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A B S T R A C T

As we gradually move towards smarter cities, having greater control of the traffic in the city
becomes of utmost importance. In addition, to efficiently manage such traffic, it is critical to
be able to predict the impact of different traffic policies, and potential changes to the city road
systems structure. To this end, accurate traffic simulation models must be derived that can help
in this task. This paper presents a tool that aims to improve the representativeness of traffic
simulations by generating realistic Origin-Destination (OD) traffic matrices. In particular, we
focus on cities whose source of traffic information are the induction loop detectors deployed
through the different streets and avenues of the city. By comparing against the widely used
DFROUTER tool, part of the SUMO open-source traffic simulation package, we show how we
are able to improve the traffic model accuracy significantly. Specifically, we achieved more
realistic route lengths and a better distribution of traffic sources and destinations.

. Introduction

Smart cities are the present and future of our society. According to United Nations (UN), and its Sustainable Development Goals
SDG) [1], we can link the SDG number 11 (Sustainable Cities and Communities) [2] to the creation of Smart Cities. In particular, it
tates [2]: ‘‘Rapid urbanization is resulting in a growing number of slum dwellers, inadequate and overburdened infrastructure and services
such as waste collection and water and sanitation systems, roads and transport), worsening air pollution and unplanned urban sprawl’’.
he International Telecommunication Union (ITU) [3] describes how these problems can be solved with the creation of applications
or smart cities. For instance, they suggest the development of a Digital Twin that is able to monitor and manage the traffic in the
ity.

Likewise, the literature has recently provided different solutions for traffic management in smart cities [4–6]. Traffic management
odels can be applied in different ways, such as: reducing congestion using IoT in smart cities [7], harmonizing traffic flow in a

ity [8], reducing vehicle fuel consumption [9], and creating efficient traffic networks in urban environments [10]. These are good
xamples of how important traffic modeling is for a city. All solutions offered by traffic management models must be validated in
imulators before being applied in real scenarios. Several aspects are addressed in this validation phase. For example, it is possible
o test the variation in traffic volume when traffic restrictions are applied based on political or environmental decisions.

To ensure that a good model is created, having a reliable traffic dataset is fundamental. To create an effective traffic management
odel, Origin-Destination (OD) traffic matrices that are representative of the real traffic must be available. OD traffic matrices are
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important because they describe the flow of vehicular traffic between different origin and destination points in a transportation
network. In particular, it typically includes the number of vehicles that travel from each origin to each destination, providing a
detailed picture of the traffic patterns in a specific area. Usually, it is difficult to obtain reliable OD traffic matrices if they are not
obtained through GPS traces. In particular, most of the available GPS traces were obtained for taxis. Nevertheless, as our goal is to
develop a generic traffic model, that is, for passenger vehicles, using GPS seemed a challenging task. This is due to the difficulty of
accessing GPS data from personal vehicles or drivers’ smartphones, which raises significant privacy concerns.

In general, the solution to the aforementioned problem lies in the use of induction loop detectors or cameras in the cities.
pecifically, we will focus on the first one. Using induction loops, the number of vehicles that pass over them can be obtained. With
his information, we can get an idea about which areas are more congested, and which are less. Yet, this is not enough to generate
n OD traffic matrix. To do so, we need the aid of external tools to compute vehicle routes, such as DFROUTER [11], which, since
ts inception, has been oriented to highways.

The problem of using DFROUTER in the context of a city, is that, as highlighted by Zambrano et al. [12], the prediction of the
raffic volume generated is not reliable, being 238% greater than the actual volume. Particularly, along with the traffic volume
roblem, we have detected that the length of the routes generated is not representative, being the average length obtained in this
tudy [12] of only 1291 m. Considering that the studied area was the city of Valencia which has a size of 127.89 square kilometers
approx.: 12.6 km W-E; 10.1 km N-S), routes cannot be considered representative.

For this reason, this paper proposes a novel tool that is able to generate representative OD traffic matrices for a city based
n induction loop data, and on the use of ABATIS [13]. This is an open-source route server which uses the Open Source Routing
achine (OSRM) and OpenStreetMap data as its input. It has various tools that can be combined to create routes for different

ehicles, and our solution will utilize the Multi-Level Dijkstra approach for route selection. In particular, with our solution, we are
ble to improve DFROUTER’s accuracy in three key aspects: traffic volume, route spatial distribution, and route length. Specifically,
n terms of route length, we are able to generate more representative routes with an average length of 3937 m. This obtained result
s definitely a more realistic and accurate value for further experimentation and traffic analysis.

The rest of this paper is organized as follows: the next section presents and discusses some related works on this topic. Then, in
ection 3, we provide a clear view of the problem we address, highlighting which performance parameters we attempt to improve.
ur proposed solution is presented in Section 4, which details the different elements that conform our workflow. Then, results are
resented and discussed in Section 5. Finally, Section 6 presents the conclusions of our work, and discusses future work.

. Related work

Traffic data can be obtained through different sources like GPS, cellular networks, inductive loops, video image processors, etc.,
s studied by Leduc [14], and by Jain et al. [15]. Within these sources, we can differentiate between Floating Car Data (FCD), and
onventional ‘‘in-situ’’ technologies. FCD refers to approaches that obtain traffic data by locating each vehicle through two methods:
PS-based, and cellular phone based. ‘‘In-situ’’ refers to methods that collect traffic data through detectors located along the road.
rom these methods, we can highlight both induction loops and video image processors.

In recent years, thanks to the affordability of GPS systems, their integration in vehicles has increased exponentially. Along
ith this, the increase in the number of smartphones has meant that vehicles that are not equipped with this system can also
e analyzed. Herrera et al. in [16] used this last source of information to create a system that retrieves the GPS data directly
rom smartphones. In particular, they built a four-layer system consisting on: (i) GPS-Enabled smartphones inside vehicles, (ii) a
ellular network provider, (iii) a data collection infrastructure, and (iv) an information display system. The smartphones were able
o send, every 3 s, their location (latitude, longitude, altitude), and combining such data with time, the car’s speed was obtained.
hanks to this, the trajectory information was also obtained. Ge and Fukuda [17] go one step further and, using the aggregated
ata of the smartphone traces, create OD traffic matrices. In particular, their solution is based on the fitting of the GPS matrices
y applying spatial interaction models. Then, they are able to obtain the OD traffic matrices. Yet, despite GPS data being the most
traightforward approach to creating OD traffic matrices, they are not always easy to acquire. This is because most of the data are
ollected by different companies, and it is not easy to have access to them. Similarly, people often feel that their privacy is being
iolated, because, even though the data are anonymous, a system is keeping track of all their movements.

