping
techniques are needed to take advantage of its operational
abilities. Specifically, we used the crossbar architecture as

a stepping stone to explore novel mapping solutions while
focusing on scalability. The crossbar architecture adopts a
shared-control scheme, thus making it a great candidate to
tackle the interconnect bottleneck. On that note, we have
developed SpinQ, the first native compilation framework for
spin-qubit architecture which we used to analyze the perfor-
mance of synthetic and real quantum algorithms on the cross-
bar architecture. Through our analysis, we tried to inspire
novel algorithm- and hardware-specific mapping techniques
that can possibly increase the performance while taking into
account the compilation scalability. We also emphasized the
importance of characterizing benchmarks before and after de-
composition and by including their QIG structure to better
evaluate results.

X. ACKNOWNLEDGEMENT

This work is part of the research program OTP with project
number 16278, which is (partly) financed by the Netherlands
Organisation for Scientific Research (NWO). This work has
also been partially supported by the Spanish Ministerio de
Ciencia e Innovación, European ERDF under grant PID2021-
123627OB-C51 (CGA). We thank Menno Veldhorst and Hans
van Someren for their fruitful discussions.

17

[1] R. Li, L. Petit, D. P. Franke, J. P. Dehollain, J. Helsen,
M. Steudtner, N. K. Thomas, Z. R. Yoscovits, K. J. Singh,
S. Wehner, et al., A crossbar network for silicon quantum dot
qubits, Science advances 4, eaar3960 (2018).

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell,
et al., Quantum supremacy using a programmable supercon-
ducting processor, Nature 574, 505 (2019).

[3] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais,
T. Vincent, J. F. Bulmer, F. M. Miatto, L. Neuhaus, L. G. Helt,
M. J. Collins, et al., Quantum computational advantage with a
programmable photonic processor, Nature 606, 75 (2022).

[4] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li,
M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill,
et al., Quantum advantage in learning from experiments, Sci-
ence 376, 1182 (2022).

[5] S. Bravyi, O. Dial, J. M. Gambetta, D. Gil, and Z. Nazario,
The future of quantum computing with superconducting qubits,
Journal of Applied Physics 132, 160902 (2022).

[6] J. Preskill, Quantum computing in the nisq era and beyond,
Quantum 2, 79 (2018).

[7] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe,
and J. L. O’Brien, Quantum computers, nature 464, 45 (2010).

[8] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf,
D. Iorga, S. Varsamopoulos, C. Eichler, A. Wallraff, L. Geck,
et al., The engineering challenges in quantum computing, in
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017 (IEEE, 2017) pp. 836–845.

[9] A. Zulehner, A. Paler, and R. Wille, An efficient methodology
for mapping quantum circuits to the ibm qx architectures, IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38, 1226 (2018).

[10] L. Lao, H. van Someren, I. Ashraf, and C. G. Almudever, Tim-
ing and resource-aware mapping of quantum circuits to super-
conducting processors, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (2021).

[11] P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and
M. Martonosi, Noise-adaptive compiler mappings for noisy
intermediate-scale quantum computers, in Proceedings of the
Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(2019) pp. 1015–1029.

[12] L. Lao and D. E. Browne, 2qan: A quantum compiler for 2-
local qubit hamiltonian simulation algorithms, in Proceedings
of the 49th Annual International Symposium on Computer Ar-
chitecture (2022) pp. 351–365.

[13] S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. V. Meter, Extract-
ing success from ibm’s 20-qubit machines using error-aware
compilation, ACM Journal on Emerging Technologies in Com-
puting Systems (JETC) 16, 1 (2020).

[14] M. Bandic, S. Feld, and C. G. Almudever, Full-stack quan-
tum computing systems in the nisq era: algorithm-driven and
hardware-aware compilation techniques, in 2022 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE)
(IEEE, 2022) pp. 1–6.

[15] P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H.
Nguyen, and C. H. Alderete, Full-stack, real-system quantum
computer studies: Architectural comparisons and design in-
sights, in 2019 ACM/IEEE 46th Annual International Sympo-
sium on Computer Architecture (ISCA) (IEEE, 2019) pp. 527–
540.