The acquisition of traffic data through the cellular network is one of the alternatives to GPS data collection. Thanks to newer
echnologies like LTE and 5G, the network infrastructure has increased, so it is easier to track vehicles. Cáceres et al. [18] evaluated
ix different models to detect the number of vehicles moving from one cell to another using anonymous phone call data. These models
re based on the relationship that exists between call activity and traffic mobility. Among these, a physical model is selected. This
s based on the assumption that a cell phone makes a moving call when either the user makes a call in each of the two cells forming
he boundary within a short period of time, or the user has an active call and switches from one cell to the other. Results showed
hat a reasonable traffic flow was estimated. Similarly, Iqbal et al. [19] proposed a method to create OD traffic matrices based on
ell phone Call Detail Records (CDR). In particular, their method consists of three steps; (i) collect the CDR data and generate a first
D matrix based on tower-to-tower transit, (ii) convert the first OD into a node-to-node transient OD matrix, and (iii) determine a

caling factor and obtain the OD traffic matrix. Nevertheless, these data are difficult to obtain because they depend on the different
elecommunication companies. Moreover, the deployment of such a public infrastructure to record traffic conditions is not affordable
or administrations.

Video image processors are one of the most extended ‘‘in-situ’’ methods to acquire traffic data. Thanks to the development of
2

echnology, in particular artificial intelligence techniques, nowadays it is easier to track traffic mobility through video cameras. Back
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in 2009, Mallikarjuna et al. [20] developed a system that collects traffic data using video image processing. There are two principal
methodologies: the data collection, and the traffic estimation. For the former one, they use cameras that are pointing to the center
of the road in order to cover a considerable amount of road area. For the latter, they are based on the typical artificial intelligence
steps: (i) learning, (ii) detection and classification, (iii) filtering and tracking, and (iv) feature extraction and classification. After
that, they are able to obtain both macroscopic, and microscopic traffic data. Savrasovs and Pticina [21] proposed a methodology to
generate OD traffic matrices. Their methodology is based on 5 steps. First, they collect the data from cameras and manually record
the license plates of the vehicles. Second, they develop an algorithm that is able to detect the exit point of each entering vehicle and,
consequently, generate the first OD matrix. Third, this matrix is manually validated, to obtain an OD probability matrix, based on
which a second version of the OD matrix is obtained. Fourth, they calibrate this last matrix by applying different methods. Finally,
they use regression analysis to the calibrated matrix, and if it achieves good performance indexes in terms of the R-square metric,
the final OD matrix is obtained. To sum up, video image processing is a good method to register traffic flow. However, it is a very
expensive method for the administration, because it requires installing multiple cameras all over the city. In some cases, this solution
is good for a small city with few streets, but not for covering a large city.

Traffic data collected through the use of induction loops is a method widely used by administrations. With this solution,
dministrations can track traffic volume in almost all parts of the city. One way to collect traffic data is by placing induction loops
hroughout the road network. Then, these induction loops send the information to a server, which then saves this information into a
atabase. In the same way, the traffic data collected is published through an API [22], and can be accessed by people and researchers.
o create OD traffic matrices with the induction loops data, several solutions have been proposed. Among these, DFROUTER [11]
tands out. In particular, DFROUTER follows four steps to achieve this goal. First, it imports the road network, including the location,
nd measurements of the induction loops. Second, it classifies the detectors in: source detectors, middle point detectors, and sink
etectors. Third, it calculates the vehicle flow between consecutive detectors. Finally, it computes the different OD based on route
sage probabilities and returns them.

In summary, induction loops are a good method to track traffic status in a city. Likewise, we have seen that literature has
rovided methods to collect data efficiently. However, despite the fact this method can calculate OD traffic matrices, these are not
epresentative. Hence, in this paper, we will focus on this issue, and develop a tool to generate representative traffic characterization
ia OD matrices.

. Problem statement

SUMO [23] is a widely-used open-source traffic simulator in the ITS field. It has been downloaded thousands of times and utilized
n numerous research projects and papers. It also has various tools and modules for route searching, such as DFROUTER [11],
TRROUTER [24], OD2TRIPS [25], and DUAROUTER [26].

In this section, we will focus on DFROUTER as it can generate vehicle routes from induction loop count data. Flowrouter [27] is
nother tool that can generate data from the same input, but in preliminary tests, we have discarded it. This is because it was only
ble to generate 65 different routes according to our own experiments, which is a small number given that DFROUTER generated
8,003 (short) routes, as we will see later on. Therefore, we do not consider it as a representative number and have discarded it.

However, we also want to address some of the limitations of SUMO, specifically in regard to determining actual traffic injected
nto a network and analyzing the lengths of generated routes, particularly in urban environments. DFROUTER, in particular, was
esigned primarily for highways and not city streets or avenues, as its authors state in [28]: ‘‘The idea behind this router is that
owadays, most highways are well-equipped with induction loops, measuring each of the highways’ entering and leaving flows’’.
his means that its usefulness in generating an origin/destination matrix in a city is limited.

.1. DFROUTER traffic injected issue

In [12], Zambrano et al. discussed a problem for DFROUTER, which is related to the number of vehicles that pass over the
ifferent induction loops in the output that is generated. In particular, the authors found that it has a large deviation compared to
he real data. Furthermore, this deviation is also reflected in the number of vehicles injected. This means that DFROUTER injects
number of vehicles that is greater than expected, being that the overall difference obtained was +238% when compared to real

data. Due to this issue, the OD matrix generated was not representative of the actual traffic conditions in the city.
For evaluating and analyzing our proposed new methodology, we have recreated their experiments to obtain the reliability of

the DFROUTER data. Specifically, we have also used DFROUTER and the city induction loop real data, although such data was
retrieved much more recently using web tools, and so correspond to current traffic patterns as opposed to the former ones. As a
result, we have obtained via DFROUTER the traffic distribution throughout the city (OD matrix). Then, applying reverse engineering,
we obtained the distribution of vehicles per induction loop. This allowed us to compare side by side the percentage error between
the real data, and the DFROUTER provided data.

Analyzing the induction loop data distribution in more depth, we can look at the Empirical Cumulative Distribution Function
(ECDF) presented in Fig. 1. This figure shows the number of vehicles that pass over each induction loop, sorted by size. In it, we can
observe that there is a great difference between both functions, evidencing the DFROUTER is not generating realistic traffic routes.
Specifically, for the real data function, we observe a parabolic function with a maximum value of around 20k vehicles. In contrast,
the DFROUTER function has a maximum value of 13k vehicles, and it behaves like a straight line until 5k, a value beyond which it
3
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Fig. 1. ECDF of induction loop real and DFROUTER data.

Fig. 2. Induction loop data difference (Real vs. DFROUTER).

Table 1
Induction loop data difference stats (Real vs. DFROUTER).

Num. of detectors 386

Avg. +231%
Std. Dev. +577%
Q1 −51%
Q2 +27%
Q3 +244%
Min. −88%
Max. +5417%

starts to make a parable. This leads us to think that the difference between the detector data for DFROUTER, and the actual traffic
will be somewhat high.

Table 1 and Fig. 2 complement the data shown in Fig. 1. Firstly, Table 1 presents different statistical measures that provide
a complete overview of the differences between the real and the DFROUTER induction loop data, In particular, the difference is
calculated for each detector. We can see that the minimum difference between the data of induction loops is −88% in favor of real
data, while the maximum goes up to 5417% more in DFROUTER. In terms of quartiles, we observe that the first half of the values
(Q2) already experience an increase of +27%, but for the Q3 threshold, this number increases to +244%. Due to these numbers, the
average percentage difference between real, and DFROUTER induction loop data is 231%. Secondly, Fig. 2 shows how the number
of vehicles per detector variate. In particular, it can be observed the difference in the number of vehicles for each detector between
the real traffic and the DFROUTER approach. As we can see, there exist big differences between both data. More specifically, at the
end of the 𝑥-axis, from 300 to 400, we can see that the maximum value of 5417% is somewhere in this range.

All in all, considering both the analysis of Zambrano et al., and our own analysis, we can state that DFROUTER has an issue
when distributing and injecting the traffic in a city when having induction loop data as input. In particular, we observe that the
variation remains very similar: 238% in the former work, and 231% in our work. This led us to think that the error DFROUTER
introduces is consistent, and repetitive. Specifically, in the next subsection, we focus on evaluating the length of routes.
4
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Fig. 3. Route length distribution for DFROUTER.

Table 2
Routes statistics from the DFROUTER route output file.

Num. of routes 38,003

Avg. 1291 m.
Std. Dev. 740 m.
Q1 917 m.
Q2 1154 m.
Q3 1425 m.
Min. 75 m.
Max. 10,049 m.

3.2. DFROUTER routes length issue

As previously stated, DFROUTER is more oriented toward generating routes for highways than for streets or avenues. Because
there is a clear difference between a highway environment and a city environment, the resulting lengths of the routes are prone to
have little representativeness in urban environments. In order to check the validity of this statement, we have generated the routes
for the city of Valencia. To contextualize, in terms of population, Valencia is the 3rd city in Spain, and the 23rd in the European
Union, with 800,215 inhabitants. Regarding size, the analyzed area has a size of 127.89 square kilometers (approx.: 12.6 km W-E;
10.1 km N-S). Likewise, the city has around 4000 streets and avenues with major roads such as the ‘‘Calle San Vicente Mártir ’’ with
a length of approximately 4 km, and minor roads such as the ‘‘Calle Doctor Serrano’’, with a length of approximately 180 m.

The route length distribution is presented in Fig. 3. As we can see, most of the routes are concentrated in the range from 700 m
to 1400 m. In addition, we can observe that there is a large number of routes with a length of less than 500 m, and even as low as
100 m in some cases. These short lengths are not representative of a city such as Valencia, with very limited parking availability,
meaning that most people will make such trips on foot.

To make a more complete analysis of the results generated by DFROUTER we can observe the routes statistics from DFROUTER
on Table 2. In particular, the minimum length of a route is 75 m, which is very small and is not close to real situations. On the
contrary, the maximum length is 10,049 m., which is a large route, and representative of someone who lives on the outskirts of
the city. Additionally, for median and average length, we have 1154 and 1291 m, respectively. These lengths, as we said before,
are too short considering the actual citizen experience. In fact, 75% of the routes can be considered not representative as they are
below 1425 m.

Finally, to summarize, considering that 75% of the routes are below 1425 m, we can state that the length of most of the routes
clearly does not represent the traffic in this city considering its size. To sum up, it has been demonstrated that DFROUTER has an
issue with the length of the routes when generating them in the context of a city.

4. Proposed solution

In traffic simulators, there is a constant problem when trying to generate representative traffic for a city based on data from
induction loops. As detailed in the previous section, the problem is generated by DFROUTER. Specifically, DFROUTER faces two
main problems when generating traffic within a city; (i) the amount of traffic injected is excessive, and (ii) the length of the routes
remains too short. In this section, we detail how to solve these issues by proposing a novel traffic route generator based on using the
ABATIS [13] routing engine. Since DFROUTER generates the routes, along with the traffic distribution in time and space, we divide
our algorithm in 4 parts for the sake of clarity. These are: (i) data collection and curation, (ii) routing core, (iii) data expansion, and
(iv) time distribution. In addition, we will explain how data is prepared in order to apply our algorithm effectively. The complete
workflow of the proposed solution can be observed in Fig. 4.
5
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Fig. 4. Workflow of the proposed solution.

Table 3
CSV columns structure.

ATA n_vehicles way_id Node

A1 17 750 429492850 429492853 4286326639 4278564760 ...
A10 6866 770904161 60432369 25767499 1596479816 ...
A102 1101 13945413 13945412 131943282 249507229 ...
... ... ... ...

4.1. Data collection and curation

We start by gathering data from the Valencia City Council through a public API [22]. Then, based on the study of Zambrano
et al. [29], and Calafate et al. [13], we focus on data obtained from the 386 induction loops in the city between 8 and 9 am on
an ordinary Monday. To clarify, all sensors are of the same type and were deployed in different sections of the main streets and
avenues of the city. These are embedded under the surface of the roadway, one per lane. At a given location, all lanes are covered
for the sake of completeness. In our case, the data used is from May 2021, not November 2012, as in that prior work. Afterwards,
we converted the data from a JSON file to a CSV file in order to better deal with such data.

Secondly, we add to the CSV the ID of the street, and the nodes related to it, based on the information provided by
OpenStreetMap [30]. Then, since data is split into 15-min slots, we combine all the data for the same induction loop to be more
efficient. Having done that, the CSV columns will resemble the structure presented in Table 3. The ‘‘ATA’’ column corresponds to
the ID of the induction loop as provided by the City Hall, and it adopts a string format. The ‘‘n_vehicles’’ column is the aggregated
number of vehicles that pass over the induction loop between 8 and 9 am. Then, the ‘‘way_id’’ and the ‘‘node’’ columns correspond
to the associated ID of the way(s) for the induction loop and the associated nodes of the way.

Thirdly, we cleansed the data based on two main factors: the number of passenger cars, and the number of vehicles cruising for
parking.

Concerning the first one, we have obtained the number of passenger cars for Valencia from the Spanish Department of Traffic
(Dirección General de Tráfico (DGT)) on their 2019 annual table statistics [31]. According to this, the number of passenger cars is
72% of the total. So, because our goal is to analyze the routes of passenger cars in particular, we reduce the number of vehicles
corresponding to each induction loop by 28%.