[16] N. Quetschlich, L. Burgholzer, and R. Wille, Predicting
good quantum circuit compilation options, arXiv preprint
arXiv:2210.08027 (2022).

[17] M. Steinberg, S. Feld, C. G. Almudever, M. Marthaler,
and J.-M. Reiner, A noise-aware qubit mapping algorithm
evaluated via qubit interaction-graph criteria, arXiv preprint
arXiv:2103.15695 (2021).

[18] S. S. Tannu and M. K. Qureshi, Not all qubits are created equal:
a case for variability-aware policies for nisq-era quantum com-
puters, in Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (2019) pp. 987–999.

[19] M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins, Us-
ing reinforcement learning to perform qubit routing in quantum
compilers, arXiv preprint arXiv:2007.15957 (2020).

[20] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,
L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, Silicon quantum electronics, Rev. Mod.
Phys. 85, 961 (2013).

[21] D. Loss and D. P. DiVincenzo, Quantum computation with
quantum dots, Phys. Rev. A 57, 120 (1998).

[22] L. Vandersypen, H. Bluhm, J. Clarke, A. Dzurak, R. Ishihara,
A. Morello, D. Reilly, L. Schreiber, and M. Veldhorst, Interfac-
ing spin qubits in quantum dots and donors—hot, dense, and
coherent, npj Quantum Information 3, 1 (2017).

[23] M. Veldhorst, C. Yang, J. Hwang, W. Huang, J. Dehollain,
J. Muhonen, S. Simmons, A. Laucht, F. Hudson, K. M. Itoh,
et al., A two-qubit logic gate in silicon, Nature 526, 410 (2015).

[24] D. Zajac, T. Hazard, X. Mi, K. Wang, and J. R. Petta, A re-
configurable gate architecture for si/sige quantum dots, Applied
Physics Letters 106, 223507 (2015).

[25] T. Watson, S. Philips, E. Kawakami, D. Ward, P. Scarlino,
M. Veldhorst, D. Savage, M. Lagally, M. Friesen, S. Copper-
smith, et al., A programmable two-qubit quantum processor in
silicon, nature 555, 633 (2018).

[26] F. Borsoi, N. W. Hendrickx, V. John, S. Motz, F. van Riggelen,
A. Sammak, S. L. de Snoo, G. Scappucci, and M. Veldhorst,
Shared control of a 16 semiconductor quantum dot crossbar ar-
ray, arXiv preprint arXiv:2209.06609 (2022).

[27] A. Morais Tejerina, Mapping quantum algorithms in a crossbar
architecture (2019).

[28] J. Helsen, M. Steudtner, M. Veldhorst, and S. Wehner, Quantum
error correction in crossbar architectures, Quantum Science and
Technology 3, 035005 (2018).

[29] C. Gidney and M. Ekerå, How to factor 2048 bit rsa integers in
8 hours using 20 million noisy qubits, Quantum 5, 433 (2021).

[30] S. Resch and U. R. Karpuzcu, Quantum computing:
an overview across the system stack, arXiv preprint
arXiv:1905.07240 (2019).

[31] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P.
de Leon, and F. Kuemmeth, Semiconductor qubits in practice,
Nature Reviews Physics 3, 157 (2021).

[32] D. P. Franke, J. S. Clarke, L. M. Vandersypen, and M. Veld-
horst, Rent’s rule and extensibility in quantum computing, Mi-
croprocessors and Microsystems 67, 1 (2019).

[33] M. Meyer, C. Déprez, T. R. van Abswoude, D. Liu, C.-A. Wang,
S. Karwal, S. Oosterhout, F. Borsoi, A. Sammak, N. W. Hen-
drickx, et al., Electrical control of uniformity in quantum dot
devices, arXiv preprint arXiv:2211.13493 (2022).

[34] J. M. Boter, J. P. Dehollain, J. P. Van Dijk, Y. Xu, T. Hensgens,
R. Versluis, H. W. Naus, J. S. Clarke, M. Veldhorst, F. Sebas-

https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/PhysRevA.57.120

18

tiano, et al., Physical Review Applied 18, 024053 (2022).
[35] C. D. Hill, E. Peretz, S. J. Hile, M. G. House, M. Fuechsle,

S. Rogge, M. Y. Simmons, and L. C. Hollenberg, A surface code
quantum computer in silicon, Science advances 1, e1500707
(2015).