Regarding the second one, the number of passenger cars cruising for parking is 15%. This value is estimated according to
Hampshire et al. [32], considering that in Stuttgart (207.4 km2, and 634,830 inhabitants), a city similar to Valencia (134.6 km2, and
791,413 inhabitants), that is the percentage of vehicles cruising for parking. Since we only want vehicles that do a specific route
instead of a cruise for parking, we now subtract a 15% from the 72% of the previous step. To sum up, we have reduced the data of
the vehicles that pass through the induction loop by 38.8% so as to achieve more representative route data in terms of traffic that
actually requires management and/or improvement.

Finally, with the use of NETCONVERT [33], we add the edges (ID of the road given by SUMO) and their associated nodes, and
the nodes with their associated coordinates in a database. Likewise, we include in the database the cleansed data of the CSV, in
order to have all the parameters in the same file.

At the conclusion of this process, we have the necessary data to operate the ‘‘Routing core’’ part.

4.2. Routing core

Having obtained the required data by following the procedures detailed above, we now proceed to describe the core part of our
solution. As stated above, the engine of our routing algorithm will be ABATIS [13]. This is an open-source route server based on
the Open Source Routing Machine (OSRM) [34]. As input data it uses the files extracted from OpenStreetMap. It has different tools
that, when combined, are capable of generating different vehicle routes. In particular, for the route selection of our algorithm, we
will use the Multi-Level Dijkstra (MLD) approach. Afterwards, along with ABATIS, our implementation consists of the combination
of various steps. These can be observed in Algorithm 1, and with them, it will be able to generate more representative routes.

As can be seen in Algorithm 1, the inputs consist on: (i) the edges of SUMO and their relation to nodes; (ii) the nodes and their
relation to coordinates; and (iii) the traffic data provided by the induction loops. Furthermore, the outputs are two CSV files: one
6
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Algorithm 1: Proposed routing algorithm.
Input: Edges, Nodes, Traffic data
Output: CSV with routes, CSV with updated traffic data

1 𝒅 ← Num. of detectors, 𝜷 ← reduction coefficient;
2 𝒏 ← Num. of vehicles for a detector, ∑𝒅

𝒊=𝟏 𝒏𝒊 ← Total num. of vehicles;
3 𝜹𝒐,𝒅𝒆𝒔,𝒎𝒊𝒅 ← tolerated error for origin, destination and intermediate point;
4 𝑒𝑛𝑑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ← (∑𝒅

𝒊=𝟏 𝒏𝒊) × (𝟏 − 𝜷), 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ← Current ∑𝒅
𝒊=𝟏 𝒏𝒊;

5 𝐴𝐵𝐴𝑇𝐼𝑆𝑅𝑡, 𝑆𝑈𝑀𝑂𝑅𝑡, 𝑁𝑜𝑑𝑒𝑠𝑅𝑡 ← {};
6 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ≥ 𝑒𝑛𝑑𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 do
7 𝑜𝑟𝑖𝑔𝑖𝑛𝑃 𝑜𝑖𝑛𝑡 = getMostProbablePoint(Traffic data);
8 Filter possible destination points → min. distance 2 km;
9 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑖𝑛𝑡 = getMostProbablePoint(Filtered data);
10 𝐴𝐵𝐴𝑇𝐼𝑆𝑅𝑜𝑢𝑡𝑒 = generateRoute(𝑜𝑟𝑖𝑔𝑖𝑛𝑃 𝑜𝑖𝑛𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑃 𝑜𝑖𝑛𝑡);
11 𝑆𝑈𝑀𝑂𝑅𝑜𝑢𝑡𝑒 = ABATIStoSUMOFormat(𝐴𝐵𝐴𝑇𝐼𝑆𝑅𝑜𝑢𝑡𝑒);
12 𝑁𝑜𝑑𝑒𝑠𝑅𝑜𝑢𝑡𝑒 = ABATIStoNodesFormat(𝐴𝐵𝐴𝑇𝐼𝑆𝑅𝑜𝑢𝑡𝑒);
13 𝐴𝑇𝐴𝐿𝑖𝑠𝑡 ← {};
14 if 𝒏𝒐 ≤ 𝜹𝒐 and 𝒏𝒅𝒆𝒔 ≤ 𝜹𝒅𝒆𝒔 then
15 Add origin and destination ATA to 𝐴𝑇𝐴𝐿𝑖𝑠𝑡;
16 for 𝑛𝑜𝑑𝑒 in 𝑁𝑜𝑑𝑒𝑠𝑅𝑜𝑢𝑡𝑒 do
17 𝐴𝑇𝐴 = getATAFromNode(𝑛𝑜𝑑𝑒);
18 if 𝒏𝒎𝒊𝒅 ≤ 𝜹𝒎𝒊𝒅 then
19 Add the 𝐴𝑇𝐴 to 𝐴𝑇𝐴𝐿𝑖𝑠𝑡 if is not present yet;
20 if 𝑛𝑜𝑑𝑒 == 𝑙𝑎𝑠𝑡𝑁𝑜𝑑𝑒 then
21 Update 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ← Decrease n by 1 for each detector present in the 𝐴𝑇𝐴𝐿𝑖𝑠𝑡;
22 AddRouteToCorresponding Set(𝐴𝐵𝐴𝑇𝐼𝑆𝑅𝑜𝑢𝑡𝑒, 𝑆𝑈𝑀𝑂𝑅𝑜𝑢𝑡𝑒,𝑁𝑜𝑑𝑒𝑠𝑅𝑜𝑢𝑡𝑒);
23 end
24 else
25 break;
26 end
27 end
28 end
29 end
30 CSV with routes ← generateCSV(𝐴𝐵𝐴𝑇𝐼𝑆𝑅𝑡, 𝑆𝑈𝑀𝑂𝑅𝑡,𝑁𝑜𝑑𝑒𝑠𝑅𝑡) ;
31 Return (CSV with routes, CSV with updated traffic data);

with the routes created, and the other one with the updated traffic data. The idea of the algorithm is to iteratively obtain the routes,
selecting the origin and destination based on the number of vehicles that pass over the induction loops.

We now proceed to explain in detail the three key parts of our algorithm. Firstly, the loop condition present on line 5. This
ondition is fundamental because the algorithm iterates up to a certain value, which affects the accuracy of the results. This is
ecause the process of obtaining routes is costly in terms of execution time because by placing constraints on the allowed error, the
ifficulty of obtaining a route gradually increases. Therefore, we have chosen to obtain the routes for a percentage of the vehicles
hrough the use of a reduction factor 𝛽. These routes will be expanded in the next module ‘‘Data expansion’’. If we now analyze the

values of the condition, these are: the total number of vehicles that pass over the induction loops, and a reduction factor 𝛽. This
reduction factor will be 0 ≤ 𝛽 ≤ 1. As an example, if we want to iterate over 25% of the data, 𝛽 needs to be 0.25. It is important to
mention that the ∑𝑑

𝑖=1 𝑛𝑖 on the left on the condition decreases according to line 20, while the ∑𝑑
𝑖=1 𝑛𝑖 on the right is a copy, and

remains unchanged.
Secondly, the block between lines 6 and 11 includes two main functions: one that gets the most probable point, and one that

retrieves the route from ABATIS. Regarding the first one, it works in a way where an ATA (ID of the induction loop) is selected
based on the number of vehicles associated with it. Then, a random node of the ATA is selected, in order to obtain a specific latitude
and longitude. This spatial distribution-based mechanism is applied to select origin and destination points, which results in a more
accurate and comprehensive estimation. The only difference between them is that the destination point must be at least 2 km away
in a straight line from the origin point. With regard to the second function, it sends an HTTP request to the ABATIS server, and
receives a JSON with the route to be followed as a sequence of coordinates. This route covers the streets without induction loops
because ABATIS adopts the full map to create paths, and not only the streets with induction loop detectors. Since routes are long
and traverse many points of the city, roads without induction loops are mainly covered. At the end, this route is converted into the
SUMO format and a sequence of nodes. This is done in order to be able to run both future simulations and the next part of this
7
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Finally, with regard to the rest of the lines, notice that the conditions present on lines 14 and 18, and the update step on line
1, are critical. With respect to the condition on line 14, the tolerated error 𝛿𝑜,𝑑𝑒𝑠 is the ratio of vehicles exceeded (compared to the
eference value), which we do not want to surpass to avoid high error values. Specifically, for the origin and destination points, the
olerated error is 0, and so the counter of that detector must not be less than 0. On the contrary, the 𝛿𝑚𝑖𝑑 in condition on line 18,
ust not exceed a certain percentage of the initial value of the detector. This percentage will vary depending on the chosen 𝛽 value.
his is because, when a higher 𝛽 is chosen, the execution time will be longer, and so a very restrictive 𝛿𝑚𝑖𝑑 will be counterproductive.
egarding line 21, this is where we update the data in order to be able to execute the algorithm correctly. In particular, we subtract
from the counter of each induction loop present in the route. This will lead to the variation of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑠, and, consequently,

o the variation of the selected origin and destination points. This is because, as we have already mentioned, both points are selected
ased on probability, and the change in the number of vehicles will modify this probability.

.3. Data expansion

In the previous subsection, we discussed that the total amount of vehicles is not generated by our solution due to an excessive
xecution time. This is the reason why we need to implement another algorithm that expands the generated data so that a reduced
ataset can mimic the results of the full dataset. This process is accomplished by Algorithm 2.
Algorithm 2: Data expansion algorithm.

Input: Real traffic data, Generated traffic data, CSV routes file
Output: CSV with all the routes, CSV with the total traffic data

1 𝝈2
𝑟𝑒𝑎𝑙,𝑔𝑒𝑛. ← Variance of real traffic and generated traffic;

2 𝝁𝑟𝑒𝑎𝑙,𝑔𝑒𝑛. ← Mean of real traffic and generated traffic;
3 𝒏 ← Detector count;
4 𝒑𝒓𝒐𝒖𝒕𝒆 ← Probability to choose a route;
5 𝑅𝑜𝑢𝑡𝑒𝑠𝐶𝑜𝑝𝑦 ← copy of the data in the CSV routes file;
6 while 𝝁𝒈𝒆𝒏.

𝝁𝒓𝒆𝒂𝒍
< 𝟏.𝟏 do

7 if not
𝝈𝟐𝒈𝒆𝒏.
𝝈𝟐𝒓𝒆𝒂𝒍

> 𝟏 then

8 Choose a route based on 𝒑𝒓𝒐𝒖𝒕𝒆;
9 Add the route to 𝑅𝑜𝑢𝑡𝑒𝑠𝐶𝑜𝑝𝑦;
10 Update generated traffic data ← +1 to all 𝒏 present in the route;
11 Recalculate 𝝁𝑔𝑒𝑛. and 𝝈2

𝑔𝑒𝑛.;
12 else
13 Generate CSV ← 𝑅𝑜𝑢𝑡𝑒𝑠𝐶𝑜𝑝𝑦;
14 Generate CSV with the total generated traffic data;
15 break;
16 end
17 end
18 Return (CSV with all the routes, CSV with the total traffic data);

As can be seen, the algorithm is mainly based on the variance (𝜎2) and mean (𝜇) values, for both real traffic data and the
generated traffic data in Algorithm 1. The algorithm begins with an iteration that satisfies the condition 𝜇𝑔𝑒𝑛.

𝜇𝑟𝑒𝑎𝑙
< 1.1. This is in order

o ensure that the ratio between both means is acceptable (just a 10% higher) to generate representative data. Then, the rate between
oth 𝜎2𝑟𝑒𝑎𝑙 and 𝜎2𝑔𝑒𝑛. must be less than 1, in order to generate a more accurate result. Afterwards, if the condition is satisfied, it will
hoose a route from the Generated routes file with probability 𝑝𝑟𝑜𝑢𝑡𝑒. Then, it updates by adding 1 to the values corresponding to

those detectors present in the route. Finally, since detector data are changed, a recalculation of 𝜎2𝑔𝑒𝑛. and 𝜇𝑔𝑒𝑛. is needed.
On the contrary, if the variance condition is not satisfied, it means that the iteration process needs to stop. Before this, the

algorithm will generate the output CSV including all the routes generated, and the traffic data generated.

4.4. Time distribution

In order to have the same outputs as DFROUTER we need to create a vehicles file. Specifically, what differentiates this file from
the route file generated in Algorithm 2 is that our routes (from now on referred to as vehicles) have no depart time. These vehicles
are generated by counting the number of routes and the number of repetitions of each of them. The number of repetitions will
be the number of vehicles that travel through the route. Therefore, we generate all the routes, and then we count the number of
repetitions of each route to assign the number of vehicles that travel through that route. Having made this clear, in order to satisfy
the DFROUTER requirement, we need to add to all vehicles a specific departure time. This is done by applying a Poisson Distribution
for the vehicles that take the same route. The complete behavior of this function can be observed in Algorithm 3.