[36] B. Paquelet Wuetz, P. Bavdaz, L. Yeoh, R. Schouten, H. Van
Der Does, M. Tiggelman, D. Sabbagh, A. Sammak, C. G. Al-
mudever, F. Sebastiano, et al., Multiplexed quantum transport
using commercial off-the-shelf cmos at sub-kelvin tempera-
tures, npj Quantum Information 6, 1 (2020).

[37] S. Pauka, K. Das, R. Kalra, A. Moini, Y. Yang, M. Trainer,
A. Bousquet, C. Cantaloube, N. Dick, G. Gardner, et al., A
cryogenic interface for controlling many qubits, arXiv preprint
arXiv:1912.01299 (2019).

[38] M. Veldhorst, H. Eenink, C.-H. Yang, and A. S. Dzurak, Silicon
cmos architecture for a spin-based quantum computer, Nature
communications 8, 1 (2017).

[39] N. W. Hendrickx, W. I. Lawrie, M. Russ, F. van Riggelen,
S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, and
M. Veldhorst, A four-qubit germanium quantum processor, Na-
ture 591, 580 (2021).

[40] M. Veldhorst, J. Hwang, C. Yang, A. Leenstra, B. de Ronde,
J. Dehollain, J. Muhonen, F. Hudson, K. M. Itoh, A. Morello,
et al., An addressable quantum dot qubit with fault-tolerant
control-fidelity, Nature nanotechnology 9, 981 (2014).

[41] T. Fujita, T. A. Baart, C. Reichl, W. Wegscheider, and L. M. K.
Vandersypen, Coherent shuttle of electron-spin states, npj
Quantum Information 3, 1 (2017).

[42] G. Li, Y. Ding, and Y. Xie, Tackling the qubit mapping problem
for nisq-era quantum devices, in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (2019) pp.
1001–1014.

[43] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage,
Trapped-ion quantum computing: Progress and challenges, Ap-
plied Physics Reviews 6, 021314 (2019).

[44] Y. Kharkov, A. Ivanova, E. Mikhantiev, and A. Kotelnikov, Ar-
line benchmarks: Automated benchmarking platform for quan-
tum compilers, arXiv preprint arXiv:2202.14025 (2022).

[45] A. Sinha, U. Azad, and H. Singh, Qubit routing using graph
neural network aided monte carlo tree search, in Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 36 (2022)
pp. 9935–9943.

[46] M. Bandic, H. Zarein, E. Alarcon, and C. G. Almudever, On
structured design space exploration for mapping of quantum al-
gorithms, in 2020 XXXV conference on design of circuits and
integrated systems (DCIS) (IEEE, 2020) pp. 1–6.

[47] S. Herbert and A. Sengupta, Using reinforcement learning to
find efficient qubit routing policies for deployment in near-term
quantum computers, arXiv preprint arXiv:1812.11619 (2018).

[48] D. M. A. L. Valada, Predicting the fidelity of quantum circuits
search for better metrics for the qubit mapping problem (2020).

[49] IBM, Qiskit aer library, https://qiskit.org/
documentation/apidoc/aer_library.html
(2022).

[50] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edging-
ton, and R. Duncan, t— ket¿: A retargetable compiler for nisq
devices, Quantum Science and Technology (2020).

[51] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drech-
sler, Revlib: An online resource for reversible functions and re-
versible circuits, in 38th International Symposium on Multiple
Valued Logic (ismvl 2008) (IEEE, 2008) pp. 220–225.

[52] C.-C. Lin, A. Chakrabarti, and N. K. Jha, Qlib: Quantum mod-
ule library, ACM Journal on Emerging Technologies in Com-
puting Systems (JETC) 11, 1 (2014).

https://qiskit.org/documentation/apidoc/aer_library.html
https://qiskit.org/documentation/apidoc/aer_library.html