As stated above, the key functionality of the algorithm is the use of the Poisson Distribution Function. We have chosen Poisson,
and not Gaussian or other alternatives, since Poisson processes are widely accepted as being adequate for generating the number
of vehicles passing through a given route segment during a specific time interval [35–37]. Regarding the algorithm structure, we
8
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Algorithm 3: Time distribution algorithm.
Input: CSV with all the routes
Output: CSV with vehicles traffic information

1 𝑻 ← simulation period;
2 𝝀𝒓𝒐𝒖𝒕𝒆 ← mean number of vehicles for a certain route during 𝑇 ;
3 𝑅𝑜𝑢𝑡𝑒𝑠 ← New set with routes ID and num. of vehicles associated to it;
4 for 𝑟𝑜𝑢𝑡𝑒, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑟𝑜𝑢𝑡𝑒 in 𝑅𝑜𝑢𝑡𝑒𝑠 do
5 𝐴 ← Empty set of size 𝑇 ;
6

𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝑟𝑜𝑢𝑡𝑒
𝑇 ← Calculate 𝝀𝑟𝑜𝑢𝑡𝑒;

7 for k=0:T do
8 Draw a sample from 𝑃 (𝑥 = 𝑘) = 𝑒−𝜆𝑟𝑜𝑢𝑡𝑒 𝜆𝑘𝑟𝑜𝑢𝑡𝑒

𝑘! and add it to 𝐴;
9 end
10 for 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 in 𝐴 do
11 if 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 != 0 then
12 Add vehicle to the CSV vehicles file;
13 end
14 end
15 end
16 Generate CSV with vehicles traffic information;
17 Optimize for simulation the CSV with vehicles traffic information;
18 Return (CSV with vehicles traffic information);

can observe that it iterates over the routes and vehicles per route. Then, in order to be able to draw samples from the Poisson
distribution, an empty set of size 𝑇 is created for each route. At the same time, the 𝜆𝑟𝑜𝑢𝑡𝑒 is calculated. Afterwards, we draw a
sample from the execution of the Poisson Distribution Function, and add it to 𝐴 at position 𝑘. This position refers to the simulation
time at which the vehicle will depart. Then, we add each vehicle in a particular route to the CSV file of vehicles’ traffic information,
and once the iteration over all the routes is completed, we generate the CSV. To conclude, and to avoid future simulation warm-up
issues, we optimize it and return the result.
Algorithm 4: Optimization of vehicle departure time.

Input: CSV with vehicles traffic information
Output: CSV with vehicles traffic information optimized

1 𝝈𝒗𝒆𝒉 ← Standard deviation of vehicles per second;
2 𝝁𝒗𝒆𝒉 ← Mean of vehicles per second;
3 𝝐 ← Value that changes depending on the method used;
4 𝝁𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏 ← Mean of vehicles trip duration;
5 𝜞 (𝝁𝒗𝒆𝒉, 𝝐) ← Optimization function;
6 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑠 ← Set of vehicles traffic information from the CSV;
7 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟, 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑇 𝑖𝑚𝑒 → 0;
8 for 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 in 𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑠 where 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 ≥ 𝝁𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 do
9 if 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 ≠ 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝑇 𝑖𝑚𝑒 then
10 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 - 𝝁𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ;
11 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 1 ;
12 else
13 if not 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝜞 (𝝁𝒗𝒆𝒉, 𝝐) then
14 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑑𝑒𝑝𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 - 𝝁𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ;
15 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1 ;
16 end
17 end
18 end
19 Return (CSV with vehicles traffic information optimized);

Elaborating on the optimization algorithm (see Algorithm 4), this consists of an iteration over the CSV file containing vehicles’
raffic information. The iteration starts over the last vehicle with a departure time equal to or greater than the 𝝁𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛. Afterwards,
he departure time of a certain number of vehicles is updated. This number is calculated by an optimization function 𝜞 (𝝁𝒗𝒆𝒉, 𝝐)
hich is established before running the iteration. This function is described as:

𝜞 (𝝁 , 𝝐) = 𝝁 + 𝝐 (1)
9
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where 𝝐 can be equal to 0, 𝝈𝒗𝒆𝒉, −𝝈𝒗𝒆𝒉, or a random integer in the range {−𝝈𝒗𝒆𝒉, 𝝈𝒗𝒆𝒉}. Finally, it returns the optimized CSV with
the vehicles’ traffic information.

Summing up, throughout this section we have described the workflow of our solution. After the collection and cleansing of the
induction loop data, the generation of the routes for the vehicles is performed for a portion of these data. This is the main part of
our solution. Then, since this process is very time-consuming, the number of vehicle routes obtained is extended by using statistical
procedures. Finally, once all the induction loop data has been processed, an optimized distribution of the departure times is made
to minimize the warm-up period required and achieve a stable number of vehicles in the system afterwards. This process presents
a great scalability potential to handle an increasing number of OD elements because it generates routes based on induction loop
data, and then it assigns the number of vehicles that take the route.

5. Results and discussion

Having analyzed the details of our proposed solution, we will now detail how the experiments used to validate our proposal
were defined, and which performance metrics have been used. Afterwards, we discuss the quality of our solution by analyzing the
results for each experiment.

It is important to mention that all experiments have been done using as reference the data from the induction loops, and
comparing the results using either the OD matrices produced by DFROUTER, or our OD matrices generated through the combination
of Algorithms 1, 2, and 3. Likewise, the hardware used for these experiments consists of a PC with an Intel i7-12700 3.6 GHz CPU,
16 GB DDR4 2400 MHz RAM, and an M.2 SSD storage with a reading speed of 3300 MB/s, and a writing speed of 1200 MB/s.

5.1. Tuning our algorithm

Firstly, we need to select an optimal 𝛽 that achieves an acceptable performance in terms of mean squared error (MSE), while
avoiding excessive execution times when compared to other solutions.

In particular, for our proposed solution, we have tested different reduction factors to find the one offering the best trade-
off: 𝛽 = {0.01; 0.10; 0.15; 0.20; 0.25; 0.30; 0.35; 0.40}. In the same way, the intermediate tolerated error used (normalized value) is
𝜹𝒎𝒊𝒅 = 1.1, and so the value for each detector cannot exceed 10% of its reference value. Having this in mind, we will divide
our experiments into two groups: the traffic distribution analysis along with the algorithm validation, and the characterization of
generated routes in terms of quality and representativeness.

In order to show the different trade-offs between our proposed solution and DFROUTER, we calculate the MSE with respect to
the real data with the following equation:

MSE(𝑦, 𝑦̂) = 1
𝑛detectors

𝑛detectors−1
∑

𝑖=0
(𝑦𝑖 − 𝑦̂𝑖)2 (2)

where:

𝑛detectors = Total num. of detectors

𝑦𝑖 = num. of vehicles that pass over a detector

𝑦̂𝑖 = num. of vehicles that pass over a detector for some 𝛽

We do it for our solution when adopting different 𝛽 values, and also for DFROUTER. Likewise, we calculate the execution time
for our solution (again varying the 𝛽 value), and for DFROUTER. Finally, an analysis of the trade-off between MSE and execution
time is presented to show how much the MSE drops when increasing the execution time.

Fig. 5 shows the behavior of the MSE when increasing 𝛽. As we can observe, there is a decreasing tendency when 𝛽 is higher, but
for 𝛽 = {0.01; 0.10} the MSE obtained is higher than that of DFROUTER. Because of this, these 𝛽 values are ruled out. Conversely,
since the MSE for 𝛽 = {0.15; 0.20; 0.25; 0.30; 0.35; 0.40} is lower than the obtained by DFROUTER, they are still considered when
targeting the optimal solution.

Regarding the performance in terms of execution time when increasing 𝛽, Fig. 6 shows that such time increases in a parabolic
way. In particular, we can observe that the slope from 𝛽 = 0.01 to 𝛽 = 0.20 is limited, while from 𝛽 = 0.10 to 𝛽 = 0.40 it becomes
very steep, having exponential growth. Moreover, most values achieved for our solution are higher than those for DFROUTER. This
is because of the complexity of Algorithm 1, and our restrictive 𝜹𝒎𝒊𝒅 parameter.

In Fig. 7 we combine the results of the previous figures to observe the general performance of our solution compared to
DFROUTER. It shows that there is a correlation between MSE, execution time, and 𝛽; so, when 𝛽 becomes higher, the execution
time is higher, but the MSE becomes lower. Thus, we need to select an optimal 𝛽 that achieves an acceptable performance in terms
of MSE, while avoiding excessive execution times when compared to other solutions. In this case, the 𝛽 value we select for the
experiments that follow is 0.25, because it is able to reduce the MSE by 25% compared to the DFROUTER result. In addition, the
execution time is much lower than that for higher values of 𝛽, which achieve a lower MSE.

Having identified the 𝛽 value with the best trade-off, we proceed to analyze the behavior of our solution in SUMO over a
10
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Fig. 5. MSE values when varying the value of 𝛽.

Fig. 6. Execution times when varying the value of 𝛽.

Fig. 7. Trade-off between MSE and execution time.

traffic information file generated in Algorithm 3. ‘‘𝝐 = {𝝈𝒗𝒆𝒉, −𝝈𝒗𝒆𝒉, 0, and 𝝐 in {−𝝈𝒗𝒆𝒉, +𝝈𝒗𝒆𝒉}}’’ refer to the optimized solution
(see Algorithm 4).

As can be observed in Fig. 8, the unoptimized solution (Default), performs badly in terms of the number of vehicles during
simulation. This is because it never reaches a steady state, and the number of vehicles keeps rising over time. Likewise, when
compared to the other solutions, we notice that there are warm-up issues. While the other methods are achieving maximum values
at about 9.5 min, ‘‘Default’’ reach it at the end of simulation time. Regarding optimized solutions, we observe that all methods
reach the peak after 9.5 min. Furthermore, we observe that the steady-state has a period of 40 min for all optimized methods. In
addition, 𝝐 = 𝝈 ; 𝝐 = 0; and 𝝐 = 𝝐 in {−𝝈 ,+𝝈 } perform similarly, being the number of vehicles stable, while 𝝐 = −𝝈 rises
11
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Fig. 8. Vehicles present during simulation time using different methods.

Fig. 9. Distribution of the number of vehicles during steady-state.

the number of vehicles over time. Finally, all optimized methods enter the terminating state at time 𝑡 = 50 min, when the number
of vehicles decreases substantially.

To determine which of the methods is the most stable one during the steady-state period, we analyzed the distribution of the
number of vehicles during that period. Fig. 9 shows that when 𝝐 is 𝝈𝒗𝒆𝒉, 0, and 𝝐 in {−𝝈𝒗𝒆𝒉,+𝝈𝒗𝒆𝒉}, the number of vehicles are
the more stable, while ‘‘Default’’ and 𝝐 = −𝝈𝒗𝒆𝒉 are not, being ‘‘Default’’ the least. In particular, we can see that 𝝐 = 𝝈𝒗𝒆𝒉 has the
smallest difference in the distribution. Therefore, we conclude that this is the best solution.

5.2. Traffic distribution analysis and algorithm validation

Having now selected the 𝛽 value, we now proceed by observing in Fig. 10 the empirical cumulative distribution function (ECDF)
that characterizes our solution, along with the distribution for DFROUTER, and the induction loop data used as reference. As
mentioned in Section 3, DFROUTER has a maximum value of 13k vehicles, and it behaves like a straight line until 5k, a value
beyond which it starts to make a parable. On the contrary, the function for our solution is very similar to the one for real data. Both
behave with a similar parabolic function, and only differ in the maximum value (20k for real data, and 19k for our solution); also
notice that there is a slight difference between the curves of the two functions for data between 150 and 250 on the 𝑌 -axis.

Data present in Table 4 and Fig. 11 complement the ECDF shown in Fig. 10 by providing further details so as to gain greater
insight. As we did earlier in Section 3, we present different statistical metrics that provide a complete overview of the differences
between the real data, DFROUTER, and our proposed solution.

On one hand, in Table 4 we can see that, on average, our solution introduces an average increase of 36% when compared to real
data; yet, when compared to DFROUTER, we find that there is a reduction of 195%. Regarding minimum values, we observe that
our solution has a minimum value of −100%. This occurs when our algorithm estimates that no vehicles will pass through a given
induction loop, but instead, for the actual data, we have vehicles passing over it. On the contrary, we obtain a maximum difference
compared to real data of 370%, in this case for the maximum value detected. Notice that such value becomes possible despite the
fact we introduce limits to the error in Algorithm 1, since Algorithm 2 does not consider this particular type of error. Anyway, we
greatly outperform DFROUTER by an 5047%, which is a very substantial improvement.

On the other hand, Fig. 11 shows the variation in the number of vehicles per detector. More concretely, it can be observed the
difference in the number of vehicles for each detector between the real traffic, and our solution approach. As we can see, there is a
common trend for both, and a notable difference only exists for some specific values. Likewise, by observing this figure and Fig. 2
we can determine that our solution has a better fit.
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Fig. 10. ECDF of induction loop real, DFROUTER and our solution (𝛽 = 0.25) data.

Table 4
Induction loop data difference stats (Real vs. DFROUTER and Proposed solution).

Metrics DFROUTER [%] Proposed solution [%] 𝛥 [%]

Num. of detectors 386 386 –
Avg. +231 +36 −195
Std. Dev. +577 +132 −445
Q1 −51 −56 +5
Q2 +27 −16 −43
Q3 +244 +83 −161
Min. −88 −100 +12
Max. +5417 +370 −5047

Fig. 11. Induction loop data difference (Real vs. Proposed solution).

As a last step, we now proceed to visualize the traffic distribution according to the induction loop data. To this end, we present
three different heatmaps, as shown in Fig. 12. In particular, three subfigures are presented (see Figs. a, b, c), one for each dataset:
real values (reference), DFROUTER, and our solution. We can observe that our solution is a better match to the real distribution
than DFROUTER. This can be seen by noticing the concentration of vehicles that pass over the induction loop at the edges of the
city for our solution (and the reference map), while for DFROUTER a vast majority of the data is concentrated in the city center.
Likewise, as we discussed earlier, DFROUTER has a lower maximum value for detectors, the reason why its scale only grows up to
12k.

5.3. Routes characterization

As we discussed previously in Section 3, one of the problems associated with DFROUTER, in the context of a city, is the length
of the generated routes. This is the reason why we analyze different statistics for the selected 𝛽 versus the DFROUTER solution.
Specifically, we analyze the mean value, the standard deviation, and the maximum and minimum values associated to the route
length.

Fig. 13 shows a histogram of the length of the routes generated by our solution compared to the ones using DFROUTER. While
most routes generated by DFROUTER concentrate in the range 500–1500 m, most of the routes for our proposed solution are larger,
and fall within a wider range, between 2200 m and 5000 m. In addition, we can observe that DFROUTER routes start at a very small
length, around 100 m, which is clearly unrealistic. On the contrary, the length of our routes starts above 2 km. In particular, we can
13
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Fig. 12. Heatmap of the induction loop data distribution.

observe a cut in the histogram for our data. The reason behind this is the behavior of Algorithm 1. Since we establish a minimum
distance of 2 km between geographical points, the minimum length of the route obtained is slightly higher than this value.

As we can observe, Table 5 shows in detail the routes’ characterization in terms of length for both approaches. In particular,
the minimum and maximum values achieved by our proposal are 2139 m and 19,030 m, respectively. In contrast, as seen earlier
in Section 3, minimum and maximum values for DFROUTER are 75 m and 10,049 m. In this regard, our solution outperforms
DFROUTER by 2750% and 89%, respectively. In fact, it is very important that our minimum route value has such a length because
that is one of the main disadvantages of DFROUTER. It does not seem realistic that a vehicle is going to travel a route of 75 m, or even
500 m, in a city like Valencia, where finding a parking stop is quite problematic, and where several areas have parking restrictions,
requiring citizens to park far away so as to promote public & green transportation (bikes, electric scooters, etc.). Regarding quartiles,
we observe that our solution improves DFROUTER by 215%, being half of our routes longer than 3636 m, while for DFROUTER
this value is at 1154 m. Our solution achieves a route length of 3937 m on average, while DFROUTER stays at 1291 m; hence, our
improvement is 205%.

With respect to the distribution of the origin of the routes, Fig. 14 shows the distribution of the vehicles for DFROUTER and our
solution. In particular, this distribution is for two specific consecutive avenues (inside the red lines): Gran Vía Marqués del Turia, and
Gran Vía de Ramón 𝑦 Cajal. As it can be seen, our solution distributes more spatially the origin points of the routes than DFROUTER.
14
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Fig. 13. Histogram for the route length when comparing DFROUTER to our solution.

Table 5
Route length statistics (DFROUTER vs. Proposed solution).

Metrics DFROUTER Proposed solution Difference (%)

Avg. 1291 m 3937 m +205
Std Dev. 739 m 1418 m +92
Q1 917 m 2911 m +217
Q2 1154 m 3636 m +215
Q3 1425 m 4639 m +225
Min. 75 m 2139 m +2750
Max. 10,049 m 19,030 m +89

Fig. 14. Route origin points distribution for two selected roads (Gran Vía Marqués del Turia, and Gran Vía de Ramón 𝑦 Cajal).

Specifically, while DFROUTER only has 17 points along these avenues, our solution multiplies by more than 5 their results, having
88 points.

Fig. 15 shows a violin plot analyzing the number of vehicles in Fig. 14 area. Moreover, for our solution, the average number of
vehicles at a point is two orders of magnitude lower than with the DFROUTER approach. Specifically, while our mean is less than
10 vehicles, their approach reaches almost 1000 vehicles. Also, our minimum and maximum values are 1 and 27 vehicles, while
15
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Fig. 15. Violin plot for distribution of number of vehicles (DFROUTER vs. Proposed solution).

Fig. 16. Length of 10 sample routes (DFROUTER vs. Proposed solution).

for DFROUTER they are 64 and 1606 vehicles, respectively. These values are not representative, since the probability of so many
cars departing from the same point is extremely low, not representing real-life situations.

To conclude, Fig. 16 displays 10 random sample routes of each approach. Through this geographical example, we can better
understand the data previously presented in Fig. 13, and Table 5. As shown, DFROUTER generates routes with a small length. In
this case, these routes are distributed through various parts of the city, but their length is too short for them to be representative. On
the contrary, taking a closer look at the routes of our solution, we observe that their length is significantly longer. More importantly,
all of our routes are representative, since they represent a significant distance being covered in the city, and it seemed more natural
and usual for someone to actually use their car to take these routes.

6. Conclusions and future work

In this paper, we have seen that the process to generate representative OD traffic matrices is not a simple task. In particular,
we have analyzed the generation of these matrices with the data from induction loops. For this purpose, we have assessed a widely
adopted tool, DFROUTER. With it, we have demonstrated that the data obtained in terms of traffic volume and route length is not
representative of the case of a city.

For this reason, we have proposed a novel approach to perform reverse engineering by generating OD traffic matrices based on
induction loop data in the context of a city. Specifically, we have demonstrated that our solution improves DFROUTER in various
aspects.

Firstly, we have achieved an improvement in terms of traffic volume. In particular, DFROUTER had 231% more traffic (on
average) than the real measured values that were used as reference. With our solution, we were able to reduce that percentage by
195%, only introducing an average increase of 36% compared to the real data. Likewise, the MSE obtained for the selected reduction
factor has improved the MSE of DFROUTER by 25%.

Secondly, a better spatial distribution of the origin points of the routes has been obtained. In particular, we have discussed an
example of a representative street. In this case, we have obtained 418% more origin points than DFROUTER. So, with our solution,
we are able to achieve a much better distribution for the actual departure areas.
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Finally, we have obtained larger routes than those generated by DFROUTER. In particular, we have increased the average length
f the routes by 205%. This means that, with our solution, we are able to obtain routes with an average length of 3937 m, while
ith DFROUTER it remains at 1291 m.

To sum up, we have demonstrated in this paper that our solution outperforms DFROUTER in three key aspects: traffic volume,
oute spatial distribution, and route length providing more realistic and accurate values for further experimentation and traffic
nalysis.

As future work, we plan to continue working on the improvement of the execution time of the main algorithm of our solution.
espite the results achieved are significantly better, the execution time in relation to DFROUTER remains a drawback of our solution.

Similarly, our next goal is to use the results obtained with our tool in future simulations. In particular, since we have obtained
epresentative OD traffic matrices, we will use them to test different realistic scenarios to reduce pollution, and traffic congestion
n the city.
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